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Abstract

Humans regularly engage in analogical think-001
ing, relating personal experiences to current002
situations (X is analogous to Y because of Z).003
Analogical thinking allows humans to solve004
problems in creative ways, grasp difficult con-005
cepts, and articulate ideas more effectively. Can006
language models (LMs) do the same? To an-007
swer this question, we propose ANALOBENCH,008
a benchmark to determine analogical reasoning009
ability in LMs. Our benchmarking approach010
focuses on aspects of this ability that are com-011
mon among humans: (i) recalling related expe-012
riences from a large amount of information, and013
(ii) applying analogical reasoning to complex014
and lengthy scenarios. We test a broad col-015
lection of proprietary models (e.g., GPT fam-016
ily, Claude-v2) and open source models such017
as LLaMA2. As in prior results, scaling up018
LMs results in some performance boosts. Sur-019
prisingly, scale offers minimal gains when, (i)020
analogies involve lengthy scenarios, or (ii) re-021
calling relevant scenarios from a large pool of022
information, a process analogous to finding a023
needle in a haystack. We hope these observa-024
tions encourage further research in this field.1025

1 Introduction026

Analogy is the ability to think about relational027

patterns (Holyoak et al., 2001) and forms an in-028

tegral aspect of human communication (Hofstadter,029

2001; Gentner and Hoyos, 2017). This cognitive030

ability helps humans understand new or difficult031

concepts by relating them to more familiar expe-032

riences (Holyoak and Thagard, 1996). Analogical033

thinking plays a critical role in some of the ma-034

jor breakthroughs in human history, such as the035

discovery of gravity or even Einstein’s theory of036

relativity (Hesse, 1965; Stepan, 1986; Hofstadter037

and Sander, 2013). It was this very analogy-driven038

progress that Newton aptly described as “standing039

1We have linked our dataset for the reviewer’s attention
should they like to verify it manually.

Provided story. Maria spent years caring for 
everyone else's needs, barely taking a moment 
for herself. One day, she collapsed from 
exhaustion, finally understanding you can't 
pour from an empty cup; it was high time she 
cared for herself too.

Goal: Given the following story, find the analogous 
stories from the story bank. 

Story bank 

 Length of stories 
# of s

torie
s 

Story 1. Once a mighty oak, the tree 
had fallen during a violent storm, 
laying barren across the forest floor. 
The animals who used to rejoice in its 
shade now mourned its loss, the sun 
scorching down on them relentlessly.

Figure 1: The problem setup: given a story, the goal is to
identify an analogous story from a story bank. We study
the difficulty of this goal for LMs by varying the following
parameters: (i) length of stories, (ii) number of stories in
the story bank. In the example, both “Maria” and “the oak”
lose the ability to provide for others. While the strength of
analogies can vary, we design our benchmark to account for
this variation.

upon the shoulders of giants,” itself an analogy. If 040

modern language models (LMs) (OpenAI, 2023; 041

Touvron et al., 2023) can leverage analogical think- 042

ing, then we can expect wide-ranging implications 043

for future tasks. 044

We assess the ability of modern LMs to handle 045

components of analogy making. Two important fea- 046

tures characterize how humans form analogies in 047

creative pursuits. (1) Humans are able to pinpoint 048

analogies between prolonged experiences (e.g. “ob- 049

taining a PhD is like running a marathon”). (2) 050

Humans can recollect relevant analogs from a large 051

collection of past experiences to form analogies 052

(Keane, 1987; Wharton et al., 1994; Han et al., 053

2018). To what extent are LMs capable of such 054

abilities? 055

To answer the above questions, we introduce 056
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ANALOBENCH, a benchmark for analogical rea-057

soning over natural language stories that convey058

abstract concepts with varying level of difficulty.059

While the dominant treatment of analogies has been060

limited to word-level lexical analogies2 (Mikolov061

et al., 2010; Pennington et al., 2014), we instead062

focus on analogies defined on natural language doc-063

uments, such as the one shown in Figure 1. In the064

example, the central figure of each stories (Maria065

/ the “mighty oak”) loses the ability to provide066

for the needs of others (“collapsed from exhaus-067

tion” / “the tree had fallen”). The use of stories as068

components of analogies provides a natural way to069

introduce abstract relational patterns. In total, we070

collect 340 pairs of high-quality analogous stories071

from human annotators after multiple rounds of072

review and editing.073

As Figure 1 shows, we are broadly interested in074

quantifying the extent to which LMs are capable075

of identifying analogous stories from a given pool076

of candidate stories, similar to humans’ ability to077

recollect past experiences and relate them to new078

situations.079

We characterize this goal with two tasks (§3.3).080

First, we consider a setup where the pool is limited081

to a few stories. Among these few candidates, the082

model is expected to select exactly one story as083

the closest analogy to a given story (T1). Good084

performance requires demonstrated ability in iden-085

tifying complex analogies, assuming a small pool086

of candidates. In our second task, we maintain a087

large (≈ 200) pool of candidate stories (T2) — in088

performing well on this task, a model will have089

demonstrated ability in identifying analogies from090

long-context memory.091

Additionally, we explore how well performance092

scales with length. We are inspired by the remark-093

able ability of humans to abstract over long and094

elaborate stories, and leverage such abstractions095

to identify analogies. By evaluating our proposed096

tasks on longer stories, we measure the extent LMs097

can abstract over complexities of longer stories. In098

practice, we repeat each experiment with the same099

stories told using ≈ 1 sentence, 10 sentences, and100

30 sentences.101

We benchmark existing open-source and private102

language models to measure their ability to iden-103

tify abstract and long-context analogies (§4). We104

find that, while scaling LMs leads to better per-105

formance in 1-sentence stories, the gains afforded106

2e.g. “rock” is to “solid” as “water” is to “liquid”

