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ABSTRACT

Steering a large language model’s attention towards user-specified highlighted text
is a critical capability. Existing prompt highlighting methods are incompatible
with modern efficient attention mechanisms like Flash Attention due to their re-
liance on post-hoc matrix editing. We introduce Spectral Editing Key Amplifica-
tion (SEKA), a training-free steering method that tackles this by directly editing
key embeddings before attention computation. SEKA learns universal relevance
subspaces offline via spectral decomposition. We extend this to Adaptive SEKA
(AdaSEKA), a query-adaptive variant that uses a training-free routing mechanism
to dynamically combine multiple expert subspaces based on the prompt’s seman-
tic intent. Our experiments show both methods significantly outperform strong
baselines on standard steering benchmarks while adding much lower latency and
memory overhead, ensuring full compatibility with optimised attention.

1 INTRODUCTION

The ability to precisely guide the behaviour of large language models (LLMs) is paramount as they
are increasingly deployed in high-stakes domains. This broad field of model steering encompasses
various techniques, from activation steering, which aims to control high-level semantic attributes like
style or factual recall by intervening in MLP layers (Subramani et al., 2022; Turner et al., 2023; Qiu
et al., 2024; Wang et al., 2025; Stolfo et al., 2025; Turner et al., 2025), to attention steering, which
operates at a more granular level to direct the model’s focus to specific tokens within a prompt.
This paper focuses on the latter, where prompt highlighting is one of the key applications. However,
current state-of-the-art methods, such as PASTA (Zhang et al., 2024), operate by editing the attention
score matrix after it has been computed. This post-hoc manipulation creates a critical bottleneck:
it requires computing the full attention matrix, making these methods incompatible with modern,
IO-aware implementations like Flash Attention (Dao et al., 2022; Dao, 2024) that are essential for
efficient processing. This architectural limitation, coupled with the need for costly, task-specific
searches to identify which attention heads to steer, makes them less practical.

In this work, we propose a paradigm shift. Instead of editing the output of the attention mecha-
nism, we intervene on its input. We introduce Spectral Editing Key Amplification (SEKA), a novel,
training-free framework that steers attention by directly modifying key vectors before the attention
scores are calculated. Our core insight is that we can learn a universal “relevance subspace” for a
given task by applying spectral decomposition to key embeddings derived from contrastive prompts.
These learned directions are then used to construct a projection matrix that amplifies the relevant fea-
tures of highlighted keys via a simple, geometrically interpretable transformation: k′ = k + gPk.

Additionally, we propose Adaptive SEKA (AdaSEKA), an advanced variant that learns a bank of
task-specific “expert” projections (e.g., for factual recall versus instruction following). At inference
time, AdaSEKA uses a computationally cheap, training-free routing mechanism to create a dynamic,
query-aware steering operator by blending these experts based on the prompt’s semantic intent. Our
method is fully compatible with Flash Attention (Dao et al., 2022; Dao, 2024) as it operates directly
on the key embeddings with negligible computational overhead.

Our experiments confirm the effectiveness of this approach. Both SEKA and AdaSEKA achieve
superior results on standard benchmarks for knowledge conflicts, occupation extraction, and instruc-
tion following. Furthermore, AdaSEKA’s query-adaptive routing mechanism demonstrates superior
performance by dynamically tailoring the steering to the prompt’s semantic intent. Crucially, we
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show that these performance gains are achieved with negligible overhead. SEKA adds only 0.03s
of latency per sample, in stark contrast to comparable methods like PASTA which incur a +1.03s
inference time and nearly double the memory usage.

2 PROBLEM DEFINITION AND MOTIVATIONS

In this section, we formalise the problem of prompt highlighting as attention bias and introduce our
spectral attention steering approach, motivated by the limitations of prior methods.

Problem Definition. Given a prompt x = (x1, . . . , xT ) with a subset of tokens H ⊂ {1, . . . , T}
marked as highlighted (e.g., surrounded by special markers such as **), our goal is to steer the
model’s attention so that these tokens receive increased focus from relevant queries. In standard
multi-head attention, the unnormalised attention score between query i and key j is Attn(i, j) =
q⊤
i kj√
dk

, where qi,kj ∈ Rdk are the query and key vectors, and dk is the head dimension.

Objective. We aim to amplify the attention assigned to highlighted tokens by introducing an ad-
ditive, controllable term to the attention score for each (i, j) where j ∈ H: A′

ij = Aij +∆ij , where
∆ij is designed to selectively boost the attention towards user-specified highlighted tokens.

Motivation. Existing approaches typically modify attention after it has been computed. For ex-
ample, PASTA (Zhang et al., 2024) rescales rows of the attention matrix as shown in equation 1,
where Ci is a row normalisation factor and α > 1 scales attention to highlighted tokens.

[T (A)]ij =


α
Aij

Ci
, if j ∈ H

Aij

Ci
, otherwise

(1)

Similarly, positional calibration methods such as Found-in-the-Middle (Hsieh et al., 2024) subtract
a baseline from the positional attention bias. Let xk denote the position of the k-th token, and
Attnori(xk) the original positional bias. The calibrated bias is Attncalibrated(xk) = Attnori(xk) −
Attnbaseline(xk), where Attnbaseline(xk) is estimated independently of content relevance.

Both strategies require explicit storage of the full attention matrix, which is incompatible with
memory-efficient implementations such as Flash Attention (Dao et al., 2022; Dao, 2024). Moreover,
methods like PASTA often rely on costly head search to decide which attention heads to steer. Fi-
nally, as we demonstrate in Appendix E, key embeddings of the same token exhibit consistent shifts
when they are relevant/irrelevant to the contexts in certain heads. These motivate our projection-
based approach, which edits key embeddings before attention is computed: k′

j = kj+gPkj , where
P is a projection matrix (defining a relevance subspace per key-value head), and g is a scaling co-
efficient. This preserves compatibility with efficient attention implementations while providing a
geometrically interpretable mechanism for steering attention towards highlighted tokens.

3 SPECTRAL ATTENTION STEERING FOR PROMPT HIGHLIGHTING

As shown in Figure 1, we propose a new method, Spectral Editing Key Amplification (SEKA), and
its query-adaptive variant, AdaSEKA. Both methods achieve prompt highlighting by directly editing
key embeddings before the attention computation. The core mechanism of SEKA is inspired by the
Spectral Editing of Activations (SEA) framework (Qiu et al., 2024), adapting it from semantic-level
activation steering to the token-wise attention steering required for prompt highlighting.

3.1 SPECTRAL LEARNING OF RELEVANCE-ALIGNED PROJECTIONS (OFFLINE)

To learn relevance-sensitive projections, we first obtain token-level key embeddings under three
conditions: (1) neutral (context only), (2) positive (context aligned with a relevant query), and (3)
negative (context paired with an irrelevant query). The construction of such synthetic triplets is
described in Appendix A.
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Figure 1: An overview of SEKA and AdaSEKA. x: context; h: key embedding; Ω: cross-
covariance; U : left singular vectors; S: singular values; g: gain coefficient. SEKA applies fixed
gains, while AdaSEKA uses the query to compute dynamic steering weights.

From these key embeddings, denoted h, h+, and h− respectively, we compute cross-covariance
matrices for each transformer layer ℓ and key-value head h: Ω+

ℓ,h = h⊤h+

n , Ω−
ℓ,h = h⊤h−

n , where
n is the number of sampled tokens. Singular value decomposition (SVD) is then applied: Ω+

ℓ,h =

U+
ℓ,hS

+
ℓ,hV

+⊤
ℓ,h , Ω−

ℓ,h = U−
ℓ,hS

−
ℓ,hV

−⊤
ℓ,h .

In SVD, S+
ℓ,h and S−

ℓ,h represent the singular values of the positive and negative cross-covariance
matrices, respectively. These singular values indicate the amount of variance captured by each
component of the projection. The larger the singular value, the more significant the corresponding
singular vector (i.e., projection direction) is in explaining the variance of the token key embeddings.

In equation 2, for the positive projection P+
ℓ,h, we use the top singular vectors corresponding to the

largest singular values, which capture directions most associated with relevant (highlighted) features.
For the negative projection P−

ℓ,h, we use the least-significant singular vectors, associated with the
smallest singular values, to target directions least associated with relevance.

