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Abstract

Recent advancements in tool-augmented large001
language models have enabled them to interact002
with external tools, enhancing their ability to003
perform complex user tasks. However, existing004
approaches overlook the role of personalisa-005
tion in guiding tool use. This work investi-006
gates how user preferences can be effectively007
integrated into goal-oriented dialogue agents.008
Through extensive analysis, we identify key009
weaknesses in the ability of LLMs to person-010
alise tool use. To this end, we introduce TAPS,011
a novel solution that enhances personalised tool012
use by leveraging a structured tagging tool and013
an uncertainty-based tool detector. TAPS sig-014
nificantly improves the ability of LLMs to in-015
corporate user preferences, achieving the new016
state-of-the-art for open source models on the017
NLSI task1.018

1 Introduction019

Successfully completing complex user tasks020

through conversation remains a fundamental chal-021

lenge for goal-oriented dialogue agents. Consider022

a user interacting with a task assistant to book a023

last-minute flight. To effectively assist the user, the024

system must (i) retrieve real-time flight availability,025

(ii) find the flight that fits user constraints, includ-026

ing airline, layover, and time preferences, (iii) and027

execute the booking seamlessly, possibly across028

multiple platforms. Despite their success in many029

areas, Large Language Models (LLMs) are still030

unable to fulfil these requirements on their own,031

and there have been many attempts to address these032

challenges throughout the years (Goel et al. 2018;033

Muise et al. 2019; Agarwal et al. 2022, inter alia).034

Recently, a growing number of studies have035

emerged on tool-augmented language models036

(TALMs), allowing LLMs to access real-world037

APIs to perform a wide range of tasks (Parisi et al.,038

2022; Schick et al., 2023). The introduction of tool039

1The code is available at anonymous.4open.science/r/taps.

use has enabled the development of autonomous 040

goal-oriented agents capable of interacting with 041

real-world environments and accessing external 042

data to then seamlessly plan and execute complex 043

user tasks (Mialon et al., 2023; Qin et al., 2023; 044

Liu et al., 2024a). Although there have been efforts 045

to incorporate tool use into conversational agents, 046

mimicking real-world user-agent interactions (Farn 047

and Shin, 2023; Li et al., 2023; Lu et al., 2024), 048

most of the research in the area neglects conversa- 049

tional history and user preferences. Recognising 050

these can enhance the user experience by tailoring 051

the responses to individual users and improving 052

the relevance and efficiency of task execution, es- 053

pecially in complex and dynamic environments. 054

Moghe et al. (2024) attempt to bridge this gap by 055

introducing the Natural Language Standing Instruc- 056

tions dataset (NLSI). To the best of our knowledge, 057

it is the first work that addresses the problem of 058

personalisation in TALMs, enabling more coherent 059

and context-aware tool use through standing in- 060

structions, phrases that prescribe model behaviour 061

based on the specific scenario. While the work pro- 062

vides a strong basis for further research on tool use 063

personalisation, it focuses on dataset construction 064

and provides only simple baselines. 065

In this work, we ask how we can effectively lever- 066

age user preferences to personalise and enhance 067

user-agent interactions. We conduct an extensive 068

behavioural analysis of commonly used LLMs on 069

the NLSI dataset and demonstrate their limited abil- 070

ity to accurately infer tool calls in the presence of 071

user preferences, leading to semantic errors, miss- 072

ing arguments, and hallucinations. We hypothesise 073

that introducing a high-quality intermediate repre- 074

sentation between natural language and code can 075

significantly enhance model performance and min- 076

imise said errors. To this end, we propose TAPS 077

– Tool-Augmented Personalisation via Structured 078

Tagging, the first solution that leverages a struc- 079

tured tagging tool for data augmentation as well as 080
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Standing Instructions (user 
preferences)
●If I am looking for flights I 

prefer to fly American Airlines
●If I ask for restaurants, my 

default location is San Leandro
●If restaurant price range is 

cheap then look for Persian 
cuisine

User query
I’m hungry, find something not 
too fancy please

APIs
GetMovies(...)
GetRestaurants(...)
GetFlights(...)

Interpretation
GetRestaurants(
  city="San Leandro",    
  cuisine="Persian", 
  price_range=" cheap"
)

● If I ask for restaurants, my 
default location is San Leandro

● If restaurant price range is 
cheap then look for Persian 
cuisine

Selection

LLM

Figure 1: Example of the NLSI task. Given a user
query and user-specific list of preferences, and API
documentation, the model has to parse the input into
structured output. The model has to (i) select, which
preferences are relevant for the current query and (ii)
interpret the utterance into one or several API calls.
The diagram is a replica of Figure 1 from Moghe et al.
(2024).

an internal tool detection mechanism for person-081

alised tool-use in a dialogue setting.082

Our contributions are: (i) we analyse LLMs’083

performance on the personalised tool-use task and084

identify their current weaknesses; (ii) we introduce085

TAPS, a tuning-free approach that uses a struc-086

tured tagging tool and an uncertainty-based tool087

detector to facilitate integration of user preferences088

into tool-augmented goal-oriented dialogue agents;089

(iii) we demonstrate that our method improves the090

effectiveness of LLMs on the task, achieving state-091

of-the-art results for open-source models on the092

interpretation subtask of NLSI (Moghe et al., 2024)093

with an increase of +16.5% in exact match (EM)094

and +16.9% in F1. Our findings suggest TAPS’s095

potential for generalisation to other goal-oriented096

tasks, where reductions in errors such as hallucina-097

tions and missing arguments could improve system098

reliability and user experience. With this work, we099

hope to inspire future research on tool-use person-100

alisation.101

2 Task Setup102

2.1 Task Definition103

The NLSI task is defined as follows. Given a104

user query, standing instructions, and API doc-105

umentation, an agent must generate up to three106

API calls to fulfil the user request (see Figure 1).107

The standing instructions constitute the user profile:108

their preferences regarding different aspects, e.g.,109

favourite cuisine, preferred airline, or music taste. 110

The task requires complex reasoning to integrate 111

query details with user preferences to generate ap- 112

propriate API calls. Ultimately, the task consists 113

of two subtasks: selection – identifying the subset 114

of instructions relevant to the current query; inter- 115

pretation – generation of API calls to perform the 116

user task using the user query, user profile, and API 117

documentation. 118

This work focuses on the interpretation subtask, 119

which is crucial for improving LLMs’ ability to 120

handle contextualised tool use – a key challenge 121

in real-world applications. Successful interpreta- 122

tion requires an agent to understand the user intent, 123

reason over the conversation and user profile, and 124

identify the appropriate APIs, necessary arguments, 125

and their values. To ensure a controlled evaluation, 126

we provide LLMs with the correct selected stand- 127

ing instructions, allowing them to access only the 128

relevant user profile information. 129

2.2 Evaluation 130

We follow the evaluation setup, described in 131

Moghe et al. (2024) to assess model performance. 132

We convert each API call into (function name, ar- 133

gument name, value) triplets, or slots, to compute 134

the metrics and report exact match (EM), slot-wise 135

F1, precision, and recall. 136

2.3 Behaviour Analysis 137

Model Source Size Instr.-Tuned Tools

CodeLlama
Rozière et al. (2024)

7B ✗ ✗

CodeLlama-Inst 7B ✓ ✗

Llama-2
Touvron et al. (2023)

7B ✗ ✗

Llama-2-Chat 7B ✓ ✗

Llama-3
Dubey et al. (2024)

8B ✗ ✗

Llama-3-Inst 8B ✓ ✗

Mistral-3
Jiang et al. (2023)

7B ✗ ✓

Mistral-3-Inst 7B ✓ ✓

OLMo-2-7B-Inst OLMo et al. (2024) 7B ✓ ✗

GPT4o OpenAI et al. (2024) unk ✓ ✓

Table 1: LLMs used in our work.

The challenge of NLSI is incorporating several 138

aspects: understanding the current dialogue and 139

user profile, intent recognition, slot-filling, and 140

code generation. Models must not only accurately 141

identify the users’ intended task but also determine 142

which information from both the current user query 143

and the user profile is relevant, how to utilise it ef- 144

fectively, and, finally, generate the appropriate API 145

call. An additional complexity arises from the lim- 146
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Model EM F1 Prec. Rec.

CodeLlama 16.3 55.8 66.9 49.5
CodeLlama-Inst 18.1 57.0 68.3 49.7
Llama-2 10.3 51.0 51.3 52.0
Llama-2-Chat 10.3 45.6 53.2 41.7
Llama-3 10.1 52.2 47.5 69.3
Llama-3-Inst 32.5 70.3 68.5 77.97
Mistral-3 9.7 54.4 50.1 66.7
Mistral-3-Inst 32.7 65.5 67.6 65.5
OLMo-2-7B-Inst 10.8 43.0 44.6 46.4
GPT4o 50.4 84.4 84.4 87.2

Table 2: Comparison of baseline models on the NLSI
test set. EM: exact match. F1: Slot-wise F1 score.
Prec.: precision. Rec.: recall. All scores are in %. Best
performance is in bold, second best is underlined.

