

000 001 002 003 004 005 SPECTRAL ATTENTION STEERING FOR PROMPT HIGH- 006 LIGHTING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Steering a large language model’s attention towards user-specified highlighted text is a critical capability. Existing prompt highlighting methods are incompatible with modern efficient attention mechanisms like Flash Attention due to their reliance on post-hoc matrix editing. We introduce Spectral Editing Key Amplification (SEKA), a training-free steering method that tackles this by directly editing key embeddings before attention computation. SEKA learns universal relevance subspaces offline via spectral decomposition. We extend this to Adaptive SEKA (AdaSEKA), a query-adaptive variant that uses a training-free routing mechanism to dynamically combine multiple expert subspaces based on the prompt’s semantic intent. Our experiments show both methods significantly outperform strong baselines on standard steering benchmarks while adding much lower latency and memory overhead, ensuring full compatibility with optimised attention.

1 INTRODUCTION

The ability to precisely guide the behaviour of large language models (LLMs) is paramount as they are increasingly deployed in high-stakes domains. This broad field of model steering encompasses various techniques, from activation steering, which aims to control high-level semantic attributes like style or factual recall by intervening in MLP layers (Subramani et al., 2022; Turner et al., 2023; Qiu et al., 2024; Wang et al., 2025; Stolfo et al., 2025; Turner et al., 2025), to attention steering, which operates at a more granular level to direct the model’s focus to specific tokens within a prompt. This paper focuses on the latter, where prompt highlighting is one of the key applications. However, current state-of-the-art methods, such as PASTA (Zhang et al., 2024), operate by editing the attention score matrix after it has been computed. This post-hoc manipulation creates a critical bottleneck: it requires computing the full attention matrix, making these methods incompatible with modern, IO-aware implementations like Flash Attention (Dao et al., 2022; Dao, 2024) that are essential for efficient processing. This architectural limitation, coupled with the need for costly, task-specific searches to identify which attention heads to steer, makes them less practical.

In this work, we propose a paradigm shift. Instead of editing the output of the attention mechanism, we intervene on its input. We introduce Spectral Editing Key Amplification (SEKA), a novel, training-free framework that steers attention by directly modifying key vectors before the attention scores are calculated. Our core insight is that we can learn a universal “relevance subspace” for a given task by applying spectral decomposition to key embeddings derived from contrastive prompts. These learned directions are then used to construct a projection matrix that amplifies the relevant features of highlighted keys via a simple, geometrically interpretable transformation: $k' = k + gPk$.

Additionally, we propose Adaptive SEKA (AdaSEKA), an advanced variant that learns a bank of task-specific “expert” projections (e.g., for factual recall versus instruction following). At inference time, AdaSEKA uses a computationally cheap, training-free routing mechanism to create a dynamic, query-aware steering operator by blending these experts based on the prompt’s semantic intent. Our method is fully compatible with Flash Attention (Dao et al., 2022; Dao, 2024) as it operates directly on the key embeddings with negligible computational overhead.

Our experiments confirm the effectiveness of this approach. Both SEKA and AdaSEKA achieve superior results on standard benchmarks for knowledge conflicts, occupation extraction, and instruction following. Furthermore, AdaSEKA’s query-adaptive routing mechanism demonstrates superior performance by dynamically tailoring the steering to the prompt’s semantic intent. Crucially, we

show that these performance gains are achieved with negligible overhead. SEKA adds only 0.03s of latency per sample, in stark contrast to comparable methods like PASTA which incur a +1.03s inference time and nearly double the memory usage.

2 PROBLEM DEFINITION AND MOTIVATIONS

In this section, we formalise the problem of *prompt highlighting* as attention bias and introduce our spectral attention steering approach, motivated by the limitations of prior methods.

Problem Definition. Given a prompt $\mathbf{x} = (x_1, \dots, x_T)$ with a subset of tokens $\mathcal{H} \subset \{1, \dots, T\}$ marked as *highlighted* (e.g., surrounded by special markers such as `**`), our goal is to steer the model’s attention so that these tokens receive increased focus from relevant queries. In standard multi-head attention, the unnormalised attention score between query i and key j is $\text{Attn}(i, j) = \frac{\mathbf{q}_i^\top \mathbf{k}_j}{\sqrt{d_k}}$, where $\mathbf{q}_i, \mathbf{k}_j \in \mathbb{R}^{d_k}$ are the query and key vectors, and d_k is the head dimension.

Objective. We aim to amplify the attention assigned to highlighted tokens by introducing an additive, controllable term to the attention score for each (i, j) where $j \in \mathcal{H}$: $A'_{ij} = A_{ij} + \Delta_{ij}$, where Δ_{ij} is designed to selectively boost the attention towards user-specified highlighted tokens.

Motivation. Existing approaches typically modify attention after it has been computed. For example, PASTA (Zhang et al., 2024) rescales rows of the attention matrix as shown in equation 1, where C_i is a row normalisation factor and $\alpha > 1$ scales attention to highlighted tokens.

$$[T(\mathbf{A})]_{ij} = \begin{cases} \alpha \frac{A_{ij}}{C_i}, & \text{if } j \in \mathcal{H} \\ \frac{A_{ij}}{C_i}, & \text{otherwise} \end{cases} \quad (1)$$

Similarly, positional calibration methods such as Found-in-the-Middle (Hsieh et al., 2024) subtract a baseline from the positional attention bias. Let x_k denote the position of the k -th token, and $\text{Attn}_{\text{ori}}(x_k)$ the original positional bias. The calibrated bias is $\text{Attn}_{\text{calibrated}}(x_k) = \text{Attn}_{\text{ori}}(x_k) - \text{Attn}_{\text{baseline}}(x_k)$, where $\text{Attn}_{\text{baseline}}(x_k)$ is estimated independently of content relevance.

Both strategies require explicit storage of the full attention matrix, which is incompatible with memory-efficient implementations such as Flash Attention (Dao et al., 2022; Dao, 2024). Moreover, methods like PASTA often rely on costly head search to decide which attention heads to steer. Finally, as we demonstrate in Appendix E, key embeddings of the same token exhibit consistent shifts when they are relevant/irrelevant to the contexts in certain heads. These motivate our projection-based approach, which edits key embeddings before attention is computed: $\mathbf{k}'_j = \mathbf{k}_j + g\mathbf{P}\mathbf{k}_j$, where \mathbf{P} is a projection matrix (defining a relevance subspace per key-value head), and g is a scaling coefficient. This preserves compatibility with efficient attention implementations while providing a geometrically interpretable mechanism for steering attention towards highlighted tokens.

3 SPECTRAL ATTENTION STEERING FOR PROMPT HIGHLIGHTING

As shown in Figure 1, we propose a new method, *Spectral Editing Key Amplification (SEKA)*, and its query-adaptive variant, *AdaSEKA*. Both methods achieve prompt highlighting by directly editing key embeddings before the attention computation. The core mechanism of SEKA is inspired by the Spectral Editing of Activations (SEA) framework (Qiu et al., 2024), adapting it from semantic-level activation steering to the token-wise attention steering required for prompt highlighting.

3.1 SPECTRAL LEARNING OF RELEVANCE-ALIGNED PROJECTIONS (OFFLINE)

To learn relevance-sensitive projections, we first obtain token-level key embeddings under three conditions: (1) *neutral* (context only), (2) *positive* (context aligned with a relevant query), and (3) *negative* (context paired with an irrelevant query). The construction of such synthetic triplets is described in Appendix A.

Figure 1: An overview of SEKA and AdaSEKA. x : context; h : key embedding; Ω : cross-covariance; U : left singular vectors; S : singular values; g : gain coefficient. SEKA applies fixed gains, while AdaSEKA uses the query to compute dynamic steering weights.

From these key embeddings, denoted h , h^+ , and h^- respectively, we compute cross-covariance matrices for each transformer layer ℓ and key-value head h : $\Omega_{\ell,h}^+ = \frac{h^T h^+}{n}$, $\Omega_{\ell,h}^- = \frac{h^T h^-}{n}$, where n is the number of sampled tokens. Singular value decomposition (SVD) is then applied: $\Omega_{\ell,h}^+ = U_{\ell,h}^+ S_{\ell,h}^+ V_{\ell,h}^{+\top}$, $\Omega_{\ell,h}^- = U_{\ell,h}^- S_{\ell,h}^- V_{\ell,h}^{-\top}$.

In SVD, $S_{\ell,h}^+$ and $S_{\ell,h}^-$ represent the singular values of the positive and negative cross-covariance matrices, respectively. These singular values indicate the amount of variance captured by each component of the projection. The larger the singular value, the more significant the corresponding singular vector (i.e., projection direction) is in explaining the variance of the token key embeddings.

In equation 2, for the positive projection $P_{\ell,h}^+$, we use the *top* singular vectors corresponding to the largest singular values, which capture directions most associated with relevant (highlighted) features. For the negative projection $P_{\ell,h}^-$, we use the *least-significant* singular vectors, associated with the smallest singular values, to target directions least associated with relevance.

$$P_{\ell,h}^+ = U_{\ell,h,:,:k^+}^+ (U_{\ell,h,:,:k^+}^+)^{\top}, \quad P_{\ell,h}^- = U_{\ell,h,:,:k^-}^- (U_{\ell,h,:,:k^-}^-)^{\top}, \quad (2)$$

where k^+ and k^- are chosen such that they capture at least a proportion γ of the singular value variance:

$$\frac{\sum_{i=1}^{k^+} S_{\ell,h,i}^+}{\sum_{i=1}^{d_k} S_{\ell,h,i}^+} \geq \gamma, \quad \frac{\sum_{i=1}^{k^-} S_{\ell,h,i}^-}{\sum_{i=1}^{d_k} S_{\ell,h,i}^-} \geq \gamma. \quad (3)$$

The threshold γ is a hyperparameter that controls how much of the variance in the data we wish to retain when creating the projection matrices. By selecting the top k^+ singular vectors for the positive covariance and k^- for the negative covariance, we capture the most relevant directions in the key embeddings for each type of projection. The learned projectors $\{P_{\ell,h}^+, P_{\ell,h}^-\}$ are stored per layer and head, enabling fine-grained steering at inference time.

3.2 SPECTRAL EDITING FOR HIGHLIGHTED TOKENS (INFERENCE)

During inference, SEKA injects the learned projections into key embeddings before attention scores are computed. For clarity, we omit the explicit (ℓ, h) indices on key vectors k_j and queries q_i , although they are in practice layer- and head-specific. For each token key $k_j \in \mathbb{R}^{d_k}$ at layer ℓ and head h , the edited embedding is defined as:

$$k'_j = k_j + \frac{g^+ \cdot P_{\ell,h}^+ k_j + g^- \cdot P_{\ell,h}^- k_j}{2}, \quad (4)$$

where $P_{\ell,h}^+, P_{\ell,h}^- \in \mathbb{R}^{d_k \times d_k}$ are the selected projection matrices and g^+, g^- are two independently adjustable scalars controlling the positive and negative steering gains. All vectors (e.g., k_j , q_i ,

x) are column vectors unless otherwise specified. This adjustment modifies the attention logits as equation 5, where $\mathbf{q}_i \in \mathbb{R}^{d_k}$ is the i -th query vector. It is algebraically equivalent to augmenting the original attention score matrix \mathbf{A} with a low-rank relevance bias matrix \mathbf{B} .

$$\text{Logits}_{ij} = \frac{\mathbf{q}_i^\top \mathbf{k}_j}{\sqrt{d_k}} + \frac{\mathbf{q}_i^\top \left(\frac{g^+ \cdot \mathbf{P}_{\ell,h}^+ \mathbf{k}_j + g^- \cdot \mathbf{P}_{\ell,h}^- \mathbf{k}_j}{2} \right)}{\sqrt{d_k}} = \mathbf{A}_{ij} + \mathbf{B}_{ij}, \quad (5)$$

Thus, SEKA can be interpreted as adding a key-dependent term to the attention scores, amplifying each token’s the directions aligned with the relevance subspace (detailed in Appendix C). Unlike methods that directly manipulate the attention matrix, SEKA achieves equivalent modulation by editing the key vectors themselves, offering a more structured and interpretable mechanism. Moreover, because SEKA operates entirely on key representations prior to attention computation, it requires no access to or storage of the attention matrix, making it inherently compatible with memory-efficient implementations like Flash Attention (Dao et al., 2022; Dao, 2024).

