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Abstract

Low-resource Neural Machine Translation is001
highly sensitive to hyperparameters and needs002
careful tuning to achieve the best results with003
small amounts of training data. We focus on004
exploring the impact of changes in the Trans-005
former architecture on downstream translation006
quality, and propose a metric to score the com-007
putational efficiency of such changes. By exper-008
imenting on English-Akkadian, German-Lower009
Sorbian, English-Italian, and English-Manipuri,010
we confirm previous finding in low-resource011
machine translation optimization, and show012
that smaller and more parameter-efficient mod-013
els can achieve the same translation quality of014
larger and unwieldy ones at a fraction of the015
computational cost.016

Introduction017

Neural machine translation (NMT) has done mas-018

sive progress in high-resource conditions, due019

to the performance of models based on encoder-020

decoder architectures, such as the Transformer021

(Vaswani et al., 2017). Often, this progress did022

not trickle down to low or extremely low-resource023

languages, due to the huge requirements in terms024

of available training data and computational re-025

sources (Ranathunga et al., 2023). Default settings026

and assumptions which are created and may work027

for high-resource scenarios, such as the correlation028

of model size and performance, are not true in a029

low-resource one.030

Training a Transformer in these settings remains031

a challenging task, and one that requires careful032

hyperparameter tuning (Popel and Bojar, 2018).033

However, if done correctly, it can lead to well-034

performing and competitive models (van Biljon035

et al., 2020; Araabi and Monz, 2020). Most of the036

work regarding low-resource machine translation037

focuses on several techniques, such as fine-tuning,038

or transfer learning (Ranathunga et al., 2023). Re-039

search on scaling and optimizing machine trans-040

lation has mainly been done in a high-resource 041

setting (Ghorbani et al., 2022), or on other aspects 042

of training (Sennrich and Zhang, 2019; Araabi and 043

Monz, 2020; Signoroni and Rychlý, 2024). 044

Following the finding that not only size, but also 045

shape of the Transformer influences downstream 046

performance (Tay et al., 2022), our work aims to 047

broaden the understanding of the scaling of ma- 048

chine translation in low-resource settings by exper- 049

imenting with four key components in the archi- 050

tecture of the Transformer model: encoder layers, 051

decoder layers, embedding size, and feedforward 052

dimension. We conduct experiments on one simu- 053

lated low-resource pair, and three true low-resource 054

pairs, to explore the impact of each hyperparam- 055

eter on the downstream translation task. We pro- 056

pose a novel Parameter Increase Efficiency Score 057

(PIES) to measure the efficiency of changing the 058

configuration of the model, and to find the most 059

parameter-efficient combinations for each dataset. 060

We confirm that in low-resource conditions the 061

Transformer is highly susceptible to hyperparame- 062

ter variation. We also find that smaller models can 063

perform as well as much bigger models, at just a 064

tiny fraction of the computational cost.1 065

1 Related Work 066

Our work intersect previous studies on Transformer 067

and Machine Translation scaling laws and optimiza- 068

tion on both high and low-resource languages. 069

1.1 Scaling Laws and Optimization 070

Works tackled the challenge of finding empirical 071

scaling laws that govern neural language model 072

scaling, considering model, computational, or 073

dataset size. 074

Tay et al. (2022) conduct extensive experiments 075

involving over 200 Transformer configurations con- 076

1Results, code, and datasets will be available at GitRepo
TBA
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sidering both upstream and several downstream077