by scale is minimal for longer stories. Further- 107

more, the gap between humans and GPT4 is 6.9% 108

on 1-sentence stories, but increases to 28.8% on 109

30-sentence stories, demonstrating that long and 110

complex analogies pose a challenge for LMs. 111

In summary, we provide: (1) ANALOBENCH, 112

a novel benchmark with two tasks to determine 113

the analogical reasoning capabilities of LMs, (2) a 114

recipe for identifying analogies using LMs that, to 115

the best of our knowledge, is the first to consider the 116

role of story length and the recollection of relevant 117

stories, and (3) a thorough analysis of analogical 118

reasoning ability in a wide range of state of the art 119

language models. 120

2 Related Work 121

We review the body of relevant work, including 122

datasets and modeling results. 123

Analogical reasoning datasets. Various efforts 124

have attempted to build analogical reasoning bench- 125

marks. Within the AI literature, the majority of 126

these works focus on lexical analogies (i.e., “man” 127

to “woman” ≈ “boy” to “girl”) (Sternberg and 128

Nigro, 1980; Turney, 2008; Green et al., 2012; Jur- 129

gens et al., 2012; Mikolov et al., 2013b,c; Gladkova 130

et al., 2016; Lu et al., 2019; Ushio et al., 2021). 131

Most of these datasets are created manually, al- 132

though there are also lexical analogy resources that 133

are created semi-automatically. For example, Yuan 134

et al. (2023) presents a dataset with over a million 135

lexical analogies derived from a knowledge base 136

of subject-object-verb triplets. Our work ventures 137

beyond lexical analogies and focuses on analogies 138

that involve paragraphs of raw-form text, without 139

any assumptions on their structure. 140

Another group of datasets are from cognitive sci- 141

ence, some of which involve long sentences. These 142

datasets were originally intended to be used for 143

the study of analogical reasoning in humans (Gick 144

and Holyoak, 1980; Wharton et al., 1994; Keane, 145

1987; Gentner et al., 1993; Weinberger et al., 2016). 146

The majority of these datasets are too small to pro- 147

vide reliable benchmarking for models. Among 148

these GENTNER (Gentner and Toupin, 1986) con- 149

tains 54 instances and was created to examine the 150

development of systematicity (i.e., sensitivity to 151

parallels based on more complex relations). Re- 152

cently, (Webb et al., 2023) observes strong perfor- 153

mance of LLMs on these datasets, which motivates 154

introducing more challenge analogical reasoning 155

benchmark. 156
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A concurrent work is Jiayang et al. (2023)157

who introduce STORYANALOGY, a benchmark of158

24K sentence pairs, which were generated semi-159

automatically using GPT-3 and then relabeled by160

human annotators. Compared to this work, our161

benchmark is much smaller as we prioritize data162

quality over size. Our seed data is all written by hu-163

mans, at the cost of size, mainly because we aimed164

at effective evaluation. Furthermore, we evaluate165

the effectiveness of models to solve analogies in166

long paragraphs.167

It is worth noting that there is also a literature on168

visual analogies (Sadeghi et al., 2015; Bitton et al.,169

2023; Reed et al., 2015; Zhang et al., 2019) that is170

different from the scope of this work. Interested171

readers can refer to Ichien et al. (2020) who pro-172

vide a thorough review of the prior datasets both in173

computer science and cognitive science literature.174

Analogical reasoning in LMs. Since the rise of175

pre-trained LMs, we have witnessed remarkable176

gains in the abilities of these models in tackling ana-177

logical reasoning (Ichien et al., 2023; Webb et al.,178

2023). Bhavya et al. (2022) studied the ability of179

LMs (the GPT3 family) in generating analogous180

statements with prompting by literal mentions of181

“analogy” in prompts. Through crowdsourcing ex-182

periments, they observe that the then largest models183

(e.g., davinci) were able to generate analogies that184

matched the quality of human-generated analogies.185

Another remarkable milestone is reported by Webb186

et al. (2023) who evaluate GPT3 on various ana-187

logical reasoning tasks (Raven’s standard progres-188

sive matrices, letter string analogies, etc.) and re-189

port that “GPT-3 displayed a surprisingly strong190

capacity for abstract pattern induction, matching191

or even surpassing human capabilities in most set-192

tings.” Our results also confirm such progress—the193

abilities of LMs indeed increase with the improve-194

ments in the scale. However, our benchmark re-195

veals major limitations of LMs that was not easily196

observable in the prior work (e.g., the weakness197

of LMs in solving analogies that involve longer198

inputs).199

3 ANALOBENCH: A Benchmark for200

Abstract and Long-Context Analogies201

We describe desired attributes of benchmark-202

ing analogies (§3.1), discuss the construction of203

ANALOBENCH (§3.2) and the tasks devised based204

on this dataset (§3.3).205

3.1 Design Considerations 206

We discuss on the unique qualities of analogical 207

reasoning to guide and motivate our design: 208

Assess the breadth of analogies. The universe of 209

analogies is vast, and any LM is likely only able to 210

predict a small (often easy) subset of this universe. 211

While measuring the precision of LMs is important, 212

an ideal benchmark should also measure their recall 213

(how well they capture deep and abstract analogies). 214

Generative evaluation might not fully capture this 215

depth, as there may exist many analogies that the 216

LM cannot predict. To assess what an LM cannot 217

predict, we propose a set of analogies of our own 218

choosing, and evaluate analogical identification on 219

this set (§3.3). 220

Assess the relative strength of analogies. The 221

quality of analogies inherently lie on a spectrum— 222

some are stronger and some are weaker. Ideally, a 223

task formulation should capture the continuum of 224

analogy strengths. We thus frame our analogical 225

identification task more specifically as a ranking 226

task, where the best answer must be preferred over 227

incorrect choices. 228

Use creative analogies. LMs perform worse 229

on creative (i.e. rare) data. Thus a benchmark 230

that aims to challenge LMs should feature analo- 231

gies that are creative. To that end, we introduce 232

novel and diverse, human-written analogies created 233

through a semi-randomized process (§3.2). 234

3.2 Dataset Creation 235

1 Curating analogical sentence-pairs. We col- 236

lected 340 analogies from 4 human annotators (the 237

authors) after multiple rounds of editing. The hu- 238

man annotators included native English speakers 239

and non-native speakers who all attended university 240

in the United States. These analogies then served 241

as true positives in our experiments. These annota- 242

tions of analogies are arranged in pairs of sentences 243

that share similar relational patterns. For example, 244

in Figure 2 the sentences “He danced off his sugar 245

high then promptly fell asleep” and “The weather 246

finally became pleasant following the stormy week” 247

form an analogy. While these two sentences are 248

topically dissimilar (dancing vs weather), they nev- 249

ertheless share abstract relational patterns. 250

The construction of these sentence pairs follows 251

this process: For each annotation, a random sen- 252

tence is provided to the annotator, who is tasked 253

with creating a corresponding analogous sentence. 254
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. . . 

②  Analogical Clusters① Analogical Pairs

Sentence A Sentence B

You can't pour from an empty cup. A fallen tree cannot provide shade.

You can't pour from an empty cup. It's hard to love with a broken heart.

He danced off his sugar high then 
promptly fell asleep.

After letting off his rage he sat down 
like a lamb.

He danced off his sugar high then 
promptly fell asleep.

The weather finally became pleasant 
following the stormy week.

. . . . . . 

● After letting off his rage he sat down like a lamb.
● He danced off his sugar high then promptly fell asleep.
● The weather finally became pleasant following the 

stormy week.

● You can't pour from an empty cup.
● A fallen tree cannot provide shade.
● It's hard to love with a broken heart.
● ...