P+
ℓ,h = U+

ℓ,h,:,:k+(U
+
ℓ,h,:,:k+)

⊤, P−
ℓ,h = U−

ℓ,h,:,k−:(U
−
ℓ,h,:,k−:)

⊤, (2)

where k+ and k− are chosen such that they capture at least a proportion γ of the singular value
variance: ∑k+

i=1 S
+
ℓ,h,i∑dk

i=1 S
+
ℓ,h,i

≥ γ,

∑k−

i=1 S
−
ℓ,h,i∑dk

i=1 S
−
ℓ,h,i

≥ γ. (3)

The threshold γ is a hyperparameter that controls how much of the variance in the data we wish
to retain when creating the projection matrices. By selecting the top k+ singular vectors for the
positive covariance and k− for the negative covariance, we capture the most relevant directions in
the key embeddings for each type of projection. The learned projectors {P+

ℓ,h,P
−
ℓ,h} are stored per

layer and head, enabling fine-grained steering at inference time.

3.2 SPECTRAL EDITING FOR HIGHLIGHTED TOKENS (INFERENCE)

During inference, SEKA injects the learned projections into key embeddings before attention scores
are computed. For clarity, we omit the explicit (ℓ, h) indices on key vectors kj and queries qi,
although they are in practice layer- and head-specific. For each token key kj ∈ Rdk at layer ℓ and
head h, the edited embedding is defined as:

k′
j = kj +

g+ · P+
ℓ,hkj + g− · P−

ℓ,hkj

2
, (4)

where P+
ℓ,h,P

−
ℓ,h ∈ Rdk×dk are the selected projection matrices and g+, g− are two independently

adjustable scalars controlling the positive and negative steering gains. All vectors (e.g., kj , qi,
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x) are column vectors unless otherwise specified. This adjustment modifies the attention logits as
equation 5, where qi ∈ Rdk is the i-th query vector. It is algebraically equivalent to augmenting the
original attention score matrix A with a low-rank relevance bias matrix B.

Logitsij =
q⊤
i kj√
dk

+

q⊤
i

(
g+ · P+

ℓ,hkj + g− · P−
ℓ,hkj

2

)
√
dk

= Aij +Bij , (5)

Thus, SEKA can be interpreted as adding a key-dependent term to the attention scores, ampli-
fying each token’s the directions aligned with the relevance subspace (detailed in Appendix C).
Unlike methods that directly manipulate the attention matrix, SEKA achieves equivalent modula-
tion by editing the key vectors themselves, offering a more structured and interpretable mechanism.
Moreover, because SEKA operates entirely on key representations prior to attention computation,
it requires no access to or storage of the attention matrix, making it inherently compatible with
memory-efficient implementations like Flash Attention (Dao et al., 2022; Dao, 2024).

3.3 VARIANT: QUERY-DRIVEN ADAPTIVE SEKA

While the standard SEKA framework provides effective token-level attention steering, practical de-
ployment often requires hyperparameter tuning across different tasks and model families due to the
static projections. To address this limitation and reduce the need for manual configuration, we in-
troduce Adaptive SEKA (AdaSEKA), which automatically selects and combines expert projections
based on query-specific relevance signals.

Multi-Expert Projection Learning. We extend the projection learning framework to accommo-
date multiple domain-specific experts. For each expert m ∈ {1, . . . ,M}, we constructed samples
from datasets Dm for different tasks. Each expert learns its own set of positive SVD components
{U+

m,ℓ,h,S
+
m,ℓ,h,V

+
m,ℓ,h} following the standard SEKA procedure. This process results in a set

of SVD components for each expert, layer, and head, which can be represented as a 5D tensor
(U+ ∈ RM×L×H×dk×dk ), where L is the number of layers, and H is the number of heads.

Query-Adaptive Expert Routing. At inference time, we extract the query vector ql,h at layer
ℓ and head h of the last token in the prompt, as the last token serves as the global aggregator of
prompt information and hugely influences the downstream generation (Barbero et al., 2024; Qiu
et al., 2024). We then compute dynamic coefficients that determine the contribution of each expert:

αm,ℓ,h(ql,h) =

∑K
k=1(q

⊤
l,hu

+(k)
m,ℓ,h) · σ

+(k)
m,ℓ,h

maxm

∣∣∣∑K
k=1(q

⊤
l,hu

+(k)
m,ℓ,h) · σ

+(k)
m,ℓ,h

∣∣∣ , (6)

where σ
+(k)
m,ℓ,h is the corresponding k-th singular value, and K is the number of top singular compo-

nents used (typically K = 5).

This formulation captures the alignment between the query and each expert’s principal projection
directions, weighted by the importance (singular values) of those directions. The denominator serves
as the normalisation factor, ensuring that the coefficients are consistently scaled across all experts
while maintaining the sign of the alignment score.

The final projection matrix at layer ℓ and head h is constructed as a weighted combination of expert
projections: Pdynamic,ℓ,h(ql,h) =

∑M
m=1 αm,ℓ,h(ql,h) ·U+

m,ℓ,h,:,:K(U+
m,ℓ,h,:,:K)⊤, where U+

m,ℓ,h,:,:K

denotes the first K columns of U+
m,ℓ,h, corresponding to the most significant singular vectors.

This approach reconstructs projection matrices on-demand using only the top-K components, pro-
viding computational efficiency whilst enabling automatic expert selection. The key transformation
during inference becomes: k′

j = kj + g · Pdynamic,ℓ,h(ql,h)kj .

Crucially, AdaSEKA offers several practical advantages: (1) Reduced configuration effort: Auto-
matic expert routing reduces the number of hyper-parameters tuning for different tasks and models

4
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Figure 2: Heatmaps of the average per-token ℓ2 distance between positive and negative key embed-
dings across all KV heads and layers for four Qwen3 model sizes. Higher values (green) indicate
greater separation between positive and negative key representations.

(shown in Appendix G). (2) Modular deployment: New experts can be integrated without recalcu-
lating existing ones. (3) Interpretable routing: Expert selection is based on explicit query-expert
alignment scores. We derive four expert projections from four distinct datasets. The process of
constructing data samples for learning these projections is detailed in Appendix B.

3.4 SELECTING RELEVANCE-SENSITIVE KEY-VALUE HEADS

Our steering methods are most effective when applied selectively to KV heads that are naturally
sensitive to prompt relevance. We find that for certain heads, the key embedding for a given token
span consistently shift in vector space when the question in the prompt is changed from an irrelevant
one to a relevant one. We provide qualitative visualisations of this phenomenon in Appendix E. In
this section, we formalise a method to quantify this relevance sensitivity across all layers and heads
to inform our selection strategy.

Figure 8 shows the ℓ2 distance between positive and negative key embeddings, averaged over all
answer tokens from our synthetic dataset (as defined in Appendix A). This variation is examined
across different layers and heads of the Qwen3 model in various sizes.

We observe that the distinction between relevant and irrelevant prompts is not uniform: larger norm
values (green) consistently emerge in the mid-to-late layers, while early layers and a subset of heads
display minimal shift (red), suggesting the retrieval behaviour are less likely to happen at those lay-
ers. This finding is strongly aligned with recent mechanistic analyses. Michel et al. (2019); Voita
et al. (2019); Clark et al. (2019) highlight that attention modules display various token-attending
patterns across different heads. Qiu et al. (2025) demonstrate that retrieval effectiveness relies on
only a subset of attention heads, identified via probing and relevance filtering. Wu et al. (2025)
further show that this sparse set of “retrieval heads” are almost exclusively located in the mid-to-
late layers of the transformer. These heads are intrinsic to the base models, remain consistent after
fine-tuning, and are dynamically activated according to the context. Therefore, motivated by this
alignment, we restrict projection to only those (layer, head) pairs where the empirical ℓ2 differ-
ence between positive and negative key embeddings exceeds a threshold. This selective approach
ensures that attention steering is concentrated on components empirically associated with retrieval
behaviour, while leaving other heads unaffected. In this way, we amplify relevance signals only
where necessary, minimising unintended influence on unrelated model components.

Formally, for each layer ℓ and head h, let S denote the set of all answer tokens (across all sam-
ples in the data), with |S| = N . The average per-token ℓ2 distance is computed as Dℓ,h =
1
N

∑N
i=1

∥∥∥h+
ℓ,h,i − h−

ℓ,h,i

∥∥∥
2
, where h+

ℓ,h,i and h−
ℓ,h,i are the positive and negative key embeddings

for token i in S. Projection is applied only if Dℓ,h ≥ δmin, where δmin is a tunable hyperparameter.