tasks (though, crucially, not machine translation).078

They find that model shape, and not only size079

(Kaplan et al., 2020), strongly influences down-080

stream performance. They also find that scaling081

laws change substantially when considering met-082

rics on actual downstream fine-tuning. Notably,083

they show that scaling strategies differ at differ-084

ent compute regions, and thus finding strategies at085

small scale might not necessarily transfer or gener-086

alize to higher compute regions.087

Some work has also been conducted for machine088

translation.089

Ghorbani et al. (2022) explore scaling laws for090

machine translation on a high-resource English-091

German dataset. Their results indicate that the092

scaling behavior is largely determined by the total093

capacity of the model, and its allocation between094

the encoder and the decoder. Moreover, they sug-095

gest that scaling behavior of encoder-decoder NMT096

models is predictable, but the scaling laws might097

vary depending on the particular architecture or098

task.099

Gordon et al. (2021) study the predictability of100

MT system performance as parameters/data in-101

crease, we train many Transformers of various102

sizes randomly selected subsets of data for Russian-103

English, German-English, and Chinese-English.104

Crucially, they find that extending their previous105

experiments to datasets smaller than 50MB, us-106

ing 0.05% - 0.0125% of the data, the data scaling107

power law breaks down, indicating the impossibil-108

ity of extrapolating extremely low-resource results109

to medium and high-resource data regimes.110

Some research (Hsu et al., 2020; Kasai et al.,111

2021; Berard et al., 2021) has also departed from112

the convention of using balanced encoder and de-113

coders, resulting in "deep encoder, shallow de-114

coder" models that can speed up inference while115

maintaining a similar translation performance.116

1.2 Optimization for Low-Resource Settings117

Some studies have also been done on optimizing118

NMT for low-resource scenarios.119

Sennrich and Zhang (2019) find that best120

practices differ between high-resource and low-121

resource MT and that the latter is highly sensitive122

to hyperparameters by training RNNs with differ-123

ent techniques and hyperparameters on a simulated124

English-German, and a true Korean-English low-125

resource dataset.126

Araabi and Monz (2020) trains Transformers for 127

a diverse set of true and simulated low-resource 128

pairs to find that a proper combination of Trans- 129

former configurations results in substantial im- 130

provements over a Transformer system with default 131

settings. For example, they observe that a shallower 132

Transformer combined with a smaller feed-forward 133

layer dimension and two attention heads is more 134

effective. 135

van Biljon et al. (2020) experiment with dif- 136

ferent Transformer configurations on the transla- 137

tion of three low-resource languages, showing that 138

medium (6 total layers) and shallow (2 total layers) 139

perform better than the canonical configuration of 140

6 encoder and 6 decoder layers. 141

2 Methodology 142

This section describes the dataset we tested on (Sec- 143

tion 2.1), the low-resource languages involved (Sec- 144

tion 2.2). It then reports the training framework and 145

the hyperparameters we used (Section 2.3). Next, 146

it explains our proposed efficiency metric (Section 147

2.4). And finally, it outlines our experimental setup 148

(Section 2.5). 149

2.1 Datasets 150

Our experiments are carried out on publicly avail- 151

able low-resource datasets, and one simulated low- 152

resource dataset retrieved from OPUS (Tiedemann, 153

2009). The datesets involve both high-resource 154

languages (English, German, Italian), and a typo- 155

logically diverse selection of under-resourced lan- 156

guages (Akkadian, Lower Sorbian, Manipuri). The 157

datasets have between 21k and 50k sentence pairs, 158

thus can be considered as extremely low-resource 159

(Ranathunga et al., 2023). Their content is from 160

different domains, mainly news and Wikipedia text, 161

except for Akkadian, which is mostly assorted 162

fragments of cuneiform texts. The low-resource 163

datasets have their own validation and test splits, 164

while for the simulated English-Italian dataset we 165

use the dev and devtest splits from the Flores- 166

200 benchmark corpus (Goyal et al., 2022). The 167

datasets are summarized in Table 1.2 168

2.2 Languages 169

Lower Sorbian (“Dolnoserbšćina”) is a West 170

Slavic language predominantly spoken in eastern 171

2We use a simple Python script to split the tokenized data
at the newline character and the whitespace and then return
the length of the resulting lists to obtain the number of lines
and tokens for each pair.
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Languages Abbreviation Dataset Src Tokens Tgt Tokens N. of Pairs
English-Akkadian eng-akk EvaCun 2023 45269 1177138 630535
German-Lower Sorbian deu-dsb WMT22 Low-res shared Task 40194 1064087 1032701
English-Italian eng-ita WikiMatrix Random Selection 50000 1571843 1723391
English-Manipuri eng-mni WMT23 Indic Shared Task 21287 748407 715548

Table 1: Summary of the datasets in our experiments. The columns report the languages in the dataset, its
original source, and the size of the training split in tokens and number of sentence pairs.

