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Abstract

We present approximation algorithms for Observer-
Aware Markov Decision Processes (OAMDPs).
OAMDPs model sequential decision-making prob-
lems in which rewards depend on the beliefs of
an observer about the goals, intentions, or capa-
bilities of the observed agent. The first proposed
algorithm is a grid-based value iteration (Grid-VI),
which discretizes the observer’s belief into regular
grids. Based on the same discretization, the sec-
ond proposed algorithm is a variant of Real-Time
Dynamic Programming (RTDP) called Grid-RTDP.
Unlike Grid-Vi, Grid-RTDP focuses its updates
on promising states using heuristic estimates. We
provide theoretical guarantees of the proposed al-
gorithms and demonstrate that Grid-RTDP has a
good anytime performance comparable to the ex-
isting approach without performance guarantees.

1 INTRODUCTION

Effective communication of intentions, goals, and desires
is crucial in our daily interactions and is equally vital for
autonomous agents. For instance, consider an autonomous
vehicle (AV) approaching a crosswalk with a pedestrian
nearby. While the AV might optimize for travel time by
approaching the crosswalk at high speed before stopping,
this can be unsettling for the pedestrian. A more reassuring
approach would be for the AV to slow down well before
reaching the crosswalk, signaling its intention to stop. We
term such actions that take into account the perspective or
beliefs of an observing agent as observer-aware behaviors.
Observer-aware behaviors range from making the agent’s
goal clear [Dragan and Srinivasa, 2013], demonstrating its
capabilities [Kwon et al., 2018] or disguising possible inten-
tions [Masters and Sardina, 2017, Savas et al., 2022].

The Observer-Aware Markov Decision Process (OAMDP)

[Miura and Zilberstein, 2021] offers a general framework for
producing observer-aware behaviors. The OAMDP frame-
work assumes a model of how the agent’s actions would
be interpreted by the observer. In OAMDPs, possible goals,
intentions, or capabilities of the observed agent are repre-
sented as types. After the observed agent takes an action, the
observing agent updates its belief over the possible types,
which determines the reward function.

While OAMDP allows modeling various observer-aware
planning problems in a unified way, solving OAMDPs is
shown to be intractable in the worst case [Miura and Zil-
berstein, 2021]. The intractability stems from the fact that
rewards depend on the belief of the observer, which in turn
depends on the history so far. Previous work proposed using
Monte-Carlo Tree Search (MCTS) to solve OAMDPs for
the finite-horizon objective [Miura and Zilberstein, 2021].
While MCTS exhibits good anytime behavior, it does not
provide guarantees on the qualities of the resulting policies.

In this paper, we propose the first approximation algorithms
for OAMDPs. We begin by establishing that the domain
state and the observer’s belief are sufficient for optimal
control in OAMDPs (Proposition 1). Our first proposed al-
gorithm is a grid-based value iteration (Grid-VI), which
discretizes the belief of the observer into regular grids. We
show that Grid-VI converges to the unique fixpoint both
in discounted (Proposition 4) and undiscounted (Proposi-
tion 6) settings under the standard assumptions, and provide
the error bounds for the discounted setting (Proposition5).
A potential drawback of Grid-VI is that it can waste time
updating values at irrelevant states. To address the issue,
we propose a variant of Real-Time Dynamic Programming
(RTDP) [Barto et al., 1995] to solve OAMDPs, called Grid-
RTDP. Grid-RTDP utilizes heuristic estimates to focus up-
dates on promising states. We demonstrate that Grid-RTDP
retains RTDP’s desirable property (Proposition 7). Our ex-
perimental results indicate that our proposed algorithms are
capable of computing near-optimal policies. Specifically,
Grid-RTDP solves problems significantly faster than Grid-
VI and offers anytime performance comparable to MCTS.

Accepted for the 40th Conference on Uncertainty in Artificial Intelligence (UAI 2024).



2 BACKGROUNDS AND NOTATIONS

2.1 MARKOV DECISION PROCESSES

A finite Markov decision process (MDP) models sequential
decision-making under uncertainty. An MDP is described by
a tuple M = ⟨S,A, T,R, γ, d0⟩. S and A are finite sets of
states and actions, respectively. St and At represent a state
and an action at time t. T (st, at, st+1) is the probability
of St+1=st+1 when At=at and St=st. R is a reward for
taking at at st. γ is a parameter called the discount factor.
d0 is the initial state distribution s0 ∼ d0.

A solution of an MDP is called a policy (π). An op-
timal policy for an MDP is a policy that maximizes
E[
∑∞

t=0 γ
tR(St, At)|d0, π]. A policy (π) induces a value

function V π(s) = E[γtR(St, At)|S0 = s, π]. The optimal
value function V ∗ is a value function corresponding to an
optimal policy.

2.2 STOCHASTIC SHORTEST PATH PROBLEMS

A stochastic shortest path problem (SSP) is an undiscounted,
cost-based counterpart of an MDP. An SSP is represented by
a tuple ⟨S,A, T,C, d0, G⟩where: S, A, T are the same as in
an MDP. C(st, at) : S×A→ R+ is the cost of performing
at at st. d0 is the initial state distribution. G ⊂ S is a set of
goal states. The goal states are absorbing and transitions out
of goal states have zero costs.

A solution of an SSP is a policy. An optimal policy π∗ is a
policy that minimizes E[

∑∞
t=0 C(St, At)|d0, π]. We restrict

our attention to problems in which there exists at least one
proper policy, which reaches the goal from all states with
probability 1. Under this assumption, an SSP is guaranteed
to have an optimal policy that is proper [Bertsekas and
Tsitsiklis, 1991].

