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ABSTRACT

FP8 training has emerged as a promising method for improving training efficiency.
Existing frameworks accelerate training by applying FP8 computation to linear
layers while leaving optimizer states and activations in higher precision, which
fails to fully optimize memory usage. This paper introduces COAT (Compressing
Optimizer States and Activations for FP8 Training), a novel FP8 training frame-
work designed to significantly reduce memory footprint when training large mod-
els. COAT addresses current limitations through two key innovations: (1) Dy-
namic Range Expansion, which aligns optimizer state distributions more closely
with the FP8 representation range, thereby reducing quantization error, and (2)
Mixed-Granularity Activation Quantization, which optimizes activation mem-
ory using a combination of per-tensor and per-group quantization strategies. Ex-
periments demonstrate that COAT effectively reduces end-to-end training memory
footprint by 1.54× compared to BF16 while achieving nearly lossless performance
across various tasks, such as Large Language Model pretraining and fine-tuning
and Vision Language Model training. COAT also achieves a 1.43× end-to-end
training speedup compared to BF16, performing on par with or surpassing Trans-
formerEngine’s speedup. COAT enables efficient full-parameter training of large
models on fewer GPUs, and facilitates doubling the batch size in distributed train-
ing settings, providing a practical solution for scaling large-scale model training.
The code is available at https://github.com/NVlabs/COAT.
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Figure 1: (a,b) Comparing the quantization flow of Transformer Engine and COAT. Both the opti-
mizer states and activations are quantized to FP8 in COAT. (c) End-to-end per-GPU memory com-
parison when training Llama-2-13B on 8×80G H100 using FSDP.
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1 INTRODUCTION

Foundation Models (FMs), such as Large Language Models (LLM) and Vision Language Models
(VLM), have made significant breakthroughs in various tasks such as reasoning, understanding, and
summarization (Dubey et al., 2024; Adler et al., 2024; Team et al., 2024; Lin et al., 2024). However,
the training of such models, which often comprise billions of parameters, demands substantial com-
putational resources and memory. This presents substantial challenges, making the training of these
foundation models very challenging (Smith et al., 2022; Hoffmann et al., 2022).

Low-precision training has emerged as a promising approach to make FMs training more effi-
cient (Micikevicius et al., 2017; Wang et al., 2018; Zhu et al., 2020; Xi et al., 2023; Wortsman et al.,
2023; Xi et al., 2024). By quantizing tensors used in deep neural networks into lower precision,
low-precision training effectively speed up the training process and reduce the memory footprint.
Currently, BF16 training (Kalamkar et al., 2019; Micikevicius et al., 2017) is the most prevalent
low-precision method, and is widely adopted in large-scale training frameworks like DeepSpeed
(Rasley et al., 2020) and Megatron-LM (Shoeybi et al., 2019).

With the advent of Nvidia’s H100 GPU (NVIDIA, 2024a), FP8 training Micikevicius et al. (2022) is
emerging as the next-generation low-precision technique. Compared to BF16, FP8 training has the
potential to (1) double the speed and (2) halve the memory footprint. To achieve practical speedup,
Transformer Engine (NVIDIA, 2024b) performs matrix multiplications in FP8 precision, leading
to faster training. Transformer Engine’s memory footprint can be further improved by reducing
optimizer states, gradients, weights, and activations to lower precision. As illustrated in Figure 1,
FP8-LM (Peng et al., 2023) advances this by further quantizing the gradients, weight master copy,
and first-order momentum into FP8. This reduces memory and communication overhead, partially
improving memory efficiency. However, they do not tackle the memory consumption of activations
and still leave the optimizer’s second-order momentum in higher precision. The memory problem
of activations becomes even more critical when optimizer, gradient, and weights are sharded across
multiple GPUs using ZeRO or FSDP. Besides, second-order momentum is more sensitive to quan-
tization than first-order momentum (Fishman et al., 2024), and activations’ large spikes also make
them hard to quantize to FP8 (Yang et al., 2024). This potential accuracy degradation makes them
missing a crucial opportunity to optimize memory further.

In this work, we propose COAT: Compressing Optimizer states and Activations for memory-
efficient FP8 Training to address the aforementioned issue. COAT significantly reduces the over-
all memory footprint by quantizing optimizer states and activations into FP8. For optimizer states,
we observe that FP8 format’s representation range is under-utilized when quantizing them, as il-
lustrated in Figure 2(a). To address this, we introduce a novel Dynamic Range Expansion method
which adjusts the distribution of optimizer states to better fit within the FP8 range, thereby minimiz-
ing quantization error. For activations, we propose Mixed-Granularity Activation Quantization to
achieve efficient and accurate quantization. We apply fine-grained quantization to non-linear layers
and apply per-tensor quantization to linear layers. Per-tensor quantization for matrix multiplications
is more efficient and better suited for TensorCores, while fine-grained quantization helps maintain
accuracy. These two approaches tackle high memory consumption while ensuring minimal perfor-
mance degradation. We provide an overview of COAT in Figure 1(b) for demonstration.

We demonstrate the accurate performance of COAT on a wide range of tasks, including LLM pre-
training, LLM fine-tuning, and VLM training. COAT achieves nearly lossless performance on all of
these tasks. For efficiency results, COAT achieves 1.54× end-to-end memory reduction compared
with BF16, and 1.43× end-to-end training speed up on Llama 7B, 13B, and 30B models compared
to BF16. COAT also doubles the batch size in all realistic distributed training settings, which is
crucial for higher speedup and support for longer context length, leading to a more efficient training
process for large-scale models.

2 RELATED WORK

Low-precision Training Low precision training (Wang et al., 2018; Chen et al., 2020; Lin et al.,
2022; Wortsman et al., 2023; Xi et al., 2024) has become a prominent technique in modern deep
learning, offering reductions in both computational costs and memory requirements. FP16 (half-
precision) training (Micikevicius et al., 2017) is the most prevalent low-precision method nowadays.
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It introduces loss scaling to address FP16’s narrower representation range problem. BF16 training
(Kalamkar et al., 2019) refines this approach, as BF16 has a larger representation range and is more
stable for large-scale training. In these approaches, forward and backward passes are computed in
FP16 or BF16 precision, while master weights, gradients, and optimizers are stored in FP32.

FP8 training (Fishman et al., 2024; Micikevicius et al., 2022) aims to push these efficiency gains
further. With the introduction of Nvidia’s Hopper GPU architecture, FP8 is emerging as a practical
datatype for next-generation low-precision training. Nvidia’s Transformer Engine (TE) (NVIDIA,
2024b) is the first framework designed for FP8 mixed-precision training that employs FP8 Tensor-
core for linear layer calculation. FP8-LM (Peng et al., 2023) extends FP8 quantization to gradients
and optimizer states, further improving the training throughput. However, they fail to reduce the
memory usage of activations stored for the backward pass using FP8, and leave second-order mo-
mentum in FP16, limiting the full potential of FP8’s memory advantages.