Figure 2: An overview of dataset creation (§3.2). 1 Left: Human annotators are asked to create pairs of analogous sentences.
Sentences can be repeated from analogy to analogy. 2 Right: Pairs that share a sentence can be grouped into a cluster of
mutually analogous sentences by transitivity.

Source sentences were sampled from Cambridge255

Dictionary examples of idioms found on an online256

resource3 and a dataset of metaphors (Bizzoni and257

Lappin, 2018) filtered down to keep only examples258

with the strongest or second-strongest grades. To259

encourage innovative and abstract analogies, the260

annotator is given 3 random words to incorporate261

in the newly formed sentence.4 During our pilot262

study, the introduction of random words was found263

to induce more creative annotations.264

There are guidelines that the annotators adhere265

to. Firstly, they are instructed to avoid using similar266

sentence structure, topics or words as the original267

sentence. This is to eliminate any easy shortcuts268

that might allow LMs to recognize an analogy with-269

out having identified relational patterns. For exam-270

ple, an LM might mistakenly use similar phrasing271

between a pair of sentences to detect an analogy.272

Instead, the analogy between two sentences should273

be established on the basis of shared relational pat-274

terns. Finally, a separate reviewer scrutinizes the275

contributed sentence pairs to ensure their clarity,276

accuracy, and effective use of analogy.277

2 Forming analogical clusters. Our collected278

data is structured such that the same sentence can279

appear in several analogous sentence pairs. This280

allows us to organize our dataset into sets of anal-281

ogous clusters, where all pairs of sentences in a282

cluster are mutually analogous by transitivity. Each283

cluster is manually inspected and adjusted to con-284

firm mutual analogousness. Furthermore, different285

clusters that happen to share common relational286

patterns are combined. We then use these clusters287

to setup the tasks in §3.3.288

3 Analogy elaboration. To investigate the ef-289

fect of story length on the complexity of analogies,290

3See this link.
4Randomization was achieved by sampling nouns, verbs,

and adjectives from here.

we collect elaborated versions of each story. First, 291

longer stories requires analogical reasoning over 292

longer contexts, a task which scales in difficulty for 293

LMs, as shown by the recent results (Chen et al., 294

2023; Khandelwal et al., 2018; Liu et al., 2023). 295

Second, the longer the stories in an analogy, the 296

more room for expressing abstract relational pat- 297

terns. 298

To implement this elaboration, we use GPT-4 to 299

convert sentence-level analogies into detailed sto- 300

ries with a target length of 10 sentences and 30 sen- 301

tences. We selected GPT-4 for its advanced story 302

generation capabilities and proficiency over other 303

LMs in generating coherent and complex text.5 304

To balance creativity and logical consistency, we 305

configured the model with parameters such as tem- 306

perature = 1 and top-p = 0.95. We provide the 307

prompt templates used in Appendix D. Although 308

we later evaluate GPT-4 on its own generations, 309

we demonstrate that self-evaluation bias does not 310

affect our conclusions by testing GPT-4 on stories 311

generated by a different model (§5.1). 312

Statistics. Table 1 shows the overall statistics of 313

our collected analogical clusters and their elabora- 314

tions. Overall, we compiled a total of 340 stories 315

grouped into 47 clusters. On average, each cluster 316

consists of about 7.2 stories. 317

3.3 Analogy Identification Tasks 318

With the clusters of analogies defined (§3.2), we 319

leverage this data to devise two tasks to benchmark 320

the capability of state of the art LMs at analogical 321

reasoning. In §1, we introduced two components 322

of analogy making. Each task aims to evaluate both 323

components in conjunction. Given a query story, 324

both tasks involve identifying analogous stories to 325

the given one from a story bank. In the first task, we 326

5In our pilot experiments, we compared the elaborations
using GPT-4, PaLM and Claude, and ultimately chose GPT-4
because of its accurate yet creative elaborations.
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Measure Value

# of clusters 47.0
avg. size of clusters (stories) 7.2
avg. length (sentences) of 1 sentence stories 1.2
avg. length (sentences) of 10 sentence stories 11.9
avg. length (sentences) of 30 sentence stories 31.2
avg. length (subwords) of 1 sentence stories 21.3
avg. length (subwords) of 10 sentence stories 225.8
avg. length (subwords) of 30 sentence stories 552.8

Table 1: Summary of dataset statistics. The dataset consists
of 47 clusters with an average of 7.2 stories each, and stories
vary in average sentence and subword length.