Germany by approximately 7,000 native speakers.172

Most of these speakers are from older generations,173

making the language critically endangered. Writ-174

ten in Latin script with additional diacritics, Lower175

Sorbian features six grammatical cases and a dual176

number system for nouns, pronouns, adjectives,177

and verbs. It does not employ articles. The dataset178

for our experiments was compiled by the Witaj179

Sprachzentrum 3 (Witaj Language Centre) (Weller-180

di Marco and Fraser, 2022).181

Manipuri (“Meiteilon”) is a Tibeto-Burman lan-182

guage recognized as one of the official languages in183

the Indian state of Manipur and at the national level.184

It is spoken by approximately 1.8 million native185

speakers, primarily the Meitei people, both in Ma-186

nipur and neighboring regions. UNESCO classifies187

Manipuri as "vulnerable." The language exhibits188

extensive suffixation with limited prefixation and189

follows an SVO word order. Other linguistic char-190

acteristics include agglutinative verb morphology,191

tone, a lack of grammatical person, number, and192

gender distinctions, and a focus on aspect rather193

than tense (Pal et al., 2023). Manipuri is written194

using several scripts, including the Meitei and Ben-195

gali scripts, with the latter being used for all the196

Manipuri data in our experiments. The Latin script197

is also employed. The dataset is a modified ver-198

sion (Pal et al., 2023) based on previous work by199

Haddow and Kirefu (2020), Laitonjam and Ran-200

bir Singh (2021), and Huidrom et al. (2021). Each201

segment of the data set contains mainly news and202

other informational texts.203

Akkadian, an extinct East Semitic language,204

was spoken in ancient Mesopotamia from the third205

millennium BCE until the 1st century CE. It uti-206

lized the cuneiform script, a logophonetic writing207

system in which symbols could serve as logograms,208

determinatives, or phonograms/syllabograms, each209

with a distinct interpretation. Akkadian is a fu-210

sional language with grammatical case and em-211

ploys a root-based consonantal system. The dataset212

3https://www.witaj-sprachzentrum.de/

used in our study is derived from portions of 213

the ORACC corpus 4 and mainly comprises Neo- 214

Assyrian royal inscriptions and administrative cor- 215

respondence. The stylistic variation between gen- 216

res poses challenges for NLP (Gutherz et al., 2023). 217

Additionally, because of the medium of preserva- 218

tion (clay tablets), the data is often incomplete, 219

with truncated sentences. 220

2.3 Hyperparameters and Training 221

After tokenizing the data using BPE (Sennrich 222

et al., 2016), as implemented in SentencePiece 223

(Kudo and Richardson, 2018). We learn separated 224

vocabularies for source and target with a size of 4k 225

items, without a frequency threshold. 226

We train Transformers (Vaswani et al., 2017) 227

with Fairseq (Ott et al., 2019) until BLEU score 228

on validation does not increase for 20 consecutive 229

epochs or until 50000 updates. As our baseline, 230

we chose a small model that performed sufficiently 231

well in previous experiments for all pairs. Its ar- 232

chitecture and training hyperparameters are given 233

in Table 2. We share embeddings between the en- 234

coder and the decoder. Each model is trained on a 235

single Nvidia A40 or A100 GPU. 236

During the experiments, we focus on tuning the 237

architecture of the model by changing the num- 238

ber of encoder and decoder layers, the size of the 239

embeddings, and the feed forward dimension. We 240

leave all other hyperparameters unchanged. We 241

leave the number of heads at 2, following Araabi 242

and Monz (2020). 243

From now on, we will refer to the mod- 244

els with the following naming scheme: 245

enc_dec_embs_ffw_heads. E.g. our baseline model 246

may be referred as 4_4_256_1024_2. 247

2.4 Efficiency Score 248

To evaluate the efficiency of the models, we in- 249

troduce a Parameter Increase Efficiency Score, or 250

PIES, computed as follows: 251

4https://oracc.museum.upenn.edu/index.html
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Parameters
vocabulary size 4000
encoder layers 4
decoder layers 4
enc/dec embedding dim 256
enc/dec feed forward dim 1024
enc/dec attention heads 2
optimizer adam
adam betas 0.9, 0.98
learning rate 1e-4
warmup updates 5000
dropout 0.1
label smoothing 0.1
max tokens 16000