Memory Efficient Optimizers While 32-bit optimizer (Kingma, 2014; Loshchilov, 2017) states
are widely adopted, several research efforts have been made to reduce the memory footprint of op-
timizer states through quantization. The 8-bit Adam (Dettmers et al., 2021) introduces a novel data
format called dynamic exponent (DE) for quantization, but the adoption of this new data format lim-
its its flexibility. 4-bit Optimizer (Li et al., 2024) further pushes the limit of optimizer quantization
to 4-bit by addressing the zero-point problem, but is restricted to fine-tuning tasks. FP8-LM (Peng
et al., 2023) quantizes the first-order momentum to FP8 while leaving second-order momentum in
FP16, which limits the overall memory savings. (Fishman et al., 2024) finds that second-order
momentum is more sensitive to quantization, and proposes to quantize it using E5M2 format.

In addition to quantization, there are other approaches that aim to reduce the memory footprint of the
optimizer states (Shazeer & Stern, 2018; Anil et al., 2019; Chen et al., 2024; Zhao et al., 2024), such
as low-rank decomposition and optimizer simplification that only store the first-order momentum.
These methods are orthogonal to our approach.

3 PRELIMINARIES

FP8 Quantization Quantization compresses a high-precision tensor to low-precision to achieve
speedup and save memory footprint, at the cost of lower precision and lower representation range.
FP8 format consists of two encodings - E4M3 and E5M2 (Open Compute Project, 2023). E4M3
has higher precision, while E5M2 has a larger representation range. We define E4M3’s min and max
values as ∆E4M3

min = 2−9 and ∆E4M3
max = 448, while E5M2’s min and max values are ∆E5M2

min = 2−16

and ∆E5M2
min = 57344. To quantize an FP32 tensor X into E4M3 precision, we use a quantizer Q(·)

to map the tensor into FP8’s representation range. This process can be formulated as

XFP8, SX = Q(XFP32), where XFP8 =

⌈
XFP32

SX

⌋
, SX =

max (|XFP32|)
∆E4M3

max

,

where SX is the scaling factor, ⌈·⌋ refers to round-to-nearest. Quantize into E5M2 follows a similar
procedure, where we only replace ∆E4M3

max with ∆E5M2
max . To map the quantized tensor back to FP32 pre-

cision, the dequantize operation DQ(·) can be formulated as XFP32 = DQ(XFP8, SX) = SXXFP8.

Optimizer Update Rule Optimizers are widely used in deep learning to update parameters. The
most common gradient-based optimizer is Adam/AdamW (Kingma, 2014; Loshchilov, 2017), which
uses first-order m and second-order momentum v to achieve better convergence. The update rule of
AdamW at time step t can be formulated as:

mt = β1mt−1 + (1− β1)gt−1

m̂t =
mt

1− βt
1

vt = β2vt−1 + (1− β2)g
2
t−1

v̂t =
vt

1− βt
2

wt+1 = wt − η

(
m̂t√
v̂t + ϵ

+ λwt

)
(1)

where mt is the first-order momentum, vt is the second-order momentum, gt is the gradient, β1 and
β2 are betas of AdamW, η is learning rate, λ is weight decay, and ϵ is used to prevent NaN or Inf.
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FP8 Range is well utilized
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Figure 2: (a) Visualization of optimizer states’ dynamic range under per-group quantization. FP8
E4M3’s representation range is under-utilized in this case. (b) After dynamic range expansion, FP8’s
representation range is well utilized. (c) Distribution of k for optimizer states. The second order’s k
is larger than the first order’s k, since the second-order momentum’s dynamic range is smaller.

To perform optimizer state quantization, we adopt per-group quantization for both first-order and
second-order momentum, following previous works (Dettmers et al., 2021; Li et al., 2024). Every
consecutive G element forms a group (G is defined as the group size), and each group is quantized
independently with its own statistics. Optimizer states are stored in FP8 precision, while its scaling
factor is stored in BF16. In FSDP or ZeRO-3, the statistics related to optimizer states (e.g. scaling
factor) are not synchronized across GPUs, since each GPU maintains its own shard of optimizer
states. More details can be found in Appendix A.

4 DYNAMIC RANGE EXPANSION FOR ACCURATE OPTIMIZER QUANTIZATION

In subsequent sections, we explain how COAT utilizes FP8 quantization to achieve memory-efficient
FP8 training without compromising accuracy. Section 4 focuses on optimizer states quantization,
while Section 5 discusses activation quantization.

4.1 UNDERSTANDING THE ISSUE OF CURRENT OPTIMIZER STATES QUANTIZATION METHOD

Under per-group quantization, we find that one significant drawback of current quantization methods
is that, they can not fully utilize the representation range of FP8 and therefore lead to a large quanti-
zation error. Take the E4M3 data format as an example, the ratio between E4M3’s maximum repre-
sentable value and minimum representable value is ∆E4M3

max /∆E4M3
min = 448÷ 1

512 = 229376 ≈ 2×105.

Therefore, for a quantization group X , if we want to fully utilize the 256 representable value1 of
FP8, we hope the dynamic range of the quantization group X should cover the entire span between
∆E4M3

min and ∆E4M3
max .

To make it more formally, we define dynamic range as the ratio between the maximum absolute
value and the minimum absolute value within a quantization group X:

Definition 1 (dynamic range) Given a set that consists of G real numbers X = {x1, x2, . . . , xG},
the dynamic range R is defined as

RX =
max(|x1|, |x2|, . . . , |xG|)
min(|x1|, |x2|, . . . , |xG|)

,

where |·| denotes the absolute value.

That is to say, E4M3’s dynamic range is RE4M3 = 448 × 512 = 229376 ≈ 2 × 105. However, in
practice, many quantization groups within the optimizer states fail to effectively map values across
this wide range. We observe that optimizer states are highly sparse, with fewer than 1% of values
having large magnitudes, while the majority are relatively small and closely clustered. Most groups
exhibit low dynamic ranges since large values are so few. As visualized in Figure 2(a), the dynamic
range for first-order momentum is typically less than 1e4, and for second-order momentum, it is

1Actually among them a small amount of values represents NaN and Inf.
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Table 1: Quantization error of m√
v

under different
quantization settings. +Expand means applying our
Dynamic Range Expansion method.

MSE of m√
v

Second Order

First Order E4M3 E4M3+Expand E5M2 E5M2+Expand
E4M3 20.10 18.08 25.65 18.16

E4M3+Expand 15.13 12.31 21.96 12.43
E5M2 37.02 35.96 40.30 36.00

E5M2+Expand 17.79 15.48 23.84 15.57

FP8 Representation Range FP8 Representation Range

Figure 3: Dynamic Range Expansion can
better utilize E4M3 representation range.

usually less than 1e1—both far below the available range of FP8. As a result, a substantial portion
of FP8’s representational capacity is wasted, leading to a large quantization error.

4.2 DYNAMIC RANGE EXPANSION

To address this problem, we introduce a expand function f(·) before quantization to expand the
dynamic range of the quantization group and align it with E4M3, which can be formalized as
XFP8, SX = Q(f(XFP32)). The expand function we use is defined as

f(x) = sign(x)|x|k,

where k is used to control the strength of the expansion. In Appendix. F we prove that it is optimal.

For a quantization group X , after applying the expand function f to X , the dynamic range becomes

Rf(X) =
max(|f(X)|)
min(|f(X)|)

=
max(|sign(X)Xk|)
min(|sign(X)Xk|)

=
(max(|X|)
min(|X|)

)k

= (RX)k.