maintain a small story bank to focus the challenge327

on rating a few candidates, thereby disentangling328

it from the challenge of long-context reasoning.329

In the second task, given a story, a model must330

identify analogous stories from a large story bank.331

We intend this approach to be analogous to how332

humans recollect and employ their past experience333

to form analogies.334

T1: Identify analogies from mini story bank.335

This task confronts the model with choosing the336

most fitting analogy from 4 options. Given a sen-337

tence or story, the model must select the most suit-338

able option from a lineup consisting of one correct339

answer and three intentionally crafted distractors to340

assess its discernment of analogical relationships.341

Each answer choice is prefixed by a letter from342

[A, B, C, D] (e.g. “D. A fallen tree cannot pro-343

vide shade”). We prompt each model to answer344

the question: “Which of the following is the most345

analogous story to the target story?” To guide the346

LM to make a selection, we impose an additional347

condition in the prompt that the generation must be348

one of the four letters. More details of our approach349

can be found in Appendix E.350

An example of this task is shown in Figure 5.351

Note, given the elaborated stories discussed in (step352

3 in §3.2), we have three datasets of multiple-353

choice questions for each story length (1-sentence,354

10-sentences, 30-sentences).355

T2: Identify analogies from large story bank.356

In this task, given a story, the model must identify357

the top 10 most analogous stories from a carefully358

assembled, fixed story-bank consisting of 200 dif-359

ferent stories. Each story is prefixed by a number360

from 1 to 200 (e.g. “1. Kim checked the papers...”).361

For this task, we prompt each model to generate a362

list of integers representing the index numbers of363

its selections. Following this, we employ precision364

and recall metrics to analyze its performance. More365

details and examples are provided in Appendix G.6 366

Like the earlier task, we study this task in three 367

distinct setups as a function of story length (1 sen- 368

tence, 10 sentences, 30 sentences). The size of the 369

story-bank provided to the model varies consider- 370

ably on different datasets. For 1-sentence dataset, 371

the story-bank for it contains 4K tokens. For 30- 372

sentence story-bank, it contains 110K tokens. The 373

long-context nature of this task poses a major chal- 374

lenge for LMs. Due to these constraints, our evalua- 375

tion of T2 (§4.3) is limited to the few models (GPT- 376

4 and Claude-v2) that can handle long-context. 377

4 Main Experiments 378

We structure our experimental assessment around 379

two primary tasks aimed at evaluating the analogi- 380

cal reasoning of LMs. We discuss the experimental 381

setting including the metrics, models and human 382

evaluation (§4.1), followed by the results. 383

4.1 Experimental Setting 384

Metrics. All scores are reported as percentages. 385

For T1 (analogies from a small story bank, §3.3) 386

we use accuracy as the primary measure of success. 387

Each example has multiple candidate analogies. A 388

solver gets a score of 1 if it chooses the most anal- 389

ogous story and 1/k if it reports no-answer or a 390

k-way tie that includes the correct answer (k = 4 391

in our dataset.) For T2 (analogy from a large story 392

bank, §3.3), we report common retrieval metrics 393

such as Mean Average Precision (MAP), Preci- 394

sion@K, Recall@K, and Mean Reciprocal Rank 395

(MRR) (Manning et al., 2008). 396

Evaluated models. To determine the analogi- 397

cal reasoning abilities of the LMs, we include an 398

assortment of high-profile models in our bench- 399

marks. The lineup features GPT-4 (OpenAI, 2023), 400

GPT-3.5 (Brown et al., 2020), LLaMA2-chat (Tou- 401

vron et al., 2023), UnifiedQA (Khashabi et al., 402

2020, 2022), XwinLM (Xwin-LM, 2023), Wiz- 403

ardLM (Xu et al., 2023), Tulu2 (Ivison et al., 2023), 404

Zephyr (Tunstall et al., 2023), Claude-v2 (An- 405

thropic, 2023). To minimize variations in model 406

6We also considered using the LM to assign likelihoods
to analogous stories, then ranking the entire story-bank by
likelihood. However, the extent to which modern LMs are
well-calibrated remains unclear, especially in this domain.
We conducted preliminary studies that attempted to score
the strength of an analogy between two sentences. Scores
were wildly inconsistent between runs and different in-context
examples, even on low temperature settings. The factors that
contribute to the inconsistent behavior remain unclear, and
thus we do not define our task in this manner.
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responses, we set the decoding parameters to tem-407

perature = 0.3 and top-p = 0.95.408

Of the models considered, we do not include409

supervised baselines, where a model is trained or410

finetuned on labelled analogy data. We believe411

that learning analogical thinking from supervised412

training is misguided. A training set of analogies413

that can comprehensively approximate the entire414

universe of analogies is unlikely to exist. Therefore,415

while a model can fit some set of analogies, that416

model might fail to generalize to out-of-distribution417

examples or even other analogy datasets.418

Human evaluation. We conducted human evalu-419

ation to measure whether the task is well-defined420

and has a reasonable quality. This process was421

meticulously applied to our T1 task (Analogy Se-422

lection, §3.3) across different levels of complexity:423

1-sentence, 10-sentence, and 30-sentence scenarios.424

To make the 30-sentence task more manageable,425

the annotations were done for 30 instances. How-426

ever, for 1-sentence and 10-sentence settings, we427

annotated 50 instances.428

For each level of complexity, we enlisted three429

additional annotators7 (who were not involved in430

the dataset construction) to evaluate the analogy431

scenarios. Each annotator began by selecting their432

personal answer choice without conferring. This433

exercise led to high-agreement among the annota-434

tors (results in Appendix C).435

Following this individual judgment phase, dis-436

agreements were adjudicated via discussion among437

the annotators. During these discussions, the anno-438

tators were encouraged to exchange their rationales439

behind their initial selection and converge upon one440

collective answer that we used for evaluation.441

We did not run human annotations for T2 due442

to the immense reading load expected of annota-443

tors. Additionally, since the two tasks are based on444

the same set of labeled data, we focus our human445

annotations on T1 to establish the quality of the446

presented data.447

4.2 Result: Mini Story Bank (T1)448

We benchmark how well our models can identify449

analogies from a mini story bank (so as to disentan-450

gle this task from other challenges associated with451

long-context reasoning). Our results are reported452

in Table 2 and Figure 3. More detailed results are453

7These annotators (also authors) share the same demo-
graphic as the other annotators in §3.2 and were not aware of
the experimental design during annotation

reported in Table 5 of the Appendix. Overall, our 454

analogical reasoning benchmark challenges state 455

of the art language models. 456

LMs do not outperform humans. Our bench- 457

marking reveals that analogical ability varies 458

widely among modern LMs. While many models 459

perform non-trivially (i.e. better than 25% accu- 460

racy achieved by random guessing), and some mod- 461

els such as GPT-4 perform considerably well, no 462

model is able to outperform humans in any setting. 463

Among open-source models, the largest models 464

(70B) dominate the results for the shortest story 465

length setting, with the exception of UnifiedQA 466

which is supervised with different data than the rest 467

of the models. 468

Model � - Story length � 1-sent 10-sent 30-sent

Random 25 25 25
O

pe
n-

so
ur

ce
Zephyr (7B) 55.1 27.1 20.3
UnifiedQA (11B) 68.1 27.3 17.8
WizardLM (13B) 41.1 29.1 25.7
LLaMA2-chat (70B) 55.6 39.2 29.5
XwinLM (70B) 66.3 35.7 26.8
Tulu2 (70B) 71.8 51.2 31.5

Pr
iv

at
e Claude 68.2 30.2 25.9

GPT3.5 65.3 46.4 30.8
GPT4 89.1 66.5 60.7
Human 96.0 72.5 73.3

Table 2: Benchmarking various models for T1 (§4.2). For
open-source models, we only show the results of the largest
available sizes in their model family. While the best models
perform somewhat close to human in short analogies (1-
sentence), the human-AI gap increases in longer stories.

Analogy length degrades LM performance. 469

We evaluate our lineup of models on stories con- 470

sisting of 1, 10, and 30 sentences. In Figure 3b 471

all models exhibit degradation as story length in- 472

creases. In contrast, while human performance also 473

decreases with longer length, their performance 474

stops decreasing for 10- and 30-sentence stories. 475

Thus, the performance gap between humans and 476

LMs increases with longer context-length. These 477

results to suggest that analogical reasoning over 478

longer inputs poses an inherent challenge for LMs. 479

Model scaling benefits are limited on long stories. 480

Even if performance diminishes with increased 481

story length across all models, as long as perfor- 482

mance improves with model size, a sufficiently 483

large model can solve this problem. To test this 484

possibility, we evaluate models of varying sizes 485

within the UnifiedQA, LLaMA2, XwinLM, and 486
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UnifiedQA LLaMa2 Chat XwinLM Tulu2 GPT3.5 GPT4 Human

1B 100B
25

50

75

Ac
cu

ra
cy

 (%
)

1-sentence

1B 100B

10-sentence

1B 100B

30-sentence

Parameters (Log Scale)
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Figure 3: Accuracy of LMs on T1 (§4.2).