2.3 OBSERVER-AWARE MDPS

Observer-Aware Markov Decision Processes (OAMDPs)
extend MDPs by allowing the reward to depend on the
observer’s assumed belief over the types of the observed
agent [Miura and Zilberstein, 2021].

Definition. An OAMDP is a tuple1

M = ⟨S,A, T, γ, d0,Θ, b0, τ, R⟩ where:

• S, A, T , γ, and d0 are the same as in MDPs. In this
paper, we assume S and A are finite.

• Θ is a (finite) set of types, representing a characteris-
tic of the agent such as possible goals, intentions, or

1The original work [Miura and Zilberstein, 2021] allowed an
arbitrary function from H∗ to ∆|Θ| to update the observer’s belief.
Here, we restrict our attention to a case where the observer updates
its belief in a Bayesian fashion.

capabilities.

• b0 ∈ ∆|Θ| is the initial belief of the observer over the
types, where ∆|Θ| is a simplex on Θ.

• τ : S × A × S × Θ → [0, 1] is the probability of
the observer witnessing a transition ⟨s, a, s′⟩ given s
and θ. τ can represent different policies and transition
functions of the observed agent depending on types.

• R : S × A × ∆|Θ| → R is a belief-dependent re-
ward function. In this paper, we assume that the re-
wards can be represented as a linear combination
of domain and belief-dependent rewards. That is,
R(s, a, b)=wdRd(s, a) + wbRb(b) for wd, wb∈R+,
where Rd and Rb represent domain and belief-
dependent reward, respectively.

After observing a transition ⟨s, a, s′⟩, the observer is as-
sumed to update its belief (bt) using Bayes’ rule:

bs,a,s
′

t+1 (θ) =
τ(a, s′|s, θ) · bt(θ)∑

θ′∈Θ τ(a, s′|s, θ′) · bt(θ′)
. (1)

A solution to an OAMDP is a policy that maximizes the
expected discounted return:

E[
∞∑
t=0

γtR(St, At, Bt)|d0, π]. (2)

For example, Figure 1 shows an example of an OAMDP
with Θ = {θA, θB , θC , θD, θE}, where each type corre-
sponds to the observed agent’s goal. τ(a, s′|s, θ) is typically
set to Tθ(s, a, s

′)πθ(s, a), where πθ is an assumed policy
of the observed agent given a type θ and Tθ is a transition
function given a type θ. For example, πθA represents a pol-
icy given the observed agent is going to the goal A. When
Θ represents different capabilities of the observed agent, Tθ

represents transition functions corresponding to different
capabilities. When Tθ is the same for all θ ∈ Θ, τ(a, s′|s, θ)
simplifies to πθ(s, a) in Equation 1.

Noisy Rational Model A common approach in modeling
the observer involves using inverse planning. This assumes
that the observed agent behaves approximately rationally
given its type. Baker et al. [2009] explored the connection
between Bayesian reasoning and human understanding of
goals. A model presented in their work presumes noisy
rationality:

πθ(s, a) ∝ expβQ
∗
θ(s,a), (3)

where Q∗
θ is the optimal Q-value representing how good a

is given s and θ. Note that, Q∗
θ is computed with respect

to Tθ and Rθ (the reward function corresponding to θ),
β ∈ R serves as a hyper-parameter representing the agent’s
rationality level. Intuitively, it is assumed that the observed
agent selects an action with a probability exponentially pro-
portional to the quality of the action at the current state.
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(a) Environment (b) Observer’s belief (β = 0.3)

Figure 1: MazeWorld Domain

Figure 1b shows the observer’s belief changes according to
Equation 3.

Belief-Dependent Rewards OAMDP can produce various
observer-aware behaviors by changing Rb. For instance, to
clarify intentions, Rb might be defined as the negative total
variation (TV) or the Euclidean distance between the current
and target beliefs, where the target belief is b(θ) = 1 for
the intended type θ ∈ Θ. On the other hand, if the observed
agent wants to obscure its intention, rewards could be the
entropy of the observer’s belief.

3 PROPERTIES OF OAMDPS

In this section, we discuss properties of OAMDPs necessary
for developing proposed algorithms.

3.1 SUFFICIENT STATISTICS FOR OPTIMAL
CONTROL

To compute policies for OAMDPs, previous work [Miura
and Zilberstein, 2021] used a general-purpose method such
as UCT [Kocsis and Szepesvári, 2006] to compute history-
dependent policies. However, we show that the current state
and the belief of the observer contain sufficient information
to choose the best action to take:

Proposition 1. The current state and the belief of the ob-
server are sufficient for optimal control for OAMDPs.

Proof. For all st, st+1 ∈ S, at ∈ A, bt ∈ ∆|Θ|, ht ∈ Ht:

Pr(st+1, bt+1|st, at, bt, ht) (4)
= Pr(bt+1|st, at, st+1, bt, ht) Pr(st+1|st, at, bt, ht) (5)
= [bt+1 = b

st,at,st+1

t ]T (st, at, st+1) by definition (6)
= Pr(st+1, bt+1|st, at, bt) (7)

where [·] is the Iverson bracket. Moreover, R only depends
on St, At, and Bt by definition.

With Proposition 1 in place, we can look for policies of the
forms π : S×∆|Θ|×A→ [0, 1]. In other words, we can look

for policies to belief MDP, whose state space is S ×∆|Θ|

instead of S. Note that, while the original OAMDP has a
finite number of states, the belief MDP has a continuous
state space. Proposition 1 is analogous to how beliefs over
states (belief states) are sufficient for optimal control for
POMDPs [Kaelbling et al., 1998]. However, while most so-
lution methods for POMDPs [Monahan, 1982, Pineau et al.,
2003] rely on piecewise linear convexity (PWLC) of the
value function, we see that the value functions for OAMDPs
are not necessarily PWLC. For example, consider using the
negative Euclidean distance from the intended type as Rb.
Rb is not PWLC on ∆|Θ|. Therefore, solution methods for
POMDPs are not directly applicable to OAMDPs.