3.3 VARIANT: QUERY-DRIVEN ADAPTIVE SEKA

While the standard SEKA framework provides effective token-level attention steering, practical deployment often requires hyperparameter tuning across different tasks and model families due to the static projections. To address this limitation and reduce the need for manual configuration, we introduce *Adaptive SEKA (AdaSEKA)*, which automatically selects and combines expert projections based on query-specific relevance signals.

Multi-Expert Projection Learning. We extend the projection learning framework to accommodate multiple domain-specific experts. For each expert $m \in \{1, \dots, M\}$, we constructed samples from datasets \mathcal{D}_m for different tasks. Each expert learns its own set of positive SVD components $\{\mathbf{U}_{m,\ell,h}^+, \mathbf{S}_{m,\ell,h}^+, \mathbf{V}_{m,\ell,h}^+\}$ following the standard SEKA procedure. This process results in a set of SVD components for each expert, layer, and head, which can be represented as a 5D tensor ($\mathbf{U}^+ \in \mathbb{R}^{M \times L \times H \times d_k \times d_k}$), where L is the number of layers, and H is the number of heads.

Query-Adaptive Expert Routing. At inference time, we extract the query vector $\mathbf{q}_{l,h}$ at layer ℓ and head h of the last token in the prompt, as the last token serves as the global aggregator of prompt information and hugely influences the downstream generation (Barbero et al., 2024; Qiu et al., 2024). We then compute dynamic coefficients that determine the contribution of each expert:

$$\alpha_{m,\ell,h}(\mathbf{q}_{l,h}) = \frac{\sum_{k=1}^K (\mathbf{q}_{l,h}^\top \mathbf{u}_{m,\ell,h}^{+(k)}) \cdot \sigma_{m,\ell,h}^{+(k)}}{\max_m \left| \sum_{k=1}^K (\mathbf{q}_{l,h}^\top \mathbf{u}_{m,\ell,h}^{+(k)}) \cdot \sigma_{m,\ell,h}^{+(k)} \right|}, \quad (6)$$

where $\sigma_{m,\ell,h}^{+(k)}$ is the corresponding k -th singular value, and K is the number of top singular components used (typically $K = 5$).

This formulation captures the alignment between the query and each expert’s principal projection directions, weighted by the importance (singular values) of those directions. The denominator serves as the normalisation factor, ensuring that the coefficients are consistently scaled across all experts while maintaining the sign of the alignment score.

The final projection matrix at layer ℓ and head h is constructed as a weighted combination of expert projections: $\mathbf{P}_{\text{dynamic},\ell,h}(\mathbf{q}_{l,h}) = \sum_{m=1}^M \alpha_{m,\ell,h}(\mathbf{q}_{l,h}) \cdot \mathbf{U}_{m,\ell,h,:,:K}^+ (\mathbf{U}_{m,\ell,h,:,:K}^+)^{\top}$, where $\mathbf{U}_{m,\ell,h,:,:K}^+$ denotes the first K columns of $\mathbf{U}_{m,\ell,h}^+$, corresponding to the most significant singular vectors.

This approach reconstructs projection matrices on-demand using only the top- K components, providing computational efficiency whilst enabling automatic expert selection. The key transformation during inference becomes: $\mathbf{k}'_j = \mathbf{k}_j + g \cdot \mathbf{P}_{\text{dynamic},\ell,h}(\mathbf{q}_{l,h}) \mathbf{k}_j$.

Crucially, AdaSEKA offers several practical advantages: (1) **Reduced configuration effort:** Automatic expert routing reduces the number of hyper-parameters tuning for different tasks and models

Figure 2: Heatmaps of the average per-token ℓ_2 distance between positive and negative key embeddings across all KV heads and layers for four Qwen3 model sizes. Higher values (green) indicate greater separation between **positive** and **negative** key representations.

(shown in Appendix G). (2) **Modular deployment**: New experts can be integrated without recalculating existing ones. (3) **Interpretable routing**: Expert selection is based on explicit query-expert alignment scores. We derive four expert projections from four distinct datasets. The process of constructing data samples for learning these projections is detailed in Appendix B.

3.4 SELECTING RELEVANCE-SENSITIVE KEY-VALUE HEADS

Our steering methods are most effective when applied selectively to KV heads that are naturally sensitive to prompt relevance. We find that for certain heads, the key embedding for a given token span consistently shift in vector space when the question in the prompt is changed from an irrelevant one to a relevant one. We provide qualitative visualisations of this phenomenon in Appendix E. In this section, we formalise a method to quantify this relevance sensitivity across all layers and heads to inform our selection strategy.

Figure 8 shows the ℓ_2 distance between positive and negative key embeddings, averaged over all answer tokens from our synthetic dataset (as defined in Appendix A). This variation is examined across different layers and heads of the Qwen3 model in various sizes.

We observe that the distinction between relevant and irrelevant prompts is not uniform: larger norm values (green) consistently emerge in the mid-to-late layers, while early layers and a subset of heads display minimal shift (red), suggesting the retrieval behaviour are less likely to happen at those layers. This finding is strongly aligned with recent mechanistic analyses. Michel et al. (2019); Voita et al. (2019); Clark et al. (2019) highlight that attention modules display various token-attending patterns across different heads. Qiu et al. (2025) demonstrate that retrieval effectiveness relies on only a subset of attention heads, identified via probing and relevance filtering. Wu et al. (2025) further show that this sparse set of “retrieval heads” are almost exclusively located in the mid-to-late layers of the transformer. These heads are intrinsic to the base models, remain consistent after fine-tuning, and are dynamically activated according to the context. Therefore, motivated by this alignment, we restrict projection to only those (layer, head) pairs where the empirical ℓ_2 difference between positive and negative key embeddings exceeds a threshold. This selective approach ensures that attention steering is concentrated on components empirically associated with retrieval behaviour, while leaving other heads unaffected. In this way, we amplify relevance signals only where necessary, minimising unintended influence on unrelated model components.

Formally, for each layer ℓ and head h , let S denote the set of all answer tokens (across all samples in the data), with $|S| = N$. The average per-token ℓ_2 distance is computed as $D_{\ell,h} = \frac{1}{N} \sum_{i=1}^N \|\mathbf{h}_{\ell,h,i}^+ - \mathbf{h}_{\ell,h,i}^-\|_2$, where $\mathbf{h}_{\ell,h,i}^+$ and $\mathbf{h}_{\ell,h,i}^-$ are the positive and negative key embeddings for token i in S . Projection is applied only if $D_{\ell,h} \geq \delta_{\min}$, where δ_{\min} is a tunable hyperparameter.

4 EXPERIMENTAL SETUP

We consider SEKA particularly useful in scenarios that require emphasis or highlighting within the prompt. This includes the tasks used to evaluate PASTA (Zhang et al., 2024), which involve (i) handling complex user instructions (e.g., pronoun rewriting), (ii) interpreting lengthy and noisy contexts (e.g., Bias in Bios (De-Arteaga et al., 2019)), and (iii) resolving in-context knowledge conflicts (e.g.,

270 CounterFact (Meng et al., 2022)). In addition, SEKA enables us to invert the typical U-shaped per-
 271 formance observed in the “lost in the middle” setting (Liu et al., 2024) by simply highlighting the
 272 middle of long contexts, thus improving model recall for these challenging positions.
 273

274 4.1 STANDARD BENCHMARKS FOR ATTENTION STEERING 275

276 We follow the standard benchmarks used by Zhang et al., ensuring consistent selection of highlighted
 277 tokens. Table 1 summarises the tasks, prompt formats, and evaluation metrics. The CounterFact task
 278 is based on the COUNTERFACT dataset (Meng et al., 2022), while the remaining two tasks (Bias in
 279 Bios, Pronouns changing) are derived from the BIASBIOS dataset (De-Arteaga et al., 2019), in line
 280 with previous research (Zhang et al., 2024). We enhance the evaluation metric for the Pronouns
 281 changing task to address flaws in the original protocol which can misleadingly reward empty re-
 282 sponse, with the other metrics remaining consistent. Further details, including an introduction to
 283 each benchmark task and the calculation of metrics, are available in Appendix F.
 284

285 Table 1: Summary of standard benchmarks for attention steering. **Bolded tokens** indicate where
 286 attention steering is applied.

287 Task	288 Prompts	289 Metrics
290 Counterfact	291 Previously, <i>[old fact]</i> . Currently, [new fact] . 292 <i>[question]</i> .	Efficacy score (ES), Para- 293 phrase score (PS)
294 Bias in Bios	295 [person’s occupation] . <i>[career history, may 296 not directly related to prediction]</i> . [person] 297 has the occupation of a/an _____	Accuracy (Acc.)
298 Pronouns 299 changing	300 <i>[biographical contexts]</i> . Substitute ‘she’ and 301 ‘he’ with ‘they’ and generate the occupation 302 of [person] after changing pronouns.	Pronoun-weighted Lexical 303 overlap Score (P. Score), 304 All-changed P. Score

305 **Benchmark Methods.** We begin by using direct prompting of the original model as a baseline.
 306 Additionally, we include another baseline that incorporates ****** marks around the highlighted context.
 307 For attention steering methods, ****** is solely used to determine the token indices for steering and is re-
 308 moved from the input IDs. We then benchmark our proposed methods, *SEKA* and *AdaSEKA*, against
 309 the existing attention steering method *PASTA* (Zhang et al., 2024). We also compare with *Selective
 310 Prompt Anchoring (SPA)* (Tian & Zhang, 2025), a prompt highlighting method that operates on the
 311 logit distributions of the LLMs. Additionally, we evaluate SEKA with random projections applied
 312 and without the KV heads selector to serve as an ablation study.
 313

314 4.2 U-SHAPE INVERSION IN THE LOST-IN-THE-MIDDLE SETTING

315 To further examine SEKA’s ability to steer model attention to specific regions within a long con-
 316 text, we introduce an additional experiment targeting positional recall in the challenging lost-in-
 317 the-middle setting (Liu et al., 2024). This setting refers to the widely observed phenomenon where
 318 LLMs exhibit strong recall for information presented at the beginning and end of long contexts, but
 319 their performance substantially degrades when the relevant information is located in the middle, re-
 320 sulting in a characteristic U-shaped performance curve. Each of our inputs consists of a long context
 321 comprising 30 passages, where only one gold passage contains the true answer to a given question
 322 and the rest serve as distractors. The position of the gold passage is varied to test the model’s posi-
 323 tional sensitivity. Each input is formatted as: “*Context: \n [P1 Title] \n [P1 Text] ... [P30 Title] \n
 324 [P30 Text] \n\n Question: exl’question’\n Answer:*”

325 Unlike prior work that aims to mitigate this effect, our objective is to directly investigate whether
 326 explicit relevance highlighting via SEKA can invert this U-shaped curve. By steering attention
 327 towards the middle passages, we test if the typical performance trough for mid-context answers can
 328 be transformed into a peak, providing insight into the controllability of positional recall in LLMs.
 329

330 **Metrics.** We use exact match (EM) score as the evaluation metric, following Liu et al. (2024):
 331 a prediction is considered correct if it contains the ground-truth short answer span. To discourage
 332 verbose or off-topic completions, the generated answer is limited to a maximum of 60 tokens.
 333

324
 325 Table 2: Performance on standard benchmarks. **Bold** = best. Underline = second best. We include
 326 two ablation studies for SEKA: “*w/o learn*” uses random projections instead of spectrally learned
 327 ones, and “*w/o learn&filt*” further removes the head filtering mechanism.