Tulu2 families on T1. Our results in Figure 3a indi-487

cate that while performance scales with LLM size488

in the single sentence setting, we do not observe489

the same trend in longer settings. Specifically, in490

longer stories performance plateaus across model491

family as model size increases. The observed trend492

indicates a limit to the benefits of scaling model493

size when handling complex analogices.494

4.3 Results: Large Story Bank (T2)495

Having evaluated our lineup of models on the mini496

story-bank setting, we now turn our attention to the497

full story-bank setting. As stated in §3.3, fitting498

the full story bank in the context window requires499

us to consider only long-context models such as500

GPT4-Turbo and Claude. In this experiment, given501

a story, each model must identify the top k most502

analogous stories from the story-bank. We report503

the precision-recall curves for k = 1, ..., 10 in Fig-504

ure 4 and provide further details in Table 6 of the505

Appendix.506

LM performance approaches random. We507

evaluate both models as well as a trivial baseline508

where k random documents are retrieved. Both509

models perform similarly to the trivial baseline510

in most cases. The only exception is the perfor-511

mance of GPT4-Turbo in the single-sentence set-512

ting. While impressive, the performance of GPT4-513

Turbo is nevertheless near trivial in lengthier set-514

tings. These evaluations test the limits of the best515

modern LMs. If humans can recollect relevant ex-516

periences to form analogies (Keane, 1987; Wharton517

et al., 1994), then our results suggest that further518

research is necessary to achieve parity in LMs.519

5 Further Analysis 520

5.1 Evaluating Self-Generated Stories 521

In past experiments, we utilized GPT-4 to extend 522

single-sentence stories into versions containing 10 523

or 30 sentences. Consequently, the relatively high 524

accuracy of GPT-4 may stem from evaluating its 525

own generated content. To address this, we com- 526

pare the performance of GPT-4 on its own stories 527

compared to stories generated by Claude. As a 528

baseline, we measure the performance of Claude 529

on its own stories and stories generated by GPT-4. 530

We report our results in Table 3 and find that GPT- 531

4 encounters negligible performance degradation 532

upon switching to Claude generations. Addition- 533

ally, GPT-4 consistently outperforms Claude on 534

Claude generations. These results suggest that the 535

relatively high performance of GPT-4 is likely at- 536

tributed to factors other than evaluating its own 537

generations. 538

Eval.
Gen. 10 Sentences 30 Sentences

Claude GPT4 Claude GPT4

Claude 36.5 30.2 33.5 25.9
GPT4 69.7 66.5 57.6 60.7

Table 3: Perf. of different evaluators and generators on 10- and
30-sentence stories (§5.1). GPT-4 performance experiences
minimal change when evaluating Claude generations.

5.2 Effect of Dataset Error 539

We cannot rule out the possibility that our dataset 540

may contain errors. Indeed, whether incorrect pre- 541

dictions from humans are attributable to human 542

error or dataset error is unclear. To reduce the like- 543

lihood of dataset error affecting our conclusions, 544

we deem analogies that were correctly predicted 545

by humans to be relatively free of error, and repeat 546

experiment T1 on those analogies. We test GPT- 547
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Figure 4: Precision-recall plot (in percentage) of LMs on T2 (§4.3) at three different story lengths (1, 10, 30 sentences). With
increasing story length, the precision-recall of the models approaches random.

4, Tulu2, and XwinLM and report our results in548

Table 4. All trends reported in §4.3 are still ob-549

served in this low-error setting, suggesting that our550

conclusions are unlikely to be affected by dataset551

error.552

Model T1: Classification (accuracy%)

1 sentence 10 sentences 30 sentences

GPT4 91.7 58.3 22.7
Tulu7 47.2 30.1 16.7
Tulu13 52.8 30.1 22.2
Tulu70 74.0 34.7 25.0
Xwin13 27.8 19.4 22.9
Xwin70 42.2 31.9 29.1

Table 4: Model accuracy on true positive human predictions in
T1 (§5.2) at three different story lengths (1, 10, 30 sentences).
All trends are consistent with the original task.

5.3 Longer Analogies are Easier for Humans553

In §3.2 we hypothesized that analogy length cor-554

responds to complexity. While our results clearly555

indicate that longer analogies pose a greater chal-556

lenge for LMs, perhaps a more interesting question557

is whether they pose a greater challenge for hu-558

mans. Surprisingly, human annotators found the559

30 sentence setting easier than the 10 sentence set-560

ting, observing that the added details in the longer561

setting aid in disambiguation when performing the562

task. This opinion is supported by annotator perfor-563

mance in Table 2.564

6 Discussion565

Limits of modern LMs in analogical thinking.566

A clear consensus on whether LMs can adequately567

perform analogical thinking has remained elusive.568

While some find that LMs are proficient analogical569

reasoners (Webb et al., 2023; Ichien et al., 2023),570

others have challenged this notion (Jiayang et al.,571

2023). Throughout our experiments, we repeat-572

edly find that modern LMs display limited ability573

to engage in key aspects of analogical thinking. 574

Crucially, performance does not scale with model 575

size on longer stories. Unlike the LMs evaluated, 576

humans can identify analogies between even the 577

longest stories with relative ease. These observa- 578

tions clearly suggest that LMs lack some key mech- 579

anism to think analogically. Overall, our results 580

establish the need for further research to encourage 581

analogical thinking in LMs. 582

Downstream applications and future work. 583

What downstream applications can we expect from 584

analogically reasoning LMs? We discuss examples 585

to illustrate the potential of analogical LMs. In 586

science, analogy provides a source of inspiration 587

for innovation. For instance, the design of artificial 588

neural networks was inspired by biological neural 589

networks. An analogy driven scientific search en- 590

gine would accelerate such innovation, allowing 591

researchers to consider relevant ideas across vastly 592

different contexts (Hope et al., 2017). In law, Zou 593

et al. (2024) has represented consistency in legal de- 594

cisions as an analogical reasoning problem, where 595

decisions in a current case should follow that of an 596

analogous case. An analogical search engine would 597

aid in the identification of relevant cases. Given 598

these wide-ranging applications, we hope that our 599

findings motivate future work towards equipping 600

LMs with better analogical reasoning capabilities. 601

7 Conclusion 602

Analogical reasoning is an important aspect of hu- 603

man cognition, with wide-ranging potential for fu- 604

ture research. To benchmark this ability in LMs, we 605

define a general approach by scaling the length of 606

stories and the context from which they need to be 607

retrieved. Our benchmark exposes the limitations 608

of analogical reasoning in modern LMs. We release 609

ANALOBENCH to motivate further research. 610
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8 Limitations611