ited availability of training data, which significantly147

constrains our ability to use learnable methods to148

solve this task.149

Moghe et al. (2024) evaluate various language150

models on NLSI but focus on a simple ICL set-151

ting. We extend this analysis by investigating the152

behaviour of common LMs, summarised in Ta-153

ble 1. Our experiments prioritise 7B/8B models to154

balance efficiency in low-resource settings and la-155

tency – critical factors for interactive task assistants156

– while recognising that larger models do not univer-157

sally yield proportional performance gains despite158

their significantly higher resource demands. We159

compare our approach to GPT4o2, a significantly160

larger model, to assess capability and computa-161

tional cost trade-offs. We follow Moghe et al.’s162

evaluation setup, using their prompt in 1-shot set-163

ting (see Appendix F) and report results in Table 2.164

2.3.1 Model Comparison165

Closed- vs. Open-Source GPT4o demonstrates166

the highest scores across all evaluated metrics, sug-167

gesting some innate ability to infer API calls from168

user queries given their preferences. All open-169

source models underperform significantly, high-170

lighting the need for better and more effective in-171

terpretation techniques.172

Pre-Training and Post-Training Effects A com-173

parison of instruction-tuned models with their base174

counterparts shows that instruction fine-tuning can175

offer modest performance gains. However, the176

inferior performance of the instruction-optimised177

Llama-2-Chat relative to its base version indicates178

that instruction fine-tuning does not universally re-179

sult in improvements and may sometimes impede180

2gpt-4o-2024-08-06

performance. Notably, we did not optimise the 181

prompts for each model, which could affect model 182

performance and lead to sub-optimal results. The 183

significant drop in the scores of CodeLlama and 184

Llama-2 models compared to others implies that 185

optimising LLMs for tool use enhances their ability 186

to handle more complex interpretation tasks, allow- 187

ing them to better integrate various input sources 188

and produce more accurate function calls. 189

The substantial gap between the EM and F1 190

scores across all models shows that while they 191

can produce plausible API calls, they still struggle 192

to accurately incorporate all necessary data when 193

translating natural language into executable code. 194

Given the lower scores of some models, we focus 195

on Mistral-3-Inst, Llama-3-Inst, and GPT4o 196

in our further experiments. 197

2.3.2 Effect of Example Complexity 198
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Figure 2: Average F1 scores of baseline models per each
reasoning type.

NLSI includes examples of varying difficulty 199

based on the reasoning required to incorporate the 200

standing instructions into the response (see Section 201

3.1. in Moghe et al. (2024) for a detailed descrip- 202

tion of the types). Figure 2 demonstrates that while 203

GPT4o is able to consistently score above 75% F1 204

on all reasoning types, open-source models fall be- 205

hind. Both Mistral-3-Inst and Llama-3-Inst 206

can effectively follow simple, straightforward 207

standing instructions where each argument of the fi- 208

nal API call directly corresponds to one instruction 209

(PLAIN, OVERRIDE), suggesting some capability 210

to solve the task. However, they struggle with more 211

complex cases that require reasoning across mul- 212

tiple domains (MULTIDOMAIN) or incorporating 213

multiple preferences (MULTIPREFERENCE). No- 214

tably, all models achieve lower scores when no 215

instructions are provided (NOINSTRUCTIONS). 216

3



0 10 20 30 40 50 60 70
Percent of examples

combined calls

hallucination

missing
arguments

missing calls

semantic
substitution

split call

value format

wrong value

Mistral-3-Inst Llama-3-Inst GPT4o

Figure 3: Distribution of errors on a sample of baseline
predictions.

2.3.3 Qualitative Analysis217

Similarly to Moghe et al. (2024), we manu-218

ally annotate a sample of 100 predictions for each219

model and perform their qualitative analysis. We220

classify the errors into several categories (see Ta-221

ble 8 in Appendix D) and present the results in222

Figure 3.223

Analysis reveals that open-source models fre-224

quently confuse semantically similar function and225

argument names (particularly Mistral-3-Inst,226

where the error is persistent on 50% of the exam-227

ples). This results in semantic substitution errors,228

where predictions are correct in meaning but de-229

viate from documentation (e.g., using argument230

city from GetRestaurants instead of expected231

location in GetTravel). 35-75% of examples in-232

clude hallucinations, making it the most common233

error type for Llama-3-Inst and GPT4o. Hallu-234

cinations primarily involve the generation of ex-235

tra arguments and the creation of new functions.236

We also observe value formatting issues, ranging237

from extracting only part of the correct entity to238

canonicalisation issues, when models incorrectly239

unify date and time formats, which is quite com-240

mon for GPT4o (over 25%). Often, LLMs ignore241

available information, missing one or several argu-242

ments, which mostly happens on examples requir-243

ing multi-hop reasoning (MULTIDOMAIN, MULTI-244

PREFERENCE). However, this happens in simpler245

cases as well (PLAIN, CONFLICT), where the mod-246

els tend to favour one information source (either247

the user query or instructions), leading to incom-248

plete API calls. Notably, gold predictions share249

the same errors since the dataset is generated semi-250

automatically. We categorise these as dataset er-251

rors.252

Overall, our findings support Moghe et al. 253

(2024). These results underline the task’s inher- 254

ent complexity and demonstrate that current LLMs 255

cannot fully solve it on their own, highlighting the 256

need for specialised methods to overcome this chal- 257

lenge. 258

3 TAPS 259

In this work, we aim to address key limitations 260

of LLMs in personalised tool use, including seman- 261

tic substitution errors, hallucinations, and missing 262

arguments. We propose TAPS, a fully automated 263

approach for task-oriented dialogue that (i) em- 264

ploys a structured tagging tool for data augmenta- 265

tion and (ii) independently determines when tool 266

use is required (iii) without additional training. Fig- 267

ure 4 illustrates the full pipeline of TAPS, which 268

we outline below. 269

Prediction 
Model

output
predict        API calls

Uncertainty

call 
tool

tool 
output 

       API calls

User Query
User Preferences

API documentation

pr
ed

ict

Figure 4: TAPS pipeline. An LLM first generates a
response to the user query, and model unceratinty is
extracted from its logits. Based on the uncertainty score,
the TAPS either accepts the response as is, or calls
a structured tagging tool to augment the data before
passing it back to the LLM and regenerating the answer.

3.1 Structured Tagging Tool 270

We define a data augmentation tool that intro- 271

duces an intermediate representation between the 272

natural language input and the function calls. In- 273

spired by semantic parsing datasets like TOP (Chen 274

et al., 2020), we annotate standing instructions with 275

structured tags that encode action-level and slot- 276

level information (Figure 5). Specifically, we label 277

each instruction with hierarchical tags, where high- 278

level action tags denote the relevant API and nested 279

slot tags capture the arguments and their values. 280

We call this approach structured tagging. Unlike 281

traditional Named Entity Recognition or semantic 282

parsing, our method preserves the natural language 283

aspect of instructions while introducing explicit 284

nested tags, allowing models to leverage both the 285
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If I’m looking for Events, I’d like them to be in New York. 

<a:GET_EVENTS> If I’m looking for Events, I’d like them 
to be in <sl:CITY> New York </sl> .  </a>

Original: 

Augmented: 

Figure 5: Example of structured tagging in TAPS. We
use <a:API> . . . </a> tags to denote relevant APIs
and <sl:ARGUMENT> . . . </sl> to label arguments and
their values.

original instruction phrasing and explicit structural286

information. We hypothesise that adding this inter-287

mediate representation before code generation will288

facilitate more accurate API argument extraction289

and prevent information loss when generating API290

calls.291

Additionally, we explore two versions of the292

tool:293

• TAG-S: Using an external model for augmenta-294

tion. This way, we can utilise specialised models295

for tagging, allowing for better documentation296

following and tagging accuracy. We use GPT4o297

as the tagger (Appendix B).298

• TAG-AND-GENERATE (TAG): We ask the same299

base model to first generate the augmentation for300

the standing instructions and then the final API301

call in the same prompt. This strategy allows302

us to rely on the internal reasoning abilities of303

an LLM, hypothetically making it easier for it304

to effectively use the provided information and305

predict the final answer.306

3.1.1 When to use a tool?307

Deciding when a tool is necessary is a complex308

and challenging task. Recent approaches address309

tool detection through either an external learned310

classifier (Gemmell and Dalton, 2023) or reinforce-311

ment learning (Qiao et al., 2024). However, given312

our low-resource environment, in terms of compu-313

tational constraints and the limited availability of314

training data, we cannot rely on trainable methods.315

Thus, we propose to utilise model uncertainty to316

assess the confidence of an LLM in its prediction317

and determine whether additional help is needed to318

solve the task.319

We explore three methods for uncertainty esti-320

mation commonly used in text generation:321

• Sequence Margin: the difference in the probabil-322

ity scores of the top two most likely predictions;323

• Margin@T: the difference in the probability324

scores of the top T most likely tokens, where 325

T is a hyper-parameter; 326

• Least Confidence: the difference between the 327

probability of the top most confident prediction 328

and 100% confidence. The lower the score, the 329

more certain the model is in its prediction. 330

To choose the most effective method, we use the 331

Pearson correlation coefficient (Freedman et al., 332

2007) between the uncertainty of the model and 333

the downstream task F1 metric on the validation 334

set and report the results in Table 7 (Appendix C). 335

Among the tested approaches, Least Confidence 336

performs best, with a moderate correlation score 337

(circa -0.45 for all models), suggesting that higher 338

uncertainty indicates lower target scores. Other 339

methods fail to provide reliable confidence esti- 340

mates. Both only weakly correlate with F1, mak- 341

ing a comparison of top-2 most likely predictions, 342

either on sequence or token-level, unreliable. Thus, 343

we choose Least Confidence as the main tool-use 344

detector in TAPS. 345

To effectively utilise the uncertainty score, we 346

select a threshold value on the validation set. The 347

threshold is used to determine the confidence level 348

of the model, based on which we choose to employ 349

one of the following strategies: (i) output the model 350

answer, or (ii) use a tool and regenerate the answer. 351

4 Results & Discussion 352

In this section, we first investigate the effective- 353

ness of TAPS’s data augmentation tool on the NLSI 354

task (Section 4.1). Second, we illustrate the impor- 355

tance of tool detection and evaluate TAPS on the 356

test subset in NLSI (Section 4.2). Finally, we per- 357

form behavioural analysis of TAPS’s predictions 358

when both structural tagging and tool detection are 359

utilised to demonstrate the impact of the approach 360

(Section 4.3). 361

4.1 Effects of Structured Tagging 362

To show the effectiveness of structured tagging, 363

we compare the performance of both tagging tools 364

to default models without tools. For this experi- 365

ment, we naïvely apply the tool to all instances 366

in the validation set. Here and in further exper- 367

iments, we use ICL to evaluate the models and 368

optimise model performance by bootstrapping a 369

set of demonstrations with random search (Khattab 370

et al., 2023). Full implementation details are in 371

Appendix A. 372
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Model Aug. EM ↑ F1 ↑ Prec. ↑ Rec. ↑

Llama-3-Inst DEFAULT 42.23 78.19 80.30 78.60
TAG-S 51.79 84.46 86.39 84.86
TAG 41.43 78.31 82.97 77.19

Mistral-3-Inst DEFAULT 30.68 64.21 65.21 65.37
TAG-S 42.63 79.34 82.23 79.04
TAG 33.47 66.66 70.56 64.97

GPT4o DEFAULT 56.18 87.40 90.41 86.83
TAG-S 57.37 87.47 89.63 86.72
TAG 52.99 83.94 86.00 83.24

Table 3: Model performance with and without naïve
tool-use. EM: exact match. F1: Slot-wise F1 score.
Prec.: precision. Rec.: recall. All scores are in %. Best
performance is in bold, second best is underlined.