328 329 Model	330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347	330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347	330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347				330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347			
			Original	**-marked	PASTA	SPA	SEKA	w/o learn	w/o learn&filt	AdaSEKA
Qwen3-4B	CounterFact (ES)	45.00	57.70	97.16	65.24	99.02	94.96	86.12		98.90
	CounterFact (PS)	45.64	52.12	96.03	57.71	<u>98.61</u>	92.38	86.20		98.72
	Bias in Bios (Acc.)	79.84	82.94	89.58	68.00	<u>91.02</u>	86.62	71.76		91.86
	Pronoun (P. Score)	93.14	<u>95.76</u>	95.82	80.27	95.18	90.42	41.98		94.54
	Pronoun (A. P. Score)	90.52	<u>93.88</u>	94.64	78.19	93.26	88.66	36.95		92.08
Qwen3-8B	CounterFact (ES)	39.04	56.24	92.70	69.26	99.08	96.12	95.18		<u>99.00</u>
	CounterFact (PS)	39.59	49.80	91.68	58.76	<u>98.96</u>	94.74	89.69		98.97
	Bias in Bios (Acc.)	76.08	80.60	86.32	37.02	88.74	87.26	74.90		<u>88.50</u>
	Pronoun (P. Score)	98.00	98.10	<u>98.86</u>	72.61	98.56	98.12	80.53		99.68
	Pronoun (A. P. Score)	97.84	97.84	<u>98.72</u>	74.95	98.26	97.90	80.85		99.52
Qwen3-14B	CounterFact (ES)	37.56	45.52	76.84	84.22	<u>98.92</u>	86.28	95.26		99.00
	CounterFact (PS)	36.12	40.12	66.33	76.11	<u>99.02</u>	88.07	92.02		99.15
	Bias in Bios (Acc.)	85.22	<u>90.94</u>	88.46	57.86	90.28	88.02	88.44		91.22
	Pronoun (P. Score)	98.42	<u>98.86</u>	90.98	91.60	98.66	96.32	88.60		99.88
	Pronoun (A. P. Score)	98.22	<u>98.68</u>	90.94	92.20	98.54	96.36	89.76		99.86
Gemma3-4B	CounterFact (ES)	55.04	<u>57.56</u>	78.36	93.90	<u>98.04</u>	95.14	94.46		98.74
	CounterFact (PS)	47.77	45.82	59.53	91.92	<u>98.83</u>	92.25	91.98		99.05
	Bias in Bios (Acc.)	89.90	91.00	82.58	48.02	<u>92.42</u>	85.60	77.16		92.92
	Pronoun (P. Score)	41.34	38.86	67.39	76.05	<u>81.53</u>	53.58	51.78		93.76
	Pronoun (A. P. Score)	35.25	32.45	66.43	74.45	<u>81.11</u>	48.82	51.94		93.58
Gemma3-12B	CounterFact (ES)	45.34	48.72	68.30	<u>93.76</u>	98.86	63.08	60.96		92.48
	CounterFact (PS)	37.21	36.69	71.72	91.24	99.27	50.59	76.37		<u>93.65</u>
	Bias in Bios (Acc.)	91.26	92.90	94.72	46.88	<u>93.04</u>	91.84	90.54		91.14
	Pronoun (P. Score)	93.92	95.78	68.47	86.41	97.70	47.26	55.56		<u>96.88</u>
	Pronoun (A. P. Score)	94.96	<u>96.42</u>	68.01	84.99	97.24	51.24	58.76		95.84

348
 349 **Benchmark Methods.** We compare SEKA against a standard baseline: directly prompting the
 350 base LLM without any intervention, and also *PASTA* (Zhang et al., 2024). On top of this, we apply
 351 SEKA in two configurations: (i) steering only the middle region of the context (specifically passages
 352 4 through 25), and (ii) steering all context passages. Although Hsieh et al. (2024) presents another
 353 potential baseline, we exclude it due to the unavailability of its code implementation.

355 5 RESULTS

356 5.1 STANDARD BENCHMARKS: SEKA PROVIDES EFFICIENT ATTENTION STEERING

360 The main experimental results are presented in Table 2. We tested the Qwen3 model (Yang et al.,
 361 2025) in various sizes, including 4B, 8B, and 14B, as well as the Gemma3 model (Team, 2025) in
 362 sizes of 4B and 12B. For the PASTA baseline, we present its best performance from three configura-
 363 tions to ensure a robust comparison (see Appendix I for full details). Furthermore, specific examples
 364 and the corresponding outputs from both the original model and SEKA are available in Appendix J.

365 The results demonstrate that SEKA and AdaSEKA, are highly effective at steering LLM attention,
 366 generally outperforming both baseline models (ranked among the top two most of the time) and
 367 existing methods across various tasks and model scales. As demonstrated in Section 6, these im-
 368 provements are achieved with significantly lower overhead compared to PASTA and SPA.

369 A primary finding is the efficacy of attention-level interventions on tasks requiring factual recall. On
 370 CounterFact, both SEKA and PASTA achieve near-perfect scores (e.g., 99.02 and 97.16 respectively
 371 for Qwen3-4B), validating the general approach of steering attention for knowledge conflicts, while
 372 the logit-based SPA lags considerably. Within this effective category, our methods consistently hold
 373 a performance advantage. This trend continues in the Bias in Bios task, where SEKA and AdaSEKA
 374 generally secure the top two positions across all models.

375 Performance on the instruction-following Pronoun Changing task is strongly correlated with the
 376 base model’s pretrained sensitivity to simple emphasis markers. For the Qwen3 family, which is
 377 partially responsive to simple markdown emphasis, the “**-marked” baseline is notably strong. This
 378 contrasts with earlier conclusions that LLMs are inherently restricted to processing plain text without

378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431

stylistic cues or emphasis markers (Brown et al., 2020; Wei et al., 2022). However, AdaSEKA still provides further improvement, delivering SOTA performance (e.g., an A. P. Score of 99.52 on Qwen3-8B). The advantage of our methods is most pronounced on the Gemma3-4B which is less responsive to the markdown emphasis. This demonstrates our method’s significant value, especially for smaller models that are less receptive to basic emphasis grammar.

Finally, our ablation studies validate the method’s core components. Using random projections with head filtering (*w/o learn*) proves beneficial but is clearly suboptimal, underscoring the value of our spectral learning approach. Removing both the learned projections and the head-filtering mechanism (*w/o learn&filt*) causes a catastrophic decline in performance. For instance, on the Qwen3-4B Pronoun task, the A. P. Score drops from the original 90.52 to 36.95. This conclusively demonstrates that both learning meaningful relevance subspaces and selectively applying them to the appropriate KV heads are essential for success.

5.2 LOST IN THE MIDDLE

With the setting described in Section 4.2, we highlight two key findings when benchmarking SEKA against baselines and exploring the impact of different δ_{\min} for selecting KV heads.

Figure 3: Exact match scores on the lost-in-the-middle task for Qwen3 models of three different sizes, comparing the original model, PASTA/SEKA applied to the middle region (5th to 25th passages), and PASTA/SEKA applied to all passages.

SEKA Can Invert the U-shape Performance. The results, summarised in Figure 3, reveal two primary findings. First, applying SEKA selectively to the middle passages (positions 5 to 25, which is a very rough range) is highly effective at inverting the canonical U-shaped performance profile: exact match scores at central positions substantially increase, eliminating the typical performance trough for answers located in the middle of long contexts. Second, applying SEKA uniformly across all passages can slightly exacerbate the lost-in-the-middle issue. The most noticeable improvements typically occur at the beginning or end positions, while enhancements in the middle are less pronounced or may even decrease. In contrast, PASTA is less effective for this task. Applying it to either the middle region or the entire context results in performance generally below the original baseline across all model sizes.

SEKA Can Mitigate and Flatten the U-Shape When Applied to Appropriate Number of KV Heads. In this control experiment, we fix the positive and negative steering gain coefficients (g^+ and g^-) at 0.2 and 0.1 respectively, and vary only the threshold δ_{\min} to control the number of steered KV heads. In practice, decreasing δ_{\min} increases the number of steered heads: for example, thresholds of 0.16, 0.165, 0.17, and 0.18 correspond to SEKA being applied on 58, 48, 41, and 31 KV heads for Qwen3-8B-Base, respectively. As shown in Figure 4, with an appropriate threshold δ_{\min} (around 0.165 and 0.17) and steering the middle region, SEKA can flatten the U-shaped performance curve without significantly compromising accuracy at the beginning and end positions. Note that the optimal threshold may vary with model size. Complete results for the 4B and 14B models are provided in Appendix L.

Figure 4: Exact match scores when applying SEKA to the middle region with different threshold δ_{\min} .

432 6 OVERHEAD ANALYSIS

434 A key advantage of our pre-computation approach is its compatibility with optimised mech-
 435 anisms like Flash Attention (Dao et al., 2022; Dao, 2024; Shah et al., 2024). We quan-
 436 tify this by measuring inference overhead on 100 samples (avg. 4362 tokens) from
 437 Section 5.2 using a Qwen3-8B-Base model on a single NVIDIA-GH200-120GB GPU.
 438 As shown in Table 3, the overhead for
 439 SEKA is negligible (+0.03s per sample). This efficiency is particularly notable as,
 440 for a fair comparison with PASTA, we use an aggressive configuration that steers 175
 441 out of 288 available KV heads. In contrast, post-hoc methods incur significant costs.
 442 PASTA’s reliance on editing the full attention matrix makes it incompatible with
 443 Flash Attention, leading to a substantial increase in latency (+1.03s) and memory
 444 usage (+23.12 GB). SPA, while memory-
 445 efficient for single samples, does not support batch processing and is thus the slowest overall. Our
 446 adaptive variant, AdaSEKA, introduces a moderate overhead for its dynamic, query-aware capabili-
 447 ties (+0.27s). However, it remains significantly more efficient than both PASTA and SPA, making it
 448 a far more practical option for steering in long-context scenarios.

454 7 RELATED WORK

456 Research on steering large language models falls into two main paradigms. Activation Steering
 457 (Dathathri et al., 2020; Subramani et al., 2022; Hernandez et al., 2024) guides high-level semantic
 458 outputs by intervening in MLP layers, while Attention Steering, the focus of our work, directs the
 459 model’s focus to specific tokens within the input prompt.