In our experiments we benchmark many models.612

While trying more models and performing addi-613

tional prompt-engineering could have affected re-614

sults, in the end we were constrained by the avail-615

able computing resources. Additionally, we can-616

not exclude the possibility that LMs encountered617

labelled analogies during training or finetuning, es-618

pecially proprietary models such as GPT-4. While619

our dataset is more challenging than existing ones,620

it comes with various simplifying assumptions621

and cannot capture the potentially-infinite range622

of analogies. Future work should extend the ex-623

isting datasets to capture more complex forms of624

analogical reasoning.625

9 Ethics Statement626

We hereby acknowledge that all authors of this627

work are aware of the provided ACL Code of Ethics628

and honor the code of conduct. The work presented629

here does not immediately raise any ethical con-630

cerns, to our knowledge. Beyond the scope of this631

work, analogical reasoning should be applied with632

care, otherwise due to its inherent subjectivity it633

may potentially lead to misleading or incorrect con-634

clusions.635
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Supplemental Material920

A Additional Related Work921

Here we cover additional related work that did not fit in the main text.922

Analogical reasoning before LMs. The research on analogical reasoning in AI and cognitive science923

for the longest time has focused on four-term analogies (Hesse, 1965) (e.g., “Baltimore to Maryland is924

like NYC to New York”). In the era of symbolic AI era, an extensive literature focused on engineering925

symbolic systems that processed analogical reasoning (Winston, 1980; Carbonell, 1983; Hofstadter, 1984;926

Schank, 1999). These works focus on richer representation for alignment of analogous symbols and their927

dynamic retrieval from a memory structure.928

The more complex the analogies are, the more complex representation they require (Holyoak et al.,929

2001). Naturally, it meant that solving the analogy problem require solving the representation problem.930

The increasing progress in extracting representations of language led to more progress in analogical931

reseasoning. A decade ago, the earlier generation of representation learning algorithms such as Word2Vec932

(Mikolov et al., 2010, 2013a) famously showed linguistic regularities equivalent to lexical analogies (Pen-933

nington et al., 2014; Ethayarajh et al., 2018) Thereafter, a large body of works focused on effective ways934

of eliciting analogies from word embeddings (Murena et al., 2020), sometimes through neural networks935

or symbolic reasoning frameworks built atop these embeddings (Lamm et al., 2018; Alsaidi et al., 2021;936

Marquer and Couceiro, 2023).937

Analogical reasoning in humans. The cognitive ability to process analogies likely has been with938

homosapiens since the time they developed their languages, as evidenced by written Babylonian or939

Egyptian relics (Holyoak and Thagard, 1996). These written documents convey a variety of ideas:940

friendship and emotions, dangers and enemies, power and greed, and so on.941

Analogies also made their way to science. Greeks used analogies to describe their understanding of942

physical concepts, such as sound waves spreading like water waves. Physicists used similar abstractions943

to understand light waves by formulating analogies to known physical waves, leading to “wave theory of944

light”. Analogies are so prevalent in scientific development that renowned physicist J. Robert Oppenheimer945

called it an “indispensable and inevitable tool for scientific progress” (Oppenheimer, 1956).946

Cognitive science is the community which adopted a scientific and systematic treatment of analogical947

reasoning in human cognition. Within cognitive science, analogical reasoning was viewed as mental mod-948

els that utilize structure alignment via relations (Gentner, 1983; Clement and Gentner, 1991). Analogical949

reasoning was also studied under pragmatic contexts such as the goal of the environment or the problem950

solving (Gick and Holyoak, 1980). Hofstadter (2001); Gentner and Hoyos (2017) argue that analogical951

reasoning is the “core of cognition”.952
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B Visualizing the Task 953

The following Figure 5 shows an overview of ANALOBENCH, for both the story expansion 3 and the 954

task creation §3.3. Our abstract analogy identification benchmark features two tasks: (T1) Identifying 955

analogies from mini story bank and (T2) Identifying analogies from mini story bank. Each task is repeated 956

at varying story lengths (∼ 1, 10, and 30 sentences), with GPT-4 extending each story to target length. We 957

find that while analogical reasoning shows signs of emergence, reasoning over longer and more complex 958

analogies remains a challenge for state of the art LMs. 959

Doc. n
A fallen 
tree cannot 
provide 
shade.

M
in

i S
to

ry
-B

an
k

Target: You can't pour from 
an empty cup.

✓ A fallen tree cannot provide shade.
✗ All that glitters is not gold.
✗ After letting off his rage he sat down like a…
✗ A succession of waves battered the rock.

Fu
ll 

St
or

y-
B

an
k

Q: Which of the following is the most analogous 
sentence to the target sentence?

Q: Retrieve the top 10 analogous stories 
from the sentence bank…

Query 
You can't 
pour from 
an empty 
cup.

Doc. n
Once upon a time, a 
man named Henry lived 
in a tiny, worn-out 
house. He…

Target: Lily was the kind of person who was always running 
around trying to help others. She had an exceptional kind …

✓ Once upon a time, a man named Henry lived in a tiny, worn-out house. He…
✗ In the small town of Baker's Crest, people lived simple lives, mostly untouched by…
✗ In the heart of a small, peaceful town lived a man named Gerald. He was an…
✗ A stormy morning on the coast revealed an awe-inspiring sight as a …

Query 
Lily was the kind of 
person who was always 
running around trying to 
help others. She had an 
exceptional kind …

Q: Which of the following is the most analogous sentence to the target sentence?

Q: Retrieve the top 10 analogous stories from the sentence bank…
Once upon a time, a 
man named Henry 
lived in a tiny, 
worn-out house. He …

Given the following 
sentence, expand it 
into a 10 sentence 
story:

Sentence: A fallen tree 
cannot provide shade

GPT-4

Shorter Longer

Figure 5

C Inter-annotator Agreement Among Human Annotators 960

Using our task definition, when we measure the inter-annotator agreement on our human-written analogies 961

(1-sentence), we find that all three human evaluators agree unanimously on 47 of 50 analogies. The high 962

degree of inter-annotator agreement is a quantitative indicator of our dataset’s objective evaluation and 963

quality. 964

Task Agreement Rate

1-sentence 0.94
10-sentence 0.70
30-sentence 0.73
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D Further Details on Analogy Elaboration965

We expand a single sentence to craft a story spanning 10 or 30 sentences. This directive applies to both966

GPT-4 in §3.2. Below is an example:967

Example prompts provided to GPT-4 for story elaboration:968

Input:

Given the following sentence, expand it into a 10-sentence story.
Sentence: All that glitters is not gold.