3.2 DISCONTINUITY IN VALUE FUNCTIONS

Before delving into our proposed algorithms, we address a
potential issue in developing an approximation algorithm
for OAMDPs. Both of our proposed algorithms approximate
values by grouping similar beliefs. This approach operates
under the implicit assumption that nearby beliefs should
yield similar values. However, we demonstrate that, in a
general OAMDP, the rate at which the observer’s belief
changes can be unbounded, thus invalidating this assump-
tion. To illustrate this issue, consider the following example:

Example. Let us assume that we have an OAMDP with:

• Θ = {θ0, θ1, θ2},

• b1 = (1− ϵ, ϵ, 0) ∈ ∆3,

• b2 = (1− ϵ, 0, ϵ) ∈ ∆3, and

• τs,a,s
′
= (τ0 = 0, τ1 > 0, τ2 > 0).

Then, bs,a,s
′

1 = (0, 1, 0) and bs,a,s
′

2 = (0, 0, 1). Thus,

∥bs,a,s
′

1 − bs,a,s
′

2 ∥∞
∥b1 − b2∥∞

=
∥(0, 1,−1)∥∞
∥(0, ϵ,−ϵ)∥∞

=
1

ϵ
. (8)

∥bs,a,s′
1 −bs,a,s′

2 ∥∞
∥b1−b2∥∞

diverges as ϵ→ 0.

3



3.3 LIPSCHITZ OAMDPS

Given the potential discontinuity in values, we discuss spe-
cial cases of OAMDPs with Lipschitz-continuous reward
and belief transitions.

Definition. An OAMDP is (Lr, Lp)-Lipschitz if for all
s, s′ ∈ S, a ∈ A, and b1, b2 ∈ ∆|Θ|:

|R(s, a, b)−R(s, a, b′)| ≤ Lr∥b1 − b2∥∞, (9)

∥bs,a,s
′

1 − bs,a,s
′

2 ∥∞ ≤ Lp∥b1 − b2∥∞. (10)

Intuitively, in Lipschitz OAMDPs, beliefs close to each
other have similar rewards and update to close beliefs. The
definition is analogous to Lipschitz continuity of continuous
MDPs in general [Rachelson and Lagoudakis, 2010].

Lipschitz continuity of reward and belief transitions can be
related to Lipschitz continuity of the value function under a
favorable assumption:

Proposition 2. For a (Lr, Lp)-Lipschitz OAMDP, if γLp <
1, then V ∗ is LV ∗ -Lipschitz continuous where:

LV ∗ =
Lr

1− γLp
. (11)

Proof. See Appendix A

As we will see later, Lipschitz continuity enables us to
provide the error bound for discretization (Proposition 5).

Moreover, in OAMDPs, belief transitions are assumed to
be the Bayesian update using Equation 1. We can establish
a relationship between the Lipschitz continuity of belief
transitions and τ as follows:

Proposition 3. If τs,a,s
′
(θ) > 0 for ∀θ ∈ Θ, s, s′ ∈ S, and

a ∈ A, belief transitions are Lipschitz continuous.

Proof. See Appendix A

For example, using the noisy rational model (Equation 3)
ensures that τs,a,s

′
(θ) > 0, which guarantees the Lipschitz

continuity of belief transitions.

3.4 OASSPS

We define an undiscounted, cost-based version of
OAMDPs called OASSPs. An OASSP is a tuple
⟨S,A, T, d0,Θ, b0, τ, C,G⟩where C : S×A×∆|Θ| → R+

is a belief-dependent cost function, and G is a set of goal
states. The other components are the same as in OAMDPs.
An optimal policy for an OASSP is a policy that mini-
mizes E[

∑∞
t=0 C(St, At, Bt)|d0, π]. As in OAMDPs, we

assume that C is a linear combination of the domain cost
(Cd) and belief-dependent cost (Cb). That is, C(s, a, b) =
wdCd(s, a) + wbCb(s, a). A domain SSP corresponding to
an OASSP is an SSP defined as Md = ⟨S,A, T, d0, Cd, G⟩.

4 APPROXIMATION ALGORITHMS

In this section, we propose approximation algorithms for
OAMDP/SSPs. Our first proposed algorithm is a grid-based
value iteration (Grid-VI), which discretizes the observer’s
belief into regular grids. Our second proposed algorithm
is a variant of Real-Time Dynamic Programming (RTDP),
called Grid-RTDP. Grid-RTDP relies on the same grid-based
discretization scheme as Grid-VI, but focuses its updates on
promising states using heuristic estimates.

4.1 GRID-BASED VALUE ITERATION FOR
OAMDP/SSPS

We first describe a grid-based value iteration algorithm for
OAMDP/SSPs. Grid-VI uses a set of regular grid points
to approximate value functions. A regular grid with the
resolution K is defined as:

PK =
{
b = (

1

K
)k|k ∈ I

|Θ|
+ ,

|Θ|∑
i=1

k(i) = K
}
, (12)

where I
|Θ|
+ is the set of |Θ|-vectors of non-negative inte-

gers. PK divides ∆|Θ| into a set of equal-size sub-simplices.
Figure 2 shows an example of a regular grid on ∆3 with
K = 2.