4 EXPERIMENTAL SETUP

We consider SEKA particularly useful in scenarios that require emphasis or highlighting within the
prompt. This includes the tasks used to evaluate PASTA (Zhang et al., 2024), which involve (i) han-
dling complex user instructions (e.g., pronoun rewriting), (ii) interpreting lengthy and noisy contexts
(e.g., Bias in Bios (De-Arteaga et al., 2019)), and (iii) resolving in-context knowledge conflicts (e.g.,
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CounterFact (Meng et al., 2022)). In addition, SEKA enables us to invert the typical U-shaped per-
formance observed in the “lost in the middle” setting (Liu et al., 2024) by simply highlighting the
middle of long contexts, thus improving model recall for these challenging positions.

4.1 STANDARD BENCHMARKS FOR ATTENTION STEERING

We follow the standard benchmarks used by Zhang et al., ensuring consistent selection of highlighted
tokens. Table 1 summarises the tasks, prompt formats, and evaluation metrics. The CounterFact task
is based on the COUNTERFACT dataset (Meng et al., 2022), while the remaining two tasks (Bias in
Bios, Pronouns changing) are derived from the BIASBIOS dataset (De-Arteaga et al., 2019), in line
with previous research (Zhang et al., 2024). We enhance the evaluation metric for the Pronouns
changing task to address flaws in the original protocol which can misleadingly reward empty re-
sponse, with the other metrics remaining consistent. Further details, including an introduction to
each benchmark task and the calculation of metrics, are available in Appendix F.

Table 1: Summary of standard benchmarks for attention steering. Bolded tokens indicate where
attention steering is applied.

Task Prompts Metrics

Counterfact Previously, [old fact]. Currently, [new fact].
[question].

Efficacy score (ES), Para-
phrase score (PS)

Bias in Bios [person’s occupation]. [career history, may
not directly related to prediction]. [person]
has the occupation of a/an

Accuracy (Acc.)

Pronouns
changing

[biographical contexts]. Substitute ‘she’ and
‘he’ with ‘they’ and generate the occupation
of [person] after changing pronouns.

Pronoun-weighted Lexical
overlap Score (P. Score),
All-changed P. Score

Benchmark Methods. We begin by using direct prompting of the original model as a baseline.
Additionally, we include another baseline that incorporates ** marks around the highlighted context.
For attention steering methods, ** is solely used to determine the token indices for steering and is re-
moved from the input IDs. We then benchmark our proposed methods, SEKA and AdaSEKA, against
the existing attention steering method PASTA (Zhang et al., 2024). We also compare with Selective
Prompt Anchoring (SPA) (Tian & Zhang, 2025), a prompt highlighting method that operates on the
logit distributions of the LLMs. Additionally, we evaluate SEKA with random projections applied
and without the KV heads selector to serve as an ablation study.

4.2 U-SHAPE INVERSION IN THE LOST-IN-THE-MIDDLE SETTING

To further examine SEKA’s ability to steer model attention to specific regions within a long con-
text, we introduce an additional experiment targeting positional recall in the challenging lost-in-
the-middle setting (Liu et al., 2024). This setting refers to the widely observed phenomenon where
LLMs exhibit strong recall for information presented at the beginning and end of long contexts, but
their performance substantially degrades when the relevant information is located in the middle, re-
sulting in a characteristic U-shaped performance curve. Each of our inputs consists of a long context
comprising 30 passages, where only one gold passage contains the true answer to a given question
and the rest serve as distractors. The position of the gold passage is varied to test the model’s posi-
tional sensitivity. Each input is formatted as: “Context: \n [P1 Title] \n [P1 Text] ... [P30 Title] \n
[P30 Text] \n\n Question: ex[’question’] \n Answer:”.

Unlike prior work that aims to mitigate this effect, our objective is to directly investigate whether
explicit relevance highlighting via SEKA can invert this U-shaped curve. By steering attention
towards the middle passages, we test if the typical performance trough for mid-context answers can
be transformed into a peak, providing insight into the controllability of positional recall in LLMs.

Metrics. We use exact match (EM) score as the evaluation metric, following Liu et al. (2024):
a prediction is considered correct if it contains the ground-truth short answer span. To discourage
verbose or off-topic completions, the generated answer is limited to a maximum of 60 tokens.

6
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Table 2: Performance on standard benchmarks. Bold = best. Underline = second best. We include
two ablation studies for SEKA: “w/o learn” uses random projections instead of spectrally learned
ones, and “w/o learn&filt” further removes the head filtering mechanism.

Model Metric Baselines Our Methods
Original **-marked PASTA SPA SEKA w/o learn w/o learn&filt AdaSEKA

Q
w

en
3-

4B

CounterFact (ES) 45.00 57.70 97.16 65.24 99.02 94.96 86.12 98.90
CounterFact (PS) 45.64 52.12 96.03 57.71 98.61 92.38 86.20 98.72
Bias in Bios (Acc.) 79.84 82.94 89.58 68.00 91.02 86.62 71.76 91.86
Pronoun (P. Score) 93.14 95.76 95.82 80.27 95.18 90.42 41.98 94.54
Pronoun (A. P. Score) 90.52 93.88 94.64 78.19 93.26 88.66 36.95 92.08

Q
w

en
3-

8B

CounterFact (ES) 39.04 56.24 92.70 69.26 99.08 96.12 95.18 99.00
CounterFact (PS) 39.59 49.80 91.68 58.76 98.96 94.74 89.69 98.97
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Bias in Bios (Acc.) 89.90 91.00 82.58 48.02 92.42 85.60 77.16 92.92
Pronoun (P. Score) 41.34 38.86 67.39 76.05 81.53 53.58 51.78 93.76
Pronoun (A. P. Score) 35.25 32.45 66.43 74.45 81.11 48.82 51.94 93.58

G
em

m
a3

-1
2B CounterFact (ES) 45.34 48.72 68.30 93.76 98.86 63.08 60.96 92.48

CounterFact (PS) 37.21 36.69 71.72 91.24 99.27 50.59 76.37 93.65
Bias in Bios (Acc.) 91.26 92.90 94.72 46.88 93.04 91.84 90.54 91.14
Pronoun (P. Score) 93.92 95.78 68.47 86.41 97.70 47.26 55.56 96.88
Pronoun (A. P. Score) 94.96 96.42 68.01 84.99 97.24 51.24 58.76 95.84

Benchmark Methods. We compare SEKA against a standard baseline: directly prompting the
base LLM without any intervention, and also PASTA (Zhang et al., 2024). On top of this, we apply
SEKA in two configurations: (i) steering only the middle region of the context (specifically passages
4 through 25), and (ii) steering all context passages. Although Hsieh et al. (2024) presents another
potential baseline, we exclude it due to the unavailability of its code implementation.

5 RESULTS

5.1 STANDARD BENCHMARKS: SEKA PROVIDES EFFICIENT ATTENTION STEERING

The main experimental results are presented in Table 2. We tested the Qwen3 model (Yang et al.,
2025) in various sizes, including 4B, 8B, and 14B, as well as the Gemma3 model (Team, 2025) in
sizes of 4B and 12B. For the PASTA baseline, we present its best performance from three configura-
tions to ensure a robust comparison (see Appendix I for full details). Furthermore, specific examples
and the corresponding outputs from both the original model and SEKA are available in Appendix J.

The results demonstrate that SEKA and AdaSEKA, are highly effective at steering LLM attention,
generally outperforming both baseline models (ranked among the top two most of the time) and
existing methods across various tasks and model scales. As demonstrated in Section 6, these im-
provements are achieved with significantly lower overhead compared to PASTA and SPA.

A primary finding is the efficacy of attention-level interventions on tasks requiring factual recall. On
CounterFact, both SEKA and PASTA achieve near-perfect scores (e.g., 99.02 and 97.16 respectively
for Qwen3-4B), validating the general approach of steering attention for knowledge conflicts, while
the logit-based SPA lags considerably. Within this effective category, our methods consistently hold
a performance advantage. This trend continues in the Bias in Bios task, where SEKA and AdaSEKA
generally secure the top two positions across all models.

Performance on the instruction-following Pronoun Changing task is strongly correlated with the
base model’s pretrained sensitivity to simple emphasis markers. For the Qwen3 family, which is
partially responsive to simple markdown emphasis, the “**-marked” baseline is notably strong. This
contrasts with earlier conclusions that LLMs are inherently restricted to processing plain text without

7
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stylistic cues or emphasis markers (Brown et al., 2020; Wei et al., 2022). However, AdaSEKA
still provides further improvement, delivering SOTA performance (e.g., an A. P. Score of 99.52 on
Qwen3-8B). The advantage of our methods is most pronounced on the Gemma3-4B which is less
responsive to the markdown emphasis. This demonstrates our method’s significant value, especially
for smaller models that are less receptive to basic emphasis grammar.