969

Output:

In the small town of Baker’s Crest, people lived simple lives, mostly untouched by the allure of
wealth and luxury. The quiet town was buzzing one day with the news of a travelling merchant who
claimed to sell "real gold" artifacts. The townspeople gathered at the market square, attracted
by the glinting objects displayed on his cart.
The items glittered under the sunlight, their sheen unmatched, making everyone believe they were
indeed made of gold. The merchant, a persuasive man, told captivating tales of the artifacts
being lost treasures of ancient kings. An air of greed and desire blew over the town, as everyone
wanted a piece of this assumed wealth. They traded their hard-earned savings for the glittering
items, believing they had struck a fortune.
It was not until a wise old man from the town examined the artifacts closely and declared them
to be mere brass, cleverly polished to resemble gold. All the glitter had indeed fooled them,
reinforcing the adage, "All that glitters is not gold." The realization dawned, leaving the
townspeople embarrassed, having learned their lesson the hard way.

970

Throughout this creative process, we regulate it with a temperature setting of 1 and a top_p value of971

0.95. We experimented with different temperatures, but these adjustments introduced additional issues. A972

high temperature caused the narrative to diverge from the core meaning of the original sentence, whereas973

a low temperature led to repetitive elements which rendered generated stories highly similar due to shared974

analogous traits.975

Assessing the quality of story expansion. We conduct an experiment to test the ability of GPT-4976

to extend stories while hewing to the original source. If GPT-4 is successful, then the original source977

(hypothesis) must entail from the extended story (premise). Modern LLMs are understood to be highly978

performant on the textual entailment task. Thus, we use the recently-released Claude-3 to predict979

entailment, taking care to avoid any potential bias in these evaluations that might unfairly favor the980

generations of GPT-4. As baselines, we randomly pair the premise and hypothesis for the 10- and981

30-sentence setting.982

Story Comparison Entailment Rate

1 vs 10 sentence (random) 0.01
1 vs 10 sentence 0.95

1 vs 30 sentence (random) 0.03
1 vs 30 sentence 0.97

We show that nearly all our source stories entail from the extended versions.983
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E Prompts Used for Evaluating LMs for T1 984

Figure 6 demonstrates the adaptation of a basic prompt to run various model evaluations for T1 task. We 985

begin with the basic prompt and adjust it slightly to comply with the specific instructions of each model, 986

as depicted in the second tier of the diagram. The third tier presents examples of responses generated by 987

the models. Also, we set the temperature=0.3 and top_p=0.95 for all of the model evaluations. 988

Prompt:
Which of the following is the most analogous story to the target story?
Note: Only generate a letter from [A, B, C, D] without any additional text.
Target Story:
All that glitters is not gold.
Options:
A. Don't trust everything on the social media. It appears that people are having the best time
of their lives, but remember, it can be fake.
B. They think they’ve won the contract but we’ve still got a couple of ideas to win it back.
C. After seeing Tim being disappointed over not making the basketball team, Barry advised
him to stray away from his emotions and work hard to try again next year.
D. A fallen tree cannot provide shade.

{prompt}

Human

<|user|>
{prompt}
<|assistant|>

Zephyr, Tulu Xwinlm, Wizard

A chat between a curious user and an artificial
intelligence assistant. The assistant gives helpful,
detailed, and polite answers to the user's questions. 
USER: {prompt}
ASSISTANT: 

Claude

\n \n Human:
{prompt}
\n \n Assistant: 

{prompt}

GPT4, GPT3.5,
Llama2 Chat

...
Target Story:
All that glitters is not gold.
\\n
Options:
....

UnifiedQA

Output

A

Zephyr Tulu

Wizard

Output GPT4 GPT3.5

UnifiedQA UnifiedQA
V2

D. A fallen
tree cannot
provide
shade.

Analogous
sentence:

Not
everything
that seems
beautiful or
valuable is
actually so.

Options:

A. Not
everything
you see on
social media
is true or
accurate.

...

A

Xwinlm

The most analogous
sentence to the target
sentence is:

A. Don't trust everything on
social media. It appears
that people are having the
best time of their lives, but
remember, it can be fake.

This sentence shares the
theme of the target
sentence, warning against
assuming that something is
valuable or true based on
appearances. In this case,
it cautions against trusting
everything seen on social
media, as it may not
accurately represent reality.

The most analogous
sentence to the target
sentence "All that
glitters is not gold" is
"A fallen tree cannot
provide shade."

This is because both
sentences convey a
similar message
about appearances
being deceiving. The
target ....

A A A.
A. Ever since
she got her
first
smartphone,
Emily had
spent
countless
hours scrolling
through
endless social
media feeds.

A.

A. Don't trust
everything on the
social media. It
appears that people
are having the best
time of their lives, but
remember, it can be
fake.

Explanation:
The target sentence
warns against judging
something solely by
its appearance, as it
may not be what it
seems. Option A
conveys a similar
message, cautioning
against trusting
everything on social
media, as it may be
misleading or fake.

Llama2

Figure 6: Analogy Selection Prompt for Different Models
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F Detailed Results for T1989

Table 5 in our research paper presents the comprehensive set of results from our T1 experiments discussed990

in §4.2. We assessed the abilities of numerous open-source models as well as GPT-4 and Claude-v2 on991

this particular task. We use 4xA100 to evaluate all of the models.992

Model Number of params T1Analogy Selection (accuracy)

1 sentence 10 sentences 30 sentences

Random – 25% 25% 25%
UnifiedQA 11B 68.1% 27.3% 17.8%
UnifiedQA v2 11B 53.8% 29.1% 23.6%
LLaMA2-chat 7B 35.6% 26.5% 26.3%
LLaMA2-chat 13B 40.9% 26.5% 23.7%
LLaMA2-chat 70B 55.6% 39.2% 29.5%
XwinLM 13B 28.2% 27.7% 23.5%
XwinLM 70B 66.3% 35.7% 26.8%
WizardLM 13B 41.1% 29.1% 25.7%
Tulu2 7B 50.0% 25.0% 27.9%
Tulu2 13B 55.3% 25.6% 23.8%
Tulu2 70B 71.8% 51.2% 31.5%
Zephyr 7B 55.1% 27.1% 20.3%
GPT3.5 175B 65.3% 46.4% 30.8%
GPT4 ? 89.1% 66.5% 60.7%
Cluade ? 68.2% 30.2% 25.9%
Human – 96.0% 72.5% 73.3%

Table 5: Performance of different models on analogy selection tasks.
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G Prompts used for evaluating LMs for T2 993

In §3.3 we discuss T2, which is identifying the top 10 most analogous stories from a fixed bank of 200 994

stories. The following example shows the detail of the prompt. 995

GPT-4 Model Input and Output 996

Input:

Retrieve the top 10 analogous stories from the sentence bank for the following target story:
NOTE: Only generate an index number without any additional text. For example: 1, 2, 3, 4, 5, 6,
7, 8, 9, 10
Target Story:
All that glitters is not gold.
Sentence Bank:
1.Kim checked the papers in a rush so that she can have more free time. But, now she needs to
redo them as half of the class complained.
2. Liam lied to get into the school; Lary did not. Liam had a difficult time trying to hide the
deception as a result. But unlike Liam, Lary did not have to worry about anything else, so he
had a terrific time.
3. I am sorry, but you would now have to present your work before you can go for the vacation.
4. A fallen tree cannot provide shade.
5. He is the winner of three Grammy awards for god’s sake! People consider him to be the god of
rap.
...
197. It is not that cold today, but I’d still go by car since I can’t afford to get sick.
198. I do not want to spoil your mood but I have to babysit my nephew today.
199. Every cigarette you smoked is a threat to your health.
200. He knocked the nail into the wall with a hammer.