We report the results in Table 3. We demon-373

strate marginal improvements in GPT4o met-374

rics when TAG-S is used and a consistent in-375

crease in all four metrics for open-source models,376

with Llama-3-Inst and Mistral-3-Inst gain-377

ing 9.5% and 11.9% in EM, respectively. TAG-378

AND-GENERATE does not yield sufficient improve-379

ments on the task. While Mistral-3-Inst gains380

3% EM scores with this strategy, scores for both381

Llama-3-Inst and GPT4o decrease compared to382

the default setting.383

Result Llama-3-Inst Mistral-3-Inst GPT4o

Win ↑ 35.1 45.8 16.3
Same 37.0 37.9 62.2
Loss ↓ 27.9 16.3 21.5

Table 4: Data augmentation effects. All scores represent
% of instances. All calculations are based on F1.

We further investigate the impact of tool use on384

model outputs and calculate the percentage of pre-385

dictions that improve or degrade after structured386

tagging is applied. We present the results in Ta-387

ble 4. Overall, all models benefit from tool use388

in less than 50% of cases, with open-source mod-389

els benefiting the most (45.8% improvements for390

Mistral-3-Inst and 35.1% for Llama-3-Inst).391

However, only 16.3% of predictions improve for392

GPT4o, which is also least affected by tagging, with393

more than 62% of predictions remaining the same394

before and after the tool is applied, compared to395

around 37% for both open-source models. Notably,396

in 16-27% of cases, LLMs score lower when hav-397

ing the tags.398

Below, we discuss our key findings regarding399

structural tagging effects.400

LLMs struggle to map natural language to code. 401

The inferior performance of all models in the de- 402

fault setting compared to TAG-S suggests that 403

LLMs still need additional tools to successfully 404

generate code from natural language when complex 405

reasoning is required. Strong results of TAG-S sup- 406

port our hypothesis that introducing a high-quality 407

intermediate representation between natural lan- 408

guage and code can significantly enhance model 409

performance. Notably, tagging is less effective for 410

GPT4o, possibly because the same model handles 411

both tagging and the main task, keeping its reason- 412

ing and knowledge consistent, in contrast to other 413

models that benefit from a more powerful tagging 414

model. We believe this can be overcome by using 415

a more effective model for tagging, trained specifi- 416

cally for the task. We will explore this in future. 417

Internal reasoning does not boost the interpre- 418

tational abilities of LLMs. Our results demon- 419

strate that explicitly prompting the models to gen- 420

erate structured tags before producing the function 421

calls can improve the scores for some models but 422

is not uniformly effective. The observed decrease 423

in recall suggests that this approach may result in 424

some information loss. While LLMs generate more 425

accurate code, they tend to omit more arguments, 426

showing that solving the task end-to-end is diffi- 427

cult. An additional explanation for such behaviour 428

is the demonstration optimisation strategy we use. 429

Existing ICL optimisation approaches do not sup- 430

port optimisation for multiple outputs, leading to 431

suboptimal model performance. We leave this for 432

future work. 433

Naïve tool use fails to yield consistent improve- 434

ments. We show that naïvely leveraging the tool 435

is inefficient, both in compute and target metrics 436

and sometimes even counterproductive. This high- 437

lights the importance of tool detection to determine 438

if a tool is required on the instance level. 439

4.2 Tool Detection Effects 440

We evaluate TAPS on the NLSI test set and 441

report the results in Table 5. We compare the 442

scores with lower-boundary baselines, default mod- 443

els without tools and naïve tool use, and upper- 444

boundary oracle models optimised for tool detec- 445

tion. The oracle prediction is compiled by retro- 446

spectively selecting only the examples that actively 447

benefit from tool use and leaving other predictions 448

unchanged. 449
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Model Config EM ↑ F1 ↑ Prec. ↑ Rec. ↑

Llama-3-Inst DEFAULT 41.76 78.26 82.96 76.80
NAIVE TAG-S 51.23 84.51 87.23 83.86
TAPS-ORACLE 59.85 89.65 92.82 88.10
TAPS 53.04 85.64 88.67 84.56

Mistral-3-Inst DEFAULT 35.74 69.11 70.64 69.83
NAIVE TAG-S 42.35 78.55 82.63 77.24
TAPS-ORACLE 49.85 83.19 86.19 82.36
TAPS 44.17 79.03 82.66 78.04

GPT4o DEFAULT 56.32 86.99 89.25 86.91
NAIVE TAG-S 55.54 86.49 88.78 85.65
TAPS-ORACLE 65.88 91.46 93.57 90.49
TAPS 58.63 87.86 90.03 87.21

Table 5: Model performance on test data. EM: exact
match. F1: Slot-wise F1 score. Prec.: precision. Rec.:
recall. All scores are in %. Best performance is in bold,
second best is underlined.

Overall, we find that for open-source models,450

both naïve tool use and TAPS are superior to base451

models without tools by a margin with EM and F1452

gains of up to 10%. Using a tool detector signifi-453

cantly improves target metrics compared to naïve454

tool use, with TAPS and TAPS-Oracle outperform-455

ing Naïve Tag-S by 2/8% EM, respectively. Al-456

though the results for GPT4o are less consistent,457

they illustrate the same idea. While Naïve Tag-458

S leads to model score degradation, leveraging a459

tool detector improves model effectiveness by 2/9%460

EM. We highlight our key findings below.461

Using a tool detector can maximise tool use effec-462

tiveness. We show that TAPS and TAPS-Oracle463

outperform all baseline models, demonstrating that464

selectively using tools is much more effective than465

relying on them at all times. Moreover, our ex-466

periments show that tool detection allows us to467

minimise both time and compute spent on the task468

by applying the tool 20% fewer times for open-469

source models and over 55% fewer times for GPT4o470

when using uncertainty, and up to 80% in the oracle471

case. This is particularly valuable, as achieving an472

optimal balance between latency and model capa-473

bilities is crucial for task assistants interacting with474

users in real time.475

Using uncertainty for tool detection is possible476

but suboptimal While we demonstrate that util-477

ising uncertainty for tool detection can be benefi-478

cial, we note the suboptimal performance of TAPS479

compared to the oracle model. TAPS-Oracle is480

consistently superior to TAPS for all models, with481

performance gains of 5.7-7.2% w.r.t. EM scores.482

The same trend is observed in terms of resource ef-483

ficiency. This indicates that uncertainty may not be484
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Figure 6: ∆ F1 scores of TAPS models compared to
baselines per each reasoning type.
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Figure 7: Changes in the distribution of errors in TAPS
compared to baseline models. The scores represent the
percentage of examples that improved or degraded with
TAPS.

the most effective approach to determine whether 485

calling a tool would yield higher scores, and alter- 486

native methods may be explored in future. 487

4.3 Prediction analysis 488

Figure 6 demonstrates the difference in F1 scores 489

of baseline models (Section 2.3) and TAPS (for avg. 490

F1 scores refer to Appendix E). We observe consis- 491

tent improvements in scores or on-par performance 492

when using TAPS on all reasoning types. An ex- 493

ternal tool for tagging increases the performance 494

by up to 30% (Llama-3-Inst) on the task, with an 495

average improvement on each reasoning type by 496

3-15% depending on the model. 497

We sample and manually annotate the same 100 498

examples for each model as in Section 2.3.3 and 499

compare the percentage of errors. Figure 7 presents 500

the results of the comparison. The biggest differ- 501

ence is observed on hallucinations (19-49% less 502

errors) and semantic substitution errors (4-34% de- 503

crease), which we specifically targeted with our 504

approach. However, we also notice slight increases 505
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in some error types for some models, which can be506

