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Abstract

Out-of-distribution (OOD) detection aims to identify OOD inputs from unknown
classes, which is important for the reliable deployment of machine learning models
in the open world. Various scoring functions are proposed to distinguish it from
in-distribution (ID) data. However, existing methods generally focus on excavating
the discriminative information from a single input, which implicitly limits its repre-
sentation dimension. In this work, we introduce a novel perspective, i.e., employing
different common corruptions on the input space, to expand that. We reveal an
interesting phenomenon termed confidence mutation, where the confidence of OOD
data can decrease significantly under the corruptions, while the ID data shows
a higher confidence expectation considering the resistance of semantic features.
Based on that, we formalize a new scoring method, namely, Confidence aVerage
(CoVer), which can capture the dynamic differences by simply averaging the scores
obtained from different corrupted inputs and the original ones, making the OOD
and ID distributions more separable in detection tasks. Extensive experiments and
analyses have been conducted to understand and verify the effectiveness of CoVer.
The code is publicly available at: https://github.com/tmlr-group/CoVer.

1 Introduction

Out-of-distribution (OOD) detection [23, 28, 44] is important for reliable machine learning model
deployment in open-world scenarios, where various samples from unknown classes, i.e., OOD data,
are constantly emerging [4]. Deep neural networks [20] (DNNs) are demonstrated to be overconfident
about these OOD data, which may result in disasters for some safety-critical applications [5, 21].
Traditional OOD detection methods [23, 29, 28, 30, 45, 46, 1, 61] design various scoring functions
based on the outputs or representations extracted from well-trained models. Recently, some research
also extended it into a zero-shot setting [31], which leverages the multi-modal information based on
vision-language models (VLMs) and requires no further training on in-distribution (ID) data. A series
of methods [48, 36, 52, 26] are proposed for improving OOD detection based on such advances.

Although promising progress has been achieved, existing methods mainly focus on excavating the
discriminative information of a single input. For instance, ReAct [45], DICE [46], and ASH [1]
integrates the activation regularization or reshaping to the forward path of a single input in single-
modal DNNs; MCM [31] characterizes the confidence of a single input by the similarity between
visual features and text representation of ID classes in VLMs. However, specializing in a single input
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Figure 1: Comparison of scores distributions and detection results with different inputs for representa-
tion dimension expansion. Left panel: results with a single original input; Middle panel: results with
a single corrupted input, which perform worse but have mutated scores for some OOD samples (see
Figure 2); Right panel: results with multiple inputs (CoVer), which achieve the variance reduction for
the ID distribution and perform a better ID-OOD separability (see Figure 3 for more explanations).

may implicitly constrain the representation dimension for detection, leaving some hard-to-distinguish
OOD samples with features similar to ID samples fail to be identified (refer to the distribution overlap
in the left panel of Figure 1). Therefore, it naturally motivates the following critical research question:
Can we expand the dimension of the input space to explore OOD discriminative representations?

In this work, we introduce a novel perspective to investigate that, i.e., employing the common
corruptions [22] in the input space. Through a systematical comparison, we reveal an interesting phe-
nomenon termed confidence mutation, where the confidence of OOD data can decrease significantly
under the corruptions, while ID data shows higher confidence expectation considering different input
dimensions. Specifically, as shown in Figure 1, corrupted inputs result in lower confidence in both
OOD and ID data. However, one critical dynamic discovery is that its confidence about overconfident
OOD data is changed more than the unconfident ID data under the same corruptions (refer to Figure 2),
indicating a natural difference in feature-level resistance of the originally overlapped parts (refer to
Figure 3). With the original inputs, we can find that the model is overall more confident in ID data.

Based on the above, we propose a new scoring framework, namely, Confidence aVerage (CoVer),
as illustrated in Figure 4. At the high level, we expand the original single representation dimension
into multiple ones to excavate discriminative information. In detail, we introduce a simple but
effective method for identifying OOD data with confidence mutation, which can be formalized as
an average of OOD scores (e.g., Eq. (6)) obtained by different corrupted inputs and the original one.
With the expectation among multiple input dimensions, CoVer can effectively reflect the knowledge
of invariant semantic features that are discriminative from ID data to OOD data. It also matches
an intuition that ID data can be more likely recognized as high confidence by models considering
different input views, especially with the corruptions affecting the non-semantic high-frequency parts.

We conducted extensive experiments to verify the effectiveness of our proposed method. Since CoVer
is an input-side design compatible with single-modal and multi-modal networks, we adpot various
benchmarks for DNN-based and VLM-based OOD detection tasks. Under extensive evaluations, our
CoVer can achieve the superior performance compared with different baselines. Moreover, CoVer
exhibits excellent compatibility, as evidenced by the better performance of some methods combined
with CoVer. Finally, a range of ablation studies of the scoring framework and further discussions
from different perspectives are provided. In summary, our main contributions can be listed as follows,

• Conceptually, we introduce a novel perspective for identifying OOD inputs by considering
the common corruptions to expand the representation dimensions. (in Section 3.1)

• We reveal an interesting phenomenon termed confidence mutation, where the confidences of
OOD data can vary to significantly lower than ID data under corruptions (in Section 3.2).

• Technically, we formalize a novel scoring method, namely, Confidence aVerage (CoVer), a
simple average of the confidence estimated from extended corrupted inputs and the original
one. The corresponding empirical analysis is presented to understand it (in Section 3.3).
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Figure 2: Demonstration about detailed explanations for the discovery illustrated in Figure 1. The ID
and OOD data here are divided into four groups, i.e., Confident ID, Unconfident ID, Overconfident
OOD, and Unconfident OOD. First Row: the variation of confidence scores for ID and OOD data
before and after being corrupted. The critical difference lies in the greater confidence declination
for overconfident OOD data compared to unconfident ID data. (see Figure 3 for further discussion).
Second Row: scatter maps of confidence scores sampled from the four groups under the same
corruption, statistically supporting the findings of the first row. See Appendix C.2 for more details.

• Empirically, extensive experiments on both traditional and zero-shot OOD detection bench-
marks have verified the effectiveness and compatibility of our CoVer, and we conduct various
ablations and further discussions to provide a comprehensive analysis (in Section 4).