As in Lovejoy [1991], the value at a given belief point
b ∈ ∆|Θ| is interpolated as using the barycentric coordinates
of b with respect to PK(b):

VK(s, b) =
∑

bi∈PK(b)

λiVK(s, bi), (13)

where PK(b) is the corners of the sub simplex containing b,
λi ≥ 0,

∑|Θ|
i=1 λi = 1, and b =

∑|Θ|
i=1 λibi. In Figure 2, the

value at b is interpolated using the values at b4, b5, and b6.
For each iteration, the algorithm updates values at all s ∈ S
and b ∈ PK using the Bellman optimality operator (T ):

(T VK)(s, b) = max
a∈A

[
R(s, a, b)+γ

∑
s′∈S

T (s, a, s′)VK(s′, bs,a,s
′
)
]
,

(14)
where values at b ̸∈ PK are interpolated using Equation 13.

The resulting policy is obtained as:

πK(s, b, a) =
∑

bi∈PK(b)

λi[a = argmax
ai∈A

QK(s, bi, ai)],

(15)
where QK(s, bi, ai) = R(s, ai, bi) +
γ
∑

s′∈S T (s, a, s′)VK(s′, bs,a,s
′
). That is, we take

the optimal actions at the corners of sub-simplices
proportional to the corresponding weights λi.

For problems with undiscounted objectives (OASSPs),
Equation 14 is replaced with minimizing costs without the
discount factor.
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𝑏𝑏1 = (1.0,0.0,0.0) 𝑏𝑏2 = (0.0,1.0,0.0)

𝑏𝑏3 = (0.0,0.0,1.0)
Δ3

𝑏𝑏4 = (0.5,0.5,0.0)

𝑏𝑏6 = (0.0,0.5,0.5)𝑏𝑏5 = (0.5,0.0,0.5)

𝑣𝑣1 = (2,0,0)
𝑣𝑣4 = (2,1,0)

𝑣𝑣2 = (2,2,0)

𝑣𝑣3 = (2,2,2)

𝑣𝑣6 = (2,2,1)𝑣𝑣5 = (2,1,1) ≅
𝑏𝑏 = 0.4,0.4,0.2

        

Figure 2: An example of discretized belief points PK (right)
with K = 2 and |Θ| = 3. The left is the corresponding
integer points (P ′

K).

Efficient Interpolation

One key advantage of using a regular grid is that finding λ
is quite efficient. To efficiently find barycentric coordinates
of b ∈ ∆|Θ| with respect to (PK(b) ⊂ ∆Θ), we use a
Freudenthal triangulation [Freudenthal, 1942]:

P ′
K =

{
q ∈ I

|Θ|
+ |K = q1 ≥ q2 ≥ · · · ≥ q|Θ|

}
. (16)

Note that, we have |P ′
K | = |PK | = (K+|Θ|−1)!

K!(|Θ|−1)! . Due to
one-to-one correspondence between points in PK and P ′

K ,
we can find a barycentric coordinate for b ∈ ∆|Θ| using
a barycentric coordinate for the corresponding v ∈ I

|Θ|
+

[Lovejoy, 1991]. As discussed by Zhou and Hansen [2001],
finding a sub-simplex can be done in O(|Θ| log |Θ|) time.

Theoretical Guarantees

We now discuss theoretical guarantees of Grid-VI.

Proposition 4. For an OAMDP, Grid-VI converges to the
unique fixpoint V ∗

K .

Proof. The interpolation (Equation 13) can be understood
as an operator on the value function. Let AK be the corre-
sponding operator, then our Grid-VI can be seen as repeat-
edly applying (TK = AK ◦ T ) to the value function. Since
AK is nonexpansion and T is contraction, AK ◦ T is also a
contraction, and Grid-VI converges to the unique fixpoint
V ∗
K [Gordon, 1995].

Lemma 1. For an OAMDP with Lipschitz-continuous value
function with the constant LV ∗ , one-step approximation
errors using a regular grid with resolution K are bounded
as:

∥TKV ∗ − V ∗∥∞ ≤
LV ∗

K
. (17)

Proposition 5. For an OAMDP whose value function is
LV ∗ -Lipschitz continuous, we have:

∥V ∗ − V ∗
K∥∞ ≤

LV ∗

(1− γ)K
. (18)

Proof. See Section A.

Note that the right-hand sides go to 0 as K →∞.

Next, we discuss a case where Grid-VI is applied to
undiscounted problems (OASSPs). We first note that, for
an OASSP M = ⟨S,A, T, d0,Θ, b0, τ, C,G⟩, Grid-VI
for OASSPs implicitly defines an SSP MK = ⟨S ×
PK , A, T, dK0 , CK , GK⟩ where

TK(⟨s, b⟩, a, ⟨s′, bi⟩) =

{
0 bi ̸= PK(bs,a,s

′
),

λiT (s, a, s
′) bs,a,s

′
=

∑
i λibi,

(19)

dK0 (⟨s, bi⟩) =

{
0 bi ̸= PK(b0),

λid0(s) b0 =
∑

i λibi,
(20)

CK(s, a, b) = C(s, a, b), (21)
GK = G× PK . (22)

The states in MK consist only of the corners of sub-
simplices. The transitions in MK are the same as in the
original OASSP, except that, after the belief update, bs,a,s

′

is transitioned to one of the belief points bi ∈ PK(bs,a,s
′
)

surrounding it. Note that, unlike the original OASSP, the
number of belief states in MK is finite.

Since all M , Md and MK have the same dynamics in terms
of domain state transitions, we have:

Lemma 2. If Md has a proper policy, M and MK also
have at least one proper policy.

Proof. Let πd be a proper policy for Md. Then
π(⟨s, b⟩, a) = πK(⟨s, b⟩, a) = πd(s, a) are proper policies
for M and MK , respectively.