due to error propagation since we are using GPT4o507

as a tagger model. For example, Llama-3-Inst508

exhibits more value formatting issues when using509

a data augmentation tool, one of the common er-510

rors of GPT4o, according to our baseline evaluation511

(Figure 3). Additionally, we notice an increase in512

missing arguments for Mistral-3-Inst, specifi-513

cally when shared contextual information (e.g. lo-514

cation) is available. We attribute this to our tagging515

approach, which does not allow us to incorporate516

the links between instructions, leading to the ex-517

clusion of some possible annotations. We discuss518

this limitation in more detail in Section 6. Overall,519

we show that using TAPS significantly decreases520

the number of errors for all models, proving it an521

effective solution for tool use personalisation.522

5 Related Work523

Tool-Augmented Language Models Introduc-524

tion of tool-augmented LLMs have enabled general525

agents to perform a variety of diverse tasks (Parisi526

et al., 2022; Patil et al., 2023; Mialon et al., 2023).527

A body of work on tool use leverages the innate528

abilities of LLMs to produce structured data from529

natural language input (Song et al., 2023; Liu et al.,530

2023, 2024b; Zhang et al., 2024). For example,531

Hsieh et al. (2023) show that tool documentation532

alone is sufficient to elicit tool use in LLMs without533

demonstrations. Some use task decomposition (Wu534

et al., 2024) and a backward reasoning pipeline535

(Zhang et al., 2024) to generate appropriate param-536

eter values effectively. Other works incorporate537

tuning-based approaches (Parisi et al., 2022; Schick538

et al., 2023; Patil et al., 2023; Mekala et al., 2024;539

Shen et al., 2024), with Shi et al. (2024) iteratively540

predicting and filtering tool-usage plans, and Qiao541

et al. (2024) leveraging reinforcement learning with542

tool execution feedback for consistent tool invoca-543

tion. Hao et al. (2023) train tool embeddings, while544

Shen et al. (2024) propose a two-stage fine-tuning545

technique with join training and separate refine-546

ment of specialised modules for each subtask in547

tool-use paradigm. Despite their effectiveness, ex-548

isting TALMs still face challenges in personalising549

interactions and efficiently integrating tool use with550

conversational history.551

Personalisation Personalisation is an important552

aspect of any system interacting with users. Many553

works on personalisation for dialogue provide mod-554

els with user profiles, describing their preferences555

and personality traits through natural language 556

statements (Li et al., 2016; Zhang et al., 2018; Ma- 557

jumder et al., 2020) or structured databases (Song 558

et al. 2020; Aliannejadi et al. 2024, among others). 559

Cheng et al. (2024) propose to learn user prefer- 560

ences from dialogue history. Nevertheless, these 561

works focus on creating a user persona for more 562

engaging conversations rather than task completion. 563

Joshi et al. (2017) introduce simple structured user 564

profiles for a limited number of goal-oriented di- 565

alogue tasks and explore rule-based systems and 566

memory networks. To the best of our knowledge, 567

Moghe et al. (2024) is one of the only approaches 568

that attempts to personalise goal-oriented dialogue 569

through explicit and complex user preferences in 570

natural language. However, the work explores only 571

simple ICL approaches for the task. Our work at- 572

tempts to solve the task by leveraging tool use and 573

an internal tool detection mechanism that provides 574

more flexibility and robustness in tailoring tool use 575

according to user preferences. 576

6 Conclusion and Future Work 577

In this work, we explore the limitations of LLMs 578

to perform the personalised tool use task. We find 579

that all LLMs struggle to effectively incorporate 580

user preferences, especially when complex reason- 581

ing is required, suffering from semantic errors, in- 582

formation loss and hallucinations. To combat this, 583

we propose TAPS, a tuning-free solution for person- 584

alised tool use in task assistants. TAPS combines (i) 585

a structural tagging tool that introduces an interme- 586

diate representation between natural language and 587

code and (ii) an internal tool detector to facilitate 588

the incorporation of user preferences for tool use 589

in goal-oriented dialogue. We conduct a thorough 590

analysis of widely used LLMs on the NLSI dataset 591

and demonstrate that our method consistently out- 592

performs pre-trained open-source models of the 593

same size. We show that TAPS enables the models 594

to more effectively reason and infer tool calls from 595

user queries and successfully incorporate informa- 596

tion from personalised user preferences, all while 597

being fully automatic and not requiring additional 598

training. Through ablation studies, we show that 599

each component in TAPS plays an important role 600

in the solution of the task, significantly minimising 601

most error types for tested LLMs. We hope our 602

work will inspire more research on incorporating 603

extended context in tool use in future. 604
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Limitations605

A better structural tagger is required. One of606

the limitations of our solution lies in the tagging ap-607

proach we employ, which has several shortcomings.608

First, as briefly mentioned in Section 4.3, we label609

APIs and arguments on the sentence level only and610

do not consider the whole user profile. This leads611

to the loss of shared contextual information, which612

should be included in all relevant API calls but is613

tagged as belonging to only one API. Second, we614

apply the tool only to the user profile, which might615

lead to some information loss, as we do not explic-616

itly label the relevant information from user queries,617

prompting the model to prioritise user profiles over618

queries. Lastly, in our experiments, we use ICL619

and prompting, while training a specialised model620

for tagging might yield better and more reliable re-621

sults. A more sophisticated tagging procedure will622

help mitigate those issues, and we hope to continue623

working in this direction in future.624

LLMs are not robust to changes in input. We625

utilise LLMs’ in-context learning abilities to create626

a solution for the task. Such an approach is less627

computationally expensive, as it does not require628

additional training and allows for generalisation to629

unseen domains, functions and tasks. However, we630

do not address a well-known shortcoming of ICL,631

namely its sensitivity to prompt template choice632

and demonstration selection (Lu et al., 2022; Chang633

and Jia, 2023; Sclar et al., 2024). While we ex-634

plore several prompts in our preliminary studies635

and utilise demonstration optimisation, we do not636

conduct extensive experimentation on the topic as637

it is not the primary focus of our work. This means638

that the prompts used to evaluate TAPS may not be639

optimal for the task. While training a specialised640

model for the task would seem like a logical solu-641

tion, the dataset size is insufficient for straightfor-642

ward fine-tuning and requires a different approach.643

For example, LIMA (Zhou et al., 2024) or similar644

methods can be used to fine-tune a model on low645

data cases.646

The need for a better evaluation benchmark.647

In our experiments, we use the NLSI dataset, col-648

lected by Moghe et al. (2024), as the only dataset,649

to our knowledge, that incorporates user prefer-650

ences into tool-augmented conversational agents.651

However, the dataset has several downsides. First,652

the dataset is created automatically from templates653

without additional validation, so it contains some654

errors (see Section 2.3.3) and is overall not as di- 655

verse and natural in terms of both language and do- 656

mains covered. Additionally, evaluation on NLSI is 657

based on comparing code strings rather than the ac- 658

tual tool output. This approach can underestimate 659

model performance, as two different programs can 660

lead to the same output when executed but will get 661

different evaluation scores. Therefore, we acknowl- 662

edge the need for a better evaluation methodology 663

and benchmark for the task in order to more accu- 664

rately assess and compare the capabilities of LLMs 665

with respect to contextualised tool use. 666

Ethical Considerations 667

Privacy is a critical concern in natural language 668

processing, especially when handling personal data 669

(Horvitz and Mulligan, 2015; Yao et al., 2024; Mi- 670

randa et al., 2025). Working with user preferences 671

and extended dialogue history can inadvertently 672

lead to the potential exposure of sensitive personal 673

information. Our approach employs in-context 674

learning, which prevents the model from memoris- 675

ing private information. This strategy aligns with 676

the growing emphasis on privacy in LLMs by en- 677

suring that user data remains protected throughout 678

the conversation. 679

We improve and proofread the text of this paper 680

using Grammarly3 to correct grammatical, spelling, 681

and style errors and paraphrasing sentences. 682
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A Experiment Details1238

A.1 Dataset Statistics1239

We run all of the experiments of NLSI (Moghe1240

et al., 2024), which has a train/validation/test splits1241

of sizes 150/251/2040 instances. We refer you to1242

the original paper for full details on the data.1243

A.2 Baseline Evaluation (Section 2.3)1244

For baseline evaluation, we use the prompt, pro-1245

vided by Moghe et al. (2024) for all our models1246

Prompt F.1. We set the number of few-shot demon-1247

strations to 1 and use default model parameters.1248

A.3 Main Experimental Settings (Section 4)1249

Optimiser settings For all experiments in TAPS1250

we optimise the ICL examples using BootstrapFew-1251

ShotWithRandomSearch algorithm (Khattab et al.,1252

2023). We set the following parameters to the opti-1253

miser:1254

• max_bootstrapped_demos = 1 for GPT4o1255

and Llama-3-Inst in the TAG-AND-1256

GENERATE setting else 51257

• max_labeled_demos = 51258

• num_candidate_programs = 5 (GPT4o) / 101259

(other models)1260

• num_threads = 11261

• metric = "exact_match"1262

Prompt Selection We conduct a simple prompt1263

selection experiment on the validation set of1264

NLSI and choose the following prompts for1265

our main experiments with TAPS. To evalu-1266

ate all LLMs in DEFAULT setting, we use1267

Prompt F.2 for Llama-3-Inst and Prompt F.3 for1268

Mistral-3-Inst and GPT4o. For TAG-S we se-1269

lect Prompt F.4 for Llama-3-Inst and GPT4o and1270

Prompt F.5 for Mistral-3-Inst. All runs in TAG-1271

AND-GENERATE configuration use Prompt F.6 as1272

the prompt.1273

Generation Parameters To select the optimal1274

generation parameters for Mistral-3-Inst and1275

Llama-3-Inst models, we run a simple grid search1276

on the validation set. For all our experiments we1277

use the default set of generation parameters for1278

GPT4o and the following for open-source models1279

(when different parameters for Mistral-3-Inst1280

and Llama-3-Inst are used, we report them with1281

a forward-slash):1282

• num_beams = 5 / 21283

• do_sample = True 1284

• temperature = 0.85 / 0.95 1285

• top_k = 50 1286

• top_p = 1.0 1287

Tool Detection Parameters We use Least Con- 1288

fidence as our main tool detection strategy for all 1289

the experiments. We select the threshold for each 1290

model on the validation set. The following thresh- 1291

old values are used: 0.02 (Llama-3-Inst), 0.01 1292

(Mistral-3-Inst), and 0.04 (GPT4o). 1293

GPU-Usage We use one 40GB A100 GPU, set- 1294

ting the batch size of 1. It takes approximately 1295

1.5-5 hours to run one experiment on the whole val- 1296

idation set and 5-13 hours to make a full pass over 1297

the test set depending on the model and generation 1298

parameters. 1299

B Selection of the Tagger Model 1300

To choose the models for the TAG-S strategy, 1301

we manually annotate the validation subset of data 1302

and compare automatically generated tags with the 1303

golden standard. To assess the tagger models we 1304

treat the task as a standard token classification prob- 1305

lem and calculate macro-averaged F1, precision, 1306

and recall. We use Prompt F.7 for all models to 1307

generate tags for standing instructions and set all 1308

generation parameters to default values. All mod- 1309

els are assessed in one-shot configuration. We do 1310

not optimise the demonstrations, but use a static 1311

example created manually for all instances. The 1312

results of the evaluation are presented in Table 6. 1313

Model F1 ↑ Prec. ↑ Rec. ↑

CodeLlama-Inst 63.98 63.09 65.89
Llama-2-Chat 63.18 62.75 63.97
Llama-3-Inst 71.16 74.61 68.90
Mistral-3-Inst 76.77 77.09 77.17
GPT4o 86.63 86.42 86.97

Table 6: Tagging performance on the manually anno-
tated validation set. F1: macro-average F1 score. Prec.:
precision. Rec.: recall. The best result is in bold, sec-
ond best is underlined. All scores are in %.