Therefore, when k > 1, RX will be enlarged and become closer to the ideal RE4M3. The optimal
k satisfy that (RX)k = RE4M3, which means that k = logRX

(RE4M3). With this optimal k, f(X)
can fully utilize the representation range of E4M3, while the original X can only utilize a small
portion of it. As shown in Figure 2(c), the second-order momentum typically has a larger k value
(5 ∼ 15) compared to the first-order momentum’s k (1 ∼ 3). This corresponds to our previous
observation, that second-order momentum usually has a smaller dynamic range compared with first-
order momentum, so it requires a larger k to align well with E4M3’s dynamic range.

We calculate k on-the-fly for every optimizer step and for every quantization group for accuracy
consideration. When dequantize, we apply the inverse of expand function f−1(x) = x

1
k after de-

quantization to recover its original value, which can be expressed as XFP32 = f−1(DQ(XFP8, SX)).

We apply regular quantizer and our dynamic range expansion method to both the first-order momen-
tum m and second-order momentum v. As visualized in Figure 3(b), the distribution after expansion
can fully utilize the FP8 (E4M3) representation range, which proves the effectiveness of our method.
We further quantify the effectiveness of our method in Table 1. In AdamW optimizer step, as stated
in Eq. 1, m√

v+ϵ
is the actual effective term for weight update, so we report the MSE of m√

v+ϵ
to

quantify the performance of a quantization method. We find that E4M3 is more suitable for first-
order momentum than E5M2. For second order momentum, although E4M3 better than E5M2,
their quantization error is nearly the same after applying our expand function. Our Dynamic Range
Expansion can effectively reduce the MSE by 1.63×. Appendix A provide more results.

5 MIXED-GRANULARITY ACTIVATION QUANTIZATION

5.1 DECOMPOSE THE ACTIVATION MEMORY FOOTPRINT

In the forward pass of neural networks, activations must be preserved for the backward pass to calcu-
late gradients. As illustrated in Table 2, non-linear layers such as LayerNorm/RMSNorm (Ba, 2016;
Zhang & Sennrich, 2019) and Activation Functions (Hendrycks & Gimpel, 2016; Shazeer, 2020)
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Table 2: Activation memory footprint of different operators. U is a unit to measure memory
usage, where 1U = Batch Size × Sequence Length × Hidden Size × 2 bytes (for BF16). For
Llama-style model, Act Func refers to SiLU & Multiply, and Linear refers to the summation of
QKV/Attn/Up/Gate/Down projection. RMSNorm is upcast to float32 in transformers imple-
mentation, so the memory usage of LayerNorm in BF16 is 4U. Our method reduces activation
memory by quantizing them to FP8. More details about FlashAttention in Appendix D.

Non-Linear Attention Reduction Ratio
RMSNorm Act Func RoPE FlashAttn Linear Total Ideal Achieved

Llama-style
BF16 4U 8U 2U 3U 5.66U 22.66U 1.00× 1.00×
TE 2U 8U 2U 3U 3.33U 18.33U 1.23× 1.20×

COAT 1U 4U 2U 3U 3.33U 13.33U 1.69× 1.65×

typically account for approximately 50% of the memory footprint in the Llama model series Tou-
vron et al. (2023). In contrast, linear layers contribute less than 25%. Therefore, it is essential to
optimize both linear and non-linear layers to reduce activation memory footprint.2

One straightforward approach to achieve this is to quantize the activations to FP8 format prior to
each non-linear and linear layer and only save the quantized tensors for backward. However, this
introduces significant overhead due to the additional quantization step. Furthermore, non-linear
layers can be sensitive to quantization. For example, GLU activation will amplify the spike in
activations, resulting in significant quantization errors if not carefully handled (Yang et al., 2024;
Fishman et al., 2024). This necessitates us to develop efficient and accurate quantization techniques.

5.2 MIXED GRANULARITY FP8 PRECISION FLOW

To address the inefficiency and inaccurate problem, we propose to use mixed granularity FP8
precision flow to improve the accuracy without introducing too much overhead. FP8 precision
flow requires the input and output of all linear and non-linear layers in FP8. By directly saving the
input tensor in FP8 format for the backward pass, we eliminate the need for an extra quantization
operation, which reduces the associated overhead. However, this method still suffers from accuracy
degradation and necessitates further refinement.

We propose to vary the quantization granularity across different layers to balance precision and
efficiency in a mixed-granularity manner. For non-linear layers, VS-Quant (Dai et al., 2021) or Per-
Block Quant (Xi et al., 2024) methods are well-suited due to their fine-grained and precise nature.
For linear layers, we apply per-tensor quantization to maximize the performance of Tensor Cores.3

We observe that quantizing the input of layernorm across multiple token axes is detrimental to
accuracy. As illustrated in Figure 4(a), when the number of elements that share a scaling factor is
fixed, the quantization error increases significantly when quantization is performed across the token
axis. Therefore instead of using per-block quantization with block size B × B as proposed in (Xi
et al., 2024), we propose to use per-group quantization with group size 1 × G, where G = B2

to keep the granularity the same. This approach enhances the accuracy of non-linear layers while
maintaining efficiency. Our precise FP8 precision flow is visualized in Figure 1(a), where we display
the full precision flow for a Llama-style decoder layer, both forward and backward pass.

We also propose Group Scaling, an efficient per-tensor scaling method that balances the performance
and precision. To perform per-tensor quantization, the maximum absolute value of the tensor needs
to be calculated through max reduction, adding a lot of overhead.

In our Group Scaling, we address these problems by splitting the max reduction into two stages: (1)
performing max reduction on each 1×G element and storing the results as intermediate values; (2)
applying max reduction on the intermediate tensor to obtain the per-tensor max value. The first stage
can be seamlessly fused with the previous operation, adding minimal overhead, while the second
stage is more efficient than doing max reduction on the entire tensor, as the intermediate result
is G× smaller than the original tensor. As illustrated in Figure 4(b), Group Scaling successfully
reduces the max reduction overhead compared with just-in-time scaling.

2RoPEs and FlashAttentions are more as a distinct module and should be handled separately.
3Finer-grained methods can also be applied since they are generally compatible with FP8 precision flow.

6

https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py#L70
https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py#L70


Published as a conference paper at ICLR 2025

Figure 4: (a) Quantization Error in forward pass. (b) Time comparison of various scaling methods.

In comparison, TransformerEngine proposes delayed scaling to avoid the on-the-fly max reduction
required for per-tensor quantization, and can also fuse the division process into the previous operator
to optimizes memory accesses. However, we find that using the current tensor’s statistics to compute
the scaling factor is no worse, and could be even better in precision, than using the delayed scaling
heuristic. Therefore, we advocate for Group Scaling as a simpler and more flexible alternative that
can potentially offer improved numerical stability and precision while not being significantly slower
than Delayed Scaling.