2 Preliminaries

In this section, we briefly introduce the preliminaries of OOD detection on basic setups and the
advanced zero-shot setting on VLMs. For related works, we leave detailed discussions in Appendix B.

Problem setups. Let X be the input space and Y = {y1, ..., yK} be the label space, where K is
the number of ID classes. Given the ID random input xi ∈ X and OOD random input xo ∈ X , we
consider the ID marginal distribution DID and those with the OOD marginal distribution DOOD,
where DOOD is defined as an irrelevant distribution of which the label set has no intersection with Y .
The goal of OOD detection is to figure out inputs with the OOD distribution DID from those with the
ID distribution DOOD, which can be considered as a binary classification problem. For traditional
OOD detection, given a model f trained on ID data with logit outputs, a score function S(·) and a
threshold λ, the detection model g(·) can be defined as,

gλ(x) = ID, If S(x; f) ≥ λ; otherwise, gλ(x) = OOD. (1)

where x is detected as ID data if and only if S(x) ≥ λ; otherwise, it is rejected as OOD data that
should not be predicted by the model f . Designing a practical S(x; f) is crucial for OOD detection.

CLIP-based vision-language models CLIP [42] has shown impressive performance in the zero-
shot classification task by profiting from massive amounts of training data and large-size models.
Here we briefly review the mechanism of CLIP-based VLMs. A CLIP-based model f usually contains
an image encoder f image and a text encoder f text. Given a random input x ∼ DID and a label y ∼ Y ,
we use f image and f text to extract the image features h ∈ Rd and the text features ej ∈ Rd as follows:

h = f image(x), ej = f text(p(yj)), ∀j = 1, 2, ...,K, (2)

where p(·) refers to the prompt template for the input label, d is the embedding dimension. The
predictions are formulated as the consine similarity between the image features h and text features ej ,

ŷ = argmax
yj∈Y

{cos(h, ej)}, where ej = f text(p(yj)). (3)
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Figure 3: Visual exploration of random unconfident ID samples and the confidence mutation exempli-
fied on random overconfident OOD samples under the same corruption. For each original input and
its corrupted variant, we leverage the Fast Fourier Transformation to extract their low-frequency and
high-frequency parts. Left panel: visual investigation on unconfident ID samples with ID semantic
features at low-frequency levels that are resistant to corruptions. Right panel: an intuitive comparison
of overconfident OOD samples, whose confidences show significant changes due to the elimination
of non-semantic features at the high-frequency level. See Appendix C.4.2 for more detailed analyses.

Zero-shot OOD detection Different from traditional OOD detection methods based on a classifier
f well-trained on single-modal, recent zero-shot OOD detection studies [31, 26] leverage a pre-trained
VLM-based model (e.g. CLIP [42]) without any fine-tuning on ID training data. The text features
from given ID label names (i.e. ID classes) as the class-wise weights functionally play the same
role as the classifier. With guaranteed ID classification accuracy, the primary goal of zero-shot OOD
detection in this paper is to distinguish OOD samples that do not belong to any known ID classes.

3 CoVer: Confidence Average

In this section, we formally present our proposed new scoring framework, i.e., Confidence aVerage
(CoVer). First, we introduce the motivation of representation dimension expansion and present the
notable discovery (Section 3.1). Second, we conduct the exploration for the confidence mutation
of overconfident OOD data considering the corrupted inputs (Section 3.2). Lastly, we provide the
detailed implementation and analysis of our formalized CoVer score (Section 3.3).

3.1 Representation Dimension Expansion

DNNs are demonstrated to be overconfident on those OOD samples, and a series of works [23, 45, 1,
54, 31, 26] are dedicated to eliminating the effects through the perspective of feature representation.
However, achieving that is demonstrated to be hard as it generally requires careful optimization [54],
or additional prior knowledge [36] on the single input. As illustrated in the middle panel of Figure 1,
adopting some agnostic corruptions on the single input may result in worse separability between the ID
and OOD distribution. Specializing in a single input seems to implicitly constrain the representation
dimension for detection. In this work, we naturally raise the following question,

What if we expand the dimension of representation for the original inputs
to enhance OOD discriminative representations?

Using the same corruption adopted in Figure 1, we can conduct the dimension expansion by simulta-
neously considering both the corrupted variant and the original input. One notable discovery is that
considering multiple inputs can achieve better performance on OOD detection, even though the single
corruption transformation brings negative effects on identifying OOD samples. The surprising com-
parison results attract us to further explore the underlying mechanism of expanding the representation
dimension for the original input, especially the dynamics before and after adopting the corruptions.
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3.2 Confidence Mutation under Corruptions

Although employing corruption on the single inputs leads to worse ID-OOD separability, we can
find obvious shifts toward less confidence in both OOD and ID distributions. It is expected for OOD
data that corruption can help the model mitigate overconfidence, while the ID data are also affected
severely and enlarge the overlap on the single dimension. In contrast, considering the multiple inputs
by averaging the confidence scores shows variance reduction for ID distribution, which indicates
the distinguishable dynamics between ID and OOD data. To elicit the underlying mechanism, we
provide a definition to characterize the change of model confidence on the inputs under corruption.
Definition 3.1 (Confidence Difference). Given a well-trained model f and a score function S(·)
measuring the confidence of f on an input x, we have a basic static to characterize the differences
between the original input and that under a corruption c(·): MUc(x, S, f) ≜ (S(x; f)−S(c(x); f)).