461 **Activation Steering.** This line of work, also known as representation engineering, adds “steering
 462 vectors” to MLP layer activations to control semantic attributes (Zou et al., 2023). Applications
 463 include enhancing honesty and safety (Ravfogel et al., 2020; Burns et al., 2023; Iskander et al.,
 464 2023; Li et al., 2023; Wei et al., 2023; Bhattacharjee et al., 2024; Qiu et al., 2024), controlling style
 465 (Turner et al., 2023; 2025), improving reasoning (Tang et al., 2025), and knowledge editing (Fang
 466 et al., 2025). These methods are distinct from our approach as they target the model’s semantic
 467 output, not the granular focus of its attention mechanism.

469 **Attention Steering.** To address the challenge of LLMs failing to attend to key information in
 470 long contexts (Liu et al., 2024; Meng et al., 2022), prompt highlighting methods intervene post-hoc
 471 on either the attention scores (Zhang et al., 2024) or final logits (Tian & Zhang, 2025). However,
 472 these interventions often introduce significant latency; for instance, editing the full attention matrix
 473 is incompatible with modern optimisations like FlashAttention (Dao et al., 2022; Dao, 2024; Shah
 474 et al., 2024). This efficiency bottleneck motivates the need for pre-computation alternatives that can
 475 steer attention without sacrificing compatibility with optimised architectures.

477 8 CONCLUSION

479 In this paper, we introduced SEKA and its adaptive variant, AdaSEKA, a new class of training-free
 480 attention steering methods that operate by modifying key embeddings before the attention computa-
 481 tion. This pre-attention approach overcomes the core efficiency limitations of prior work, ensuring
 482 full compatibility with optimised implementations. Our experiments confirm that both methods
 483 achieve state-of-the-art results on a range of standard benchmarks, with AdaSEKA’s query-adaptive
 484 routing demonstrating particularly strong performance. These gains are achieved with negligible
 485 overhead, making our work a practical step towards building more controllable and efficient LLMs
 for long-context applications.

486 REPRODUCIBILITY STATEMENT
487488 To ensure the reproducibility of our research, all necessary materials will be made publicly available
489 in a GitHub repository upon acceptance of this paper. This repository will include: (1) the full
490 source code for our proposed methods, SEKA and AdaSEKA; (2) the scripts required to run all
491 experiments; (3) the pre-computed projection matrices used in our evaluations; and (4) the pre-
492 processed versions of the datasets.493 The original datasets used in our evaluation are publicly available and are cited in Section 4. Speci-
494 cally, the BIASBIOS, COUNTERFACT, and “Lost in the Middle” datasets are all distributed under
495 the MIT License. Details regarding the evaluation samples and metrics calculation are provided in
496 Appendix F, while hyperparameters are specified in Appendix G.
497498 REFERENCES
499500 Federico Barbero, Andrea Banino, Steven Kapturowski, Dharshan Kumaran, João Guil-
501 herme Madeira Araújo, Oleksandr Vitvitskyi, Razvan Pascanu, and Petar Velickovic. Trans-
502 formers need glasses! information over-squashing in language tasks. In *Advances in*
503 *Neural Information Processing Systems 38: Annual Conference on Neural Information*
504 *Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15,*
505 *2024, 2024*. URL http://papers.nips.cc/paper_files/paper/2024/hash/b1d35561c4a4a0e0b6012b2af531e149-Abstract-Conference.html.506
507 Amrita Bhattacharjee, Shaona Ghosh, Traian Rebedea, and Christopher Parisien. Towards inference-
508 time category-wise safety steering for large language models. In *Neurips Safe Generative AI*
509 *Workshop 2024, 2024*. URL <https://openreview.net/forum?id=EkQRNLPFc>.510
511 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
512 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
513 Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
514 Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
515 Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
516 Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In *Proceedings of the*
517 *34th International Conference on Neural Information Processing Systems, NIPS '20, Red Hook,*
518 *NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.*
519520 Collin Burns, Haotian Ye, Dan Klein, and Jacob Steinhardt. Discovering latent knowledge in
521 language models without supervision. In *The Eleventh International Conference on Learning*
522 *Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023. URL
523 <https://openreview.net/pdf?id=ETKGuby0hcs>.524
525 Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning. What does BERT
526 look at? an analysis of BERT’s attention. In *Proceedings of the 2019 ACL Workshop Black-*
527 *boxNLP: Analyzing and Interpreting Neural Networks for NLP*, pp. 276–286, Florence, Italy,
528 2019. Association for Computational Linguistics. doi: 10.18653/v1/W19-4828. URL <https://aclanthology.org/W19-4828>.
529530 Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. In *The*
531 *Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,*
532 *May 7-11, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=mZn2Xyh9Ec>.
533534
535 Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashatten-
536 tion: Fast and memory-efficient exact attention with io-awareness. In *Advances in*
537 *Neural Information Processing Systems 35: Annual Conference on Neural Information Process-*
538 *ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,*
539 *2022, 2022*. URL http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html.

540 Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason
 541 Yosinski, and Rosanne Liu. Plug and play language models: A simple approach to con-
 542 trolled text generation. In *International Conference on Learning Representations*, 2020. URL
 543 <https://openreview.net/forum?id=H1edEyBKDS>.
 544

545 Maria De-Arteaga, Alexey Romanov, Hanna Wallach, Jennifer Chayes, Christian Borgs, Alexandra
 546 Chouldechova, Sahin Geyik, Krishnaram Kenthapadi, and Adam Tauman Kalai. Bias in bios:
 547 A case study of semantic representation bias in a high-stakes setting. In *Proceedings of the*
 548 *Conference on Fairness, Accountability, and Transparency*, FAT* '19, pp. 120–128, New York,
 549 NY, USA, 2019. Association for Computing Machinery. ISBN 9781450361255. doi: 10.1145/
 550 3287560.3287572. URL <https://doi.org/10.1145/3287560.3287572>.
 551

552 Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
 553 Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep
 554 Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,
 555 Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and
 556 Chris Olah. A mathematical framework for transformer circuits. *Transformer Circuits Thread*,
 557 2021. <https://transformer-circuits.pub/2021/framework/index.html>.
 558

559 Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan Ma, Jie Shi, Xiang Wang, Xiangnan He,
 560 and Tat-Seng Chua. Alphaedit: Null-space constrained model editing for language models. In
 561 *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=HvSytv3Jh>.
 562

563 Evan Hernandez, Belinda Z. Li, and Jacob Andreas. Inspecting and editing knowledge rep-
 564 resentations in language models. In *First Conference on Language Modeling*, 2024. URL
 565 <https://openreview.net/forum?id=ADtL6fgNRv>.
 566

567 Cheng-Yu Hsieh, Yung-Sung Chuang, Chun-Liang Li, Zifeng Wang, Long Le, Abhishek Kumar,
 568 James Glass, Alexander Ratner, Chen-Yu Lee, Ranjay Krishna, and Tomas Pfister. Found in the
 569 middle: Calibrating positional attention bias improves long context utilization. In *Findings of the*
 570 *Association for Computational Linguistics: ACL 2024*, pp. 14982–14995, Bangkok, Thailand,
 571 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.890. URL
 572 <https://aclanthology.org/2024.findings-acl.890/>.
 573

574 Shadi Iskander, Kira Radinsky, and Yonatan Belinkov. Shielded representations: Protecting sen-
 575 sitive attributes through iterative gradient-based projection. In *Findings of the Association*
 576 *for Computational Linguistics: ACL 2023*, pp. 5961–5977, Toronto, Canada, 2023. Associa-
 577 tion for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.369. URL <https://aclanthology.org/2023.findings-acl.369>.
 578

579 Kenneth Li, Oam Patel, Fernanda B. Viégas, Hanspeter Pfister, and Martin Wattenberg.
 580 Inference-time intervention: Eliciting truthful answers from a language model. In *Ad-*
 581 *vances in Neural Information Processing Systems 36: Annual Conference on Neural Infor-*
 582 *mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,*
 583 *2023*, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/81b8390039b7302c909cb769f8b6cd93-Abstract-Conference.html.
 584

585 Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
 586 Percy Liang. Lost in the middle: How language models use long contexts. *Transactions of the*
 587 *Association for Computational Linguistics*, 12:157–173, 2024. doi: 10.1162/tacl_a_00638. URL
 588 <https://aclanthology.org/2024.tacl-1.9>.
 589

590 Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual associa-
 591 tions in GPT. In *Advances in Neural Information Processing Systems 35: Annual Conference on*
 592 *Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November*
 593 *28 - December 9, 2022*, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html.
 594

594 Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? In *Ad-*
 595 *vances in Neural Information Processing Systems 32: Annual Conference on Neural Infor-*
 596 *mation Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,*
 597 *pp. 14014–14024, 2019.* URL [https://proceedings.neurips.cc/paper/2019/](https://proceedings.neurips.cc/paper/2019/hash/2c601ad9d2ff9bc8b282670cdd54f69f-Abstract.html)
 598 [hash/2c601ad9d2ff9bc8b282670cdd54f69f-Abstract.html](https://proceedings.neurips.cc/paper/2019/hash/2c601ad9d2ff9bc8b282670cdd54f69f-Abstract.html).

599 Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
 600 Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
 601 Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
 602 Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
 603 and Chris Olah. In-context learning and induction heads, 2022. URL [https://arxiv.org/](https://arxiv.org/abs/2209.11895)
 604 [abs/2209.11895](https://arxiv.org/abs/2209.11895).

605 Yifu Qiu, Zheng Zhao, Yftah Ziser, Anna Korhonen, Edoardo Maria Ponti, and Shay B. Cohen.
 606 Spectral editing of activations for large language model alignment. In *Advances*
 607 *in Neural Information Processing Systems 38: Annual Conference on Neural Infor-*
 608 *mation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15,*
 609 *2024, 2024.* URL [http://papers.nips.cc/paper_files/paper/2024/hash/](http://papers.nips.cc/paper_files/paper/2024/hash/684c59d614fe6ae74a3be8c3ef07e061-Abstract-Conference.html)
 610 [684c59d614fe6ae74a3be8c3ef07e061-Abstract-Conference.html](http://papers.nips.cc/paper_files/paper/2024/hash/684c59d614fe6ae74a3be8c3ef07e061-Abstract-Conference.html).

611 Yifu Qiu, Varun Embar, Yizhe Zhang, Navdeep Jaitly, Shay B. Cohen, and Benjamin Han. Eliciting
 612 in-context retrieval and reasoning for long-context large language models, 2025. URL <https://arxiv.org/abs/2501.08248>.

613 Shauli Ravfogel, Yanai Elazar, Hila Gonen, Michael Twiton, and Yoav Goldberg. Null it out:
 614 Guarding protected attributes by iterative nullspace projection. In *Proceedings of the 58th An-*
 615 *nual Meeting of the Association for Computational Linguistics*, pp. 7237–7256, Online, 2020.
 616 Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.647. URL <https://aclanthology.org/2020.acl-main.647>.

617 Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao.
 618 Flashattention-3: Fast and accurate attention with asynchrony and low-precision. In *Ad-*
 619 *vances in Neural Information Processing Systems 38: Annual Conference on Neural Infor-*
 620 *mation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -*
 621 *15, 2024, 2024.* URL [http://papers.nips.cc/paper_files/paper/2024/hash/](http://papers.nips.cc/paper_files/paper/2024/hash/7ede97c3e082c6df10a8d6103a2eebd2-Abstract-Conference.html)
 622 [7ede97c3e082c6df10a8d6103a2eebd2-Abstract-Conference.html](http://papers.nips.cc/paper_files/paper/2024/hash/7ede97c3e082c6df10a8d6103a2eebd2-Abstract-Conference.html).