6 EXPERIMENTS

6.1 ACCURACY EXPERIMENTS

Setups We compare COAT with BF16 training and TransformerEngine (NVIDIA, 2024b) base-
lines. For all experiments, we adopt the default hyperparameters in the official training recipe. We
validate the effectiveness of our method on multiple tasks, including Large Language Model (LLM)
pretraining and fine-tuning, and Vision Language model (VLM) training. For LLM pertaining, we
report the perplexity on Wikitext 103 (Merity et al., 2016), C4 (Raffel et al., 2020), and Pile (Gao
et al., 2020), and the accuracy on COPA (Gordon et al., 2012), ARC (Clark et al., 2018), SciQ (Welbl
et al., 2017), and HellaSwag (Zellers et al., 2019). For LLM fine-tuning, we conduct experiments
in math corpus, and evaluate on Mathmeticas (Davies et al., 2021), SVAMP (Patel et al., 2021),
NumGLUE (Mishra et al., 2022), and GSM8K (Cobbe et al., 2021). For VLM training, we report
the score on VideoMME (Fu et al., 2024), POPE (Li et al., 2023b), VizWiz (Gurari et al., 2018),
GQA (Hudson & Manning, 2019), VQAv2 (Goyal et al., 2017), TextVQA (Singh et al., 2019),
SEED (Li et al., 2023a), and MMMU Validation Set (Yue et al., 2024). We use 1 × 128 per-group
quantization for optimizer states and 1× 16 per-group quantization for non-linear layer activations.

6.1.1 LLM PRETRAINING

To evaluate our method when pretraining LLMs, We train OLMo-1B (Groeneveld et al., 2024) and
OLMo-7B on Dolma (Soldaini et al., 2024). Following the official report, we use a global batch
size of 4M tokens (2048 macro batch size, with a sequence length of 2048 tokens). We use PyTorch
FSDP in our experiments.

For OLMo-1B, we conduct pretraining for 300B tokens, which corresponds to 75k training steps.
We report the training curve in Figure 5, and report the perplexity and accuracy result in Table 3.
The training curve and downstream task performance were consistent with BF16 training baseline,
validating the effectiveness of COAT. For OLMo-7B experiment, we pretrain for 250B tokens, which
corresponds to 40k training steps.we report the training curve in Figure 6 and downstream task
performance in Table 4, where COAT also aligns well with the baseline and is nearly lossless.

6.1.2 LLM FINE-TUNING

We further evaluate our method on LLM fine-tuning task. We focus on math corpus and fine-tune a
Llama-2-7B model on the MAmmoTH (Yue et al., 2023) dataset. We train for 3 epochs, and report
the downstream tasks performance in 5. After fine-tuning, COAT still performs consistently with
the baselines on the downstream task performance, proving the accurateness of our method.
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Table 3: OLMo-1B pretraining performance on downstream tasks. We
report the performance after training for 300B tokens.

Train Loss WikiText C4 Pile Avg ppl
BF16 2.551 15.234 15.538 10.563 10.083
COAT 2.568 15.384 15.695 10.672 10.176

COPA ARC(Easy) SciQ HellaSwag Avg Acc
BF16 77.0 % 57.3 % 84.0 % 54.5 % 68.2 %
COAT 75.0 % 58.1 % 83.9 % 54.3 % 67.8 %

0 60 120 180 240 300
Tokens (B)

2.5

3.0

3.5

4.0

4.5

Lo
ss

Training Loss Curve of OLMo-1B
BF16
OURS

Figure 5: OLMo-1B train-
ing loss curve.

Table 4: OLMo-7B pretraining performance on downstream tasks. We
report the performance after training for 250B tokens.

Train Loss WikiText C4 Pile Avg ppl
BF16 2.366 12.053 12.874 8.596 11.174
COAT 2.379 12.166 12.988 8.684 11.279

COPA ARC(Easy) SciQ HellaSwag Avg Acc
BF16 83.0% 65.7% 87.5% 56.9% 73.2 %
COAT 81.0% 61.9% 87.2% 60.6% 72.7 %

0 50 100 150 200 250
Tokens (B)
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Figure 6: OLMo-7B train-
ing loss curve.

6.1.3 VLM TRAINING

We also evaluate COAT on vision language models. We conduct experiments on VILA (Lin et al.,
2024) and perform stage-3 SFT of VILA1.5-7B using the same SFT data mixture employed by
VILA’s original paper (Chen et al., 2023; Xu et al., 2024) and set the global batch size to 1024. We
pad the sequence length to a multiple of 4 for efficiency consideration. The training loss curve is
visualized in Figure 7. We report the downstream task performance and their average in Table 6. We
find that COAT performs on par with BF16 training and is better than the TransformerEngine base-
line, which demonstrates the accurateness of our method. We further visualize the VLM captioning
experiment in Appendix B to prove the effectiveness of COAT on generation tasks.

6.2 MEMORY SAVING AND SPEEDUP

We test the memory saving and speedup result of COAT in two settings: The results on a single
transformer layer help to accurately analyze the capabilities for memory saving and speedup, while
the end-to-end results reflect the practical benefits of our method in real-world applications.

6.2.1 MEMORY SAVING AND SPEEDUP FOR A SINGLE TRANSFORMER LAYER

Table 7 highlights the speedup and memory reduction achieved for a single transformer layer. We
conducted experiments with a batch size of 4, varying the hidden sizes between 2048 and 4096, and
sequence lengths of 2048 and 4096.

COAT demonstrates better speedup compared with TE, and significantly better memory reduction
ability compared with BF16 and TE. Our approach achieves up to 1.57× speedup over BF16 and
achieves a consistent 1.65× memory reduction compared to BF16, which is very close to the theo-
retically 1.69× reported in Table 2. The speedup ratio becomes larger with larger hidden sizes and
longer sequence lengths.

6.2.2 SPEEDUP AND MEMORY SAVING FOR END-TO-END TRAINING

Table 8 presents a detailed comparison of end-to-end memory reduction and speedup results across
different configurations for transformer models, specifically Llama-2-7B, Llama-2-13B, and Llama-
30B, with variations in the number of GPUs used (1, 2, 4, and 8). It highlights COAT’s effectiveness
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Table 5: Evaluation result of fine-tuning Llama-2-7B on math corpus. Llama-2-7B refers to the
evaluation metric before fine-tuning. TE refers to TransformerEngine.

Mathmeticas SVAMP NumGLUE GSM8k Avg
Llama-2-7B 6.0 14.6 34.5 29.9 21.3

BF16 46.3 64.2 54.8 57.7 55.7
TE 45.3 66.1 53.5 57.7 55.6

COAT 47.8 64.4 53.3 56.6 55.5

Table 6: VILA1.5-7B Stage-3 SFT performance on down-
stream tasks. * means it has seen the training data.

Stage 3 VideoMME POPE VizWiz GQA* VQAv2*

BF16 42.96 86.90 61.42 64.55 81.47
TE 43.19 87.64 57.61 64.53 81.34
COAT 44.56 87.43 61.36 64.44 81.20

SEED

Stage 3 TextVQA Image Video MMMU Val Average

BF16 65.60 73.40 45.65 38.56 62.80
TE 64.70 73.51 43.12 35.89 61.88
COAT 64.65 73.36 43.76 37.22 62.51
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Figure 7: VILA1.5-7B Stage-3 SFT
loss curve.

Table 7: Memory Saving and Speedup for a single Transformer Layer. Memory refers to Activation
Memory. Our method achieves better speedup than TransformerEngine and significantly reduces
the activation memory footprint by 1.65×.