Based on the comparison in Figure 1, we divide the ID and OOD data into four groups according to
the model confidence on their original inputs, and present an overall comparison of the confidence
differences in Figure 2. We reveal the critical dynamic differences in the corrupted variants of ID
and OOD data, where both large MU(x, s, f) exist in the data whose natural inputs own higher
confidence in each part, demonstrating the model confidence on the overconfident OOD data decrease
more than the unconfident ID data under the same corruption. We can get the empirical observation,
Observation 3.2 (Confidence Mutation). Given the overconfidence OOD inputs xo ∈ DOOD, we can
observe more significant differences in the change of confidences under the same corruption c(·) than
the ID samples xi ∈ DID with similar model confidence (constrained by ϵ) on the natural inputs,

Exi∼DID
(MUc(xi, S, f)) < Exo∼DOOD

(MUc(xo, S, f)). (4)

In Figure 3, we further visualize the samples of unconfident ID data and overconfident OOD data.
Under the comparison of saliency maps and the Fast Fourier Transformation, we find the confidence
mutation reflects the feature level vulnerability of OOD data compared with ID data. Intuitively, the
former can be severely affected by the common corruption to eliminate the non-semantic features,
which generally exist at the high-frequency level. In contrast, the semantic feature of unconfident ID
data can maintain confidence as the limited effects of corruption on the low-frequency part.
Observation 3.3 (Resistance of ID features in frequency views). Assuming that ID data owns the ID
semantic features existing at the low-frequency level (extract by Γξ) while the OOD data has some
non-semantic features at the high-frequency level for activating the high confidence of the model on
its prediction, we can observe the following empirical relation on adopting the same corruptions,

E(MUc(x, S, f)) ∝ KL((f(Γξ(c(x))))||f(Γξ(x)). (5)

where Γ indicates the Fourier transformation. We suggest that common corruptions [22] might act as
perturbations of high-frequency features within the input representation. For OOD samples, which
inherently lack ID semantic features, altering high-frequency features could potentially lead to notable
changes in model confidence, while the ID data shows relatively better resistance on it (see the left
panel of Figure 3). This observation tentatively supports the notion that ID data maintains an overall
higher confidence expectation under conditions of expanded representation dimension. To validate its
generality, additional results involving various common corruptions are presented in Appendix C.2.2.

3.3 Scoring Function Implementation and Analysis

Based on the previous understanding of confidence mutation, we formalize our CoVer, a new scoring
framework for OOD detection. The procedure of CoVer mainly contains the following four parts as
illustrated in Figure 4, and the final averaged multi-dimensional scores can be provided as follows,

SCoVer = Ex∼d(X ,X̃ ) max
i

esi(x)/τ∑K
j=1 e

sj(x)/τ
, d(X , X̃ ) := {x, c(x)|x ∈ X , c ∈ C}, (6)

where Ex∼d(X ,X̃ ) is the confidence expecation over all scores dimensions, K is the number of ID
classes, τ is the temperature coefficient of the softmax function. In the following, we detailedly
introduce the specific operations to obtain the final SCoVer and the corresponding notations.

To enlarge the dimension of the original single input for confidence average, we introduce various
corrupted inputs. In this work, we employ the corruption functions defined in [22], which consists
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Figure 4: Overview of CoVer. Left panel: visualization of the raw input and inputs w.r.t different
corruptions; Left-middle panel: procedures of logit outputs from single-modal and multi-modal
networks; Right-middle panel: scoring functions that equip each dimensional output with an OOD
score; Right panel: realization of CoVer by averaging OOD scores obtained from multiple dimensions.

total of 90 distinct corruptions. We provide the visualization of these different corruptions in Appendix
C.4.1. Given the input space X and a set of corruption functions C, the corrupted inputs can be
formulated as {c(x)|x ∈ X , c ∈ C} → X̃ , resulting in the multi-dimensional input spaces d(X , X̃ ).

Given an input image x ∼ d(X , X̃ ), we adopt an image encoder with fixed parameters to extract
the feature of the original dimension hO and features of corrupted dimensions h1, ...hN . Then we
predict the logit output s(x) for each dimensional feature hd,∀d = O, 1, ..., N . For the DNN-based
model f , the outputs of these features are denoted as s(x) = f(x) = logitsd. For the VLM-based
model, the outputs are label-wise matching scores based on the cosine similarity: sj(x) =

hd·ej
∥hd∥·∥ej∥ .

For the logit output s(x) predicted from a specific input dimension, we assign it with an OOD score
to implement one dimension of the CoVer score. As shown in the right-middle panel of Figure 1, the
OOD score can be formalized by some traditional scoring functions, like the softmax scoring function
[23] (refer to Eq. (6)) and the free energy scoring function [30]. In addition, the OOD score can also
be formulated by variants of some novel scoring functions, like those in CLIPN [52] and NegLabel
[26]. The detailed implementations for alternative scoring functions can be found in Appendix C.3.

4 Experiments

In this section, we present the comprehensive verification of the proposed CoVer in the OOD detection
benchmarks. First, we introduce several critical parts of experimental setups (in Section 4.1). Second,
we provide the performance comparison and compatibility experiments of our CoVer with various
DNN-based and VLM-based OOD detection methods (in Section 4.2). Third, we conduct extensive
ablation studies and further discussions to understand the properties of our CoVer (in Section 4.3).

4.1 Experimental Setups

In this part, we present the critical parts of experimental setups and leave more details in Appendix C.

Datasets. Following previous work [1, 31], we adopt the ImageNet-1K OOD benchmark [24],
which uses the ImageNet-1K [14] as ID data and iNaturalist [49], SUN [55], Places [60], and Textures
[7] as OOD data. For each of the OOD datasets, the classes do not overlap with the ID dataset. As the
same as MCM [31], we also use subsets of ImageNet-1K for fine-grained analysis, like ImageNet-10
that mimics the class distribution of CIFAR-10 but with high-resolution images. For hard OOD
evaluation, we exploit ImageNet-20 with 20 categories similar to ImageNet-10 in the semantic space
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Table 1: Comparison with competitive OOD detection baselines based on ResNet-50. The ID data
are ImageNet-1K. ↑ indicates larger values are better and ↓ indicates smaller values are better.