623 Alessandro Stolfo, Vidhisha Balachandran, Safoora Yousefi, Eric Horvitz, and Besmira Nushi. Im-
 624 proving instruction-following in language models through activation steering. In *The Thirteenth*
 625 *International Conference on Learning Representations*, 2025. URL [https://openreview.](https://openreview.net/forum?id=wozhdnRCTw)
 626 [net/forum?id=wozhdnRCTw](https://openreview.net/forum?id=wozhdnRCTw).

627 Nishant Subramani, Nivedita Suresh, and Matthew Peters. Extracting latent steering vectors
 628 from pretrained language models. In *Findings of the Association for Computational Linguis-*
 629 *tics: ACL 2022*, pp. 566–581, Dublin, Ireland, 2022. Association for Computational Linguis-
 630 *tics.* doi: 10.18653/v1/2022.findings-acl.48. URL [https://aclanthology.org/2022.](https://aclanthology.org/2022.findings-acl.48)
 631 [findings-acl.48](https://aclanthology.org/2022.findings-acl.48).

632 Xinyu Tang, Xiaolei Wang, Zhihao Lv, Yingqian Min, Xin Zhao, Binbin Hu, Ziqi Liu, and Zhiqiang
 633 Zhang. Unlocking general long chain-of-thought reasoning capabilities of large language models
 634 via representation engineering. In *Proceedings of the 63rd Annual Meeting of the Association*
 635 *for Computational Linguistics (Volume 1: Long Papers)*, pp. 6832–6849, Vienna, Austria, 2025.
 636 Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.
 637 [acl-long.339](https://aclanthology.org/2025.acl-long.339). URL <https://aclanthology.org/2025.acl-long.339/>.

638 Gemma Team. Gemma 3 technical report, 2025. URL [https://arxiv.org/abs/2503.](https://arxiv.org/abs/2503.19786)
 639 [19786](https://arxiv.org/abs/2503.19786).

640 Yuan Tian and Tianyi Zhang. Selective prompt anchoring for code generation, 2025. URL [https://openreview.](https://openreview.net/forum?id=FCCeBaFa8M)
 641 [net/forum?id=FCCeBaFa8M](https://openreview.net/forum?id=FCCeBaFa8M).

648 Alexander Matt Turner, Lisa Thiergart, David Udell, Gavin Leech, Ulisse Mini, and Monte Mac-
 649 Diarmid. Activation addition: Steering language models without optimization. *ArXiv preprint*,
 650 abs/2308.10248, 2023. URL <https://arxiv.org/abs/2308.10248>.

651 Alexander Matt Turner, Lisa Thiergart, Gavin Leech, David Udell, Juan J Vazquez, Ulisse Mini,
 652 and Monte MacDiarmid. Steering language models with activation engineering, 2025. URL
 653 <https://openreview.net/forum?id=2XBPdPIcFK>.

654 Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
 655 self-attention: Specialized heads do the heavy lifting, the rest can be pruned. In *Proceedings*
 656 of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 5797–5808,
 657 Florence, Italy, 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1580.
 658 URL <https://aclanthology.org/P19-1580>.

659 Tianlong Wang, Xianfeng Jiao, Yinghao Zhu, Zhongzhi Chen, Yifan He, Xu Chu, Junyi Gao,
 660 Yasha Wang, and Liantao Ma. Adaptive activation steering: A tuning-free LLM truthfulness
 661 improvement method for diverse hallucinations categories. In *Proceedings of the ACM on*
 662 *Web Conference 2025*, WWW '25, pp. 2562–2578, New York, NY, USA, 2025. Association
 663 for Computing Machinery. ISBN 9798400712746. doi: 10.1145/3696410.3714640. URL
 664 <https://doi.org/10.1145/3696410.3714640>.

665 Alexander Wei, Nika Haghatalab, and Jacob Steinhardt. Jailbroken: How does LLM safety training
 666 fail? In *Advances in Neural Information Processing Systems 36: Annual Conference on Neural*
 667 *Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -*
 668 *16, 2023, 2023*. URL http://papers.nips.cc/paper_files/paper/2023/hash/fd6613131889a4b656206c50a8bd7790-Abstract-Conference.html.

669 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
 670 Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
 671 models. In *Proceedings of the 36th International Conference on Neural Information Processing*
 672 *Systems*, NIPS '22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.

673 Wenhao Wu, Yizhong Wang, Guangxuan Xiao, Hao Peng, and Yao Fu. Retrieval head mechanis-
 674 tically explains long-context factuality. In *The Thirteenth International Conference on Learning*
 675 *Representations*, 2025. URL <https://openreview.net/forum?id=EytBpUGB1Z>.

676 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 677 Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 678 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 679 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
 680 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
 681 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
 682 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
 683 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
 684 Qiu. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.

685 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
 686 and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
 687 answering. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language*
 688 *Processing*, pp. 2369–2380, Brussels, Belgium, 2018. Association for Computational Linguistics.
 689 doi: 10.18653/v1/D18-1259. URL <https://aclanthology.org/D18-1259>.

690 Qingru Zhang, Chandan Singh, Liyuan Liu, Xiaodong Liu, Bin Yu, Jianfeng Gao, and Tuo Zhao.
 691 Tell your model where to attend: Post-hoc attention steering for llms. In *The Twelfth Interna-
 692 tional Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*.
 693 OpenReview.net, 2024. URL <https://openreview.net/forum?id=xZDWO0oejD>.

694 Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander
 695 Pan, Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, Shashwat Goel, Nathaniel Li,
 696 Michael J. Byun, Zifan Wang, Alex Mallen, Steven Basart, Sanmi Koyejo, Dawn Song, Matt
 697 Fredrikson, J. Zico Kolter, and Dan Hendrycks. Representation engineering: A top-down ap-
 698 proach to ai transparency, 2023. URL <https://arxiv.org/abs/2310.01405>.

702 A SYNTHETIC DATASET FOR TOKEN-LEVEL RELEVANCE SUPERVISION
703

704 To supervise attention steering, we construct a synthetic dataset that enables precise control over
705 token-level relevance. Each sample comprises two contexts (C_1, C_2), each paired with a question
706 and answer tuple (Q_1, A_1 and Q_2, A_2). This structure allows us to define relevance by contrasting
707 identical token spans across different query contexts.

709
710 Table 4: Synthetic data instance.
711

711 Context 1 (C_1)	The portfolio manager allocates capital across equities and bonds.
712 Context 2 (C_2)	The climate model simulates sea-level rise under different scenarios.
713 Question 1 (Q_1)	What does the portfolio manager allocate across equities and bonds?
714 Answer 1 (A_1)	capital
715 Question 2 (Q_2)	What does the climate model simulate?
716 Answer 2 (A_2)	sea-level rise

717
718 Table 5: Constructed prompt triplets for both answer spans. Each group provides a neutral, positive,
719 and negative variant based on question-context alignment.
720

721 Group	722 Prompt
723 Neutral	Context: The portfolio manager allocates capital across equities and bonds.
724 Positive	Question: What does the portfolio manager allocate across equities and bonds? Context: The portfolio manager allocates capital across equities and bonds.
725 Negative	Question: What does the climate model simulate? Context: The portfolio manager allocates capital across equities and bonds.
726	
727 Neutral	Context: The climate model simulates sea-level rise under different scenarios.
728 Positive	Question: What does the climate model simulate? Context: The climate model simulates sea-level rise under different scenarios.
729 Negative	Question: What does the portfolio manager allocate across equities and bonds? Context: The climate model simulates sea-level rise under different scenarios.
730	
731	
732	
733	
734	

735 With every pair of (C, Q, A) triplets, as shown in Table 5, we can derive two supervision samples:
736 one for the answer span “capital” in C_1 , and another for the answer span “sea-level rise” in C_2 .
737 For each answer, we construct three variants: (1) a positive (relevant) prompt where the question
738 and context are aligned (e.g., Q_1 for C_1 , and Q_2 for C_2), (2) a negative (irrelevant) prompt where
739 the question mismatches the context (e.g., Q_1 for C_2 , and Q_2 for C_1), and (3) a neutral prompt
740 containing only the context. This allows us to collect three classes of key embeddings for the answer
741 spans within the context: h^+ for positive, h^- for negative, and h for neutral. In Appendix E, we
742 empirically show that, for some key-value heads, different token spans exhibit a consistent shift in
743 their key embeddings from negative to positive variants. This validates the construction and use of
744 these relevance supervision signals.

745 **Practical construction details.** The synthetic dataset is lightweight to produce. We use a fixed
746 template as shown in Table 4 and automatically prompt an GPT-4o to produce contrastive samples,
747 using the prompt provided in Figure 5. This process requires no manual annotation. After collecting
748 the generated samples, we convert them into JSON format for subsequent use.
749

750 B MULTI-EXPERT PROJECTION LEARNING SAMPLES FOR ADASEKA
751

752 After constructing the synthetic dataset, we prepared three additional task-specific datasets, making
753 a total of four, for multi-expert projection learning (Section 3.3). As shown in Table 6, each sample
754 consists of a neutral and a positive prompt pair. For the Counterfact (Meng et al., 2022) dataset
755 and the BiasBios (De-Arteaga et al., 2019) datasets, these pairs are collected from their respective

756

Synthetic Samples Generation Prompt

757

We are collaboratively generating a total of 100 synthetic examples.

758

You will generate examples in batches of exactly 20 per response. Across ALL batches in this conversation, every example must be globally unique.

759

760

761

Before generating a new batch, you MUST:

762

1. Review ALL previous examples in the conversation.
2. Ensure no repeated entities, contexts, events, sentence structures, questions, or answers.
3. Ensure no near-duplicates, paraphrased duplicates, or re-themed duplicates.

763

764

Each example must follow this structure (exact formatting):

765

Example k:

766

Context 1: <C1>

767

Context 2: <C2>

768

Question 1: <Q1>

769

Answer 1: <A1>

770

Question 2: <Q2>

771

Answer 2: <A2>

772

Generation requirements:

773

- Each context must be one concise fictional sentence.
- C1 and C2 must be semantically unrelated.
- Q1 must ask about a span that appears verbatim in C1.
- Q2 must ask about a span that appears verbatim in C2.
- A1 and A2 must be exact substrings (contiguous spans) of C1 and C2.
- No context, entity, theme, setting, or question type may repeat across any batch.
- Avoid any resemblance to earlier examples in wording, structure, or domain.
- No extra explanation or commentary.

774

Your task now: Read all previous examples in the conversation so far. Then generate the next 20 completely new, globally unique examples. Stop after exactly 20 examples.

775

776

777

Figure 5: Prompt template used to generate synthetic contrastive examples.

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

training sets, following the original prompt templates outlined in Table 1. For each sample, we extract the key embeddings for the answer spans directly from the context. A distinct procedure is adopted for HotpotQA (Yang et al., 2018) to account for its multi-hop nature. The context is formed by concatenating all candidate paragraphs, and the key embeddings from all supporting facts are subsequently extracted and concatenated. Each expert projection is learned from a set of 200 randomly sampled instances from the training set for each task, using a fixed random seed of 42 to ensure reproducibility.