For an SSP with a finite number of states, value iteration
converges to the unique fixpoint as long as there is a proper
policy [Bertsekas and Tsitsiklis, 1991]. Thus, we get:

Proposition 6. If Md has a proper policy, Grid-VI for
OASSPs converges to the unique fixpoint V ∗

K .

Our algorithm shares similarities with grid-based approx-
imations for POMDPs [Lovejoy, 1991, Brafman, 1997,
Hauskrecht, 2000, Zhou and Hansen, 2001, Bonet, 2002].
The main difference is that the belief is over Θ in
OAMDP/SSPs instead of over S as in POMDPs. Approx-
imation using regular grids requires the number of points
exponential to the dimension of belief vectors. However, in
most scenarios, it is reasonable to assume that the number of
possible intentions (|Θ|) is much smaller than the number of
states. Thus, having grid points exponential to the dimension
of belief vectors is less of a constraint for OAMDP/SSPs.
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Our Grid-VI for OAMDP/SSPs is a special case of grid-
based value iteration for continuous MDPs [Chow and Tsit-
siklis, 1991, Munos and Moore, 2002] in general. One main
difference is that, in OAMDP/SSPs, the continuous part
of the state space (∆|Θ|) is guaranteed to be a simplex,
which enables the efficient interpolation method. Another
difference is that, due to the structure of OAMDP/SSPs,
discretization preserves the existence of a proper policy
(Lemma 2).

4.2 GRID-BASD REAL-TIME DYNAMIC
PROGRAMMING FOR OAMDP/SSPS

We now propose an extension of Real-Time Dynamic Pro-
gramming (RTDP) [Barto et al., 1995] to OAMDP/SSPs,
called Grid-RTDP. The potential issue for Grid-VI is that it
needs to update values at every state and grid points. How-
ever, many of these points could be irrelevant in computing
an optimal policy. RTDP is an asynchronous value iteration
algorithm that can converge to the optimal solution with-
out having to consider the entire state space. RTDP avoids
exploring a portion of the state space by utilizing an admis-
sible heuristic. Our presentation in this section will be based
on OASSPs.

Grid-RTDP discretizes beliefs into regular grids as in Grid-
VI. The value at a belief b ∈ ∆|Θ| is interpolated using
Equation 13. Algorithm 1 shows a pseudocode for Grid-
RTDP. The algorithm consists of repeated trials, where each
trial starts from the initial state and belief of the observer.
During each trial, the algorithm first maps the current belief
b to one of the surrounding grid points bi ∈ PK(b) ran-
domly, where b =

∑|Θ|
i=1 λibi. Each bi has probability λi of

transitioning into (line 11). Then the algorithm selects an
action that minimizes the current cost estimate to the goal
QK(s, bi, a) (line 12):

QK(s, b, a) (23)

= C(s, a, b) +
∑
s′∈S

T (s, a, s′)VK(s′, bs,a,s
′
) (24)

= C(s, a, b) +
∑
s′∈S

T (s, a, s′)
∑

bi∈PK(bs,a,s′ )

λiVK(s′, bi),

(25)

where VK is initialized with a given heuristic function
h. In this paper, we consider the following two heuristic
functions:

• h0: which always returns 0 (in other words, no heuris-
tics), and

• hd: which returns the scaled optimal cost to go for the
underlying domain cost (wd · V ∗

d (s)).

Note that both h0 and hd are admissible heuristics. After
selecting the best action a∗, the cost estimate for the current
state (VK(s, bi)) is updated to QK(s, bi, a

∗) (line 34), the
values are updated only at beliefs in Pk. The next state is

Algorithm 1 Grid-RTDP

1: function GRID-RTDP
2: while within computational budget do
3: TRIAL(d0, b0)
4: end while
5: end function
6:
7: function TRIAL(d0, b0)
8: s ∼ d0
9: b← b0

10: while episode continues do
11: sample bi ∈ PK(b) with the weight λi

12: a∗ ← mina QK(s, bi, a)
13: VK(s, bi)← QK(s, bi, a

∗)
14: s′ ∼ Pr(·|s, a∗)
15: b← bs,a,s

′

i

16: end while
17: end function

then sampled according to the dynamics of the environment
(line 14) and the belief of the observer is updated accord-
ingly (line 15). The resulting policy is obtained as:

πK(s, b, a) =
∑

bi∈PK(b)

λi[a = argmin
ai∈A

QK(s, bi, ai)].

(26)
That is, we take the optimal actions at corners of subsim-
plices proportional to the corresponding weights λi.

The algorithm is akin to RTDP-Bel [Bonet and Geffner,
2009], a version of RTDP developed for POMDPs. Similar
to Grid-RTDP, RTDP-Bel is based on discretizing beliefs.
Let d(b) be a discretization of b. Unlike Grid-RTDP that
updates the value at d(b) using Q-values at d(b), RTDP-
Bel updates the value at d(b) using Q-values at b. This can
be a problem when two different belief points b1 and b2
discretizes to the same point (d(b1) = d(b2)), resulting in
RTDP-Bel’s oscillating behavior.

Properties We discuss some properties of Grid-RTDP.
When applied to SSPs, RTDP has the following guarantee:

Theorem 1 (Barto et al. [1995]). If there exists a proper
policy for an SSP, the initial value is admissible, RTDP
converges to the optimal value at relevant states.

We will now show that Grid-RTDP inherits the properties
analogous to Theorems 1 under the following conditions:

A1 The domain SSP Md has a proper policy.

A2 The initial value estimates are admissible.