Hidden Size = 2048, Batch Size = 4

Sequence Length = 2048 Sequence Length = 4096

Forward Backward Total Ratio Memory Ratio Forward Backward Total Ratio Memory Ratio

BF16 3.36 8.47 11.83 1.00× 1457 MB 1.00× 6.88 17.24 24.12 1.00× 2914 MB 1.00×
TE 2.96 5.32 8.28 1.42× 1210 MB 1.20× 5.94 11.29 17.23 1.39× 2420 MB 1.20×

COAT 2.88 5.16 8.04 1.47× 883 MB 1.65× 5.89 10.82 16.71 1.44× 1766 MB 1.65×
Hidden Size = 4096, Batch Size = 4

Sequence Length = 2048 Sequence Length = 4096

Forward Backward Total Ratio Memory Ratio Forward Backward Total Ratio Memory Ratio

BF16 7.77 18.78 26.55 1.00× 2914 MB 1.00× 16.37 38.43 54.80 1.00× 5828 MB 1.00×
TE 6.19 11.79 17.98 1.47× 2420 MB 1.20× 12.66 24.58 37.24 1.47× 4840 MB 1.20×

COAT 5.89 10.96 16.85 1.57× 1766 MB 1.65× 12.16 23.44 35.6 1.53× 3533 MB 1.65×

in reducing end-to-end memory footprint and the speedup compared to standard BF16 and Trans-
formerEngine (TE) setups under varying conditions of batch size and context length.

COAT allows full-parameter training of Llama-2-7B on a single GPU, where BF16 and TE both
out of memory (OOM). Similarly, for the Llama-2-13B and Llama-30B models, our method enables
2-GPU training for Llama-2-13B and 8-GPU training for Llama-30B when Batch Size = 1.

In all multi-GPU training setting, COAT can double the micro-batch size and therefore lead to even
higher speedup. For example, our method can achieve 2.25× speedup when training Llama-2-13B
on 4-GPUs since we can effectively increase the batch size to 2.

Overall, COAT significantly reduces end-to-end memory usage by up to 1.55× and speeds up the
end-to-end training by nearly 1.44×. This facilitates full-parameter training on fewer GPUs, which
is particularly beneficial for larger language models.
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Table 8: End-to-end memory reduction and speedup results. BS refers to batch size. CL refers to
context length. We report token/s per GPU for speed results. ‡ means CL=1024.

Llama-2-7B Context Length = 2048 Maximum Batch Size, Context Length = 2048

Optimizer Activations Peak Ratio Max BS Speed Ratio

1 GPUBS=1

BF16 - - OOM - - OOM -
TE - - OOM - - OOM -

COAT 13.1 GB 8.1 GB 79.3 GB ✓ 1 5906 token/s ✓

2 GPUBS=2

BF16 - - OOM - 1 6130 token/s 1.00×
TE - - OOM - 1 6842 token/s 1.11×

COAT 6.5GB 16.9 GB 52.8 GB ✓ 4 11351 token/s 1.85×

4 GPUBS=2

BF16 13.1 GB 25.8 GB 55.1 GB 1.00× 2 7730 token/s 1.00×
TE 13.1 GB 21.9 GB 51.1 GB 1.08× 2 9577 token/s 1.24×

COAT 3.2 GB 16.9 GB 35.6 GB 1.54× 4 11257 token/s 1.45×

8 GPUBS=2

BF16 6.5 GB 25.8 GB 41.2 GB 1.00× 4 8238 token/s 1.00×
TE 6.5 GB 21.9 GB 37.2 GB 1.11× 4 11704 token/s 1.42×

COAT 1.6 GB 16.9 GB 27.0 GB 1.52× 8 11241 token/s 1.36×
Llama-2-13B Context Length = 2048 Maximum Batch Size, Context Length = 2048

Optimizer Activations Peak Ratio Max BS Speed Ratio

2 GPU‡
BS=1

BF16 - - OOM - - OOM -
TE - - OOM - - OOM -

COAT 12.6 GB 10.1 GB 73.2 GB ✓ 1 2137 token/s ✓

4 GPUBS=1

BF16 25.1 GB 20.1 GB 76.1 GB 1.00× 1 2345 token/s 1.00×
TE 25.1 GB 17.2 GB 73.0 GB 1.04× 1 2851 token/s 1.21×

COAT 6.3 GB 13.2 GB 49.1 GB 1.55× 2 5295 token/s 2.25×

8 GPUBS=1

BF16 12.6 GB 20.1 GB 49.4 GB 1.00× 2 3907 token/s 1.00×
TE 12.6 GB 17.2 GB 46.5 GB 1.06× 2 5604 token/s 1.43×

COAT 3.1 GB 13.2 GB 32.5 GB 1.52× 4 5650 token/s 1.44×
Llama-30B Context Length = 2048 Maximum Batch Size, Context Length = 2048

Optimizer Activations Peak Ratio Max BS Speed Ratio

8 GPUBS=1

BF16 - - OOM - - OOM -
TE - - OOM - - OOM -

COAT 7.8 GB 24.2 GB 70.5 GB ✓ 1 1363 token/s ✓

Table 9: Dynamic Range Expansion is compatible with DE8 (8-bit dynamic quantization).

Second Order

First Order E4M3 E4M3 + Expand E5M2 E5M2 + Expand DE8 DE8 + Expand

E4M3 + Expand 15.13 12.31 21.96 12.43 14.01 18.84
DE8 12.11 8.27 20.02 8.43 10.54 16.25
DE8 + Expand 11.57 7.47 19.69 7.65 9.91 15.81

6.3 ABLATION STUDIES

6.3.1 DYNAMIC RANGE EXPANSION’S COMPATIBILITY WITH OTHER DATA FORMATS

Dynamic Exponent Quantization (DE) was proposed in (Dettmers et al., 2021) to quantize the
optimizer states since its representation range has a range of 7 orders of magnitude and is very
suitable for optimizer states quantization. Therefore, they proposed to quantize both first-order and
second-order momentum with 8-bit DE.

We report the quantization error of m√
v

in Table 9, and find that applying our dynamic range expan-
sion method to 8-bit DE can further reduce the quantization error by 1.41×. Specifically, the lowest
quantization error is achieved when first-order momentum m is quantized with 8-bit DE + Dynamic
Range Expansion, and second-order momentum v is quantized with E4M3/E5M2 + Dynamic Range
Expansion. This proves the effectiveness of our method.

7 CONCLUSION

In this work, we present COAT, a memory-efficient FP8 training framework for foundation models
by quantizing both optimizer states and activations into FP8 format. We observe that the FP8 for-
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mat’s representation range is not fully utilized when quantizing optimizer states, prompting us to
propose Dynamic Range Expansion to align their dynamic range. We then identify the importance
of quantizing non-linear layers, and propose mixed-granularity FP8 precision flow to quantize the
activations accurately without introducing too much overhead.