Table 2: Hyperparameters for our baseline model.
For the other models in our experiments, we change
only the number of layers, the size of the embeddings,
and the feed forward dimension.

PIES = new_score−baseline_score
new_size/baseline_size252

where score means a machine translation metric253

such as COMET, CHRF, or BLEU, and size means254

the total number of parameters of the model. Thus,255

PIES is computed as the machine translation score256

for the new proposed model minus the score of the257

baseline model, divided by the quotient of the total258

number of parameters of the new proposed model259

and the total number of parameters of the baseline260

model.261

We compute the total number of parameters for262

each model as follows:263

params =264

(2×E×V )+(4×E2+2×E×F +9×E+F )×265

enc+(8×E2+2×E×F +15×E+F )×dec266

where E is the size of the embeddings, V the267

number of items in the vocabulary, F is the feed-268

forward dimension, and enc/dec is the number of269

layers in the encoder/decoder, respectively.270

To obtain the score for each model after training,271

we generate test set translations for each model272

and obtain sentence-level BLEU (Papineni et al.,273

2002), ChrF (Popović, 2015), ChrF++ (Popović,274

2017), and COMET (Rei et al., 2020) scores as275

implemented in Hugging Face evaluate library.276

We employ bootstrap evaluation on 200 batches of277

400 test sentences to obtain the final scores. 278

Mathur et al. (2020) (Mathur et al., 2020) argue 279

for the retirement of BLEU in favour of ChrF++. 280

We keep BLEU scores to allow comparisons with 281

previous research. Sai B. et al. (2023) (Sai B 282

et al., 2023) finds that ChrF++ performs the best 283

among overlap metrics for a selection of Indic 284

languages. The results of recent WMT Metrics 285

shared tasks (Freitag et al., 2022) demonstrate 286

that learned neural metrics are the most optimal. 287

Among these, COMET is the current state-of-the- 288

art, and is widely employed in machine translation 289

studies. However, pretrained neural metrics are 290

unreliable for unseen languages, especially under- 291

resourced ones. Works such as the ones by Sai B. 292

et al. (2023) (Sai B et al., 2023) and Wang et al. 293

(2024) (Wang et al., 2024) show that fine-tuned 294

COMET models perform better for specific sets 295

of low-resource languages, than baseline models. 296

For these reasons, and the high typological diver- 297

sity between the languages in our experiments, we 298

chose ChrF as the metric of reference in both our 299

observations and PIES. 300

By computing Pearson’s r between PIES and 301

CHRF score on the aggregate results of our experi- 302

ments, we obtain a correlation of r=0.709, indicat- 303

ing a positive linear correlation between PIES and 304

translation quality. 305

2.5 Experiments 306

Our aim is to investigate efficient architectures for 307

low-resource machine translation models by tun- 308

ing hyperparameters such as encoder and decoder 309

layers, embeddings and feed forward dimension. 310

We fix all other training hyperparameters to values 311

found to be optimal or close to optimal in previ- 312

ous and preliminary experiments on the same data 313

(Signoroni and Rychlý, 2024). 314

2.5.1 Experiment 1: Change One, Fix All 315

Hyperparameters
encoder layers 2, 4, 6, 8, 12, 16, 24, 32
decoder layers 2, 4, 6, 8, 12, 16, 24, 32
embedding dimension 256, 512, 1024, 2048, 4096
feed forward dimension 256, 512, 1024, 2048, 4096

Table 3: Values for each hyperparameter tried in
Experiment 1. Baseline values are in bold.