Results Our experiments show, that open-source 1314

LMs are still far behind GPT4o when it comes to 1315

their ability to augment input with tags. While 1316

GPT4o scores exceed 86%, the difference be- 1317

tween the best-performing open-source LLM 1318
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(Mistral-3-Inst) and GPT4o reaches 10%. De-1319

spite being the only model trained specifically to1320

handle code and structured data, CodeLlama-Inst1321

yields one of the lowest scores on the task with1322

F1 of 63%. Despite GPT4o outperforming all open-1323

source LLMs in the task, its performance is still1324

does not exceed 90%, leaving room for improve-1325

ment. We acknowledge this but continue to use1326

GPT4o as our main external tagger model for TAG-1327

S.1328

C Uncertainty Estimation1329

Method Statistic

Least Confidence -0.452
Margin@1 0.145
Margin@2 0.317
Margin@3 0.314
Margin@4 0.295
Margin@5 0.301
Margin@6 0.242
Margin@7 0.263
Margin@8 0.256
Margin@9 0.242
Margin@10 0.236
Sequence Margin 0.281

Table 7: Pearson Correlation Coefficient between F1
scores and model uncertainty for Mistral-3-Inst.
Statistics with p < 0.001 are in italics. The value in
bold indicates the best result. Note, that negative corre-
lation on the least confidence strategy is expected, since
the it refers model confidence rather that uncertainty.
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D Error Types Examples 1330

Error Type User Query Standing Instructions Target Prediction

Semantic
Substitution

User: I want to find an apart-
ment in Hayward.

> Request a home with one bed. GetHomes(area="Hayward",
number_of_beds="1")

GetHomes(city="Hayward",
number_of_beds=1)

Missing
Argument

User: I am looking for an
Gynecologist in San Jose.

> Name Anjali Tate, M.D. as my preferred
doctor when requesting a doctor.

GetDoctors(city="San Jose",
doctor_name="Anjali Tate, M.D.",
type="Gynecologist")

GetDoctors(city="San Jose",
doctor_name="Anjali Tate, M.D.")

Hallucination
(new func.)

User: Can you let me know
some attractions to visit?

> If I’m looking to travel, my go-to spot is
Chicago.
> If I’m looking into Travel, I should also
check out Hotels.
> Request Hotels with a two-star rating.

GetTravel(location="CHi-town")
GetHotels(average_rating="2",
location="CHi-town")

GetAttractions(city="Chicago")
GetHotels(rating="2")

Hallucination
(mixed calls)

User: Can you show some at-
tractions to visit?
Agent: Sure. Where should I
search for attractions in?
User: Find me something in
Sydney, NSW please.

> I prefer the Museum category when
requesting Travel.
> Choose a museum if you wish to have a

good experience with children.
> I would like to request Travel for my
preferred category of Park.

GetTravel(location="Sydney, NSW",
category="Museum",
good_for_kids="True")
GetTravel(location="Sydney, NSW",
category="Park")

GetTravel(city="Sydney, NSW",
category="Museum")
GetTravel(city="Sydney, NSW",
category="Park",
good_for_kids=True)

Combined
Calls

User: I’m looking for Music
events.

> If I’m looking for events, I’d like to
check out what’s going on in Portland.
> If I ask for Events, my preferred category
is Blues or basketball .

GetEvents(category="Blues",
city="Portland",
event_type="Music")
GetEvents(category="basketball",
city="Portland",
event_type="Music")

GetEvents(city="Portland",
genre=["Blues", "Basketball"])

Split Call User: I want to find a new
restaurant. What do you sug-
gest to eat in San Francisco?

> Request Restaurants that serve Oriental
cuisine.
> Search for the 8 Immortals Restaurant
when looking for an Oriental restaurant.

GetRestaurants(city="San
Francisco", cuisine="Oriental",
restaurant_name="8 Immortals
Restaurant")

GetRestaurants(city="San
Francisco", cuisine="Oriental")
GetRestaurants(city="San
Francisco", restaurant_name="8
Immortals")

Wrong Value User: Can you help me find
some movies to watch online?

> Request funny Media. GetMedia(genre="funny") GetMedia(genre="Comedy")

Value
Formatting

User: I would like to rent a
car from March 8th in Paris,
France.
Agent: At what time would
you need it? And when is your
return date?
User: I would need it at
12 o’clock in the afternoon till
the 9th of this month .

GetRentalCars(dropoff_date="9th
of this month",
pickup_date="March 8th",
pickup_time="12 o’clock",
...

GetRentalCars(pickup_time="12:00",
pickup_date="2023-03-08",
dropoff_date="2023-03-09",
...

Missing call User: I need to find a General
Practitioner doctor in San Jose.

> Request Access Health as your doctor.
> If I ask for Doctor, my preferred doctor
name is Daisy Manuel-Arguelles, DO .

GetDoctors(city="San Jose",
doctor_name="Access Health",
type="General Practitioner")
GetDoctors(city="San Jose",
doctor_name="Daisy Manuel-
Arguelles, DO", type="General
Practitioner")

GetDoctors(city="San Jose",
type="General Practitioner",
doctor_name="Daisy Manuel-
Arguelles, DO").

Dataset Error User: I’m trying to find things
to do. I’d like something in
New York City. I like Electron-
ica events and I’m looking for a
Concert.
Agent: I found 3 events for you.
One event is Crooked Colours
at Rough Trade NYC.
User: Sure, that works for me.
I’d like to find a room in a hotel
there.

GetEvents(category="Electronica",
city="New York City",
event_name="Crooked Colours",
event_type="Music")

GetEvents(city="New York City",
event_type="Concert",
genre="Electronica")
GetHotels(city="New York City",
location="Rough Trade NYC")

Table 8: Examples of most prominent errors made by Mistral 3. Incorrectly predicted functions, arguments and
values are marked in . Missing arguments and API calls are in blue. Relevant parts of the user query and standing
instructions are highlighted .
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E Additional Results1331
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Figure 8: Average F1 scores of TAPS models per each reasoning type.
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F Prompts 1332

All of the prompts we use follow the same structure: Task Description + API Schema + 1333

Input Description (optionally) + Example(s) . We provide the list of prompts below. 1334

F.1 Baseline prompt 1335

System prompt template: 1336

You are designing a parser that takes in a user utterance and some standing instructions and outputs a set of API calls.
Every API call consists of "GetX" where X is domain name and uses slot names listed below as arguments. We list the domain name followed by the list of
possible slot names. Some slot names can be categorical or boolean
The values for the arguments can come from the user’s dialogue or standing instructions. If the user requests a slot name and no value is found, use "?". If the
user requests dontcare, use value as "any".
Standing instructions allow you to add preferences or requirements that you’d like to consider when generating the parser.
If standing instructions are applicable across multiple domains, place an API call per situation per domain.
If some of the applicable standing instructions have instructions of similar type, place multiple API calls respecting the standing instructions.
If some slots are applicable across several domains, generate the respective slot names for the respective domains.

1337

Schema:
Banks: recipient_account_name, amount, recipient_account_type
Buses: origin, departure_date, fare_type, transfers, price, group_size, destination, destination_station_name, origin_station_name, departure_time
Events: event_name, city, category, event_location, number_of_tickets, time, address_of_location, date, venue_address, event_type
Flights: origin, inbound_arrival_time, is_redeye, outbound_departure_time, outbound_arrival_time, inbound_departure_time, return_date, airlines, seat-
ing_class, refundable, number_stops, destination_airport, departure_date, fare, destination, passengers, origin_airport
Homes: pets_allowed, visit_date, address, property_name, rent, number_of_baths, area, number_of_beds, furnished, phone_number
Hotels: has_wifi, average_rating, check_out_date, price, pets_welcome, number_of_days, location, check_in_date, phone_number, number_of_rooms,
street_address, hotel_name
HouseStays: rating, phone_number, has_laundry_service, check_out_date, total_price, check_in_date, address, number_of_adults, where_to
Media: title, directed_by, subtitles, genre
Movies: theater_name, movie_name, price, show_date, location, show_time, number_of_tickets, genre, show_type, street_address
Music: song_name, year, album, artist, genre, playback_device
RentalCars: dropoff_date, pickup_time, pickup_city, pickup_date, total_price, car_type, car_name, pickup_location
Restaurants: price_range, restaurant_name, city, has_live_music, serves_alcohol, time, date, phone_number, cuisine, street_address, party_size
Salons: is_unisex, average_rating, city, appointment_date, appointment_time, stylist_name, phone_number, street_address
Dentists: dentist_name, phone_number, offers_cosmetic_services, city, appointment_date, appointment_time, address
Doctors: doctor_name, city, average_rating, appointment_date, appointment_time, type, phone_number, street_address
Travel: good_for_kids, category, attraction_name, location, phone_number, free_entry
Weather: city, temperature, date, precipitation, humidity, wind