C GEOMETRIC INTUITION OF THE SEKA TRANSFORMATION

To provide geometric insight into the effect of SEKA’s key editing, consider the case where the projection matrix \mathbf{P} is given by $\mathbf{U}\mathbf{U}^\top$, with $\mathbf{U} \in \mathbb{R}^{d_k \times r}$ having orthonormal columns that span the relevance subspace (i.e., $\mathbf{U} = \mathbf{U}^+$ or \mathbf{U}^- as previously defined). For simplicity, assume $g = 1$ and focus solely on the positive (or negative) projection. The transformation then becomes:

$$\mathbf{k}'_j = (\mathbf{I} + \mathbf{U}\mathbf{U}^\top)\mathbf{k}_j. \quad (7)$$

Any vector $\mathbf{x} \in \mathbb{R}^{d_k}$ can be decomposed as

$$\mathbf{x} = \mathbf{x}_{\parallel} + \mathbf{x}_{\perp}, \quad \text{where} \quad \mathbf{x}_{\parallel} = \mathbf{U}\mathbf{U}^\top\mathbf{x}, \quad \mathbf{x}_{\perp} = \mathbf{x} - \mathbf{U}\mathbf{U}^\top\mathbf{x}. \quad (8)$$

810
 811 Table 6: Constructed prompt pairs for multi-expert projection learning. Each dataset provides neu-
 812 tral and positive variants based on question-context alignment.

813 Dataset	814 Variant	815 Prompt
816 CounterFact	817 Neutral	818 Context: Previously, The mother tongue of Danielle Darrieux is French. Currently, 819 The mother tongue of Danielle Darrieux is English .
	820 Positive	821 Question: Danielle Darrieux, a native ? 822 Context: Previously, The mother tongue of Danielle Darrieux is French. Currently, 823 The mother tongue of Danielle Darrieux is English .
824 BiasBios	825 Neutral	826 Context: Nora is an assistant professor of international relations at Bahcesehir Uni- 827 versity in Istanbul. She is also a Ronald D. Asmus Policy Entrepreneur Fellow with 828 the German Marshall Fund and is a Visiting Fellow at the Centre for International 829 Studies (CIS) at the University of Oxford. This commentary first appeared at Sada, 830 an online journal published by the Carnegie Endowment for International Peace.
	831 Positive	832 Question: Nora has the occupation of a/an ? 833 Context: Nora is an assistant professor of international relations at Bahcesehir Uni- 834 versity in Istanbul. She is also a Ronald D. Asmus Policy Entrepreneur Fellow with 835 the German Marshall Fund and is a Visiting Fellow at the Centre for International 836 Studies (CIS) at the University of Oxford. This commentary first appeared at Sada, 837 an online journal published by the Carnegie Endowment for International Peace.
838 HotpotQA	839 Neutral	840 Context: Radio City (Indian radio station) Radio City is India's first private FM 841 radio station and was started on 3 July 2001. . . Arthur's Magazine Arthur's Mag- 842 azine (1844–1846) was an American literary periodical published in Philadelphia 843 in the 19th century. Edited by T.S. Arthur, it featured work by Edgar A. Poe, J.H. 844 Ingraham, Sarah Josepha Hale, Thomas G. Spear, and others. In May 1846 it was 845 merged into "Godey's Lady's Book". . . First for Women First for Women is a 846 woman's magazine published by Bauer Media Group in the USA. The magazine 847 was started in 1989. It is based in Englewood Cliffs, New Jersey. . . The company 848 started first as a denim line, later evolving into a men's and women's clothing line.
	849 Positive	850 Question: Which magazine was started first Arthur's Magazine or First for Women? 851 Context: Radio City (Indian radio station) Radio City is India's first private FM 852 radio station and was started on 3 July 2001. . . Arthur's Magazine Arthur's Mag- 853 azine (1844–1846) was an American literary periodical published in Philadelphia 854 in the 19th century. Edited by T.S. Arthur, it featured work by Edgar A. Poe, J.H. 855 Ingraham, Sarah Josepha Hale, Thomas G. Spear, and others. In May 1846 it was 856 merged into "Godey's Lady's Book". . . First for Women First for Women is a 857 woman's magazine published by Bauer Media Group in the USA. The magazine 858 was started in 1989. It is based in Englewood Cliffs, New Jersey. . . The company 859 started first as a denim line, later evolving into a men's and women's clothing line.

860 This decomposition is orthogonal. Specifically,

$$861 \mathbf{x}_{\parallel}^{\top} \mathbf{x}_{\perp} = (\mathbf{U} \mathbf{U}^{\top} \mathbf{x})^{\top} (\mathbf{x} - \mathbf{U} \mathbf{U}^{\top} \mathbf{x}) = \mathbf{x}^{\top} \mathbf{U} \mathbf{U}^{\top} \mathbf{x} - \mathbf{x}^{\top} \mathbf{U} \mathbf{U}^{\top} \mathbf{U} \mathbf{U}^{\top} \mathbf{x} \quad (9)$$

$$862 = \mathbf{x}^{\top} \mathbf{U} \mathbf{U}^{\top} \mathbf{x} - \mathbf{x}^{\top} \mathbf{U} \mathbf{U}^{\top} \mathbf{x} = 0, \quad (10)$$

863 using the idempotency of the projection $((\mathbf{U} \mathbf{U}^{\top})^2 = \mathbf{U} \mathbf{U}^{\top})$.

864 Applying the transformation, we have

$$865 (\mathbf{I} + \mathbf{U} \mathbf{U}^{\top}) \mathbf{x} = \mathbf{x} + \mathbf{U} \mathbf{U}^{\top} \mathbf{x} = (\mathbf{x} - \mathbf{U} \mathbf{U}^{\top} \mathbf{x}) + \mathbf{U} \mathbf{U}^{\top} \mathbf{x} + \mathbf{U} \mathbf{U}^{\top} \mathbf{x} \quad (11)$$

$$866 = \underbrace{\mathbf{x}_{\perp}}_{\mathbf{x}_{\perp}} + \underbrace{2 \mathbf{U} \mathbf{U}^{\top} \mathbf{x}}_{\mathbf{x}_{\parallel}} = \mathbf{x}_{\perp} + 2 \mathbf{x}_{\parallel}. \quad (12)$$

867 which shows that the component along the subspace is amplified (doubled), while the orthogonal
 868 component remains unchanged.

869 While the $g = 1$ case offers geometric clarity, the result generalises for any $g \in \mathbb{R}$:

$$870 (\mathbf{I} + g \mathbf{U} \mathbf{U}^{\top}) \mathbf{x} = \mathbf{x}_{\perp} + (1 + g) \mathbf{x}_{\parallel}. \quad (13)$$

871 Thus, the relevance-aligned component is scaled by $(1 + g)$, while all orthogonal directions are
 872 preserved. This operation is neither a projection nor an orthogonal transformation, but a targeted

864 linear modification that selectively amplifies directions aligned with the relevance subspace. SEKA
 865 leverages this property to boost relevant token features in a controlled and interpretable manner,
 866 enabling precise, token-wise attention steering without interfering with unrelated components.
 867

868 While the geometric interpretation above clarifies how SEKA amplifies components of key vectors
 869 aligned with a learned relevance subspace, it is important to clarify what this subspace represents.
 870 SEKA is *not* intended to encode or manipulate semantic meaning. Its effect is deliberately confined
 871 to the attention to route subspace of the transformer, consistent with prior mechanistic analyses
 872 (Elhage et al., 2021; Olsson et al., 2022).

873 Modern transformer-circuits work decomposes the action of an attention head as

$$874 \quad H^{(h)}(R) = A^{(h)}(R) \otimes W_O^{(h)} W_V^{(h)} R, \quad (14)$$

875 where $A^{(h)}$ is the query-key similarity tensor governing which tokens attend to which, and
 876 $W_O^{(h)} W_V^{(h)}$ writes attended features into the residual stream (Elhage et al., 2021). This formulation
 877 explicitly separates *routing* (Q/K) from *semantic write operations* (V/MLP).

878 Further, studies of induction and retrieval heads (Olsson et al., 2022) show that Q/K vectors imple-
 879 ment token-matching and algorithmic routing behaviour, such as copying and continuation, while
 880 semantic information is primarily stored in value vectors and MLP activations. These findings align
 881 with our design that SEKA aims to modify only the routing (relevance) subspace, leaving the se-
 882 mantic subspace untouched.

883 D SEKA AND ADASEKA ALGORITHMS

884 We provide detailed pseudocode for our proposed methods, SEKA and AdaSEKA. Algorithm 1
 885 details the standard SEKA method. It involves an offline phase to learn fixed positive and negative
 886 projection matrices from contrastive data using SVD. During inference, a hook then applies these
 887 static projections to the key embeddings of highlighted tokens. Algorithm 2 describes the more
 888 flexible AdaSEKA framework. In essence, standard SEKA can be viewed as a special case of
 889 AdaSEKA with a single expert and no dynamic coefficient calculation. AdaSEKA generalises this
 890 by loading a bank of multiple expert SVD components offline. For each new prompt, it then performs
 891 a dynamic, query-aware pre-computation: it calculates routing coefficients based on the query’s
 892 alignment with each expert and constructs a bespoke projection matrix on-the-fly. This tailored
 893 projection is subsequently applied during generation via the key-editing hook.

894 **Algorithm 1** Spectral Editing Key Amplification (SEKA)

895 **Require:** Triplets $\{\mathbf{h}, \mathbf{h}^+, \mathbf{h}^-\}_{\ell,h}$, variance threshold γ , gains g^+, g^-
 896 **Ensure:** Projections $\{\mathbf{P}_{\ell,h}^+, \mathbf{P}_{\ell,h}^-\}$ and a key-editing hook

897 1: **for all** layer ℓ **and** head h **do**
 898 2: $\Omega_{\ell,h}^+ \leftarrow \frac{1}{n} \mathbf{h}^\top \mathbf{h}^+$, $\Omega_{\ell,h}^- \leftarrow \frac{1}{n} \mathbf{h}^\top \mathbf{h}^-$
 899 3: $(\mathbf{U}_{\ell,h}^+, \mathbf{S}_{\ell,h}^+, \mathbf{V}_{\ell,h}^+) \leftarrow \text{SVD}(\Omega_{\ell,h}^+)$, $(\mathbf{U}_{\ell,h}^-, \mathbf{S}_{\ell,h}^-, \mathbf{V}_{\ell,h}^-) \leftarrow \text{SVD}(\Omega_{\ell,h}^-)$
 900 4: $k^+ \leftarrow \min\{k : \sum_{i=1}^k \mathbf{S}_{\ell,h,i}^+ / \sum_i \mathbf{S}_{\ell,h,i}^+ \geq \gamma\}$, $k^- \leftarrow \min\{k : \sum_{i=1}^k \mathbf{S}_{\ell,h,i}^- / \sum_i \mathbf{S}_{\ell,h,i}^- \geq \gamma\}$
 901 5: $\mathbf{P}_{\ell,h}^+ \leftarrow \mathbf{U}_{\ell,h,:k^+}^+ \mathbf{U}_{\ell,h,:k^+}^{+\top}$, $\mathbf{P}_{\ell,h}^- \leftarrow \mathbf{U}_{\ell,h,:k^-}^- \mathbf{U}_{\ell,h,:k^-}^{-\top}$
 902 6: **end for**
 903 7: Hook applied to each selected (ℓ, h) (registered per layer ℓ ; ℓ is fixed within the hook).
 904 8: **Input:** $K \in \mathbb{R}^{B \times T \times H \times d}$, mask m
 905 9: **Note:** For brevity we omit the explicit layer index on K ; projections remain $\mathbf{P}_{\ell,h}^\pm$.
 906 10: **for** $b=1..B$, $t=1..T$, $h=1..H$ **do**
 907 11: **if** $m_{b,t}=1$ **then**
 908 12: $\Delta \leftarrow (g^+ \mathbf{P}_{\ell,h}^+ + g^- \mathbf{P}_{\ell,h}^-) K[b, t, h, :] / 2$
 909 13: $K[b, t, h, :] \leftarrow K[b, t, h, :] + \Delta$
 910 14: **return** K to the attention computation
 911 15: Register the hook for selected (ℓ, h) before generation and remove it afterwards.