Method
OOD Dataset

iNaturalist SUN Places Textures Average

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓
MSP 87.74 54.99 80.86 70.83 79.76 73.99 79.61 68.00 81.99 66.95
ODIN 91.37 41.57 86.89 53.97 84.44 62.15 87.57 45.53 87.57 50.80
Mahalanobis 52.65 97.00 42.41 98.50 41.79 98.40 85.01 55.80 55.47 87.43
Energy score 89.95 55.72 85.89 59.26 82.86 64.92 85.99 53.72 86.17 58.41
ReAct 96.22 20.38 94.20 24.20 91.58 33.85 89.80 47.30 92.95 31.43
DICE 94.49 25.63 90.83 35.15 87.48 46.49 90.30 31.72 90.77 34.75
DICE+ReAct 96.24 18.64 93.94 25.45 90.67 36.86 92.74 28.07 93.40 27.25
ASH-B 94.25 28.95 90.32 40.21 87.52 49.52 91.53 33.48 90.91 39.04
ASH-B + CoVer 97.14 14.04 94.12 25.77 91.05 35.93 91.93 30.39 93.56 26.53
ASH-S 97.88 11.38 94.04 27.96 91.03 39.74 97.62 11.88 95.14 22.74
ASH-S + CoVer 98.33 8.73 94.59 26.63 91.47 38.06 97.22 13.92 95.40 21.83

Table 2: Comparison with competitive OOD detection baselines based on CLIP-B/16. The ID data
are ImageNet-1K. ↑ indicates larger values are better and ↓ indicates smaller values are better.

Method
OOD Dataset

iNaturalist SUN Places Textures Average

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓
Requires training (or w. fine-tuning)

MSP 87.44 58.36 79.73 73.72 79.67 74.41 79.69 71.93 81.63 69.61
ODIN 94.65 30.22 87.17 54.04 85.54 55.06 87.85 51.67 88.80 47.75
Energy 95.33 26.12 92.66 35.97 91.41 39.87 86.76 57.61 91.54 39.89
GradNorm 72.56 81.50 72.86 82.00 73.70 80.41 70.26 79.36 72.35 80.82
ViM 93.16 32.19 87.19 54.01 83.75 60.67 87.18 53.94 87.82 50.20
KNN 94.52 29.17 92.67 35.62 91.02 39.61 85.67 64.35 90.97 42.19

Zero-shot (no training required)
Mahalanobis 56.22 99.22 60.89 99.28 68.96 98.31 65.36 98.15 62.86 98.74
Energy 85.54 80.49 84.21 78.75 84.81 72.29 66.63 92.89 80.30 81.11
ZOC 86.09 87.30 81.20 81.51 83.39 73.06 76.46 98.90 81.79 85.19
MCM 94.61 30.95 92.57 37.57 89.77 44.65 86.10 57.77 90.76 42.73
CoVer (ours) 95.98 22.55 93.42 32.85 90.27 40.71 90.14 43.39 92.45 34.88

(e.g., dog (ID) vs. wolf (OOD)). To have more experimental comparison, we also reproduce one
setting from spurious OOD detection [35], whose hard OOD inputs are created to share the same
background (i.e., water) as ID data but have different object labels (e.g., a boat rather than a bird). To
select the most effective corruption types for each method, we use SVHN [37] as the validation set.

Model Setup. In this paper, we implement CoVer on various architectures, including DNN-like
ResNet50, and VLM-like CLIP [42], AltCLIP [6], MetaCLIP [56], GroupViT [57]. Unless otherwise
instructed, for VLM-based zero-shot OOD detection, we use CLIP-B/16 which consists of an image
encoder based on ViT-B/16 Transformer [15] and a text encoder built with the masked self-attention
Transformer [50]. We use the algorithmically generated corruptions defined in [22]. Each type of
corruption has a severity level ϵ from 1 to 5, with ϵ = 1 being the least severe and increasing up to
ϵ = 5. By default, we use the CoVer score in the max-softmax form and set τ = 1 as the temperature.

Baseline Methods and Evaluation Metrics. We conpare the proposed method with various
competitive methods. Specifically, we adopt Maximum Softmax Probability (MSP) [23], ODIN [29],
Mahalanobis [28], Energy [30], ReAct [45], DICE [46] and ASH [1] as traditional OOD detection
baseline methods. The VLM-based OOD detection methods we compared with include MCM, a
method specifically designed for zero-shot OOD detection, as well as some traditional methods
including MSP, ODIN, Energy, Mahalanobis, GradNorm [24], ViM [51], KNN [47], ZOC [18] that
were re-implemented using a finetuned CLIP ViT-B/16 on the ImageNet-1K, see Appendix A for
more details. For a fair comparison, we keep the original hyperparameter setups of the comparative
methods and adopt the following metrics to evaluate the OOD detection performance: (1) the false
positive rate (FPR95) of the OOD samples when the true positive rate (TPR) [29] of the in-distribution
samples is at 95%, (2) the area under the receiver operating characteristic curve (AUROC) [13].

7



Table 3: Compatibility experiments of CoVer combined with different OOD detection methods. The
ID data are ImageNet-1K. ↑ indicates larger values are better and ↓ indicates smaller values are better.

Architecture Method
OOD Dataset

iNaturalist SUN Places Textures Average

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

ResNet50

ReAct 96.22 20.38 94.20 24.20 91.58 33.85 89.80 47.30 92.95 31.43
ReAct+CoVer 97.58 13.35 95.7 18.91 93.08 29.02 91.55 40.74 94.48 25.51
DICE 94.49 25.63 90.83 35.15 87.48 46.49 90.30 31.72 90.77 34.75
DICE+CoVer 96.8 16.56 93.53 28.52 90.00 40.54 91.14 31.15 92.87 29.19
DICE (ReAct) 96.24 18.64 93.94 25.45 90.67 36.86 92.74 28.07 93.40 27.25
DICE (ReAct)+CoVer 97.74 11.38 94.83 23.44 91.83 33.87 93.43 28.95 94.46 24.41
ASH-B 94.25 28.95 90.32 40.21 87.52 49.52 91.53 33.48 90.91 39.04
ASH-B+CoVer 97.14 14.04 94.12 25.77 91.05 35.93 91.93 30.39 93.56 26.53

CLIP-B/16

MCM 94.61 30.95 92.57 37.57 89.77 44.65 86.10 57.77 90.76 42.73
MCM+CoVer 95.62 24.35 93.48 31.94 90.67 39.74 88.61 50.44 92.10 36.62
LoCoOp 92.77 42.38 92.88 33.09 90.28 41.08 91.07 40.34 91.75 39.22
LoCoOp+CoVer 93.07 41.62 93.71 31.90 91.03 38.04 92.90 32.85 92.68 36.10
CLIPN 95.63 21.62 94.27 25.18 93.15 30.51 90.34 41.68 93.35 29.66
CLIPN+CoVer 95.41 23.14 95.72 17.13 94.80 23.05 88.59 40.82 93.63 26.04
NegLabel 99.49 1.93 95.46 20.95 91.58 36.45 89.89 45.12 94.10 26.11
NegLabel+CoVer 99.59 1.15 94.56 28.84 95.01 25.65 92.39 40.39 95.39 24.01