Further, following slots have categorical values:
recipient_account_type: checking, savings
fare_type: Economy, Economy extra, Flexible
(Travel) category: Place of Worship, Theme Park, Museum, Historical Landmark, Park, Tourist Attraction, Sports Venue, Shopping Area, Performing Arts
Venue, Nature Preserve
event_type: Music, Sports
seating_class: Economy, Premium Economy, Business, First Class
refundable: True, False
airlines: United Airlines, American Airlines, Delta Airlines, Southwest Airlines, Alaska Airlines, British Airways, Air Canada, Air France
show_type: regular, 3d, imax
playback_device: TV, kitchen speaker, bedroom speaker
(Doctors) type: Gynecologist, ENT Specialist, Ophthalmologist, General Practitioner, Dermatologist
car_type: Compact, Standard, Full-size
price_range: inexpensive, moderate, expensive, very expensive

Further, following slots are boolean:
has_wifi, pets_allowed, subtitles, offers_cosmetic_services, has_laundry_service, is_unisex, good_for_kids, has_live_music, pets_welcome, serves_alcohol,
is_redeye, furnished, free_entry

1338

Example template: 1339

Dialogue:
{{ user_utterance }}

Applicable Standing Instructions:
{{ applicable_instructions | join("\n> ") }}

API Calls: 1340

Target template: 1341

{{ target_api_calls | join("\n") }}
1342

F.2 Default prompt V1 1343

System prompt template: 1344
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You are designing a parser that takes in a user utterance and some standing instructions and outputs a set of API calls.
Every API call consists of "GetX" where X is domain name and uses slot names listed below as arguments. We list the domain name followed by the list of
possible slot names. Some slot names can be categorical or boolean
The values for the arguments can come from the user’s dialogue or standing instructions. If the user requests a slot name and no value is found, use "?". If the
user requests dontcare, use value as "any".
Standing instructions allow you to add preferences or requirements that you’d like to consider when generating the parser.
If standing instructions are applicable across multiple domains, place an API call per situation per domain.
If some of the applicable standing instructions have instructions of similar type, place multiple API calls respecting the standing instructions.
If some slots are applicable across several domains, generate the respective slot names for the respective domains.

1345
Schema:
Banks: recipient_account_name, amount, recipient_account_type
Buses: origin, departure_date, fare_type, transfers, price, group_size, destination, destination_station_name, origin_station_name, departure_time
Events: event_name, city, category, event_location, number_of_tickets, time, address_of_location, date, venue_address, event_type
Flights: origin, inbound_arrival_time, is_redeye, outbound_departure_time, outbound_arrival_time, inbound_departure_time, return_date, airlines, seat-
ing_class, refundable, number_stops, destination_airport, departure_date, fare, destination, passengers, origin_airport
Homes: pets_allowed, visit_date, address, property_name, rent, number_of_baths, area, number_of_beds, furnished, phone_number
Hotels: has_wifi, average_rating, check_out_date, price, pets_welcome, number_of_days, location, check_in_date, phone_number, number_of_rooms,
street_address, hotel_name
HouseStays: rating, phone_number, has_laundry_service, check_out_date, total_price, check_in_date, address, number_of_adults, where_to
Media: title, directed_by, subtitles, genre
Movies: theater_name, movie_name, price, show_date, location, show_time, number_of_tickets, genre, show_type, street_address
Music: song_name, year, album, artist, genre, playback_device
RentalCars: dropoff_date, pickup_time, pickup_city, pickup_date, total_price, car_type, car_name, pickup_location
Restaurants: price_range, restaurant_name, city, has_live_music, serves_alcohol, time, date, phone_number, cuisine, street_address, party_size
Salons: is_unisex, average_rating, city, appointment_date, appointment_time, stylist_name, phone_number, street_address
Dentists: dentist_name, phone_number, offers_cosmetic_services, city, appointment_date, appointment_time, address
Doctors: doctor_name, city, average_rating, appointment_date, appointment_time, type, phone_number, street_address
Travel: good_for_kids, category, attraction_name, location, phone_number, free_entry
Weather: city, temperature, date, precipitation, humidity, wind

Further, following slots have categorical values:
recipient_account_type: checking, savings
fare_type: Economy, Economy extra, Flexible
(Travel) category: Place of Worship, Theme Park, Museum, Historical Landmark, Park, Tourist Attraction, Sports Venue, Shopping Area, Performing Arts
Venue, Nature Preserve
event_type: Music, Sports
seating_class: Economy, Premium Economy, Business, First Class
refundable: True, False
airlines: United Airlines, American Airlines, Delta Airlines, Southwest Airlines, Alaska Airlines, British Airways, Air Canada, Air France
show_type: regular, 3d, imax
playback_device: TV, kitchen speaker, bedroom speaker
(Doctors) type: Gynecologist, ENT Specialist, Ophthalmologist, General Practitioner, Dermatologist
car_type: Compact, Standard, Full-size
price_range: inexpensive, moderate, expensive, very expensive

Further, following slots are boolean:
has_wifi, pets_allowed, subtitles, offers_cosmetic_services, has_laundry_service, is_unisex, good_for_kids, has_live_music, pets_welcome, serves_alcohol,
is_redeye, furnished, free_entry

1346
—

{% if model_name == "llama" %}
Follow the following format.
{% else %}
The examples are formatted as follows.
{% endif %}

Dialogue:
<user_utterance>

Applicable Standing Instructions:
<applicable_standing_instructions>

API Calls:
API calls to solve the user task

—

{% if model_name == "llama" %}
You are given several independent examples of the task:
{% endif %}

1347

Example template:1348

{% if split == "test" and model_name == "llama" %}
Given the examples above, output only the API calls for the following example with no additional text:
{% endif %}

Dialogue:
{{ user_utterance }}

Applicable Standing Instructions:
{{ applicable_instructions | join("\n> ") }}

1349
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API Calls: 1350

Target template: 1351

{{ target_api_calls | join("\n") }}
1352

F.3 Default prompt V2 1353

System prompt template: 1354

You are designing a parser that takes in a user utterance (field ‘user_utterance‘) and a user profile with standing instructions (field ‘user_profile‘) and outputs a
set of API calls as an answer.
Every API call consist of "GetX" where X is domain name and uses slot names listed below as arguments. We list the domain name followed by the list of
possible slot names in the ‘api_schema‘ field. Some slot names can be categorical or boolean.
The values for the arguments can come from the user’s dialogue or standing instructions. If the user asks about a slot but no value is found, set its value to "?".
If the user explicitly says they do not care about a particular slot, set its value to "any".
Standing instructions allow you to add preferences or requirements that you’d like to consider when generating the parser.
If standing instructions are applicable across multiple domains, place an API call per situation per domain.
If some of the applicable standing instructions have instructions of similar type, place multiple API calls respecting the standing instructions.
If some slots are applicable across several domains, generate the respective slot names for the respective domains.

1355

The schema template, input description and example formatting are the same as in Section F.3 1356

F.4 SIMPLE Tag Prompt V1 1357

System prompt template: 1358

You are designing a parser that takes in a user query and some user preferences and outputs a set of API calls. Execution of the API calls helps to answer the
user query.
Every function name in the API call has a structure of "GetX" where X is domain name. Each function uses slot names listed below as arguments. Some slot
names can be categorical or boolean. The values for the arguments can come from the user’s query or user preferences. If the user requests a slot name and no
value is found, use "?". If the user says they don’t care, set slot value to "any".
User preferences allow you to add preferences or requirements that you’d like to consider when generating the parser. If user preferences are applicable
across multiple domains, place an API call per situation per domain. If some of the applicable preferences have instructions of similar type, place
multiple API calls respecting the preferences. If some slots are applicable across several domains, generate the respective slot names for the respective domains.

The user profile would be tagged in the following format:
<a:API_FUNCTION_NAME> text </a> would mean the function that is relevant for the text in brackets
<sl:SLOT_NAME> value </sl> would highlight which function arguments are used in the function and their value.

Output a list of API calls that would answer the user query. There can be several API calls per user query, but not always, so output only the required calls.
Make sure you follow the following output structure: GetX(slot1="value1", slot2="value2"). Use the tags from the user profile, as well as information from
the current dialogue to generate the calls. In cases, where seceral API calls are required, generate each one in a new line. Use only the functions from the
documentation above, and make sure to check that only the slots for the chosen function are used in the API call. Generate only the API calls.