Extensive experiments on LLM and VLM training and fine-tuning demonstrate that COAT can
achieve nearly lossless performance. In end-to-end training, COAT achieves a 1.54 memory reduc-
tion and 1.43 speedup compared to BF16, and is comparable or even faster to TransformerEngine’s
training speed. Our method also enables full-parameter training of billion-scale models on fewer
GPUs and is able to double the batch size in realistic settings. These results highlight COAT’s capa-
bility to enable memory-efficient, large-scale model training without sacrificing accuracy, providing
a highly effective solution for memory-constrained environments. Future work could further explore
combining our proposed approach with other low-precision gradient compression methods to reduce
communication overhead.
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Richard Tanburn, Peter Battaglia, Charles Blundell, András Juhász, et al. Advancing mathematics
by guiding human intuition with ai. Nature, 600(7887):70–74, 2021.

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise
quantization. arXiv preprint arXiv:2110.02861, 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Maxim Fishman, Brian Chmiel, Ron Banner, and Daniel Soudry. Scaling fp8 training to trillion-
token llms. arXiv preprint arXiv:2409.12517, 2024.

Chaoyou Fu, Yuhan Dai, Yondong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu
Zhou, Yunhang Shen, Mengdan Zhang, et al. Video-mme: The first-ever comprehensive evalua-
tion benchmark of multi-modal llms in video analysis. arXiv preprint arXiv:2405.21075, 2024.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text
for language modeling. arXiv preprint arXiv:2101.00027, 2020.

12



Published as a conference paper at ICLR 2025

Andrew Gordon, Zornitsa Kozareva, and Melissa Roemmele. SemEval-2012 task 7: Choice of plau-
sible alternatives: An evaluation of commonsense causal reasoning. In Eneko Agirre, Johan Bos,
Mona Diab, Suresh Manandhar, Yuval Marton, and Deniz Yuret (eds.), *SEM 2012: The First
Joint Conference on Lexical and Computational Semantics – Volume 1: Proceedings of the main
conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop
on Semantic Evaluation (SemEval 2012), pp. 394–398, Montréal, Canada, 7-8 June 2012. Asso-
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A DETAILS ABOUT OPTIMIZER STATES QUANTIZATION

When performing optimizer.step(), We first dequantize the optimizer states into FP32, then
update the optimizer states and weights in FP32 precision. In the end, we quantize the updated
optimizer states back to FP8 and store it in GPU memory. This can be formulated as:

mt−1 = DQ(mq
t−1, Smt−1

) (Dequantize to FP32)

vt−1 = DQ(vqt−1, Svt−1
) (Dequantize to FP32)

mt = β1 ∗mt−1 + (1− β1) ∗ gt
vt = β2 ∗ vt−1 + (1− β2) ∗ g2t
m̂t =

mt

1− βt
1

v̂t =
vt

1− βt
2

wt+1 = wt − η

(
m̂t√
v̂t + ϵ

+ λwt

)
mq

t , Smt
= Q(mt) (Quantize to FP8)

vqt , Svt = Q(vt) (Quantize to FP8)

In the FSDP setting, dynamic range synchronization across GPUs is unnecessary due to the unique
distributed training architecture. The approach leverages sharding strategies that eliminate the need
for cross-GPU synchronization. Each GPU independently handles its own optimizer state shards.
Since dynamic range is calculated based on local device statistics and optimizer states remain locally
computed and updated, we do not need to synchronize the dynamic range across GPUs.

B QUALITATIVE EXAMPLE - VISION LANGUAGE MODEL CAPTIONING

C VISUALIZATION OF EXPAND FUCTION

We further visualize Figure 3 by flattening it. This helps to understand the effectiveness of our
method since floating point numbers can be more easily understood in a binary manner.

D DETAILED EXPLANATION FOR TABLE 2

We mainly explain why the reduction ratio of linear layers is not exactly 50% here. 5.66U comes
from: QKV Projection - 1U, Attention Projection - 1U, Up&Gate Projection - 1U, Down Projection
- 2.66U. Among them, the attention projection’s input is exactly the output of FlashAttention. How-
ever, FlashAttention will save its input (QKV) and its output itself, so FlashAttention and Attention
Projection actually share the same tensor when saving it. In Python, this tensor will only be saved
for 1 time. So we should not further store an FP8 version of the Attention Projection’s input (Zhang
et al., 2025a; 2024), since this will even increase the memory usage by 0.5U if we do not change the
code of FlashAttention. Although we need to quantize the input to FP8 again in backward pass, we
can store the scaling factor to reduce this additional overhead.

Therefore, after FP8 quantization, the memory usage of linear layers comes from: QKV Projection
- 0.5U, Attention Projection - 1U, Up&Gate Projection - 0.5U, Down Projection - 1.33U. They sum
up to 3.33U.

E DETAILED EXPLANATION FOR FIGURE 1(C)

We mainly discuss FP8-LM in this section. FP8-LM reduces the gradient communication precision
from FP32 to FP8 and therefore greatly reduces the communication overhead. It also reduces the
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BF16: The image depicts a fantastical scene set in a mountainous landscape. 
Dominating the center of the image is a large tree, its twisted and gnarled form 
standing on a rocky outcropping. The tree is surrounded by a serene lake, its 
calm waters reflecting the vibrant colors of the sky above. The sky is a 
spectacle in itself, painted with hues of orange and red as the sun sets behind 
the mountains, casting a warm glow over the entire scene. The mountains in the 
background add a sense of depth and grandeur to the image, their peaks 
reaching up towards the sky. The overall composition of the image suggests a 
tranquil yet powerful natural setting, possibly inspired by mythology or fantasy.

COAT: The image presents a captivating scene of a solitary tree standing on a rocky outcropping. The tree, with its twisted and gnarled 
form, is a vibrant green, contrasting with the surrounding landscape. The rocky outcropping on which it stands is rugged and uneven, 
adding to the overall wildness of the scene. The background is a breathtaking view of a mountainous landscape under a sky ablaze with 
hues of orange and red, possibly indicating a sunrise or sunset. The sun is partially obscured by the clouds, casting a warm glow that 
illuminates the scene. The image is rendered in a digital art style, which adds a sense of realism and depth to the scene. The artist has 
skillfully used color and lighting to create a sense of tranquility and solitude, with the tree standing as a solitary figure against the vastness 
of the landscape. The overall composition of the image is balanced and harmonious, with each element complementing the others to create 
a cohesive whole.

Instruction: Briefly describe this figure.

Question: Why People love this?
BF16: People love this because it is a visually appealing and appetizing image of a delicious 
burger. The burger is presented on a paper bag, which adds a rustic touch to the presentation. 
The combination of a juicy burger with a red pepper and a fiery background creates an enticing 
and mouth-watering scene. The image captures the essence of a classic American favorite, the 
burger, and the excitement of a freshly cooked meal. The vibrant colors and the dramatic 
backdrop of the fire make the image even more captivating, which is why it is likely to be 
appreciated by many people.

COAT: People love this image of a burger on a bun with various toppings, such as onions, tomatoes, and lettuce, because it represents a 
delicious and visually appealing meal. The burger is placed on a piece of paper, which adds an interesting and casual touch to the presentation. 
The fiery background, with a fire or a flame, creates a dramatic and exciting atmosphere, which can evoke a sense of excitement and 
anticipation for the meal. The combination of the mouth-watering burger and the striking background can make the image appealing and 
appetizing to many people, especially those who enjoy burgers and similar dishes.