Finally, our ablation studies validate the method’s core components. Using random projections
with head filtering (w/o learn) proves beneficial but is clearly suboptimal, underscoring the value
of our spectral learning approach. Removing both the learned projections and the head-filtering
mechanism (w/o learn&filt) causes a catastrophic decline in performance. For instance, on the
Qwen3-4B Pronoun task, the A. P. Score drops from the original 90.52 to 36.95. This conclusively
demonstrates that both learning meaningful relevance subspaces and selectively applying them to
the appropriate KV heads are essential for success.

5.2 LOST IN THE MIDDLE

With the setting described in Section 4.2, we highlight two key findings when benchmarking SEKA
against baselines and exploring the impact of different δmin for selecting KV heads.
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Figure 3: Exact match scores on the lost-in-the-middle task for Qwen3 models of three different
sizes, comparing the original model, PASTA/SEKA applied to the middle region (5th to 25th pas-
sages), and PASTA/SEKA applied to all passages.

SEKA Can Invert the U-shape Performance. The results, summarised in Figure 3, reveal two
primary findings. First, applying SEKA selectively to the middle passages (positions 5 to 25, which
is a very rough range) is highly effective at inverting the canonical U-shaped performance profile:
exact match scores at central positions substantially increase, eliminating the typical performance
trough for answers located in the middle of long contexts. Second, applying SEKA uniformly across
all passages can slightly exacerbate the lost-in-the-middle issue. The most noticeable improvements
typically occur at the beginning or end positions, while enhancements in the middle are less pro-
nounced or may even decrease. In contrast, PASTA is less effective for this task. Applying it to
either the middle region or the entire context results in performance generally below the original
baseline across all model sizes.
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0.4
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0.5

Original Model SEKA (δmin=0.16)
SEKA (δmin=0.165) SEKA (δmin=0.17)
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Figure 4: Exact match scores when ap-
plying SEKA to the middle region with
different threshold δmin.

SEKA Can Mitigate and Flatten the U-Shape When
Applied to Appropriate Number of KV Heads. In
this control experiment, we fix the positive and negative
steering gain coefficients (g+ and g−) at 0.2 and 0.1 re-
spectively, and vary only the threshold δmin to control
the number of steered KV heads. In practice, decreas-
ing δmin increases the number of steered heads: for ex-
ample, thresholds of 0.16, 0.165, 0.17, and 0.18 cor-
respond to SEKA being applied on 58, 48, 41, and 31
KV heads for Qwen3-8B-Base, respectively. As shown
in Figure 4, with an appropriate threshold δmin (around
0.165 and 0.17) and steering the middle region, SEKA
can flatten the U-shaped performance curve without sig-
nificantly compromising accuracy at the beginning and
end positions. Note that the optimal threshold may vary with model size. Complete results for the
4B and 14B models are provided in Appendix L.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

6 OVERHEAD ANALYSIS

A key advantage of our pre-computation approach is its compatibility with optimised mech-
anisms like Flash Attention (Dao et al., 2022; Dao, 2024; Shah et al., 2024). We quan-
tify this by measuring inference overhead on 100 samples (avg. 4362 tokens) from
Section 5.2 using a Qwen3-8B-Base model on a single NVIDIA-GH200-120GB GPU.

Table 3: Inference overhead on Qwen3-8B-Base. Time
is per-sample; memory is average peak usage.

Method Avg. Time
(s)

Peak Mem.
(GB, B=10)

Peak Mem.
(GB, B=1)

Original 0.55 27.63 16.72
PASTA 1.58 (+1.03) 50.75 (+23.12) -
SPA 5.87 (+5.32) - 17.71 (+0.99)

SEKA 0.58 (+0.03) 27.66 (+0.03) 16.75 (+0.03)
AdaSEKA 0.82 (+0.27) 43.22 (+15.59) 18.23 (+1.51)

As shown in Table 3, the overhead for
SEKA is negligible (+0.03s per sample).
This efficiency is particularly notable as,
for a fair comparison with PASTA, we use
an aggressive configuration that steers 175
out of 288 available KV heads. In contrast,
post-hoc methods incur significant costs.
PASTA’s reliance on editing the full at-
tention matrix makes it incompatible with
Flash Attention, leading to a substantial
increase in latency (+1.03s) and memory
usage (+23.12 GB). SPA, while memory-
efficient for single samples, does not support batch processing and is thus the slowest overall. Our
adaptive variant, AdaSEKA, introduces a moderate overhead for its dynamic, query-aware capabili-
ties (+0.27s). However, it remains significantly more efficient than both PASTA and SPA, making it
a far more practical option for steering in long-context scenarios.

7 RELATED WORK

Research on steering large language models falls into two main paradigms. Activation Steering
(Dathathri et al., 2020; Subramani et al., 2022; Hernandez et al., 2024) guides high-level semantic
outputs by intervening in MLP layers, while Attention Steering, the focus of our work, directs the
model’s focus to specific tokens within the input prompt.

Activation Steering. This line of work, also known as representation engineering, adds “steering
vectors” to MLP layer activations to control semantic attributes (Zou et al., 2023). Applications
include enhancing honesty and safety (Ravfogel et al., 2020; Burns et al., 2023; Iskander et al.,
2023; Li et al., 2023; Wei et al., 2023; Bhattacharjee et al., 2024; Qiu et al., 2024), controlling style
(Turner et al., 2023; 2025), improving reasoning (Tang et al., 2025), and knowledge editing (Fang
et al., 2025). These methods are distinct from our approach as they target the model’s semantic
output, not the granular focus of its attention mechanism.

Attention Steering. To address the challenge of LLMs failing to attend to key information in
long contexts (Liu et al., 2024; Meng et al., 2022), prompt highlighting methods intervene post-hoc
on either the attention scores (Zhang et al., 2024) or final logits (Tian & Zhang, 2025). However,
these interventions often introduce significant latency; for instance, editing the full attention matrix
is incompatible with modern optimisations like FlashAttention (Dao et al., 2022; Dao, 2024; Shah
et al., 2024). This efficiency bottleneck motivates the need for pre-computation alternatives that can
steer attention without sacrificing compatibility with optimised architectures.

8 CONCLUSION

In this paper, we introduced SEKA and its adaptive variant, AdaSEKA, a new class of training-free
attention steering methods that operate by modifying key embeddings before the attention computa-
tion. This pre-attention approach overcomes the core efficiency limitations of prior work, ensuring
full compatibility with optimised implementations. Our experiments confirm that both methods
achieve state-of-the-art results on a range of standard benchmarks, with AdaSEKA’s query-adaptive
routing demonstrating particularly strong performance. These gains are achieved with negligible
overhead, making our work a practical step towards building more controllable and efficient LLMs
for long-context applications.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, all necessary materials will be made publicly available
in a GitHub repository upon acceptance of this paper. This repository will include: (1) the full
source code for our proposed methods, SEKA and AdaSEKA; (2) the scripts required to run all
experiments; (3) the pre-computed projection matrices used in our evaluations; and (4) the pre-
processed versions of the datasets.

The original datasets used in our evaluation are publicly available and are cited in Section 4. Specif-
ically, the BIASBIOS, COUNTERFACT, and “Lost in the Middle” datasets are all distributed under
the MIT License. Details regarding the evaluation samples and metrics calculation are provided in
Appendix F, while hyperparameters are specified in Appendix G.
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A SYNTHETIC DATASET FOR TOKEN-LEVEL RELEVANCE SUPERVISION

To supervise attention steering, we construct a synthetic dataset that enables precise control over
token-level relevance. Each sample comprises two contexts (C1, C2), each paired with a question
and answer tuple (Q1, A1 and Q2, A2). This structure allows us to define relevance by contrasting
identical token spans across different query contexts.

Table 4: Synthetic data instance.

Context 1 (C1) The portfolio manager allocates capital across equities and bonds.
Context 2 (C2) The climate model simulates sea-level rise under different scenarios.
Question 1 (Q1) What does the portfolio manager allocate across equities and bonds?
Answer 1 (A1) capital
Question 2 (Q2) What does the climate model simulate?
Answer 2 (A2) sea-level rise

Table 5: Constructed prompt triplets for both answer spans. Each group provides a neutral, positive,
and negative variant based on question-context alignment.

Group Prompt

Neutral Context: The portfolio manager allocates capital across equities and bonds.

Positive Question: What does the portfolio manager allocate across equities and bonds?
Context: The portfolio manager allocates capital across equities and bonds.

Negative Question: What does the climate model simulate?
Context: The portfolio manager allocates capital across equities and bonds.

Neutral Context: The climate model simulates sea-level rise under different scenarios.