Our first experiment focuses on changing only 316

one hyperparameter at a time in the architecture 317

of the model without controlling the total amount 318
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of parameters. We start from our baseline values319

of 4 encoder and decoder layers, embedding size320

of 256, and feedforward dimension of 1024, and321

change them one step at a time according to Table322

3.323

2.5.2 Experiment 2: Parameters Budget324

In Experiment 2, we fix the number of parameters325

to ±10% of transformer small, base, and large and326

test all possible combinations of hyperparameters327

that fall into the ranges given in Table 4. For each328

dataset, we test each possible configuration that329

falls within these ranges: 13 for small (counting the330

baseline 4_4_256_1024_2 model), 58 for base, and331

60 for large, that is 131 combinations for dataset,332

for a total of 524 models. By allowing all possible333

combinations of hyperparmeters, we overcome one334

limitation of the previous setup, that is the chance335

of missing possible optimal configurations due to336

changing only one hyperparameter at a time.337

3 Results338

3.1 Experiment 1: Change One, Fix All339

In Experiment 1, we start from the baseline340

4_4_256_1024_2 model and increase or decrease341

only one hyperparameter at a time, leaving all other342

unchanged. Figure 1 summarizes the results of Ex-343

periment 1 over all datasets.344

As expected, increasing the embedding size345

leads to the biggest increase in model size, since346

it scales quadratically with the amount of param-347

eters. Conversely, all the other hyperparameters348

we considered scale linearly with the number of349

parameters, with feedforward dimension being the350

least impactful per unit. Increasing the number of351

decoder layers results in a slightly steeper rate of352

increase in parameters than adding more encoder353

layers.354

In this experimental setup, we allow the model355

size to grow freely. We observe that for all datasets356

increasing embedding size to 2048 or 1024 leads to357

the best CHRF scores, but also to disproportionally358

big models, reaching 75M or 251M parameters.359

For three datasets (eng-akk, deu-dsb, eng_wiki-360

ita_wiki) just scaling back the feedforward dimen-361

sion from 1024 to 256, results in the most efficient362

models according to PIES. For eng-mni, it is suf-363

ficient to increase the embedding size from 256364

to 512 to obtain the most efficient configuration.365

These optimized models shed between 66.7% and366

97.5% of the best architectures according to CHRF,367

while losing only 1%-7.8% of the translation per- 368

formance. We argue this is a favourable trade-off, 369

especially in a low-resource setting where it may 370

be needed to train several models in sequence for 371

techniques such as backtranslation. 372

3.2 Experiment 2: Parameters Budget 373

In Experiment 2, we limit the number of parame- 374

ters in three ranges, corresponding to the sizes of 375

Transformer small, base, and large (Table 4). The 376

higher number of combinations per dataset (131) 377

allows for observations regarding some average 378

trends in our results. 379

Encoder layers: Adding encoder layers appears 380

to decrease CHRF score for all datasets. One ex- 381

ception iseng-akk that shows some improvements 382

from 2 to 4/6 layers depending on the size range. 383

Decoder layers: Adding decoder layers slightly 384

increases CHRF for deu-dsb, eng_wiki-ita_wiki, 385

and eng-mni, up until 16 layers, when the transla- 386

tion quality drops abruptly. For eng-akk, CHRF 387

tends to decrease after 4 layers. 388

Total number of layers: For all datasets, with 389

some local variations and rate of change, the trend 390

shows a decrease in score with the growth of the 391

total amount of encoder and decoder layers. 392

Encoder-Decoder difference: For all datasets, 393