1359
The list of the available function names is presented below, followed by possible slot names.
Some of the possible API calls include functions:
GetBanks: handling all the banking information (recipient_account_name, amount, recipient_account_type)
GetBuses: finding and booking bus tickets and routes (origin, departure_date, fare_type, transfers, price, group_size, destination, departure_time)
GetEvents: finding and booking events (event_name, city, category, number_of_tickets, time, date, venue_address, event_type)
GetFlights: finding and booking flights (origin, inbound_arrival_time, is_redeye, outbound_departure_time, outbound_arrival_time, inbound_departure_time,
return_date, airlines, seating_class, refundable, number_stops, departure_date, fare, destination, passengers)
GetHomes: looking for property (pets_allowed, visit_date, address, property_name, rent, number_of_baths, area, number_of_beds, furnished, phone_number)
GetHotels: booking hotels (has_wifi, average_rating, check_out_date, price, pets_welcome, number_of_days, location, check_in_date, phone_number,
number_of_rooms, street_address, hotel_name)
GetHouseStays: booking temporary accommodation (rating, phone_number, has_laundry_service, check_out_date, total_price, check_in_date, address,
number_of_adults, where_to)
GetMedia: searching for online media (title, directed_by, subtitles, genre)
GetMovies: searching for cinema tickets (theater_name, movie_name, price, show_date, location, show_time, number_of_tickets, genre, show_type,
street_address)
GetMusic: finding songs (song_name, year, album, artist, genre, playback_device)
GetRentalCars: booking rental cars (dropoff_date, pickup_time, pickup_city, pickup_date, total_price, car_type, car_name, pickup_location)
GetRestaurants: finding and booking restaurants (price_range, restaurant_name, city, has_live_music, serves_alcohol, time, date, phone_number, cuisine,
street_address, party_size)
GetSalons: finding hair salons (is_unisex, average_rating, city, appointment_date, appointment_time, stylist_name, phone_number, street_address)
GetDentists: finding dentists (dentist_name, phone_number, offers_cosmetic_services, city, appointment_date, appointment_time, address)
GetDoctors: finding doctors (doctor_name, city, average_rating, appointment_date, appointment_time, type, phone_number, street_address)
GetTravel: finding attractions (good_for_kids, category, attraction_name, location, phone_number, free_entry)
GetWeather: getting weather information (city, temperature, date, precipitation, humidity, wind)

Further, following slots have categorical values:
recipient_account_type: checking, savings
fare_type: Economy, Economy extra, Flexible
(Travel) category: Place of Worship, Theme Park, Museum, Historical Landmark, Park, Tourist Attraction, Sports Venue, Shopping Area, Performing Arts
Venue, Nature Preserve
event_type: Music, Sports
seating_class: Economy, Premium Economy, Business, First Class
refundable: True, False
airlines: United Airlines, American Airlines, Delta Airlines, Southwest Airlines, Alaska Airlines, British Airways, Air Canada, Air France
show_type: regular, 3d, imax
playback_device: TV, kitchen speaker, bedroom speaker
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(Doctors) type: Gynecologist, ENT Specialist, Ophthalmologist, General Practitioner, Dermatologist
car_type: Compact, Standard, Full-size
price_range: inexpensive, moderate, expensive, very expensive

Further, following slots are boolean:
has_wifi, pets_allowed, subtitles, offers_cosmetic_services, has_laundry_service, is_unisex, good_for_kids, has_live_music, pets_welcome, serves_alcohol,
is_redeye, furnished, free_entry

1361

—

{% if model_name == "llama" %}
Follow the following format.
{% else %}
The examples are formatted as follows.
{% endif %}

Dialogue:
<user_utterance>

Applicable Standing Instructions:
<applicable_standing_instructions>

Tagged Standing Instructions:
<tagged applicable standing instructions>

API Calls:
API calls to solve the user task

—

{% if model_name == "llama" %}
You are given several independent examples of the task:
{% endif %}

1362

Example template:1363

{% if split == "test" and model_name == "llama" %}
Given the examples above, output only the API calls for the following example with no additional text:
{% endif %}

Dialogue:
{{ user_utterance }}

Applicable Standing Instructions:
{{ applicable_instructions | join("\n> ") }}

Tagged Applicable Standing Instructions:
{{ tagged_applicable_instructions | join("\n> ") }}

API Calls:1364

Target template:1365

{{ target_api_calls | join("\n") }}
1366

F.5 SIMPLE Tag Prompt V21367

System prompt template:1368

You are a parser that converts user queries and profile preferences into API calls to fulfill the query. Use the provided tags, dialogue, and schema to generate
precise API calls.

**Task Guidelines:**
1. **API Call Structure:**

Format each call as ‘GetX(slot1="value1", slot2="value2", ...)‘, where ‘X‘ is the domain name, and slots match the chosen function.

2. **Using Tags:**
- ‘<a:API_FUNCTION_NAME>‘ marks relevant functions.
- ‘<sl:SLOT_NAME>‘ specifies slot values.
Example: ‘<a:GET_FLIGHTS> Request <sl:AIRLINES> Alaska Airlines</sl></a>‘ becomes ‘airlines="Alaska Airlines"‘.

3. **Slot Values:**
- Use values from the query or tags.
- Assign ‘"?"‘ if a slot is missing and ‘"any"‘ if the user has no preference.

4. **Output Requirements:**
- Include only required API calls.
- Output each call on a new line.

—1369
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**Schema:**
Use valid functions and slots as listed:

#### **Functions and Slots**
Each function corresponds to a specific domain and has associated slots. Use only the listed slots for each function.

- **GetBanks**
- Slots: ‘recipient_account_name‘, ‘amount‘, ‘recipient_account_type‘

- **GetBuses**
- Slots: ‘origin‘, ‘departure_date‘, ‘fare_type‘, ‘transfers‘, ‘price‘, ‘group_size‘, ‘destination‘, ‘departure_time‘

- **GetEvents**
- Slots: ‘event_name‘, ‘city‘, ‘category‘, ‘number_of_tickets‘, ‘time‘, ‘date‘, ‘venue_address‘, ‘event_type‘

- **GetFlights**
- Slots: ‘origin‘, ‘inbound_arrival_time‘, ‘is_redeye‘, ‘outbound_departure_time‘, ‘outbound_arrival_time‘, ‘inbound_departure_time‘, ‘return_date‘,

‘airlines‘, ‘seating_class‘, ‘refundable‘, ‘number_stops‘, ‘departure_date‘, ‘fare‘, ‘destination‘, ‘passengers‘

- **GetHomes**
- Slots: ‘pets_allowed‘, ‘visit_date‘, ‘address‘, ‘property_name‘, ‘rent‘, ‘number_of_baths‘, ‘area‘, ‘number_of_beds‘, ‘furnished‘, ‘phone_number‘

- **GetHotels**
- Slots: ‘has_wifi‘, ‘average_rating‘, ‘check_out_date‘, ‘price‘, ‘pets_welcome‘, ‘number_of_days‘, ‘location‘, ‘check_in_date‘, ‘phone_number‘,

‘number_of_rooms‘, ‘street_address‘, ‘hotel_name‘

- **GetHouseStays**
- Slots: ‘rating‘, ‘phone_number‘, ‘has_laundry_service‘, ‘check_out_date‘, ‘total_price‘, ‘check_in_date‘, ‘address‘, ‘number_of_adults‘, ‘where_to‘

- **GetMedia**
- Slots: ‘title‘, ‘directed_by‘, ‘subtitles‘, ‘genre‘

- **GetMovies**
- Slots: ‘theater_name‘, ‘movie_name‘, ‘price‘, ‘show_date‘, ‘location‘, ‘show_time‘, ‘number_of_tickets‘, ‘genre‘, ‘show_type‘, ‘street_address‘

- **GetMusic**
- Slots: ‘song_name‘, ‘year‘, ‘album‘, ‘artist‘, ‘genre‘, ‘playback_device‘

- **GetRentalCars**
- Slots: ‘dropoff_date‘, ‘pickup_time‘, ‘pickup_city‘, ‘pickup_date‘, ‘total_price‘, ‘car_type‘, ‘car_name‘, ‘pickup_location‘

- **GetRestaurants**
- Slots: ‘price_range‘, ‘restaurant_name‘, ‘city‘, ‘has_live_music‘, ‘serves_alcohol‘, ‘time‘, ‘date‘, ‘phone_number‘, ‘cuisine‘, ‘street_address‘, ‘party_size‘

- **GetSalons**
- Slots: ‘is_unisex‘, ‘average_rating‘, ‘city‘, ‘appointment_date‘, ‘appointment_time‘, ‘stylist_name‘, ‘phone_number‘, ‘street_address‘

- **GetDentists**
- Slots: ‘dentist_name‘, ‘phone_number‘, ‘offers_cosmetic_services‘, ‘city‘, ‘appointment_date‘, ‘appointment_time‘, ‘address‘

- **GetDoctors**
- Slots: ‘doctor_name‘, ‘city‘, ‘average_rating‘, ‘appointment_date‘, ‘appointment_time‘, ‘type‘, ‘phone_number‘, ‘street_address‘

- **GetTravel**
- Slots: ‘good_for_kids‘, ‘category‘, ‘attraction_name‘, ‘location‘, ‘phone_number‘, ‘free_entry‘

- **GetWeather**
- Slots: ‘city‘, ‘temperature‘, ‘date‘, ‘precipitation‘, ‘humidity‘, ‘wind‘

—

### **Slot Value Types**

#### **Categorical Slots**
- ‘recipient_account_type‘: ‘checking‘, ‘savings‘
- ‘fare_type‘: ‘Economy‘, ‘Economy extra‘, ‘Flexible‘
- ‘category‘ (Travel): ‘Place of Worship‘, ‘Theme Park‘, ‘Museum‘, ‘Historical Landmark‘, ‘Park‘, ‘Tourist Attraction‘, ‘Sports Venue‘, ‘Shopping Area‘,
‘Performing Arts Venue‘, ‘Nature Preserve‘
- ‘event_type‘: ‘Music‘, ‘Sports‘
- ‘seating_class‘: ‘Economy‘, ‘Premium Economy‘, ‘Business‘, ‘First Class‘
- ‘refundable‘: ‘True‘, ‘False‘
- ‘airlines‘: ‘United Airlines‘, ‘American Airlines‘, ‘Delta Airlines‘, ‘Southwest Airlines‘, ‘Alaska Airlines‘, ‘British Airways‘, ‘Air Canada‘, ‘Air France‘
- ‘show_type‘: ‘regular‘, ‘3d‘, ‘imax‘
- ‘playback_device‘: ‘TV‘, ‘kitchen speaker‘, ‘bedroom speaker‘
- ‘type‘ (Doctors): ‘Gynecologist‘, ‘ENT Specialist‘, ‘Ophthalmologist‘, ‘General Practitioner‘, ‘Dermatologist‘
- ‘car_type‘: ‘Compact‘, ‘Standard‘, ‘Full-size‘
- ‘price_range‘: ‘inexpensive‘, ‘moderate‘, ‘expensive‘, ‘very expensive‘