Combining Lemma 2 with Theorem 1, we get:

Proposition 7. Under A1-2, Grid-RTDP converges to the
optimal values (V ∗

K) at relevant states.
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Figure 3: Problems

4.2.1 Grid-Based Labeled RTDP for OASSPs

We now propose labeled RTDP (LRTDP) [Bonet and
Geffner, 2002] for OASSPs, called Grid-LRTDP. The origi-
nal RTDP does not explicitly check for convergence, and can
keep visiting states that are already solved, resulting in its
slow convergence behavior. LRTDP alleviates the issue by
labeling those states as solved. The algorithm labels states
as solved if residuals of Bellman updates in the states that
could be visited under the current best policy are smaller
than a given threshold. Alternatively, Grid-LRTDP can be
understood as applying LRTDP to MK . The pseudocode for
the algorithm is available in the appendix (Appendix B).

5 EXPERIMENTS

We present experimental results solving OASSPs using the
proposed algorithms.

5.1 DOMAINS

We briefly describe the problem domains used in the experi-
ments.

MazeWorld Figure 1a shows an example of MazeWorld.
The agent’s goal is to reach either one of the possible goals
{A,B,C,D,E}. The domain costs are proportional to the
distance traveled. To encourage being clear about the inten-
tion, Cb is the TV distance from the target belief. To make
the problem more challenging, the agent can get transported
to the initial state with the probability 0.1 at each time step.
wd = 0.1 and wb = 1.0.

BlocksWorld Figure 3a shows an example of Blocksworld
from Miura and Zilberstein [2021], where the goal is to stack
blocks to spell “ARMS". Picking up a block always succeeds
with probability 1, while putting down a block fails with
probability 0.3 (the block falls on the table). Each domain
action has a cost of 1. Cb is the TV distance from the target
belief. wd = 0.1 and wb = 1.0. The optimal policy first
stacks “R" on top of “S". This is not optimal in terms of task
progression, but tells the observer that the goal “ARMS" is
more likely than “RAMS".

Acronym Figure 3b illustrates the Acronym domain. There
are four locations with letters. The agent can move in eight
different directions. Once the agent is in the locations with
letters, it can toggle the letters among A → M → R →
S → A. The potential goals are to spell ”ARMS", ”RAMS",
or ”MARS" from top left to bottom right. When toggling
among letters, there is 0.3 probability of accidentally tog-
gling too much. The objective is spelling ”ARMS" while
being ambiguous about the intention. Cb(b) = Hmax−H(b)
where Hmax is the entropy of the uniform distribution and
H(b) represents the entropy of b. wd = 0.5 and wb = 1.0.

5.2 OFFLINE CONVERGENCE

We compare the following algorithms on the time before the
maximum residual is smaller than ϵ = 10−3:

• Grid-VI with K = 1, 4, 16;

• Grid-LRTDP with K = 1, 4, 16 using h0 and hd.

Each run has time limit 10m and memory limit 2Gbytes.

Table 1 shows the results. Grid-LRTDP using hd was over-
all the best algorithm, generating fewer belief states to
solve problems. The exception was the MazeWorld domain,
where, due to the random transition back to the initial state,
Grid-(L)RTDP had to generate most of the belief points.
While some problems required only coarse discretization
of beliefs, other problems required finer discretization to
compute near optimal policies.

5.3 ANYTIME PERFORMANCE

We compare the following algorithms in terms of the any-
time behaviors:

• Grid-(L)RTDP with K = 4, 8 using hd;

• UCT where the rollout policy π∗
d is an optimal policy

for the domain SSP.

Each algorithm was run for 102, 103, 5·103, 104, 5·104, 105,
5 · 105, 106 Grid-(L)RTDP/UCT trials. For UCT, the speci-
fied number of trials are performed at each timestep online.
For Grid-(L)RTDP, the trials are performed offline. Each
run has time limit 10m and memory limit 2Gbytes. Figure 4
shows the results. UCT and Grid-(L)RTDP exhibited per-
formances that complement each other. While UCT showed
better anytime performance in Acronym, it took some time
to achieve good performance in Blocks World, a small prob-
lem instance with |Θ| = 2. Comparing Grid-(L)RTDP with
different resolutions (K), using coarser grids generally re-
sulted in better anytime behaviors as long as the resolution
is sufficient. Between Grid-RTDP and Grid-LRTDP, they
exhibited comparable anytime behaviors.
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Domain |Θ| K Grid-VI Grid-LRTDP(h0) Grid-LRTDP(hd)
V t(s) |S| |PK | V t(s) |S| |PK | V t(s) |S| |PK |

MazeWorld 5
1 19.15 5.32 148 740 18.9 2.65 148 740 19.05 3.28 148 606
4 16.69 167.41 148 10360 16.60 155.22 148 10157 16.67 198.60 148 9419
16 - - - - - - - - - - - -

Acronym 3
1 15.69 13.36 6379 19137 15.71 4.62 6379 19137 15.86 5.03 6379 19137
4 8.41 121.28 6379 95685 10.27 39.38 6379 89116 10.49 19.04 6379 40480
16 - - - - 8.38 208.23 6379 973053 8.37 10.02 6292 43476

BlocksWorld 2
1 3.57 2.2 125 250 3.57 2.8 125 250 3.57 1.1 125 134
4 3.04 4.60 125 625 3.36 3.52 125 542 3.03 2.73 124 387
16 3.03 15.48 125 2125 3.03 16.076 125 1692 3.03 11.45 124 1103

Table 1: Time until convergence for different algorithms. V represents the value when the policy is evaluated under the true
environment (M ). t(s) is the running time in seconds. |S| and |PK | represent the number of generated domain and belief
states, respectively.

(a) MazeWorld (b) Acronym (c) BlocksWorld

Figure 4: Anytime behaviors for different algorithms.