Positive Question: What does the climate model simulate?
Context: The climate model simulates sea-level rise under different scenarios.

Negative Question: What does the portfolio manager allocate across equities and bonds?
Context: The climate model simulates sea-level rise under different scenarios.

With every pair of (C,Q,A) triplets, as shown in Table 5, we can derive two supervision samples:
one for the answer span “capital” in C1, and another for the answer span “sea-level rise” in C2.
For each answer, we construct three variants: (1) a positive (relevant) prompt where the question
and context are aligned (e.g., Q1 for C1, and Q2 for C2), (2) a negative (irrelevant) prompt where
the question mismatches the context (e.g., Q1 for C2, and Q2 for C1), and (3) a neutral prompt
containing only the context. This allows us to collect three classes of key embeddings for the answer
spans within the context: h+ for positive, h− for negative, and h for neutral. In Appendix E, we
empirically show that, for some key-value heads, different token spans exhibit a consistent shift in
their key embeddings from negative to positive variants. This validates the construction and use of
these relevance supervision signals.

Practical construction details. The synthetic dataset is lightweight to produce. We use a fixed
template as shown in Table 4 and automatically prompt an GPT-4o to produce contrastive samples,
using the prompt provided in Figure 5. This process requires no manual annotation. After collecting
the generated samples, we convert them into JSON format for subsequent use.

B MULTI-EXPERT PROJECTION LEARNING SAMPLES FOR ADASEKA

After constructing the synthetic dataset, we prepared three additional task-specific datasets, making
a total of four, for multi-expert projection learning (Section 3.3). As shown in Table 6, each sample
consists of a neutral and a positive prompt pair. For the Counterfact (Meng et al., 2022) dataset
and the BiasBios (De-Arteaga et al., 2019) datasets, these pairs are collected from their respective
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Synthetic Samples Generation Prompt

We are collaboratively generating a total of 100 synthetic examples.

You will generate examples in batches of exactly 20 per response. Across ALL batches in
this conversation, every example must be globally unique.

Before generating a new batch, you MUST:
1. Review ALL previous examples in the conversation.
2. Ensure no repeated entities, contexts, events, sentence structures, questions, or answers.
3. Ensure no near-duplicates, paraphrased duplicates, or re-themed duplicates.

Each example must follow this structure (exact formatting):
Example k:
Context 1: <C1>
Context 2: <C2>
Question 1: <Q1>
Answer 1: <A1>
Question 2: <Q2>
Answer 2: <A2>

Generation requirements:
- Each context must be one concise fictional sentence.
- C1 and C2 must be semantically unrelated.
- Q1 must ask about a span that appears verbatim in C1.
- Q2 must ask about a span that appears verbatim in C2.
- A1 and A2 must be exact substrings (contiguous spans) of C1 and C2.
- No context, entity, theme, setting, or question type may repeat across any batch.
- Avoid any resemblance to earlier examples in wording, structure, or domain.
- No extra explanation or commentary.

Your task now: Read all previous examples in the conversation so far. Then generate the next
20 completely new, globally unique examples. Stop after exactly 20 examples.

Figure 5: Prompt template used to generate synthetic contrastive examples.

training sets, following the original prompt templates outlined in Table 1. For each sample, we
extract the key embeddings for the answer spans directly from the context. A distinct procedure
is adopted for HotpotQA (Yang et al., 2018) to account for its multi-hop nature. The context is
formed by concatenating all candidate paragraphs, and the key embeddings from all supporting
facts are subsequently extracted and concatenated. Each expert projection is learned from a set of
200 randomly sampled instances from the training set for each task, using a fixed random seed of 42
to ensure reproducibility.

C GEOMETRIC INTUITION OF THE SEKA TRANSFORMATION

To provide geometric insight into the effect of SEKA’s key editing, consider the case where the
projection matrix P is given by UU⊤, with U ∈ Rdk×r having orthonormal columns that span the
relevance subspace (i.e., U = U+ or U− as previously defined). For simplicity, assume g = 1 and
focus solely on the positive (or negative) projection. The transformation then becomes:

k′
j = (I +UU⊤)kj . (7)

Any vector x ∈ Rdk can be decomposed as

x = x∥ + x⊥, where x∥ = UU⊤x, x⊥ = x−UU⊤x. (8)
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Table 6: Constructed prompt pairs for multi-expert projection learning. Each dataset provides neu-
tral and positive variants based on question-context alignment.

Dataset Variant Prompt

CounterFact Neutral Context: Previously, The mother tongue of Danielle Darrieux is French. Currently,
The mother tongue of Danielle Darrieux is English.

Positive Question: Danielle Darrieux, a native ?
Context: Previously, The mother tongue of Danielle Darrieux is French. Currently,
The mother tongue of Danielle Darrieux is English.

BiasBios Neutral Context: Nora is an assistant professor of international relations at Bahcesehir Uni-
versity in Istanbul. She is also a Ronald D. Asmus Policy Entrepreneur Fellow with
the German Marshall Fund and is a Visiting Fellow at the Centre for International
Studies (CIS) at the University of Oxford. This commentary first appeared at Sada,
an online journal published by the Carnegie Endowment for International Peace.

Positive Question: Nora has the occupation of a/an ?
Context: Nora is an assistant professor of international relations at Bahcesehir Uni-
versity in Istanbul. She is also a Ronald D. Asmus Policy Entrepreneur Fellow with
the German Marshall Fund and is a Visiting Fellow at the Centre for International
Studies (CIS) at the University of Oxford. This commentary first appeared at Sada,
an online journal published by the Carnegie Endowment for International Peace.

HotpotQA Neutral Context: Radio City (Indian radio station) Radio City is India’s first private FM
radio station and was started on 3 July 2001. . . . Arthur’s Magazine Arthur’s Mag-
azine (1844–1846) was an American literary periodical published in Philadelphia
in the 19th century. Edited by T.S. Arthur, it featured work by Edgar A. Poe, J.H.
Ingraham, Sarah Josepha Hale, Thomas G. Spear, and others. In May 1846 it was
merged into “Godey’s Lady’s Book”. . . . First for Women First for Women is a
womanś magazine published by Bauer Media Group in the USA. The magazine
was started in 1989. It is based in Englewood Cliffs, New Jersey. . . . The company
started first as a denim line, later evolving into a men’s and women’s clothing line.

Positive Question: Which magazine was started first Arthur’s Magazine or First for Women?
Context: Radio City (Indian radio station) Radio City is India’s first private FM
radio station and was started on 3 July 2001. . . . Arthur’s Magazine Arthur’s Mag-
azine (1844–1846) was an American literary periodical published in Philadelphia
in the 19th century. Edited by T.S. Arthur, it featured work by Edgar A. Poe, J.H.
Ingraham, Sarah Josepha Hale, Thomas G. Spear, and others. In May 1846 it was
merged into “Godey’s Lady’s Book”. . . . First for Women First for Women is a
woman’s magazine published by Bauer Media Group in the USA. The magazine
was started in 1989. It is based in Englewood Cliffs, New Jersey. . . . The company
started first as a denim line, later evolving into a men’s and women’s clothing line.

This decomposition is orthogonal. Specifically,

x⊤
∥ x⊥ = (UU⊤x)⊤(x−UU⊤x) = x⊤UU⊤x− x⊤UU⊤UU⊤x (9)

= x⊤UU⊤x− x⊤UU⊤x = 0, (10)

using the idempotency of the projection ((UU⊤)2 = UU⊤).

Applying the transformation, we have

(I +UU⊤)x = x+UU⊤x =
(
x−UU⊤x

)
+UU⊤x+UU⊤x (11)

= x−UU⊤x︸ ︷︷ ︸
x⊥

+2UU⊤x︸ ︷︷ ︸
x∥

= x⊥ + 2x∥. (12)

which shows that the component along the subspace is amplified (doubled), while the orthogonal
component remains unchanged.

While the g = 1 case offers geometric clarity, the result generalises for any g ∈ R:

(I + gUU⊤)x = x⊥ + (1 + g)x∥. (13)

Thus, the relevance-aligned component is scaled by (1 + g), while all orthogonal directions are
preserved. This operation is neither a projection nor an orthogonal transformation, but a targeted
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linear modification that selectively amplifies directions aligned with the relevance subspace. SEKA
leverages this property to boost relevant token features in a controlled and interpretable manner,
enabling precise, token-wise attention steering without interfering with unrelated components.