4.2 Main Results

Overall results of OOD detection performance comparison with different baselines. To evaluate
the effectiveness of CoVer, we compare it with existing baseline OOD detection methods on the
ImageNet-1K benchmark in two aspects. In Table 1, we present the performance comparison with
traditional OOD detection methods using ResNet-50 as the backbone. Our CoVer combined with
ASH-S can achieve better OOD detection performance, which verifies the effectiveness of our method
with an average multi-dimensional estimated confidence score. In Table 2, we provide the results
compared with VLM-based OOD detection methods, which are classified into two groups: fine-tuning
methods that require extra data for fine-tuning CLIP and zero-shot methods that require no training.
Our method CoVer consistently achieves better performance across the four OOD datasets, aligning
with the analysis that OOD and ID data are better distinguished under the expanded dimensions.

Compatibility experiments of CoVer combined with different OOD detection methods. Since
it is a simple design for representation dimension expansion, CoVer can be easily integrated into
previous OOD detection methods and achieve performance improvements. In Table 3, we first
consider some methods with minor modifications to the architecture of ResNet50, e.g., ReAct, DICE
and ASH. While fixing the detection models, we replace each of their OOD scores with our CoVer
score. Then we integrate the proposed CoVer into several VLM-based OOD detection methods. For
LoCoOp [36], a CLIP-fine-tuning method with the MCM score, we follow its fine-tuning strategy
and report the results with the CoVer’s scoring mode. For CLIPN [52] and NegLabel [26] that both
introduce a new OOD score, we redesigned them based on the critical idea of confidence average, as
detailed in the Appendix C.3. Our CoVer can consistently help these methods gain better performance
without specific modality limitations, which shows the algorithmic robustness of our proposed method.
More results with other methods and further discussions and analyses are provided in Appendix C.2.

Zero-shot OOD detection performance comparison on hard OOD detection. Following the
settings in [31, 26], we explore the superiority of our proposed CoVer compared with MCM [31] on
hard OOD detection tasks, as shown in Table 4. Specifically, we alternately use ImageNet-10 and
ImageNet-20, ImageNet-10 and ImageNet-100 as ID and OOD data to simulate the setups presented
in [19]. The results demonstrate CoVer has a better distinguished ability than MCM for semantically
hard OOD data. We also report the experimental data on zero-shot spurious OOD detection task in
the last row of Table 4, which also shows the better performance of the proposed CoVer than MCM.

4.3 Ablation and Future Discussions

In this part, we conduct extensive ablation studies and provide a thorough understanding of our CoVer.
The extra results and discussions (e.g., impact and limitations) are provided in Appendix C.2.

Ablation on diverse VLM architectures. We compare our CoVer score with the MCM score on
different VLM architectures and the results are reported in Table 5. The first part shows the superiority
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Table 4: Zero-shot OOD detection performance
comparison on hard OOD detection tasks. All
methods are based on CLIP-B/16.

ID Dataset OOD Dataset Method AUROC↑ FPR95↓

ImageNet-10 ImageNet-20 MCM 98.60 6.00
CoVer 98.68 4.10

ImageNet-20 ImageNet-10 MCM 97.69 17.07
CoVer 97.60 14.58

ImageNet-10 ImageNet-100 MCM 99.30 2.30
CoVer 99.28 1.92

ImageNet-100 ImageNet-10 MCM 86.50 66.18
CoVer 86.38 65.55

WaterBirds Spurious OOD MCM 90.31 35.66
CoVer 90.52 33.17

Table 5: Zero-shot OOD detection performance
with different VLM architectures’ representa-
tions on ImageNet-1K(ID).

Architecture Backbone Method AUROC↑ FPR95↓

CLIP

ResNet50 MCM 88.99 49.79
CoVer 89.98 46.18

ViT-B/32 MCM 89.82 45.75
CoVer 90.21 44.78

ViT-L/14 MCM 91.49 38.17
CoVer 92.61 32.97

AltCLIP ViT-L/14 MCM 91.54 40.74
CoVer 93.03 32.15

MetaCLIP VIT-B/16-quickgelu MCM 87.57 58.97
CoVer 88.64 55.68

GroupViT GroupViT MCM 85.10 57.85
CoVer 86.94 51.19
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Figure 5: Ablation Study. (a) superiority of the multi-dimensional scoring framework; (b) exploration
of different quantity of expanded input dimensions; (c) using different severity levels of a specific
corruption type; (d) comparison with different realizations for each dimensional confidence score.

of our CoVer on different backbones of CLIP, and the larger backbone boosts the performance of
OOD detection. The second part shows that CoVer can generalize better to various VLM architectures
compared to MCM. More fine-grained results on different OOD sets can be found in Appendix C.2.1.

Superiority of multi-dimensional scoring framework. To verify the superiority of our CoVer
with a multi-dimensional scoring framework compared with the uni-dimensional one, we report the
performance comparison using different corruption types in Figure 5(a). Here, the uni-dimensional
framework is denoted as using a single corrupted input for confidence estimation. The results indicate
that extended dimensions provide valuable clues for enhancing OOD discriminative representations,
thus enlarging the separability between ID and OOD data. We leave the fine-grained results and
further discussions in Appendix C.2.2, which provide a better understanding of the improvement.

Significance of the number of expanded measuring dimensions. As a critical aspect of our
CoVer, the number of the extended confidence measuring dimensions will control the performance
enhancement for OOD detection. In Figure 5(b), we present results for varying the number of
expanded dimensions using various corruptions with the same severity level. The results demonstrate
that an increasing number of expanded representation dimensions gradually improves the performance
then probably declines, while consistently outperforming the baseline. This indicates that the addition
of measuring dimensions prioritizes enhancing the distinction of OOD data with mutated confidence
while ID data shows resistance. More detailed results and analyses are provided in Appendix C.2.3.