Figure 8: Comparison of BF16 and COAT on VLM captioning. COAT can accurately summarize
the figure and identify the key points in the figure.
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Figure 9: Axis is of base 2.

master weight’s precision from FP32 to FP16/BF16, and reduces the optimizer states precision from
FP32 to BF16/FP8. For optimizer states and master weights, the memory footprint reduction result
is consistent with our bar. However, for gradient, although FP8-LM can quantize the gradient into
FP8, it still needs to preserve the main gradient in FP32 for gradient accumulation. Therefore it can
not reduce the memory footprint of the weight gradient.

F PROOF THE EXPAND FUNCTION IS OPTIMAL

We prove that the choice of f(x) = xk is optimal given certain basic assumptions for the expansion
function f(x).

1. f(x) is an odd function, where f(x)+f(−x) = 0, since the representation range of FP8 is
symmetric. Therefore, in the following discussion, we only consider the case when x ≥ 0.

2. f(x) is continuously differentiable.

3. f(x) is monotonically increasing. This is because we want to keep the relative order before
and after quantization or expansion.
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4. f(0) = 0 and f(1) = 1. f(0) = 0 since f(x) is odd. f(1) = 1 since we can always
consider g(x) = f(x)

f(1) without changing its expansion ability.

5. For any x > y > 0, r > 0, f(x)
f(y) = f(rx)

f(ry) . This is used to make sure the function is
scale-invariant. For example, if you multiply the unquantized value X by 10, the value
after expansion and quantization is the same as if you do not multiply the value by 10.

We prove that based on these assumptions, the only function that meets these assumptions is f(x) =
sign(x)|x|k.

Proof: We only consider the case when x > 0. We denote f(2) = m > 1. From assumption 5, we
have for any p > r > s > q, if pq = rs, then f(p)f(q) = f(r)f(s), since

f(p)

f(r)
=

f
(
p · (s/p)

)
f
(
r · (s/p)

) =
f(s)

f(q)
.

And for any p = rs,
f(p) = f(p)f(1) = f(r)f(s).

Therefore, for any x = 2t, t ∈ N,

f(x) = f(2t) = f(2)t = mt.

It is also true that for any x = 2−t, t ∈ N,

f(x) =
f(1)

f( 1x )
=

f(1)

f(2t)
=

1

mt
= m−t, so that f(x) = m−t.

Therefore, for any N ∈ N, x = 2t, t =
N∑

i=−N

ci · 2i, ci ∈ {0, 1},

f(x) = f(

N∏
i=−N

2ci·2
i

) =

N∏
i=−N

f(ci · 2i) =
N∏

i=−N

mci·2i = m

N∑
i=−N

ci·2i

= mt.

For ∀x > 0, it can be written in the form of x = 2t, t ∈ R. Consider the binary representation of

t, denoted by t =
∞∑

i=−∞
ci · 2i, where ci ∈ {0, 1}. For any integer N > 0, there exists two series

{ai}N−N and {bi}N−N that satisfies a−N = 0, b−N = 1, and ai = bi for −N + 1 ≤ i ≤ N,

ta ≤ t < tb,

where ta =
N∑

i=−N

ai · 2i and tb =
N∑

i=−N

bi · 2i. Since f(x) is continuous, the values of f(x) at

xa = 2ta and xb = 2tb can be used to approximate f(x) = f(2t), and by taking the limit as
N → ∞, the equality holds:

f(x) = lim
N→∞

f(xa) = lim
N→∞

f(xb).

Therefore for ∀ t ∈ R, f(2t) = mt for some m > 0. Therefore ∀ x > 0, f(x) = mlog2(x). Using
the exponential and logarithmic identity mlog2(x) = xlog2(m), this simplifies to:

f(x) = xlog2(m),

where log2(m) is a constant determined by f(2) = m. If we denote log2(m) = k, then f(x) = xk.

G IMPLEMENTATION DETAILS OF COAT

This section highlights the key differences and details of the implementation of the COAT LLaMA
model. The primary focus is on the techniques used to handle quantization and optimization effi-
ciently.
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G.1 MODEL ARCHITECTURE

The COAT LLaMA implementation introduces three new modules, which are not present in the
Hugging Face implementation, specifically designed to optimize for FP8 precision flow:

1. BeforeAttention module (inherit from torch.autograd.Function) calculates the LayerNorm
and QKV Projection before RoPE and correctly handles how quantized inputs interact with
the residual connection. If Attention is quantized (Zhang et al., 2025a; 2024; Shah et al.,
2024; Zhang et al., 2025b; Xi et al., 2025), then the output of this module should also be
quantized to accommodate the input of Attention.

2. AfterAttention (inherit from torch.autograd.Function) calculate the attention projection
layer and ensures quantized outputs are correctly scaled and summed up with residual con-
nection.

3. MLPResidual (inherit from torch.autograd.Function) handles quantization within the feed-
forward network (FFN) efficiently. It also incorporates residual connections in this module
to handle it efficiently.

These modules ensure that the computation flow after quantization is correct. We fuse the group
scaling method into the add operator in residual connection, therefore we need to manually control
how the gradient flows in the network.

G.2 TRITON-BASED FP8 KERNELS FOR LINEAR LAYERS

The linear layers utilize Triton to implement custom FP8 matrix multiplication kernels. This imple-
mentation introduces the following optimizations:

1. Block Size Tuning: The block sizes for dimensions M , N , and K are autotuned, with op-
tions chosen from {128, 256}. This dynamic tuning optimizes performance for the specific
hardware environment.

2. Group Scaling Technique: The output of linear layer should be BF16 or FP8 per-group
quantized tensor. If it should be per-group quantized, to implement it efficiently in Triton,
we reshape the output (BLOCK M, BLOCK N) to (BLOCK M, BLOCK N // G, G), where
G is the group size. We then calculate the maximum value along the last dimension to get
the scaling factor.

G.3 TRITON-BASED FP8 KERNELS FOR NON-LINEAR LAYERS

1. Transposed FP8 Output: Besides generating the quantized FP8 output, these layers also
produce a transposed FP8 output. This is critical for backward computations, where
column-major inputs are required to calculate weight gradients.

2. Block Size Tuning: Block sizes for dimensions M and N are autotuned, with options
chosen from {32, 64}.

G.4 OPTIMIZER STATES

We implement a fused kernel for optimizer states update in CUDA. Since optimizer states use 1×128
quantization group size, every CUDA block calculate the result of a quantization group and contains
128 threads, each thread corresponds to one element. We uses warp shuffle functions for reduction
to get the maximum absolute value and minimum absolute value within a quantization group to
perform dynamic range expansion. We

Direct computation of Xk
min can result in underflow and numerical instability since its magnitude

is usually about 10−12 and k > 3. To mitigate this issue, we introduce an additional FP32 value
CX , defined as CX =

√
Xmin ·Xmax, to ensure numerical stability. By normalizing X with CX , the

values Xmin
CX

and Xmax
CX

are computed, which are reciprocals of each other and closer to 1 compared
to the original Xk

min. This normalization enhances numerical robustness and reduces the risk of
instability.
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G.5 OTHERS

1. Backward Gradient Handling: Backward gradients are computed in BF16 precision and
are not quantized. This ensures that the gradient computations remain stable and accurate,
avoiding numerical issues that can arise with quantization. Therefore for the backward
kernels, the activation stored from forward is in FP8, while the input gradient and the
output gradient are both in BF16 precision.