CHRF scores tend to be higher, albeit with some 394

variation, when the difference between encoder and 395

decoder layers stays between -14 and 6, with dips 396

at 8 and 0, showing that the most score-optimal ar- 397

chitecture may not be balanced in this regard. It is 398

interesting to note that deu-dsb, eng_wiki-ita_wiki, 399

and eng-mni, -22 shows comparable scores for the 400

above-mentioned range. Other similar peaks out- 401

side the ideal range are at 22 for eng-mni and eng- 402

akk. eng-mni ideal range extends all the way to 22, 403

in fact, while all the other datasets’ scores drop. 404

Encoder-Decoder ratio: The ratio between en- 405

coder and decoder layers gives a clearer picture. 406

CHRF scores are lower for all datasets at 0.188 and 407

16. Highest scores are found at 0.125, 0.333, and 408

1.5 (2.0 for eng-akk). eng-mni’s CHRF scores keep 409

higher for longer, as with the difference in number 410

of layers. 411

Embedding size: For all datasets, a bigger em- 412

bedding dimension seems beneficial for the transla- 413

tion quality. 414

Feedforward dimension: Increasing the feed- 415

forward dimension leads to lower CHRF, the only 416

exception being for eng-akk, for which increas- 417

ing the feedforward from 256 to 512 enhances the 418
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Size Hyperparameters N. of Parameters
small 4_4_256_1024_2 8478720 < 9420800 < 10362880
base 6_6_512_2048_2 423411046 < 48234496 < 433057946
large 6_6_1024_4096_2 166094436 < 184549376 < 203004316

Table 4: Baseline hyperparameters and sizes (in bold) for the models in Experiment 2. We consider all possible
architectures in a range of ±10% parameters from these baseline models.

eng-akk deu-dsb eng_wiki-ita_wiki eng-mni
Best Model (CHRF) 4_4_2048_1024_2 4_4_2048_1024_2 4_4_2048_1024_2 4_4_1024_1024_2

CHRF 41.792 48.291 45.612 48.505
PIES 0.111 0.220 0.066 0.506

Num. Parameters 251469824 251469824 251469824 75407360
Best Model (PIES) 4_4_256_256_2 4_4_256_256_2 4_4_256_256_2 4_4_512_1024_2

CHRF 39.681 44.527 45.156 47.352
PIES 1.277 2.282 1.954 1.088

Num. Parameters 6268928 6268928 6268928 25124864
∆CHRF
% of best

-2.111
-5.052

-3.764
-7.794

-0.455
-0.999

-1.153
-2.378

∆PIES
% of best

+1.166
+1051.37%

+1.622
+245.826%

+1.888
+2870.653%

+0.941
+641.782%

∆Params
% of best

-245M
-97.507%

-69M
-91.687%

-245M
-97.507%

-50M
-66.681%

Table 5: Best models from Experiment 1 according to CHRF and PIES. Below the model name, we report
CHRF, PIES, and size of the model. In the bottom part of the table, we report the differences in scores and size
between the best model according to CHRF and PIES.

eng-akk deu-dsb eng_wiki-ita_wiki eng-mni
Best Model (CHRF) 6_8_1024_2048_2 12_2_1024_4096_2 12_2_1024_4096_2 2_16_1024_256_2

CHRF 43.394 51.569 47.890 49.883
PIES 0.265 0.418 0.145 0.316

Num. Parameters
Size range

159393792
large

192940032
large

192940032
large

160504320
large

Best Model (PIES) 2_4_512_4096_2 2_6_256_1024_2 6_2_256_1024_2 2_8_256_512_2
CHRF 42.568 44.329 45.347 45.960

PIES 0.864 1.251 0.453 1.459
Num. Parameters

Size range
39812096

base
9948160

small
8893440

small
9428480

small
∆CHRF
% of best

-0.825
-1.902

-7.24
-14.039%

-2.544
-5.312%

-3.923
-7.865%

∆PIES
% of best

+0.6
+226.566%

+0.833
+199.204%

+0.308
+212.059%

+1.143
+361.628%

∆Params
% of best

-120M
-75.023%

-183M
-94.844%

-184M
-95.391%

-151M
-94.126%

Table 6: Best models from Experiment 2 according to CHRF and PIES. Below the model name, we report
CHRF, PIES, and size of the model. In the bottom part of the table, we report the differences in scores and size
between the best model according to CHRF and PIES.
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Figure 1: CHRF score vs Parameters for each hyperparameter. On the Y-axis, each series plots the CHRF score
for the resulting model when changing encoder or decoder layers, embedding size, and feed-forward dimension.
The X-axis plots the size of the model, in number of parameters.