918 **Algorithm 2** Query-Driven Adaptive SEKA (AdaSEKA)

919 **Require:** SVD components $\{\mathbf{U}_{m,\ell,h}^+, \mathbf{S}_{m,\ell,h}^+\}$ for M experts, top components K , gain g

920 **Ensure:** A key-editing hook using dynamically computed projections

921 1: Store expert SVD components $\{\mathbf{U}_{m,\ell,h}^+, \mathbf{S}_{m,\ell,h}^+\}$ for all experts m , layers ℓ , and heads h .

922 2: **For a given prompt** with input IDs \mathbf{I} :

923 3: Obtain last-token query vectors $\mathbf{q}_{\ell,h}$ for each selected layer ℓ and head h .

924 4: **for all** selected layer ℓ **and** head h **do**

925 5: **for all** expert $m = 1..M$ **do**

926 6: Calculate coefficient $\alpha_{m,\ell,h}(\mathbf{q}_{\ell,h}) \propto \sum_{k=1}^K (\mathbf{q}_{\ell,h}^\top \mathbf{u}_{m,\ell,h}^{+(k)}) \cdot \sigma_{m,\ell,h}^{+(k)}$ (as per Eq. 6)

927 7: **end for**

928 8: Construct $\mathbf{P}_{\text{dynamic},\ell,h} \leftarrow \sum_{m=1}^M \alpha_{m,\ell,h}(\mathbf{q}_{\ell,h}) \mathbf{U}_{m,\ell,h,:,:K}^+ (\mathbf{U}_{m,\ell,h,:,:K}^+)^T$

929 9: Store $\mathbf{P}_{\text{dynamic},\ell,h}$ for use in the hook.

930 10: **end for**

931 11: **Hook** applied to each selected (ℓ, h) (registered per layer ℓ ; ℓ is fixed within the hook).

932 12: **Input:** $K \in \mathbb{R}^{B \times T \times H \times d}$, mask m

933 13: **Note:** For brevity we omit the explicit layer index on K .

934 14: **for** $b=1..B$, $t=1..T$, $h=1..H$ **do**

935 15: **if** $m_{b,t}=1$ **then**

936 16: $\Delta \leftarrow g \cdot \mathbf{P}_{\text{dynamic},\ell,h} K[b,t,h,:]$

937 17: $K[b,t,h,:] \leftarrow K[b,t,h,:] + \Delta$

938 18: **return** K to the attention computation

939 19: Register the hook for selected (ℓ, h) before generation and remove it afterwards.

E EMPIRICAL EVIDENCE FOR KEY REPRESENTATION SHIFTS

944 To provide empirical evidence that key representations shift with relevance, we conduct a qualitative
 945 analysis. Using the Qwen3-1.7B-Base model (28 layers, 8 heads), we extract the key embeddings
 946 corresponding to the same token spans under both positive and negative prompts for each (layer,
 947 head) pair. We then apply PCA to jointly project these paired embeddings into two dimensions, and
 948 visualise the result using a combination of scatter plots and directed arrows. Each arrow originates
 949 from a **negative key** and points to its corresponding **positive key**, capturing the pairwise representa-
 950 tional shift induced by changing question relevance. To summarise the overall trend, we also plot
 951 the **mean shift vector** across all pairs. Figure 6 presents selected heads that show more consistent
 952 directional shifts. Each plot visualises 26 key embedding pairs corresponding to shared token spans,
 953 extracted from 10 positive–negative prompt pairs.

F DETAILS OF STANDARD BENCHMARKS

958 We evaluate our method on three established benchmarks adapted from the PASTA frame-
 959 work (Zhang et al., 2024). We introduce significant improvements to the evaluation protocols, such
 960 as case-insensitive scoring, to ensure a more robust assessment. The JSON Formatting task was
 961 omitted as modern models achieve near-perfect performance, rendering it less useful for discrimi-
 962 nating capabilities.

F.1 COUNTERFACT

966 The COUNTERFACT benchmark (Meng et al., 2022) evaluates an LLM’s ability to prioritise new
 967 contextual information over its pre-trained knowledge.

970 **Task Format.** The model receives input structured as: “Previously, $\{s \ r \ o_{\text{old}}\}$. Currently,
 971 $\{s \ r \ o_{\text{new}}\}$. {question}.” The challenge arises because models often default to pre-trained asso-
 972 ciations rather than attending to the new, contradictory information provided in the context.

Figure 6: Pairwise key embedding shifts across different (layer, head) pairs in Qwen3-1.7B-Base (28 layers, 8 heads). Each plot visualises the PCA projection of key representations under **positive** and **negative** prompts for 26 shared token spans, extracted from 10 positive-negative prompts. Grey arrows show per-token shifts and the **dark blue arrow** denotes the average displacement.

Prompt: “Previously, Kevin Garnett is a professional basketball player. Currently, **Kevin Garnett is a professional baseball player**. Kevin Garnett is a professional ____”

Target: The model should generate “baseball player” rather than its pre-trained association of “basketball player”.

Evaluation Metrics. Following (Zhang et al., 2024), to evaluate the model’s ability to recall the new fact, we measure its internal preferences at the point of generation, rather than relying on parsing free-form text. For a given prompt, we provide the model with the entire context and question, and then assess the log probabilities it assigns to the potential next tokens.

- **Efficacy Score (ES):** This metric directly measures if the model prioritises the new, correct fact (o_{new}) over the old, incorrect fact (o_{old}). It is the percentage of times the model assigns a higher probability to the first token of the new fact than to the first token of the old fact. A high ES indicates that the model has successfully updated its belief based on the context.

$$\text{ES} = \frac{1}{N} \sum_{i=1}^N \mathbb{I}[P_{\text{LLM}}(o_{\text{new}}^{(i)}) > P_{\text{LLM}}(o_{\text{old}}^{(i)})]$$

- **Paraphrase Score (PS):** This metric measures generalisation by calculating the average Efficacy Score across a collection of human-written paraphrases of the original question.

1026 F.2 BIASBIOS
10271028 The BIASBIOS dataset (De-Arteaga et al., 2019) consists of biographies and was originally designed
1029 to explore gender bias in occupation prediction. The first sentence of each biography explicitly states
1030 the person’s occupation, while subsequent sentences provide potentially distracting career details.
10311032 **Task Format.** Each biography is appended with the prompt “{person} has the occupation of __”,
1033 and the model must predict the correct occupation from a list of 28 candidates.
10341035 **Prompt:** “**Winnie is an American photographer living in New York. ** Specialized in fash-
1036 ion photography and portrait, she applies her talent on both humans and animals... Winnie
1037 has the occupation of”
10381039 **Target:** “photographer”
10401041 **Evaluation Metrics.** We measure standard top-1 **Accuracy** across the 28 candidate occupations,
1042 implementing case-insensitive matching to ensure semantic equivalence is correctly evaluated.
10431044 F.3 PRONOUNS CHANGING
10451046 This task evaluates instruction-following through linguistic transformation. Models are instructed to
1047 “substitute ‘she’ and ‘he’ with ‘they’.” This requires simultaneously adhering to the transformation
1048 rule while preserving the original content.
10491050 **Prompt:** “Mary is an Associate Professor in the Department of Curriculum Instruction at
1051 St. John University, she holds a doctorate in Reading/Writing/Literacy from the University of
1052 Pennsylvania... **substitute ‘she’ and ‘he’ with ‘they’ and generate the occupation of Mary
1053 after changing pronouns**.”
10541055 **Target:** “Mary is an associate professor... they hold a doctorate... Mary has the occupation
1056 of Associate Professor.”
10571058 **Enhanced Evaluation Metric.** As noted during the public peer review of Zhang et al. (2024)¹,
1059 the original metric rewards empty strings for perfectly “converting” zero pronouns, resulting in
1060 misleadingly high scores. To address this, we introduce the **Pronoun-weighted Lexical Overlap**
1061 **Score (P. Score)**, which unifies instruction-following and content preservation into a single metric.
10621063 The P. Score modulates the credit for lexical overlap with the original text by the success rate of
1064 pronoun conversion. It is defined as:
1065

1066
$$P. \text{ Score} = \frac{w_{\text{pron}} \times |T_{\text{ori}} \cap T_{\text{gen}}|}{|T_{\text{ori}}|}, \quad (15)$$

1067

1068 where w_{pron} is the fraction of successfully converted pronouns, and T_{ori} and T_{gen} are the sets of non-
1069 pronoun content tokens from the original and generated texts, respectively. This ensures that empty
1070 generations receive a score of zero and that content preservation is only credited when instruction-
1071 following occurs. We evaluate two variants: one (P. Score) targeting core subject pronouns (“she”,
1072 “he”) and another (A. P. Score) targeting a complete set of gendered pronouns (“she”, “he”, “her”,
1073 “him”, “hers”, “his”, “herself”, “himself”).
1074

1075 G TECHNICAL SETUP

1076 This appendix section details the hyperparameters used for the SEKA and AdaSEKA experiments.
1077 For the CounterFact and Bias in Bios benchmarks, we performed a grid search to tune the hyperpa-
1078 rameters on a validation set of 500 samples (indices 4500–4999), following the experimental setup
1079¹<https://openreview.net/forum?id=xZDW00ejD¬eId=3kDI7QRqSI>

of PASTA (Zhang et al., 2024). The final evaluation was then conducted on the test set (indices 5000–10000). For the Pronoun Changing task, hyperparameters were tuned on a separate small development set. All experiments across all models used greedy decoding.

The standard SEKA method requires tuning four hyperparameters: the variance threshold for projection construction (γ), the relevance-sensitivity threshold for KV-head selection (δ_{\min}) and the positive/negative steering gains (g^+ and g^-). The AdaSEKA framework simplifies this process, requiring only the tuning of the KV-head selection threshold (δ_{\min}) and a single steering gain coefficient (g). The selected hyperparameters for each model and task are provided in Table 7.

Table 7: Hyperparameters for SEKA and AdaSEKA methods. SEKA uses the variance threshold (γ), KV-head selection threshold (δ_{\min}), positive gain (g^+), and negative gain (g^-). AdaSEKA uses the KV-head selection threshold (δ_{\min}) and steering gain (g).

Model	Task	SEKA			AdaSEKA	
		γ	δ_{\min}	g^+	g^-	δ_{\min}
Qwen3-4B-Base	CounterFact	0.960	0.13	1.56	0.00	0.1
	Bias in Bios	0.998	0.12	1.00	0.80	0.1
	Pronoun Changing	0.880	0.22	0.16	0.00	0.5
Qwen3-8B-Base	CounterFact	0.850	0.12	2.40	0.00	0.1
	Bias in Bios	0.998	0.12	0.60	0.30	0.1
	Pronoun Changing	0.900	0.20	0.19	0.00	0.5
Qwen3-14B-Base	CounterFact	0.870	0.10	2.42	0.00	0.1
	Bias in Bios	0.990	0.15	0.60	0.30	0.3
	Pronoun Changing	0.880	0.23	0.16	0.00	0.6
Gemma-3-4B	CounterFact	0.990	0.60	2.00	0.00	0.2
	Bias in Bios	0.800	0.12	0.80	0.00	0.2
	Pronoun Changing	0.800	0.20	0.40	0.00	0.4
Gemma-3-12B	CounterFact	0.990	0.50	1.00	0.00	0.1
	Bias in Bios	0.994	0.00	0.40	0.00	0.7
	Pronoun Changing	0.700	0.40	-0.50	0.00	0.5

Hyper-parameters Sensitivity. To explore SEKA’s sensitivity to its hyper-parameters, we conduct an experimental analysis by varying each parameter independently while keeping all others fixed at their optimal configurations on the validation set (Table 7). We randomly select 500 test samples across the three benchmark tasks and adapt a one-at-a-time sweep over the following ranges: $\gamma \in \{0.75, 0.80, 0.85, 0.90, 0.95\}$, $\delta_{\min} \in \{0.10, 0.20, 0.30, 0.40, 0.50, 0.60\}$, $g^+ \in \{0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0\}$, and $g^- \in \{0.00, 0.20, 0.40, 0.60, 0.80\}$.