2. Gradient Accumulation Optimization: During the first gradient accumulation step, the scal-
ing factors of weight matrices are stored. This avoids the need to recompute scaling factors
in subsequent steps, reducing computational overhead. The FP8 weights are not stored to
prevent additional memory usage, which is critical for large-scale models.

H GROUP SIZE ANALYSIS

For activation, we calculate the quantization error of the output of last layer in forward pass, and the
gradient before the first layer in backward pass, comparing with BF16. Based on Table below, we
find that group size = 16 achieves a good balance for memory efficiency and quantization error.

Only Quantize Linear Also Quantize Activation
MSE 1 × 128 Group Per Tensor 4 8 16 32 64

Memory Overhead - - 50% 25% 12.5% 6.5% 3.2%
Forward 372 438 464 480 492 512 520

Backward 285 286 319 334 363 361 371

Table 10: Quantization overhead, forward, and backward MSE for different configurations and
group sizes.

We also find that applying per-group quantization to linear layers is harmful for speed, while not
improving the accuracy by too much. Even with system optimizations, this finer-grained method
reduces the speed of linear layers by about 40% (when group size = 128, speed is reduced from
1300 TFlops to about 900 TFlops), greatly reducing the benefit of FP8. On the other hand, the
accuracy gain is only marginal. Therefore we do apply per-tensor quantization for linear layers.

I EFFICIENCY BREAKDOWN FOR OPTIMIZER AND ACTIVATION

We break down the improvement of each component and present the result in this table. Quantizing
the optimizer states to FP8 is helpful in reducing the memory footprint, and can potentially increase
the batch size to fully utilize the GPU. Quantizing the activation to FP8 can accelerate the training,
and this number can be further improved by increasing the maximum batch size.
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Table 11: Llama-2-7B Training Memory and Throughput Analysis

Configuration Optimizer Activation Peak Max BS Throughput Speedup
Llama-2-7B on 2 GPU
BF16 26.2 GB 25.8 GB OOM 1 6130 tokens/s 1.00x
FP8 Optimizer 6.4 GB 25.8 GB 61.9 GB 2 7258 tokens/s 1.18x
FP8 Optimizer + FP8 Activation 6.4 GB 16.9 GB 35.6 GB 4 11351 tokens/s 1.85x

Llama-2-7B on 4 GPU
BF16 13.1 GB 25.8 GB 55.1 GB 2 7730 tokens/s 1.00x
FP8 Optimizer 3.2 GB 16.9 GB 44.7 GB 4 8384 tokens/s 1.08x
FP8 Optimizer + FP8 3.2 GB 16.9 GB 35.6 GB 4 11257 tokens/s 1.45x

Llama-2-7B on 8 GPU
BF16 6.5 GB 25.8 GB 41.2 GB 4 8238 tokens/s 1.00x
FP8 Optimizer 1.6 GB 16.9 GB 36.1 GB 4 8444 tokens/s 1.02x
FP8 Optimizer + FP8 Activation 1.6 GB 16.9 GB 27.0 GB 8 11241 tokens/s 1.36x

J OVERHEAD INTRODUCED BY GROUP SCALING

We show that the max reduction on each 1×G “can be seamlessly fused with the previous operation,
adding minimal overhead”. Take RMSNorm as an example, the speed of the RMSNorm kernel only
increases by less than 5% when quantization is fused with it. Therefore, this adds only minimal
overhead to the kernel.

Table 12: Performance Comparison: With and Without Quantization

Matrix Size With Quantize Without Quantize
(4096, 1024) 10.1 ms 8.7 ms
(4096, 2048) 29.6 ms 28.7 ms
(4096, 4096) 55.6 ms 53.2 ms
(4096, 8192) 122.6 ms 117.5 ms

K UNDERSTAND HOW EACH COMPONENT INFLUENCES THE MODEL
PERFORMANCE

We separately quantize the optimizer and activations to better understand how each component influ-
ences the model performance. We find that quantizing activation incurs almost no degradation due to
our well-designed quantization flow, and the main degradation comes from optimizer quantization.
We choose to quantize both to maximize memory saving.

Train PPL COPA ARC (Easy) SciQ HellaSwag Average
BF16 2.995 60.0 45.6 67.3 33.7 51.6
FP8 O + A 3.008 61.0 44.2 67.6 33.7 51.5
FP8 O 2.998 (+0.003) 60.0 (+0.0) 44.5 66.0 34.1 51.1
FP8 A 2.999 (+0.004) 63.0 (+3.0) 44.0 68.4 34.1 52.3

Table 13: Performance comparison across different metrics and configurations.

L MORE RELATED WORKS

Due to page limit, some related works are presented in Appendix.
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Table 14: Compared with DeepSeek-V3

Non-Linear Attention Reduction Ratio
RMSNorm Act Func RoPE FlashAttn Linear Total Ideal Achieved

Llama-style
BF16 4U 8U 2U 3U 5.66U 22.66U 1.00× 1.00×
TE 2U 8U 2U 3U 3.33U 18.33U 1.23× 1.20×

DeepSeek-V3 2U 4U 2U 3U 3.08U 14.08U 1.61× -
COAT 1U 4U 2U 3U 3.33U 13.33U 1.69× 1.65×

Activation Quantization Recent research has focused on reducing memory footprint Cai et al.
(2020) during neural network training through activation quantization. ActNN (Chen et al., 2021)
introduced a 2-bit activation compressed training framework using random quantization, achieving
12x reduction in activation memory footprint1. GACT (Liu et al., 2022a) extended this concept
to support various machine learning tasks and architectures, providing up to 8.1x reduction in ac-
tivation memory for CNNs, transformers, and GNNs. However, these methods mostly focus on
convolutional networks and are not applicable to LLMs. AQ-SGD (Wang et al., 2022) proposed
compressing activation changes rather than direct values for pipeline-parallel training to reduce the
communication overhead in the pipeline-parallel setting. Few-Bit Backward(Novikov et al., 2023)
quantizes the non-linear activation functions using optimal piecewise-constant approximations to
reduce the memory footprint while maintaining convergence. Jetfire (Xi et al., 2024) proposes INT8
data flow to quantize the activation of both linear and non-linear layers to reduce memory footprint
and is applicable to language model pretraining.

Bit-Width Under-Utilization Balance Quantization Zhou et al. (2017) recursively partitions the
parameters by percentiles to reduce quantization error. DDSQ Wang & Kang (2023) dynamically
changes the quantization parameters according to different gradient distributions. N2UQ Liu et al.
(2022b) improves the quantization precision via learning input thresholds and nonuniform map-
ping. These approaches are aware of the dynamic range problem in quantization and propose more
adaptive, distribution-aware techniques that can preserve the nuanced information contained in full
precision. They share a fundamental goal of expanding the effective dynamic range of low-precision
neural network representations. These methods adopt a learnable non-uniform quantization lookup
table, while our work relies on the natural FP8 data format.
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