6 RELATED WORK

OAMDP is a framework unifying different kinds of
observer-aware behaviors. Legible behavior [Dragan and
Srinivasa, 2013, Miura et al., 2021], which implicitly con-
veys intentions via the choice of actions. Similarly, expli-
cable behaviors [Zhang et al., 2017] conform to observers’
expectations. Deceptive behaviors [Dragan et al., 2015, Mas-
ters and Sardina, 2017] hide agents’ intentions or actively
deceive observers. Predictable behaviors enable observers
to predict future actions [Fisac et al., 2020]. Agents can also
express their (in)capability via the choice of their actions
[Kwon et al., 2018].

OAMDP could be regarded as a special case of Decision
Process with non-Markovian Reward (NMRDP) [Bacchus
et al., 1996, Thiébaux et al., 2006]. Unlike OAMDPs, ex-
isting works on NMRDPs Bacchus et al. [1996], Thiébaux
et al. [2006], Brafman et al. [2018] utilize temporal logic
to describe rewards over histories. OAMDP, on the other
hand, employs the belief of the observer to capture the non-
Markovian nature of rewards.

OAMDPs are related to the line of work that reasons about
the belief of other agents. In particular, OAMDPs can be
seen as a restricted subset of Interactive POMDPs [Gmy-

trasiewicz and Prashant, 2005], where agents act by recur-
sively modeling the other agents’ beliefs [Miura and Zil-
berstein, 2021]. In game theory, psychological games deal
with utility that depends on the belief of the other agent
[Battigalli and Dufwenberg, 2022]. Epistemic game theory
[Perea, 2012] also explicitly reasons about the belief of the
other agent.

7 CONCLUSION

In this paper, we propose the first approximation algorithms
for solving OAMDP/SSPs, Grid-VI and Grid-(L)RTDP.
Both of the algorithms are based on discretizing the ob-
server’s beliefs into regular grids. To justify the proposed
algorithms, we show that the domain state and the belief of
the observer constitute a sufficient statistics for OAMDPs
(Proposition 1). Furthermore, we show that both algorithms
converge to the unique value (Proposition 4, 6, and 7) and
provide performance guarantees under the standard assump-
tions (Propositions 5 and 7). Our experimental results show
that the proposed algorithms can compute near-optimal poli-
cies for OAMDP/SSPs. In particular, Grid-(L)RTDP can
converge to a solution faster than Grid-VI and has anytime
performance competitive with UCT.
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A PROOFS

To prove Proposition 2, we first prove the Lip-
schitz continuity of n-step value function. Let
V (0)(s, b) = 0 and V (n+1)(s, b) = maxa R(s, a, b) +
γ
∑

s′ T (s, a, s
′)V (n)(s′, bs,a,s

′
). Then we have:

Lemma 3. For a (Lr, Lp)-Lipschitz OAMDP, V (n) is
LV (n) -Lipschitz continuous, where LV (n) satisfies:

LV (n+1) = Lr + γLpLV (n) (27)

Proof. Proof by induction on n. For the base case with
n = 1,

|V (1)(s, b1)− V (1)(s, b2)| (28)
= |max

a
R(s, a, b1)−max

a
R(s, a, b2)| (29)

≤ max
a
|R(s, a, b1)−R(s, a, b2)| (30)

≤ Lr∥b1 − b2∥∞ (31)

For the induction step,

|V (n+1)(s, b1)− V (n+1)(s, b2)| (32)

= |max
a

R(s, a, b1) + γ
∑
s′

T (s, a, s′)V (n)(s′, bs,a,s
′

1 )

(33)

−max
a

R(s, a, b2) + γ
∑
s′

T (s, a, s′)V (n)(s′, bs,a,s
′

2 )|

(34)

≤ max
a
|R(s, a, b1) + γ

∑
s′

T (s, a, s′)V (n)(s′, bs,a,s
′

1 )

(35)

−R(s, a, b2) + γ
∑
s′

T (s, a, s′)V (n)(s′, bs,a,s
′

2 )| (36)

≤ max
a
|R(s, a, b1)−R(s, a, b2)| (37)

+ γ
∑
s′

T (s, a, s′)|V (n)(s′, bs,a,s
′

1 )− V (n)(s′, bs,a,s
′

2 )|

(38)

≤ (Lr + γLpLV (n))∥b1 − b2∥∞ (39)

Proposition 2. For a (Lr, Lp)-Lipschitz OAMDP, if γLp <
1, then V ∗ is LV ∗ -Lipschitz continuous where:

LV ∗ =
Lr

1− γLp
. (11)

Proof. Consider a sequence {Ln}n≥1 where L1 = Lr and:

Ln+1 = Lr + γLpLn (40)

Then,

Ln = Lr + γLpLr + (γLp)
2Lr + · · ·+ (γLp)

n−1Lr

(41)

=
1− (γLp)

n

1− γLp
Lr (42)

By our assumption, γLp < 1, so the sequence converges.
Let LV ∗ = limn→∞ Ln. LV ∗ must satisfy LV ∗ = Lr +
γLpLV ∗ . Thus, we get Equation 11.