While the geometric interpretation above clarifies how SEKA amplifies components of key vectors
aligned with a learned relevance subspace, it is important to clarify what this subspace represents.
SEKA is not intended to encode or manipulate semantic meaning. Its effect is deliberately confined
to the attention to route subspace of the transformer, consistent with prior mechanistic analyses
(Elhage et al., 2021; Olsson et al., 2022).

Modern transformer-circuits work decomposes the action of an attention head as

H(h)(R) = A(h)(R) ⊗ W
(h)
O W

(h)
V R, (14)

where A(h) is the query-key similarity tensor governing which tokens attend to which, and
W

(h)
O W

(h)
V writes attended features into the residual stream (Elhage et al., 2021). This formula-

tion explicitly separates routing (Q/K) from semantic write operations (V/MLP).

Further, studies of induction and retrieval heads (Olsson et al., 2022) show that Q/K vectors imple-
ment token-matching and algorithmic routing behaviour, such as copying and continuation, while
semantic information is primarily stored in value vectors and MLP activations. These findings align
with our design that SEKA aims to modify only the routing (relevance) subspace, leaving the se-
mantic subspace untouched.

D SEKA AND ADASEKA ALGORITHMS

We provide detailed pseudocode for our proposed methods, SEKA and AdaSEKA. Algorithm 1
details the standard SEKA method. It involves an offline phase to learn fixed positive and negative
projection matrices from contrastive data using SVD. During inference, a hook then applies these
static projections to the key embeddings of highlighted tokens. Algorithm 2 describes the more
flexible AdaSEKA framework. In essence, standard SEKA can be viewed as a special case of
AdaSEKA with a single expert and no dynamic coefficient calculation. AdaSEKA generalises this
by loading a bank of multiple expert SVD components offline. For each new prompt, it then performs
a dynamic, query-aware pre-computation: it calculates routing coefficients based on the query’s
alignment with each expert and constructs a bespoke projection matrix on-the-fly. This tailored
projection is subsequently applied during generation via the key-editing hook.

Algorithm 1 Spectral Editing Key Amplification (SEKA)
Require: Triplets {h, h+, h−}ℓ,h, variance threshold γ, gains g+, g−

Ensure: Projections {P+
ℓ,h,P

−
ℓ,h} and a key-editing hook

1: for all layer ℓ and head h do
2: Ω+

ℓ,h←
1
nh

⊤h+, Ω−
ℓ,h←

1
nh

⊤h−

3: (U+
ℓ,h,S

+
ℓ,h,V

+
ℓ,h)← SVD(Ω+

ℓ,h) , (U−
ℓ,h,S

−
ℓ,h,V

−
ℓ,h)← SVD(Ω−

ℓ,h)

4: k+←min{k :
∑k

i=1 S
+
ℓ,h,i/

∑
i S

+
ℓ,h,i ≥ γ} , k−←min{k :

∑k
i=1 S

−
ℓ,h,i/

∑
i S

−
ℓ,h,i ≥ γ}

5: P+
ℓ,h←U+

ℓ,h,:k+U
+⊤
ℓ,h,:k+ , P−

ℓ,h←U−
ℓ,h,k−:U

−⊤
ℓ,h,k−:

6: end for
7: Hook applied to each selected (ℓ, h) (registered per layer ℓ; ℓ is fixed within the hook).
8: Input: K∈RB×T×H×d, mask m
9: Note: For brevity we omit the explicit layer index on K; projections remain P±

ℓ,h.
10: for b=1..B, t=1..T, h=1..H do
11: if mb,t=1 then
12: ∆←

(
g+P+

ℓ,h + g−P−
ℓ,h

)
K[b, t, h, :]/2

13: K[b, t, h, :]←K[b, t, h, :] + ∆
14: return K to the attention computation
15: Register the hook for selected (ℓ, h) before generation and remove it afterwards.
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Algorithm 2 Query-Driven Adaptive SEKA (AdaSEKA)

Require: SVD components {U+
m,ℓ,h,S

+
m,ℓ,h} for M experts, top components K, gain g

Ensure: A key-editing hook using dynamically computed projections
1: Store expert SVD components {U+

m,ℓ,h,S
+
m,ℓ,h} for all experts m, layers ℓ, and heads h.

2: For a given prompt with input IDs I:
3: Obtain last-token query vectors qℓ,h for each selected layer ℓ and head h.
4: for all selected layer ℓ and head h do
5: for all expert m = 1..M do
6: Calculate coefficient αm,ℓ,h(qℓ,h) ∝

∑K
k=1(q

⊤
ℓ,hu

+(k)
m,ℓ,h) · σ

+(k)
m,ℓ,h (as per Eq. 6)

7: end for
8: Construct Pdynamic,ℓ,h ←

∑M
m=1 αm,ℓ,h(qℓ,h)U

+
m,ℓ,h,:,:K(U+

m,ℓ,h,:,:K)⊤

9: Store Pdynamic,ℓ,h for use in the hook.
10: end for
11: Hook applied to each selected (ℓ, h) (registered per layer ℓ; ℓ is fixed within the hook).
12: Input: K∈RB×T×H×d, mask m
13: Note: For brevity we omit the explicit layer index on K.
14: for b=1..B, t=1..T, h=1..H do
15: if mb,t=1 then
16: ∆←g · Pdynamic,ℓ,h K[b, t, h, :]
17: K[b, t, h, :]←K[b, t, h, :] + ∆
18: return K to the attention computation
19: Register the hook for selected (ℓ, h) before generation and remove it afterwards.

E EMPIRICAL EVIDENCE FOR KEY REPRESENTATION SHIFTS

To provide empirical evidence that key representations shift with relevance, we conduct a qualitative
analysis. Using the Qwen3-1.7B-Base model (28 layers, 8 heads), we extract the key embeddings
corresponding to the same token spans under both positive and negative prompts for each (layer,
head) pair. We then apply PCA to jointly project these paired embeddings into two dimensions, and
visualise the result using a combination of scatter plots and directed arrows. Each arrow originates
from a negative key and points to its corresponding positive key, capturing the pairwise representa-
tional shift induced by changing question relevance. To summarise the overall trend, we also plot
the mean shift vector across all pairs. Figure 6 presents selected heads that show more consistent
directional shifts. Each plot visualises 26 key embedding pairs corresponding to shared token spans,
extracted from 10 positive–negative prompt pairs.

F DETAILS OF STANDARD BENCHMARKS

We evaluate our method on three established benchmarks adapted from the PASTA frame-
work (Zhang et al., 2024). We introduce significant improvements to the evaluation protocols, such
as case-insensitive scoring, to ensure a more robust assessment. The JSON Formatting task was
omitted as modern models achieve near-perfect performance, rendering it less useful for discrimi-
nating capabilities.

F.1 COUNTERFACT

The COUNTERFACT benchmark (Meng et al., 2022) evaluates an LLM’s ability to prioritise new
contextual information over its pre-trained knowledge.

Task Format. The model receives input structured as: “Previously, {s r oold}. Currently,
{s r onew}. {question}.” The challenge arises because models often default to pre-trained asso-
ciations rather than attending to the new, contradictory information provided in the context.
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Figure 6: Pairwise key embedding shifts across different (layer, head) pairs in Qwen3-1.7B-Base
(28 layers, 8 heads). Each plot visualises the PCA projection of key representations under positive
and negative prompts for 26 shared token spans, extracted from 10 positive-negative prompts. Grey
arrows show per-token shifts and the dark blue arrow denotes the average displacement.

Prompt: “Previously, Kevin Garnett is a professional basketball player. Currently, **Kevin
Garnett is a professional baseball player**. Kevin Garnett is a professional ”

Target: The model should generate “baseball player” rather than its pre-trained association
of “basketball player”.

Evaluation Metrics. Following (Zhang et al., 2024), to evaluate the model’s ability to recall the
new fact, we measure its internal preferences at the point of generation, rather than relying on parsing
free-form text. For a given prompt, we provide the model with the entire context and question, and
then assess the log probabilities it assigns to the potential next tokens.

• Efficacy Score (ES): This metric directly measures if the model prioritises the new, correct
fact (onew) over the old, incorrect fact (oold). It is the percentage of times the model assigns
a higher probability to the first token of the new fact than to the first token of the old fact.
A high ES indicates that the model has successfully updated its belief based on the context.

ES =
1

N

N∑
i=1

I[PLLM(o(i)new) > PLLM(o
(i)
old)]

• Paraphrase Score (PS): This metric measures generalisation by calculating the average
Efficacy Score across a collection of human-written paraphrases of the original question.
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F.2 BIASBIOS

The BIASBIOS dataset (De-Arteaga et al., 2019) consists of biographies and was originally designed
to explore gender bias in occupation prediction. The first sentence of each biography explicitly states
the person’s occupation, while subsequent sentences provide potentially distracting career details.