Comparison of the variation trends in different corruption severity levels. In Figure 5(c), we
show the performance by varying the severity level ϵ for each specific corruption style. We can observe
that three types of trends emerge with an increasing level of severity, i.e., up, down, and up then down.
This phenomenon indicates that an appropriate level of corruption is critical for the optimization of
CoVer. One possible reason may be that the threshold maximizing the distinction between ID and
OOD data varies from different types of corruption. To further explain this observation, we provide
more results on the ϵ among various corruption styles and more discussions in Appendix C.2.4.
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Generality of integrating with different OOD detection schemes. Since the proposed CoVer is a
general scoring framework with an average of confidence scores measured from multiple dimensions,
the specific realization for each dimensional score have multiple choices. In Figure 5(d), we present
the comparison with different realizations integrated w./w.o. CoVer (e.g., ResNet-50 based DICE
[46] and ASH-B [1], CLIP-B/16 based MCM [31] and NegLabel [26]), where they have different
performance improvements compared with the original baseline without constraints for the modality.

5 Discussion

5.1 Broader Impact

OOD detection is crucial for deploying reliable deep learning systems in real-world applications [21],
ensuring models can effectively identify data that differ significantly from the training distribution.
This ability is vital in safety-critical areas [5], where incorrect predictions due to unexpected inputs
can lead to severe consequences. For instance, in the field of autonomous driving, OOD detection
helps the system recognize and react appropriately to novel scenarios not covered during training,
such as new road signs or altered traffic conditions due to construction. This is imperative as it
prevents autonomous vehicles from making potentially hazardous decisions based on learned but now
irrelevant data, thereby enhancing their safety and robustness in dynamic environments.

Our research highlights a fundamental yet overlooked challenge in existing OOD detection methods,
which often specialize in a single input type. This specialization may inadvertently limit the repre-
sentational dimensions for detection, complicating the identification of subtle OOD samples. For
effective OOD detection, it is crucial to not only improve empirical performance through enhanced
OOD discriminative representations but also to address this pervasive issue within the general scoring
framework. Our new scoring framework leverages expanded input dimensions and utilizes a confi-
dence score expectation to address these concerns, which also shares similar intuitions with some
related work [43] in adversarial defense via random transformation. Comprehensive experiments
demonstrate its effectiveness and compatibility, suggesting that our method is potentially a new
generalized framework and provides new insights into OOD detection from a different perspective.

5.2 Limitation

While our method introduces a promising framework for OOD detection and provides unique insights
through the use of corrupted images to enhance representational dimensions, it does face certain
challenges. First, our method indeed faces several failure cases. When CoVer utilizes certain severe
corruption types (e.g., Spatter, Elastic transform), its performance is worse than with single input. This
is because these types are more severe compared to others, leading to excessive damages to semantic
features. Effective corruption types are those only perturb non-semantic features, which generally
exist at the high-frequency level, resulting in different confidence variations between ID and OOD
data. Notably, except for leveraging the validation set, our approach lacks a standardized criterion for
selecting the types and intensities of corruptions, which is essential for uniform effectiveness across
various scenarios. Additionally, the expansion of input dimensions, though beneficial for detection
accuracy, may lead to increased evaluation times. These limitations highlight areas for potential
improvement, particularly in balancing detection capabilities with computational efficiency. Despite
these challenges, the enhanced detection capabilities our method introduces mark a significant step
forward in the reliability of machine learning models against OOD inputs.

6 Conclusion

In this paper, we introduce a novel perspective for OOD detection, i.e., expanding the representation
dimensions. With the different common corruptions, we reveal an interesting phenomenon termed
confidence mutation, where the confidence values of some overconfident OOD samples can vary
significantly compared with the original inputs. To this end, we propose a new scoring framework,
namely, Confidence aVerage (CoVer), which simultaneously considers the original and expanded input
dimensions. Adopting a simple but effective average operation, CoVer can capture the dynamical
discrimination of OOD samples and better enhance the separability of ID and OOD distributions. We
have conducted extensive experiments to present its effectiveness and compatibility with different
methods. We hope our work can draw new insights from a different view on OOD detection.
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Appendix for CoVer

The whole Appendix is organized as follows. In Appendix A, we present the detailed definitions
and implementation of baseline methods that are considered in our exploration. In Appendix B, we
provide detailed discussions about related works. In Appendix C, we provide extra experimental
details and more comprehensive results with further discussion on the underlying implications. In
Appendix D, we provide some preliminary statistical analysis about CoVer. Finally, in Appendix E,
we provide the further analysis for a better understanding of our work.

Reproducibility Statement

To ensure the reproducibility of experimental results, we provide the source code at https://
github.com/tmlr-group/CoVer. Below we summarize several important aspects to facilitate
reproducible results:

• Datasets. The datasets we used are all publicly accessible, which is introduced in Section 4.
Following MCM [31], we also use subsets of ImageNet-1K for fine-grained analysis, like
ImageNet-10. For hard OOD evaluation, we exploit ImageNet-20 with 20 categories similar
to ImageNet-10. We also reproduce the spurious OOD detection [35] with r = 0.9, which
determines relative size of majority vs. minority groups.

• Assumption. We set our main experiments to a zero-shot scenario where a well-trained
CLIP-like model on the original classification task is available [42]. Under this assumption,
CoVer detects OOD samples in parallel with the zero-shot classification task and has no
impact on ID classification performance.

• Open source. The source code is available at https://github.com/tmlr-group/CoVer.
We provide a backbone for our experiments as well as several auxiliary components, such as
score estimation.

• Environment. All experiments are conducted on NVIDIA GeForce RTX 3090 GPUs with
Python 3.10 and PyTorch 2.2.

A Details about Considered Baselines and Metrics

In this section, we provide details about the baselines for the scoring functions, as well as the
corresponding hyper-parameters and other related metrics that are considered in our work.

Maximum Softmax Probability (MSP). [23] proposes to use maximum softmax probability to
discriminate ID and OOD samples. The score is defined as follows,

SMSP(x; f) = max
c

P (y = c|x; f) = max softmax(f(x)), (7)

where f represents the given well-trained model and c is one of the classes Y = {1, . . . , C}. The
larger softmax score indicates the larger probability for a sample to be ID data, reflecting the model’s
confidence on the sample.