997

Output:

4, 14, 29, 59, 97, 111, 113, 137, 172, 188

998
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H Detailed Results for T2999

Table 6 in our research paper presents the comprehensive set of results from T2. We assessed the abilities1000

of GPT-4 Turbo and Claude-v2 on this particular task(§4.3). We use 4xA100 to evaluate all of the models.1001

Here are some detailed results of it:1002

Metrics T2: [GPT4-turbo] Claude-v2 Random Oracle

1 sentence 10 sentences 30 sentences 1 sentence 10 sentences 30 sentences

P@3 42.9% 6.5% 3.9% 10.2% 5.3% 5.4% 3.9% 100%
P@5 38.5% 5.2% 3.6% 8.9% 4.6% 4.7% 3.6% 100%
R@3 20.1% 2.9% 1.8% 4.3% 2.4% 2.2% 1.6% 48.9%
R@5 29.7% 3.8% 2.7% 6.6% 3.6% 3.2% 2.5% 81.6%
MAP 55.4% 14.2% 10.8% 6.3% 1.9% 3.4% 1.7% 100%
MRR 64.2% 15.6% 11.3% 18.9% 9.8% 13.4% 11.1% 100%

Table 6: Performance metrics for T2 using and Claude-v2 at different sentence lengths.

0 20 40
Recall

20

40

Pr
ec

isi
on

GPT4

5 10
5

10

ClaudeV2
1 sentence 10 sentences 30 sentences

Figure 7: The figures indicate that GPT-4 and Claude-v2 excel in the task of retrieving 1 sentence, but their performance
decreases with the retrieval tasks of 10 sentences and 30 sentences.

Calculation of ‘Random’ and ‘Oracle’ Baselines In the context of the table above, precision and1003

recall calculations involve two lists of integers: "result" and "golden." In typical precision and recall1004

computations, the "result" list is derived from the models’ generations. However, for random calculations,1005

the "result" list consists of integers from 1 to 10. This choice is influenced by our prompt: "NOTE:1006

Only generate an index number without any additional text. For example: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10".1007

Specifically, for challenging tasks, GPT-4 and Claude tend to generate a list ranging from 1 to 10 based on1008

this prompt as default. The random calculation is then performed using this list. In the case of the Oracle1009

calculation, we designate the "result" list to be the same as the "golden" list.1010
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I Experiment: Evaluation on Different Stories Lengths for a Fixed Total Context 1011

Window 1012

In our earlier experiments in §4.2 and §4.3 upon changing the length of each story, we also change the 1013

length of the total prompt (i.e., the concatenation of all the stories in the story bank). This essentially 1014

creates a confounding two variables that impact the difficulty of the tasks for LMs: (i) length of each 1015

story; (ii) the total length of the context. To address this confounding variable, here we fix (ii) and vary (i). 1016

We fix a total context window length budget. Specifically, we fix this budget to be 2K and 1.5K tokens. 1017

Then, we fit as many stories that would fit within this total context window budget. The number of the 1018

stories that fit in the context window are shown in Table 7. 1019

Total Context Length Number of stories Scaled Accuracy Accuracy

1-sent 10-sent 30-sent 1-sent 10-sent 30-sent 1-sent 10-sent 30-sent

1500 72 6 3 0.04 0.15 0.07 0.05 0.29 0.38
2000 100 10 4 0.01 0.03 0.08 0.02 0.13 0.31

Table 7: Merged performance metrics for predictions across varying context lengths and story lengths for Tulu2 70B, with and
without scaled accuracy.

We report the accuracy values for these evaluations, but these values are not comparable to across 1020

different length since they have different lower-bounds. For example, a story bank of size 3 leads to a 1021

lowerbound of 1/3, while the lowerbound for a story bank with 72 stories is 1/72. 1022

Besides the accuracy metric, we also report a scaled accuracy. The scaling is necessary here to make
sure that the numbers are all ranged from 0 to 100. To scale a given accuracy value x, we can plug it in
the following formula:

scaled-acc =
x− random-acc
1− random-acc

,

where random-acc = 1/(size of story bank). Overall the results of scaled accuracy values in Table 7 are 1023

small. Essentially all of our stories of varying length remain difficult, even after accounting for a fixed 1024

context window size. Whether story length is a stronger factor or the context window length remains 1025

somewhat inconclusive and requires more future work. 1026
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J Using Claude-v2 for Story Elaboration1027

Similar to §3.2, in §5.1 we expand a single sentence to craft a story spanning 10 or 30 sentences with1028

Claude-v2 this time. This directive is similar to how we prompt GPT-4 (example shown in §D), albeit1029

with a slight modification in the guidance given to Claude-v2. Below is the instruction:1030

Input:

\n\n Human:
Given the following sentence, expand it into a 30-sentence story.
Sentence: All that glitters is not gold.
\n\n Assistant:

1031

Output:

Here is a 10-sentence story expanding on the sentence "All that glitters is not gold":
Lisa was browsing the jewelry store, looking for a new necklace. So many of the pieces caught
her eye with their glittering gems and shiny metals. She tried on a beautiful gold necklace set
with bright green emeralds that seemed to glow. Although it was very pretty, when she looked at
the price tag she gasped - it cost a small fortune! Lisa realized that just because something
glitters, doesn’t mean it’s as valuable as it appears. She put the necklace back and continued
browsing for something more affordable. In a corner case, she found a simple silver chain with
a small pearl pendant. It didn’t sparkle as brightly, but she knew pearls were classic and
elegant. Lisa tried on the necklace and loved how it looked on her. She decided it was perfect,
and happily purchased it for a fraction of the price of the emerald necklace. Though it didn’t
glitter quite as much, she knew this beautiful pearl pendant was the true treasure.
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