Task Format. Each biography is appended with the prompt “{person} has the occupation of ”,
and the model must predict the correct occupation from a list of 28 candidates.

Prompt: “**Winnie is an American photographer living in New York.** Specialized in fash-
ion photography and portrait, she applies her talent on both humans and animals... Winnie
has the occupation of”

Target: “photographer”

Evaluation Metrics. We measure standard top-1 Accuracy across the 28 candidate occupations,
implementing case-insensitive matching to ensure semantic equivalence is correctly evaluated.

F.3 PRONOUNS CHANGING

This task evaluates instruction-following through linguistic transformation. Models are instructed to
“substitute ‘she’ and ‘he’ with ‘they’.” This requires simultaneously adhering to the transformation
rule while preserving the original content.

Prompt: “Mary is an Associate Professor in the Department of Curriculum Instruction at
St. John University, she holds a doctorate in Reading/Writing/Literacy from the University of
Pennsylvania... **substitute ‘she’ and ‘he’ with ‘they’ and generate the occupation of Mary
after changing pronouns**.”

Target: “Mary is an associate professor... they hold a doctorate... Mary has the occupation
of Associate Professor.”

Enhanced Evaluation Metric. As noted during the public peer review of Zhang et al. (2024)1,
the original metric rewards empty strings for perfectly “converting” zero pronouns, resulting in
misleadingly high scores. To address this, we introduce the Pronoun-weighted Lexical Overlap
Score (P. Score), which unifies instruction-following and content preservation into a single metric.

The P. Score modulates the credit for lexical overlap with the original text by the success rate of
pronoun conversion. It is defined as:

P. Score =
wpron × |Tori ∩ Tgen|

|Tori|
, (15)

where wpron is the fraction of successfully converted pronouns, and Tori and Tgen are the sets of non-
pronoun content tokens from the original and generated texts, respectively. This ensures that empty
generations receive a score of zero and that content preservation is only credited when instruction-
following occurs. We evaluate two variants: one (P. Score) targeting core subject pronouns (“she”,
“he”) and another (A. P. Score) targeting a complete set of gendered pronouns (“she”, “he”, “her”,
“him”, “hers”, “his”, “herself”, “himself”).

G TECHNICAL SETUP

This appendix section details the hyperparameters used for the SEKA and AdaSEKA experiments.
For the CounterFact and Bias in Bios benchmarks, we performed a grid search to tune the hyperpa-
rameters on a validation set of 500 samples (indices 4500–4999), following the experimental setup

1https://openreview.net/forum?id=xZDWO0oejD&noteId=3kDI7QRqSI
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of PASTA (Zhang et al., 2024). The final evaluation was then conducted on the test set (indices
5000–10000). For the Pronoun Changing task, hyperparameters were tuned on a separate small
development set. All experiments across all models used greedy decoding.

The standard SEKA method requires tuning four hyperparameters: the variance threshold for pro-
jection construction (γ), the relevance-sensitivity threshold for KV-head selection (δmin) and the
positive/negative steering gains (g+ and g−). The AdaSEKA framework simplifies this process,
requiring only the tuning of the KV-head selection threshold (δmin) and a single steering gain coeffi-
cient (g). The selected hyperparameters for each model and task are provided in Table 7.

Table 7: Hyperparameters for SEKA and AdaSEKA methods. SEKA uses the variance threshold
(γ), KV-head selection threshold (δmin), positive gain (g+), and negative gain (g−). AdaSEKA uses
the KV-head selection threshold (δmin) and steering gain (g).

SEKA AdaSEKA

Model Task γ δmin g+ g− δmin g

Qwen3-4B-Base
CounterFact 0.960 0.13 1.56 0.00 0.1 3.0
Bias in Bios 0.998 0.12 1.00 0.80 0.1 0.5
Pronoun Changing 0.880 0.22 0.16 0.00 0.5 0.6

Qwen3-8B-Base
CounterFact 0.850 0.12 2.40 0.00 0.1 3.0
Bias in Bios 0.998 0.12 0.60 0.30 0.1 0.5
Pronoun Changing 0.900 0.20 0.19 0.00 0.5 0.6

Qwen3-14B-Base
CounterFact 0.870 0.10 2.42 0.00 0.1 3.0
Bias in Bios 0.990 0.15 0.60 0.30 0.3 1.0
Pronoun Changing 0.880 0.23 0.16 0.00 0.6 0.6

Gemma-3-4B
CounterFact 0.990 0.60 2.00 0.00 0.2 3.0
Bias in Bios 0.800 0.12 0.80 0.00 0.2 0.8
Pronoun Changing 0.800 0.20 0.40 0.00 0.4 1.0

Gemma-3-12B
CounterFact 0.990 0.50 1.00 0.00 0.1 -5.0
Bias in Bios 0.994 0.00 0.40 0.00 0.7 0.5
Pronoun Changing 0.700 0.40 -0.50 0.00 0.5 -0.4

Hyper-parameters Sensitivity. To explore SEKA’s sensitivity to its hyper-parameters, we con-
duct an experimental analysis by varying each parameter independently while keeping all oth-
ers fixed at their optimal configurations on the validation set (Table 7). We randomly select
500 test samples across the three benchmark tasks and adapt a one-at-a-time sweep over the
following ranges: γ ∈ {0.75, 0.80, 0.85, 0.90, 0.95}, δmin ∈ {0.10, 0.20, 0.30, 0.40, 0.50, 0.60},
g+ ∈ {0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0}, and g− ∈ {0.00, 0.20, 0.40, 0.60, 0.80}.
Three findings are observed from the results in Figure 7:

• δmin and g+ are the most influential. These parameters determine which heads are steered
and the strength of amplification. Performance drops when too few or too many heads
(depending on the tasks) are selected or when the positive gain is either too small to steer
effectively or too large, which leads to over-amplification and degradation.

• Models from the same family show similar trends. Qwen3-4B and Qwen3-8B display
nearly identical sensitivity patterns on CounterFact, both favouring low δmin and showing
stability across γ. Gemma 3 models exhibit higher variance with respect to γ.

• Task characteristics differ across models. Stability patterns are task-model dependent.
For example, Gemma-3-4B shows pronounced variability on PronChange at higher g+ val-
ues, whereas CounterFact remains comparatively stable. In contrast, both Qwen3 models
maintain strong robustness on BiasBios and PronChange but are noticeably more sensitive
on CounterFact. These differences suggest that tasks requiring factual override (Coun-
terFact) and tasks requiring instruction-following (PronChange) stress models in different
ways, resulting in varying sensitivity.
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Figure 7: Sensitivity of SEKA to hyper-parameters across three benchmark tasks. Each curve varies
a single hyper-parameter while keeping others fixed at their optimal settings on the validation set.

H MECHANISTIC INSIGHT VIA ATTENTION VISUALISATION

To illustrate SEKA’s effect on model behaviour, we visualise the mean attention across all heads
in selected layers for a CounterFact data sample: “Previously Patrick Roy professionally plays the
sport hockey. Currently Patrick Roy **professionally plays the sport basketball**. Patrick Roy is a
professional ”. As shown in Figure 8, before SEKA is applied, the model’s attention to the ma-
nipulated subspan (“was employed in Oslo”) is low, with little focus on the relevant passage. After
SEKA steering, attention in the affected layers becomes more concentrated on the target subspan,
clearly demonstrating SEKA’s ability to selectively and effectively redirect model attention. This
targeted effect aligns with the observed accuracy gains on benchmark tasks.
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Figure 8: Layer-wise mean attention (all heads) in Qwen3-4B-Base at selected layers for the Coun-
terFact data sample, shown before and after SEKA is applied.
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I COMPLETE RESULTS OF PASTA WITH DIFFERENT CONFIGURATIONS

In the main results (Table 2), we reported the strongest performance for the PASTA baseline to
ensure a fair comparison. For completeness, Table 8 provides a detailed breakdown of PASTA’s per-
formance across three different head-selection configurations. The first configuration replicates the
original head search method, which identifies the top-k performing heads by individually evaluating
the steering effect of every attention head (Zhang et al., 2024). The other two configurations explore
a hybrid approach by combining SEKA-style head selection with PASTA’s attention steering. To
address the misalignment between SEKA’s key-value head selection and PASTA’s attention head
steering, we test two strategies. The first is applying the SEKA selection computation directly on
the outputs of the attention heads. The second uses the results of the key-value head selection and
applies them to attention heads via an interleaved repetition as the grouped-query attention mecha-
nisms. For both hybrid methods, the selection criterion follows the SEKA methodology.