ODIN. [29] designed the ODIN score, leveraging the temperature scaling and tiny perturbations
to widen the gap between the distributions of ID and OOD samples. The ODIN score is defined as
follows,

SODIN(x; f) = max
c

P (y = c|x̃; f) = max softmax(
f(x̃)

T
), (8)

where x̃ represents the perturbed samples (controled by ϵ), T represents the temperature. For fair
comparison, we adopt the suggested hyperparameters [29]: ϵ = 1.4× 10−3, T = 1.0× 104.

Mahalanobis. [28] introduces a Mahalanobis distance-based confidence score, exploiting the
feature space of the neural networks by inspecting the class conditional Gaussian distributions. The
Mahalanobis distance score is defined as follows,

SMahalanobis(x; f) = max
c

−(f(x)− µ̂c)
T Σ̂−1(f(x)− µ̂c), (9)
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where µ̂c represents the estimated mean of multivariate Gaussian distribution of class c, Σ̂ represents
the estimated tied covariance of the C class-conditional Gaussian distributions.

Energy. [30] proposes to use the Energy of the predicted logits to distinguish the ID and OOD
samples. The Energy score is defined as follows,

SEnergy(x; f) = −T log

C∑
c=1

ef(x)c/T , (10)

where T represents the temperature parameter. As theoretically illustrated in [30], a lower Energy
score indicates a higher probability for a sample to be ID. Following [30], we fix the T to 1.0
throughout all experiments.

ASH. [1] designs a extremely simple, post-hoc method called Activation SHaping for OOD de-
tection. It removes a large portion of an input’s activation at a late layer and adjusts the rest of the
activation values by scaling them up or assigning them a constant value. The simplified representation
is then passed throughout the rest of the network. The logit output is used to classify ID samples
and calculate scores for OOD detection as usual. For ASH-B version, we adopt the MSP score and
implement it with the hyperparameter p = 65; For ASH-S version, we apply it with energy score and
the hyperparameter p = 90. Both settings are suggested by [1].

MCM. [31] proposes Maximum Concept Matching (MCM), a simple yet effective zero-shot OOD
detection method based on aligning visual features with textual concepts. Formally, the MCM score
can be defined as:

SMCM (x′;Yin, T , I) = max
i

esi(x
′)/τ∑K

j=1 e
sj(x′)/τ

(11)

CLIPN. [52] proposes a novel CLIP architecture, which equips CLIP with a “no” logic via the
learnable “no” prompts and a “no” text encoder. Specifically, CLIPN proposes two novel inference
algorithms to perform OOD detection via using negation semantics, where the algorithm named
agreeing-to-differ (ATD) is more effective in experimental results. The ATD form of the CLIPN
score can be formulated as follows,

SCLIPN(x) =

C∑
j=1

es
no
i,j(x)/τ

esi,j(x)/τ + es
no
i,j(x)/τ

· esi,j(x)/τ∑C
k=1 e

si,k(x)/τ
(12)

where C is the number of classes, si,j(x) and snoi,j(x) are denoted as the inner product of the image
feature and the corresponding text feature

si,j(x) =< fimage(x), ftext(p(yj)) >, snoi,j(x) =< fimage(x), ftext
no (p(ynoj )) > (13)

where ftext
no is the "no" text encoder and p(ynoj ) the text with “no” logic.

NegLabel. [26] proposes a novel post hoc OOD detection method, called NegLabel, which takes a
vast number of negative labels from extensive corpus databases and designs a novel scheme for the
OOD score collaborated with negative labels. NegLabel score can be formulated as

SNegLabel(x) = S∗ (sim(x,Y), sim
(
x,Y−)) (14)

where S∗ (·, ·) represents a fusion function that combines the similarity of a sample with ID labels
sim(x,Y) and the similarity of the sample with negative labels sim (x,Y−). The sum-softmax form
of NegLabel score is defined as follows,

SNegLabel(x) =

∑K
i=1 e

si(x)/τ∑K
i=1 e

si(x)/τ +
∑M

j=1 e
sneg
j (x)/τ

(15)

where K is the number of ID labels, τ is the temperature coefficient of the softmax function and M
is the number of negative labels, si(x) and sneg

j (x) are formulated as the cosine similarity, defined as
follows,

si(x) = cos(fimage(x), ei), sneg
j (x) = cos(fimage(x), ẽj) (16)
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B Detailed Discussion with Related Works

In this section, we provide detailed discussions about related works.

Traditional OOD Detection. There has been an increasing interest in OOD detection since the
phenomenon of overconfidence in OOD data was first discovered in [38]. As a formal benchmark
for OOD detection, [23] proposed using softmax prediction probability as a conventional baseline
method. Afterward, numerous approaches have been developed to address visual OOD detection,
which can be classified into two categories, i.e., post hoc scoring mechanism and training-time
regularization [59, 58]. Post hoc methods are dedicated to exploring a better OOD score by freezing
the model’s parameters. ODIN [29] improves the previous MSP [23] by scaling with the temperature
and slightly perturbing the inputs. Mahalanobis introduces the Mahalanobis distance in the feature
space to measure the confidence score. Energy [30] exploits the energy function [27] to distinguish
ID and OOD data. Both ReAct [45] and DICE [46] are improved from Energy, ReAct by feature
clipping, and DICE by discarding the most prominent weights in the fully connected layer. ASH [1]
designs an extremely simple method that removes a large portion of an input’s activation and adjusts
the rest. On the other hand, training-time regularization methods exploit the potential access to partial
OOD data during model training. MOS [24] groups all classes and introduces an extra class to each
group to reformulate the loss function during training. VOS [17] enhances the quality of the energy
score by creating synthetic virtual anomalies. CIDER [34] exploits KNN [47] to boost OOD detection
performance through the optimization of contrastive loss. DAOL [53] alleviates the OOD distribution
discrepancy by crafting an OOD distribution set that contains all distributions in a Wasserstein ball
centered on the auxiliary OOD distribution. The presence of outliers leads to superior performance
compared to training without outliers, as evidenced by numerous previous studies [3, 25, 2, 16, 62].