Figure 2: Results of Experiment 2 - CHRF and PIES vs Parameters across all three size ranges. For each size,
the chart also reports minimum, maximum, average, and median, plotted in black.
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score.419

Embedding and Feedforward ratio: Higher420

CHRF scores are found at a ratio of 8 between421

embedding size and feedforward dimension. Lower422

values are at 0.125 (0.25 for eng-mni).423

All the best model according to CHRF are in424

the large range, whereas the most efficient ones425

according to PIES are either in the base (eng-akk)426

or the small brackets. For two datasets, deu-dsb427

and eng_wiki-ita_wiki, the best CHRF model is428

the same (12_2_1024_4096_2). The best CHRF429

model for eng-mni is quite peculiar: it has just 2430

encoder layers, 16 decoder layers, an embedding431

size of 1024, and a narrow feedforward of just 256.432

Again we see manageable decrements in CHRF be-433

tween 1.9% and 14%, against a sizeable reduction434

in number of parameters between 75% and 95.4%.435

Figure 2 visualizes CHRF and PIES for the mod-436

els in Experiment 2. While bigger models may437

in principle achieve a slightly higher CHRF, this438

comes at the cost of efficiency. We argue that in439

a low-resource scenario, when both data and hard-440

ware are scarce, the increased computational cost441

needed to find and train the optimal model in this442

size range is not well spent. Smaller models can443

achieve a comparable, or almost comparable trans-444

lation performance, at just a fraction of the cost.445

4 Conclusions446

In this paper, we explored scaling and optimizing447

the Transformer architecture for low-resource ma-448

chine translation by experimenting with several449

hundred configurations over four language pairs.450

We confirm previous findings that the Transformer,451

and low-resource NMT in general, is highly sensi-452

tive to hyperparameters in low-resource conditions,453

and that standard settings are not optimal. We ob-454

serve some trends and interactions between the455

number of encoder and decoder layers, embedding456

size, feedforward dimension, and the quality of the457

translation. We propose PIES as a novel metric to458

measure the efficiency of changing a model’s archi-459

tecture, and use it to show that increasing model460

size is not always the optimal choice, since smaller461

models can reach a comparable performance for a462

fraction of the computational cost.463

Limitations464

The main limitations of our experiments are the465

following. First, the dataset selection, while trying466

to be diverse both in terms of typology and writing467

system, is only a tiny fraction of the world’s 7000+ 468

languages. If we include, also historical ones, such 469

is the case with Akkadian, the number grows even 470

more. 471

Second, we could not perform a systematic qual- 472

itative analysis on the outputs of the models, and 473

had to rely on automated metrics to score the trans- 474

lations. This comes with another set of problems 475

altogether, that is out of the scope of this paper to 476

discuss. This is also relevant for PIES, which in its 477

present iteration is closely correlated with the trans- 478

lation metric. In the future, we plan to extend it to 479

account for multiple metrics, and to consider also 480

train and inference times, and environmental con- 481

cerns. For now, it is only as good as the translation 482

metric chosen to compute it. 483

Lastly, we are aware that testing all possible com- 484

binations, across all hyperparameters, is a monu- 485

mental task that evades the scope of just one pa- 486

per. We focused on four specific architecture hy- 487

perparameters and their interactions. Other pos- 488

sible optimal configurations, that may need other 489

changes in training hyperparameters (e.g. learning 490

rate, dropout, etc.) to work best are left to future 491

work. 492

Ethical Considerations 493

We did not collect any new data for these exper- 494

iments, as we used publicly available dataset or 495

parts thereof. The systems we trained are not in- 496

tended to be deployed or used in any actual trans- 497

lation scenario, in such a case, they will incur in 498

biases, errors, and issues common to this kind of 499

NLP models, and as such they should be used with 500

care. We are also aware of the environmental cost 501

of training language models and tried our best to 502

avoid grid search all the while getting a meaningful 503

picture of the topic at hand. 504
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