Table 8: Complete PASTA results with different configurations: (1) using SEKA’s KV-head con-
figuration (runtime 1–2 minutes), (2) using attention head configuration transformed from SEKA’s
KV-heads (1–2 minutes), and (3) using PASTA’s original head-search routine (≈ 2 hours).

Model PASTA Configuration CounterFact Bias in Bios Pronoun Changing

ES PS Acc. P. Score A. P. Score

Qwen3-4B-Base
SEKA KV-heads 83.62 80.43 89.58 55.40 54.08
Transformed attention heads 82.60 83.02 79.34 95.82 94.64
Original head-search 97.16 96.03 87.84 47.20 47.20

Qwen3-8B-Base
SEKA KV-heads 82.08 71.72 86.32 62.91 61.44
Transformed attention heads 78.20 79.69 77.30 98.86 98.72
Original head-search 92.70 91.68 81.04 82.27 86.35

Qwen3-14B-Base
SEKA KV-heads 69.52 63.31 85.52 85.53 85.53
Transformed attention heads 50.06 61.01 74.98 78.79 84.57
Original head-search 76.84 66.33 88.46 90.98 90.94

Gemma-3-4B
SEKA KV-heads 55.66 37.05 71.42 67.39 66.43
Transformed attention heads 78.36 59.53 82.58 21.89 21.65
Original head-search 74.28 52.96 78.02 16.09 15.99

Gemma-3-12B
SEKA KV-heads 68.30 65.76 94.72 65.45 65.13
Transformed attention heads 68.30 65.76 94.72 65.67 65.25
Original head-search 62.68 71.72 76.24 68.47 68.01

J QUALITATIVE EXAMPLES

J.1 COUNTERFACT EXAMPLES

Examples in Table 9 and 10 illustrate SEKA’s ability to steer the model towards newly provided
factual information in the prompt, overriding its pre-trained knowledge.

Table 9: CounterFact Example 1: Overriding a known location.
Prompt

Previously David Sainsbury, Baron Sainsbury of Turville used to work in London. Currently David
Sainsbury, Baron Sainsbury of Turville used to work in Berlin. After 15 years of work, he
published Pillboxes in 1985. David Sainsbury, Baron Sainsbury of Turville took up work in

Model Generation Correct?

Gemma3-4B London ✗
SEKA-Gemma3-4B Berlin ✓
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Table 10: CounterFact Example 2: Overriding a known job title.
Prompt

Previously Jean Baptiste Pompallier holds the position of bishop. Currently Jean Baptiste Pom-
pallier holds the position of cardinal. Jean Baptiste Pompallier has the position of

Model Generation Correct?

Gemma3-4B bishop ✗
SEKA-Gemma3-4B cardinal ✓

J.2 BIAS IN BIOS EXAMPLES

Examples shown in Table 11 and 12 demonstrate SEKA’s ability to focus the model’s attention on
the correct, highlighted sentence in a biography, ignoring distracting information.

Table 11: Bias in Bios Example 1: Correcting a prediction.
Prompt

Tania is an Illinois poet who has published one chapbook... and two full-length collections. Her
most recent book... is divided into ten sections... Its predecessor Simple Weight is also concerned
with the Biblical narrative... Barbara Crooker said of that collection, ”The poems have weight
emotional, spiritual, political but are anything but simple.”.Tania has the occupation of a/an

Qwen3-4B (Original) SEKA-Qwen3-4B

Top Prediction journalist poet
Target poet poet

Table 12: Bias in Bios Example 2: Improving confidence in the correct answer.
Prompt

Michelle, PhD is an Adjunct Assistant Professor in the Emory Department of Psychiatry and
Behavioral Sciences. She received her Ph.D. in 2003 from Emory University. Her areas of expertise
include intergenerational processes of risk and resilience... She supervises postdoctoral residents...
Michelle has the occupation of a/an

Qwen3-4B (Original) SEKA-Qwen3-4B

Top Prediction psychologist psychologist
Target professor professor

LogProb of Target (“professor”) -16.45 -14.28 (Improved)

J.3 PRONOUNS CHANGING EXAMPLES

Tables 13 and 14 demonstrate how SEKA addresses specific failures in following instructions. While
the original models generally perform well in this task (over 0.9 P. Score), they occasionally make
errors. SEKA can improve performance in certain instances.

K PROJECTION SAMPLE EFFICIENCY ANALYSIS

To explore how varying data quantity of synthetic samples affect the quality of learned subspace rep-
resentations, we conduct an analysis on the end-to-end performance on the three tasks in the standard
benchmark using projections extracted from different number of synthetic samples for SEKA.

As shown in Figure 9, SEKA is generally data efficient across models and tasks. Performance
typically stabilises once roughly 50 synthetic samples are used, though the exact threshold depends
on the task, architecture, and model size.

More samples do not always yield higher peak performance, but they consistently produce more
stable behaviour. With only a few samples, projections can overfit to the synthetic pairs and intro-
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Table 13: Pronouns Changing Example 1.
Prompt

Jason is an assistant professor of English... For the aforementioned text, substitute ‘she’ and ‘he’
with ‘they’ and generate the occupation of Jason after changing pronouns.

Qwen3-4B Generation (Incorrect)

Jason is an assistant professor of English and as well as the coordinator of digital writing at Miami
University of Ohio. He received his PhD from Ohio State University in English with a focus
on rhetoric, composition, and literacy. His most current publication is “Re-Inventing Invention:
A Performance in Three Acts.” He is also a member of the Digital Writing Collaborative and a
member of the Computers, Research, and Pedagogy committee.

SEKA-Qwen3-4B Generation (Corrected)

Jason is an assistant professor of English and as well as the coordinator of digital writing at Miami
University of Ohio. They received their PhD from Ohio State University in English with a focus

on rhetoric, composition, and literacy. Their most current publication is “Re-Inventing Invention:
A Performance in Three Acts.” They are also a member of the Digital Writing Collaborative and a
member of the Computers, Research, and Pedagogy committee.

Table 14: Pronouns Changing Example 2.
Prompt

Anna, JD, MA, LPC, is a depth psychotherapist in Houston, Texas... She holds degrees in philoso-
phy, law, and clinical psychology... For the aforementioned text, substitute ‘she’ and ‘he’ with
‘they’ and generate the occupation of Anna after changing pronouns.

Qwen3-4B Generation (Incorrect)

Anna, JD, MA, LPC, is a depth psychotherapist in Houston, Texas, with emphasis and training
in Jungian psychology. She holds degrees in philosophy, law, and clinical psychology. She is a
frequent lecturer/teacher at The Jung Center, recently teaching their two-year extensive introduction
to Jung and analytical psychology.

SEKA-Qwen3-4B Generation (Corrected)

Anna, JD, MA, LPC, is a depth psychotherapist in Houston, Texas, with emphasis and training in
Jungian psychology. They hold degrees in philosophy, law, and clinical psychology. They are a
frequent lecturer/teacher at The Jung Center, recently teaching their two-year extensive introduction
to Jung and analytical psychology.

duce unpredictable variance. Larger sample sizes mainly reduce this variance even when accuracy
plateaus.

Two additional observations emerge when breaking down the results. First, models within the
same family display similar behaviour patterns. For Qwen3 models, CounterFact stabilises rela-
tively early, while Gemma3 models, especially Gemma3-12B, require more samples for the same
task. BiasBios and Pronouns Changing tend to stabilise faster across most settings. Second, though
family-level similarities are observed, model size still introduces noticeable differences. Qwen3-8B
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Figure 9: The performance of SEKA with varying numbers of synthetic samples used for learning
projections across different models and tasks.
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is the clearest example: both Pronoun Changing and BiasBios fluctuate when fewer than 50 samples
are used but become stable afterwards, but this fluctuation is not observed in Qwen3-4B.

L COMPLETE RESULTS FOR δMIN THRESHOLD ON LOST-IN-THE-MIDDLE

As noted in Section 5.2, the optimal KV-head selection threshold (δmin) can vary with model size.
Figure 10 illustrates the effect of varying this threshold on the performance of the Qwen3-4B and
Qwen3-14B models.
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Figure 10: Exact match scores on the lost-in-the-middle task when applying SEKA to the middle
region with different δmin thresholds for Qwen3-4B and Qwen3-14B.

M THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs as general-purpose tools to refine the writing and debug the code for this paper. The
LLMs were not used for research ideation or to generate any significant portion of the text. The
authors take full responsibility for the content of this paper.
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