Proposition 3. If τs,a,s
′
(θ) > 0 for ∀θ ∈ Θ, s, s′ ∈ S, and

a ∈ A, belief transitions are Lipschitz continuous.
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Proof. Let fs,a,s′(b) = bs,a,s
′
: ∆Θ → ∆Θ be the be-

lief transition after observing ⟨s, a, s′⟩. From the defini-

tion (Equation 1), fs,a,s′(b)(θi) =
τs,a,s′
i bi∑

k τs,a,s′
k bk

, where

τs,a,s
′

i = τs,a,s
′
(θi) and bi = b(θi). Then we have:

Jfs,a,s′ (b)i,j =


τs,a,s′
i (

∑
k ̸=i τ

s,a,s′
k bk)

(
∑

k τs,a,s′
k bk)2

i = j,

−τs,a,s′
i τs,a,s′

j bj

(
∑

k τs,a,s′
k bk)2

i ̸= j,
(43)

∥Jfs,a,s′ (b)∥∞ = max
1≤i≤n

∑
1≤j≤n

|Jfs,a,s′ (b)i,j |, (44)

= max
1≤i≤n

2τs,a,s
′

i (
∑

k ̸=j τ
s,a,s′

k bk)

(
∑

k τ
s,a,s′

k bk)2
, (45)

where Jf is the Jacobian of f and ∥ · ∥∞ is the in-
duced operator norm. Let τmin = mins,a,s′,k τ

s,a,s′

k and
τmax = maxs,a,s′,k τ

s,a,s′

k . Note that, for every b ∈ ∆n,∑
k ̸=i τ

s,a,s′

k bk ≤ τmax and
∑

k τ
s,a,s′

k bk ≥ τmin > 0.
Then we get ∥Jfs,a,s′ (b)∥∞ ≤ 2( τmax

τmin
)2.

Lemma 1. For an OAMDP with Lipschitz-continuous value
function with the constant LV ∗ , one-step approximation
errors using a regular grid with resolution K are bounded
as:

∥TKV ∗ − V ∗∥∞ ≤
LV ∗

K
. (17)

Proof. For all n ≥ 0,K ≥ 1, s ∈ S, and b ∈ ∆|Θ|,

|V ∗(s, b)− TKV ∗(s, b)| (46)

= |V ∗(s, b)−
∑

bi∈PK(b)

λiT V ∗(s, bi)| (by definition)

(47)

= |
∑

bi∈PK(b)

λi(V
∗(s, b)− V ∗(s, bi))| (T is a fixpoint of V ∗)

(48)

≤
∑

bi∈PK(b)

λi|V ∗(s, b)− V ∗(s, bi)| (triangle inequality)

(49)

≤
∑

bi∈PK(b)

λiLV ∗∥b− bi∥∞ (50)

≤ LV ∗
1

K
(51)

Proposition 5. For an OAMDP whose value function is
LV ∗ -Lipschitz continuous, we have:

∥V ∗ − V ∗
K∥∞ ≤

LV ∗

(1− γ)K
. (18)

Proof.

∥V ∗ − V ∗
K∥∞ (52)

≤ ∥V ∗ − TKV ∗ + TKV ∗ − V ∗
K∥∞ (53)

≤ ∥V ∗ − TKV ∗∥∞ + ∥TKV ∗ − TKV ∗
K∥∞ (54)

≤ LV ∗

K
+ γ∥V ∗ − V ∗

K∥∞ (55)

B PSEUDOCODE FOR GRID-LRTDP

Algorithm 2 shows the pseudocode for Grid-LRTDP. The
algorithm operates identically to Grid-RTDP, except that at
the end of each trial, the algorithm checks if states visited
during the trial can be labeled as solved.

Algorithm 2 Grid-LRTDP

1: function GRID-LRTDP(s0, b0, ϵ, K)
2: while ∃bi ∈ PK(b0)¬⟨s0, b0⟩.solved do
3: LRTDPTRIAL(s0, b0, ϵ, K)
4: end while
5: end function
6:
7: function LRTDPTRIAL(s0, b0)
8: visited← Stack :: new()
9: s ∼ s0

10: b← b0
11: while episode continues do
12: sample bi ∈ PK(b) with the weight λi

13: visited.push(⟨s, bi⟩)
14: a∗ ← mina QK(s, bi, a)
15: VK(s, bi)← QK(s, bi, a

∗)
16: s′ ∼ Pr(·|s, a∗)
17: b← bs,a,s

′

i

18: end while
19:
20: while ¬visited.is_empty() do
21: ⟨s, b⟩ ← visited.pop()
22: if ¬ CHECKSOLVED(s, b, ϵ, K) then
23: break
24: end if
25: end while
26: end function

Algorithm 3 shows the procedure for labeling states. Starting
from a given ⟨s, b⟩ the algorithm visits state that could be
visited under the current best policy, and checks if the resid-
uals of Bellman updates are smaller than a given threshold
ϵ.
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Algorithm 3 CHECKSOLVED

1: function CHECKSOLVED(s, b, ϵ, K)
2: rv ← true
3: open← Stack :: new()
4: closed← Stack :: new()
5: if ¬⟨s, b⟩.solved then
6: open.push(⟨s, b⟩)
7: end if
8: while ¬open.is_empty() do
9: ⟨s, b⟩ ← open.pop()

10: closed.push(⟨s, b⟩)
11: a∗ ← mina QK(s, b, a)
12: ϵres ← |VK(s, b)−QK(s, b, a∗|
13: VK(s, b)← QK(s, b, a∗)
14: if ϵres < ϵ then
15: continue
16: end if
17: for all s′ ∈ S such that T (s, a, s′) > 0 do
18: for all bi ∈ PK(bs,a,s

′
) such that λi > 0

do
19: if ¬⟨s′, bi⟩.solved∧¬⟨s′, bi⟩ ∈ open∧
¬⟨s′, bi⟩ ∈ closed then

20: open.push(⟨s′, bi⟩)
21: end if
22: end for
23: end for
24: end while
25:
26: if rv = true then
27: for all ⟨s, b⟩ ∈ closed do
28: ⟨s, b⟩.solved← true
29: end for
30: else
31: while ¬closd.is_empty() do
32: ⟨s, b⟩ ← open.pop()
33: a∗ ← mina QK(s, b, a)
34: VK(s, b)← QK(s, b, a∗)
35: end while
36: end if
37: end function
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