#### **Boolean Slots**
- ‘has_wifi‘, ‘pets_allowed‘, ‘subtitles‘, ‘offers_cosmetic_services‘, ‘has_laundry_service‘, ‘is_unisex‘, ‘good_for_kids‘, ‘has_live_music‘, ‘pets_welcome‘,
‘serves_alcohol‘, ‘is_redeye‘, ‘furnished‘, ‘free_entry‘

—

Ensure all outputs strictly adhere to the required format and schema. Generate only API calls.
1370

The input description and example templates are the same as in Section F.4 1371
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F.6 TAG-AND-GENERATE Prompt1372

System prompt template:1373

You are designing a parser that takes in a user utterance and some standing instructions and outputs a set of API calls.
Every API call consist of "GetX" where X is domain name and uses slot names listed below as arguments. We list the domain name followed by the list of
possible slot names. Some slot names can be categorical or boolean
The values for the arguments can come from the user’s dialogue or standing instructions. If the user asks about a slot but no value is found, set its value to "?".
If the user explicitly says they do not care about a particular slot, set its value to "any".
Standing instructions allow you to add preferences or requirements that you’d like to consider when generating the parser.
If standing instructions are applicable across multiple domains, place an API call per situation per domain.
If some of the applicable standing instructions have instructions of similar type, place multiple API calls respecting the standing instructions.
If some slots are applicable across several domains, generate the respective slot names for the respective domains.

Think step by step.
First, identify and label API calls and their slots within applicable standing instructions.
Use action tags such as <a:API_NAME> ... </a>, and nested tags denoting specific attributes, like <sl:SLOT_NAME> ... </sl>.
Ensure that all tags are correctly placed, slot and API names are correct, all original sentence tokens are present and are in the correct order, no additional
tokens are added, and slot values include only necessary information, e.g. the value of the slot.
Use those generated labels, as well as information from the dialogue to create the calls.
After that, output a list of API calls that would answer the user query.

1374

Schema:
Banks: recipient_account_name, amount, recipient_account_type
Buses: origin, departure_date, fare_type, transfers, price, group_size, destination, destination_station_name, origin_station_name, departure_time
Events: event_name, city, category, event_location, number_of_tickets, time, address_of_location, date, venue_address, event_type
Flights: origin, inbound_arrival_time, is_redeye, outbound_departure_time, outbound_arrival_time, inbound_departure_time, return_date, airlines, seat-
ing_class, refundable, number_stops, destination_airport, departure_date, fare, destination, passengers, origin_airport
Homes: pets_allowed, visit_date, address, property_name, rent, number_of_baths, area, number_of_beds, furnished, phone_number
Hotels: has_wifi, average_rating, check_out_date, price, pets_welcome, number_of_days, location, check_in_date, phone_number, number_of_rooms,
street_address, hotel_name
HouseStays: rating, phone_number, has_laundry_service, check_out_date, total_price, check_in_date, address, number_of_adults, where_to
Media: title, directed_by, subtitles, genre
Movies: theater_name, movie_name, price, show_date, location, show_time, number_of_tickets, genre, show_type, street_address
Music: song_name, year, album, artist, genre, playback_device
RentalCars: dropoff_date, pickup_time, pickup_city, pickup_date, total_price, car_type, car_name, pickup_location
Restaurants: price_range, restaurant_name, city, has_live_music, serves_alcohol, time, date, phone_number, cuisine, street_address, party_size
Salons: is_unisex, average_rating, city, appointment_date, appointment_time, stylist_name, phone_number, street_address
Dentists: dentist_name, phone_number, offers_cosmetic_services, city, appointment_date, appointment_time, address
Doctors: doctor_name, city, average_rating, appointment_date, appointment_time, type, phone_number, street_address
Travel: good_for_kids, category, attraction_name, location, phone_number, free_entry
Weather: city, temperature, date, precipitation, humidity, wind

Further, following slots have categorical values:
recipient_account_type: checking, savings
fare_type: Economy, Economy extra, Flexible
(Travel) category: Place of Worship, Theme Park, Museum, Historical Landmark, Park, Tourist Attraction, Sports Venue, Shopping Area, Performing Arts
Venue, Nature Preserve
event_type: Music, Sports
seating_class: Economy, Premium Economy, Business, First Class
refundable: True, False
airlines: United Airlines, American Airlines, Delta Airlines, Southwest Airlines, Alaska Airlines, British Airways, Air Canada, Air France
show_type: regular, 3d, imax
playback_device: TV, kitchen speaker, bedroom speaker
(Doctors) type: Gynecologist, ENT Specialist, Ophthalmologist, General Practitioner, Dermatologist
car_type: Compact, Standard, Full-size
price_range: inexpensive, moderate, expensive, very expensive

Further, following slots are boolean:
has_wifi, pets_allowed, subtitles, offers_cosmetic_services, has_laundry_service, is_unisex, good_for_kids, has_live_music, pets_welcome, serves_alcohol,
is_redeye, furnished, free_entry

1375
—

{% if model_name == "llama" %}
Follow the following format.
{% else %}
The examples are formatted as follows.
{% endif %}

Dialogue:
<user_utterance>

Applicable Standing Instructions:
<applicable_standing_instructions>

Tagged Standing Instructions:
Tagged standing instructions

API Calls:
API calls to solve the user task

—

{% if model_name == "llama" %}
You are given several independent examples of the task:

1376
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{% endif %}
1377

Example template: 1378

{% if split == "test" and model_name == "llama" %}
Given the examples above, output only the API calls for the following example with no additional text:
{% endif %}

Dialogue:
{{ user_utterance }}

Applicable Standing Instructions:
{{ applicable_instructions | join("\n> ") }}

Tagged Applicable Standing Instructions:
1379

Target template: 1380

{{ tagged_applicable_instructions | join("\n> ") }}

API Calls:
{{ target_api_calls | join("\n") }}

1381

F.7 Tagger Prompt 1382

System prompt template: 1383

Create a sentence tagging model capable of identifying and labeling actions and their associated details within sentences. Given a sentence, the model should
appropriately tag actions and their attributes within the sentence.
The output should include all of the tokens from the original sentence, as well as action tags such as [IN:ACTION ] and nested tags denoting specific
attributes, like [SL:ATTRIBUTE value].
Ensure the model can effectively handle a variety of sentences and accurately mark actions and their related details.

Every action name has the format of "GET_X", where X denotes the domain name.
Every action has a list of associated attributes. Only those attributes can be present inside the action tag.

1384
The list of the available function names is presented below, followed by possible slot names.
Some of the possible API calls include functions:
GetBanks: handling all the banking information (recipient_account_name, amount, recipient_account_type)
GetBuses: finding and booking bus tickets and routes (origin, departure_date, fare_type, transfers, price, group_size, destination, departure_time)
GetEvents: finding and booking events (event_name, city, category, number_of_tickets, time, date, venue_address, event_type)
GetFlights: finding and booking flights (origin, inbound_arrival_time, is_redeye, outbound_departure_time, outbound_arrival_time, inbound_departure_time,
return_date, airlines, seating_class, refundable, number_stops, departure_date, fare, destination, passengers)
GetHomes: looking for property (pets_allowed, visit_date, address, property_name, rent, number_of_baths, area, number_of_beds, furnished, phone_number)
GetHotels: booking hotels (has_wifi, average_rating, check_out_date, price, pets_welcome, number_of_days, location, check_in_date, phone_number,
number_of_rooms, street_address, hotel_name)
GetHouseStays: booking temporary accommodation (rating, phone_number, has_laundry_service, check_out_date, total_price, check_in_date, address,
number_of_adults, where_to)
GetMedia: searching for online media (title, directed_by, subtitles, genre)
GetMovies: searching for cinema tickets (theater_name, movie_name, price, show_date, location, show_time, number_of_tickets, genre, show_type,
street_address)
GetMusic: finding songs (song_name, year, album, artist, genre, playback_device)
GetRentalCars: booking rental cars (dropoff_date, pickup_time, pickup_city, pickup_date, total_price, car_type, car_name, pickup_location)
GetRestaurants: finding and booking restaurants (price_range, restaurant_name, city, has_live_music, serves_alcohol, time, date, phone_number, cuisine,
street_address, party_size)
GetSalons: finding hair salons (is_unisex, average_rating, city, appointment_date, appointment_time, stylist_name, phone_number, street_address)
GetDentists: finding dentists (dentist_name, phone_number, offers_cosmetic_services, city, appointment_date, appointment_time, address)
GetDoctors: finding doctors (doctor_name, city, average_rating, appointment_date, appointment_time, type, phone_number, street_address)
GetTravel: finding attractions (good_for_kids, category, attraction_name, location, phone_number, free_entry)
GetWeather: getting weather information (city, temperature, date, precipitation, humidity, wind)

1385
Check that the output fits all of the criteria above, and all of the tags are correctly placed (for example, [SL: ] tags must be inside the [IN: ] tags)
Pay special attention to the attribute names and function names, check that none of the attribute names are mixed up (for example, some functions have similar
attributes: city/location, make sure you are using the correct name)
Check that all of the tokens from the original untagged sentence are present and are in the correct order.
Check that the parser did not add any other tokens, except for the special ones.
Make sure that the attribute values inlcude only the necessary information (for example, ‘[SL:EVENT_TYPE event type is Music]’ is incorrect and should be
‘event type is [SL:EVENT_TYPE Music]’).

1386

Example template: 1387

{{ instruction }}

1388

Target template: 1389

{{ tagged_instruction }}

1390
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