Three findings are observed from the results in Figure 7:

- **δ_{\min} and g^+ are the most influential.** These parameters determine which heads are steered and the strength of amplification. Performance drops when too few or too many heads (depending on the tasks) are selected or when the positive gain is either too small to steer effectively or too large, which leads to over-amplification and degradation.
- **Models from the same family show similar trends.** Qwen3-4B and Qwen3-8B display nearly identical sensitivity patterns on CounterFact, both favouring low δ_{\min} and showing stability across γ . Gemma 3 models exhibit higher variance with respect to γ .
- **Task characteristics differ across models.** Stability patterns are task-model dependent. For example, Gemma-3-4B shows pronounced variability on PronChange at higher g^+ values, whereas CounterFact remains comparatively stable. In contrast, both Qwen3 models maintain strong robustness on BiasBios and PronChange but are noticeably more sensitive on CounterFact. These differences suggest that tasks requiring factual override (CounterFact) and tasks requiring instruction-following (PronChange) stress models in different ways, resulting in varying sensitivity.

Figure 7: Sensitivity of SEKA to hyper-parameters across three benchmark tasks. Each curve varies a single hyper-parameter while keeping others fixed at their optimal settings on the validation set.

H MECHANISTIC INSIGHT VIA ATTENTION VISUALISATION

To illustrate SEKA’s effect on model behaviour, we visualise the mean attention across all heads in selected layers for a CounterFact data sample: “*Previously Patrick Roy professionally plays the sport hockey. Currently Patrick Roy **professionally plays the sport basketball. Patrick Roy is a professional* ____”. As shown in Figure 8, before SEKA is applied, the model’s attention to the manipulated subspan (“was employed in Oslo”) is low, with little focus on the relevant passage. After SEKA steering, attention in the affected layers becomes more concentrated on the target subspan, clearly demonstrating SEKA’s ability to selectively and effectively redirect model attention. This targeted effect aligns with the observed accuracy gains on benchmark tasks.

Figure 8: Layer-wise mean attention (all heads) in Qwen3-4B-Base at selected layers for the CounterFact data sample, shown before and after SEKA is applied.

1188 I COMPLETE RESULTS OF PASTA WITH DIFFERENT CONFIGURATIONS

1190 In the main results (Table 2), we reported the strongest performance for the PASTA baseline to
 1191 ensure a fair comparison. For completeness, Table 8 provides a detailed breakdown of PASTA’s per-
 1192 formance across three different head-selection configurations. The first configuration replicates the
 1193 original head search method, which identifies the top- k performing heads by individually evaluating
 1194 the steering effect of every attention head (Zhang et al., 2024). The other two configurations explore
 1195 a hybrid approach by combining SEKA-style head selection with PASTA’s attention head
 1196 steering. To address the misalignment between SEKA’s key-value head selection and PASTA’s attention head
 1197 steering, we test two strategies. The first is applying the SEKA selection computation directly on
 1198 the outputs of the attention heads. The second uses the results of the key-value head selection and
 1199 applies them to attention heads via an interleaved repetition as the grouped-query attention mecha-
 1200 nisms. For both hybrid methods, the selection criterion follows the SEKA methodology.

1201
 1202 Table 8: Complete PASTA results with different configurations: (1) using SEKA’s KV-head con-
 1203 figuration (runtime 1–2 minutes), (2) using attention head configuration transformed from SEKA’s
 1204 KV-heads (1–2 minutes), and (3) using PASTA’s original head-search routine (\approx 2 hours).

1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241	1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241	1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241	1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241		
			CounterFact	Bias in Bios	Pronoun Changing
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241	1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241	1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241	ES	PS	Acc.
			Gemma3-4B-Base	97.16	96.03
			Qwen3-4B-Base	82.60	83.02
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241	1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241	1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241	SEKA KV-heads	83.62	80.43
			Transformed attention heads	97.16	96.03
			Original head-search	82.60	83.02
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241	1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241	1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241	SEKA KV-heads	82.08	71.72
			Transformed attention heads	92.70	91.68
			Original head-search	82.08	71.72
1225 1226 1227 1228 1229 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241	1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241	1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241	SEKA KV-heads	69.52	63.31
			Transformed attention heads	76.84	66.33
			Original head-search	76.84	66.33
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241	1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241	1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241	SEKA KV-heads	55.66	37.05
			Transformed attention heads	74.28	52.96
			Original head-search	74.28	52.96
1234 1235 1236 1237 1238 1239 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241	1234 1235 1236 1237 1238 1239 1240 1241	1234 1235 1236 1237 1238 1239 1240 1241	SEKA KV-heads	68.30	65.76
			Transformed attention heads	68.30	65.76
			Original head-search	62.68	71.72

J QUALITATIVE EXAMPLES

J.1 COUNTERFACT EXAMPLES

Examples in Table 9 and 10 illustrate SEKA’s ability to steer the model towards newly provided factual information in the prompt, overriding its pre-trained knowledge.

Table 9: CounterFact Example 1: Overriding a known location.

Prompt	Model	Generation	Correct?
Previously David Sainsbury, Baron Sainsbury of Turville used to work in London. Currently David Sainsbury, Baron Sainsbury of Turville used to work in Berlin. After 15 years of work, he published Pillboxes in 1985. David Sainsbury, Baron Sainsbury of Turville took up work in _____	Gemma3-4B	London	✗
	SEKA-Gemma3-4B	Berlin	✓

1242

1243

Table 10: CounterFact Example 2: Overriding a known job title.

Prompt

Previously Jean Baptiste Pompallier holds the position of bishop. **Currently Jean Baptiste Pompallier holds the position of cardinal.** Jean Baptiste Pompallier has the position of _____

Model	Generation	Correct?
Gemma3-4B	bishop	✗
SEKA-Gemma3-4B	cardinal	✓

1251

J.2 BIAS IN BIOS EXAMPLES

1252

Examples shown in Table 11 and 12 demonstrate SEKA’s ability to focus the model’s attention on the correct, highlighted sentence in a biography, ignoring distracting information.

1253

1254

1255

1256

1257

Table 11: Bias in Bios Example 1: Correcting a prediction.

Prompt

Tania is an Illinois poet who has published one chapbook... and two full-length collections. Her most recent book... is divided into ten sections... Its predecessor Simple Weight is also concerned with the Biblical narrative... Barbara Crooker said of that collection, "The poems have weight emotional, spiritual, political but are anything but simple." Tania has the occupation of a/an _____

	Qwen3-4B (Original)	SEKA-Qwen3-4B
Top Prediction	journalist	poet
Target	poet	poet

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

J.3 PRONOUNS CHANGING EXAMPLES

Tables 13 and 14 demonstrate how SEKA addresses specific failures in following instructions. While the original models generally perform well in this task (over 0.9 P. Score), they occasionally make errors. SEKA can improve performance in certain instances.

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

K PROJECTION SAMPLE EFFICIENCY ANALYSIS

To explore how varying data quantity of synthetic samples affect the quality of learned subspace representations, we conduct an analysis on the end-to-end performance on the three tasks in the standard benchmark using projections extracted from different number of synthetic samples for SEKA.

As shown in Figure 9, SEKA is generally data efficient across models and tasks. Performance typically stabilises once roughly 50 synthetic samples are used, though the exact threshold depends on the task, architecture, and model size.

More samples do not always yield higher peak performance, but they consistently produce more stable behaviour. With only a few samples, projections can overfit to the synthetic pairs and intro-

1296

1297

1298

Table 13: Pronouns Changing Example 1.

1299

1300

1301

1302

Prompt

1303

1304

1305

1306

1307

Jason is an assistant professor of English... **For the aforementioned text, substitute ‘she’ and ‘he’ with ‘they’ and generate the occupation of Jason after changing pronouns.**

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Qwen3-4B Generation (Incorrect)

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

*Jason is an assistant professor of English and as well as the coordinator of digital writing at Miami University of Ohio. **He** received **his** PhD from Ohio State University in English with a focus on rhetoric, composition, and literacy. **His** most current publication is “Re-Inventing Invention: A Performance in Three Acts.” **He** is also a member of the Digital Writing Collaborative and a member of the Computers, Research, and Pedagogy committee.*

1345

1346

1347

1348

1349

*Jason is an assistant professor of English and as well as the coordinator of digital writing at Miami University of Ohio. **They** received **their** PhD from Ohio State University in English with a focus on rhetoric, composition, and literacy. **Their** most current publication is “Re-Inventing Invention: A Performance in Three Acts.” **They** are also a member of the Digital Writing Collaborative and a member of the Computers, Research, and Pedagogy committee.*

Table 14: Pronouns Changing Example 2.

1345

1346

1347

1348

1349

Prompt

1345

1346

1347

1348

1349

Qwen3-4B Generation (Incorrect)

1345

1346

1347

1348

1349

1345

1346

1347

1348

1349

SEKA-Qwen3-4B Generation (Corrected)

1345

1346

1347

1348

1349

duce unpredictable variance. Larger sample sizes mainly reduce this variance even when accuracy plateaus.

Two additional observations emerge when breaking down the results. First, models within the same family display similar behaviour patterns. For Qwen3 models, CounterFact stabilises relatively early, while Gemma3 models, especially Gemma3-12B, require more samples for the same task. BiasBios and Pronouns Changing tend to stabilise faster across most settings. Second, though family-level similarities are observed, model size still introduces noticeable differences. Qwen3-8B

Figure 9: The performance of SEKA with varying numbers of synthetic samples used for learning projections across different models and tasks.

1350 is the clearest example: both Pronoun Changing and BiasBios fluctuate when fewer than 50 samples
 1351 are used but become stable afterwards, but this fluctuation is not observed in Qwen3-4B.
 1352

1353 L COMPLETE RESULTS FOR δ_{\min} THRESHOLD ON LOST-IN-THE-MIDDLE

1354 As noted in Section 5.2, the optimal KV-head selection threshold (δ_{\min}) can vary with model size.
 1355 Figure 10 illustrates the effect of varying this threshold on the performance of the Qwen3-4B and
 1356 Qwen3-14B models.
 1357

1358
 1359 Figure 10: Exact match scores on the lost-in-the-middle task when applying SEKA to the middle
 1360 region with different δ_{\min} thresholds for Qwen3-4B and Qwen3-14B.
 1361
 1362

1363 M THE USE OF LARGE LANGUAGE MODELS (LLMs)

1364 We used LLMs as general-purpose tools to refine the writing and debug the code for this paper. The
 1365 LLMs were not used for research ideation or to generate any significant portion of the text. The
 1366 authors take full responsibility for the content of this paper.
 1367

1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403