OOD Detection with vision-language representations. With the rapid development of multi-
modal large language models (MLLMs), such as CLIP [42], much attention has been paid to
OOD detection with vision-language representations [33]. MCM [31] proposed the first zero-shot
OOD detection framework that combines the temperature scaling strategy and maximum softmax
probability as the OOD score. Following MCM, some works fine-tuned CLIP’s image encoder for
visual OOD detection [48, 36]. NPOS [48] utilized generated OOD data to optimize the ID-OOD
decision boundary. LoCoOp exploited the portions of CLIP’s local features as OOD features to
realize OOD regularization. Some latest methods [52, 26] boosted OOD detection by adding extra
clues obtained from negative textual information. CLIPN [52] equipped CLIP with a "no" logic via a
text encoder that can understand negative prompts. NegLabel [26] introduced numerous negative
labels and distinguished OOD samples by examining their affinities between ID and negative labels.

Data depths and information projections. Computing OOD scores on the embedding output
of the last layer of the encoder is not the best choice for textual OOD detection. To address this,
[12] proposed aggregating OOD scores across all layers and introduced an extended text OOD
classification benchmark, MILTOOD-C. In a similar vein, RainProof [11] introduced a relative infor-
mation projection framework and a new benchmark called LOFTER on text generators, considering
both OOD performance and task-specific metrics. Building on the idea of information projection,
REFEREE [40] leveraged I-projection to extract relevant information from the softmax outputs of a
network for black-box adversarial attack detection. On the other hand, APPROVED [41] proposed to
compute a similarity score between an input sample and the training distribution using the statistical
notion of data depth at the logit layer. HAMPER [9] introduced a method to detect adversarial
examples by utilizing the concept of data depths, particularly the halfspace-mass (HM) depth, known
for its attractive properties and non-differentiability. Furthermore, TRUSTED [8] relied on the
information available across all hidden layers of a network, leveraging a novel similarity score based
on the Integrate Rank-Weighted depth for textual OOD detection. LAROUSSE [10] employed a new
anomaly score built on the HM depth to detect textual adversarial attacks in an unsupervised manner.

C Additional Experimental Results and Further Discussion

In this section, we provide additional experimental results from different perspectives to verify the
effectiveness our proposed CoVer. First, we introduce the additional experimental setups for the
empirical verification in previous figures and implement details about our method. Second, we
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provide comprehensive results with further discussions of ablations. Finally, extensive visualization
analyses are provided for a better understanding of CoVer.

C.1 Additional Experiment Setups

Implement Details. Unless otherwise specified (e.g. Table 1 and Table 3), we conduct the major
experiments based on pre-trained CLIP-B/16 for zero-shot OOD detection, following the previous
research work [31, 26]. Furthermore, the primary form of CoVer is based on the maximum-softmax
score function, as defined in Section 3.3. For the extended corrupted inputs, We utilize the SVHN
dataset as the validation set to determine the most effective corruption types for each method in all
experiments. The detailed adopted corruption types for each method are provided in Table 6, where
Corruption Type(X) denote the corruption at X severity level.

Table 6: Adopted corruption types and corresponding severity levels when CoVer integrated with
other methods.

Method Expanded Corruption Types

ReAct + CoVer Contrast(3)
DICE + CoVer Brightness(1, 2), Gaussian Blur(1, 2), Saturate(1, 2), and Fog(1, 2)
DICE (ReAct) + CoVer Brightness(1, 2)
ASH-B / ASH-S + CoVer Brightness(1, 2)
MCM + CoVer Brightness(1, 2), Gaussian Blur(1, 2), Motion Blur(1, 2), Saturate(1, 2), Defocus Blur(1, 2), and Fog(1, 2)
LoCoOp + CoVer Brightness(1, 2), Gaussian Blur(1, 2), Motion Blur(1, 2), Saturate(1, 2), Defocus Blur(1, 2), and Fog(1, 2)
CLIPN + CoVer Brightness(1) and Saturate(1)
NegLabel + CoVer Brightness(1, 2) and Saturate(1, 2)

Figure 1. In Figure 1, we compare the score distributions and detection results with different input
modes. Specifically, we use the corruption type of Contrast(4) as an example and report the results
on the iNaturalist dataset of the ImageNet-1K benchmark. In the right panel of 1, we realize our
CoVer by averaging the confidence scores obtained by the original and corrupted(Contrast(4)) inputs.

Figure 2. In Figure 2, we conduct experiments to demonstrate the detailed explanations for the
discovery illustrated in Figure 1. For the fair comparison, all samples here, including confident ID,
unconfident ID, overconfident OOD, and unconfident OOD samples, are randomly sampled from the
ID and OOD distributions in the left and middle panels of Figure 1.

Figure 3. In Figure 3, we visualize several samples for further understanding of the confidence
mutation. Specifically, we use the Fast Fourier transform (FFT) to obtain the low-frequency and
high-frequency portions of the image with the radius of circular filter r = 0.6. Same as Figure
1 and Figure 2, unconfident ID data and overconfident OOD data are randomly sampled from
the corresponding part of ImageNet and iNaturalist datasets, respectively. We continue to adopt
Contrast(4) for corruption.

Figure 5. For Figure 5(a) to Figure 5(d), we provide discussions about the detailed experimental
settings and their fine-grained results in Appendix C.2.

C.2 Full Results of Ablations

C.2.1 Ablation on VLM Architectures.

The detailed results are shown in Table 7. It is evidenced that in addition to CLIP Vit-B/16, our CoVer
can boost the OOD detection performance on various kinds of VLM architectures compared to MCM,
including the CLIP architecture based on different backbone networks (e.g., ResNet50 and Vit-L/14)
and other types of VLM architectures (e.g., AltCLIP, MetaCLIP, and GroupViT).

C.2.2 Superiority of Multi-Dimensional Scoring Framework.

In Figure 5(a), we present some representative results to verify the superiority of the multi-dimensional
scoring framework. Here, we report the fine-grained results using different types of corruptions with
a severity level of 5, as shown in Table 8. We can find that there is constantly a bad OOD detection
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Table 7: Compared to MCM with different VLM architectures on ImageNet-1K(ID). All values are
percentages. ↑ indicates larger values are better and ↓ indicates smaller values are better.

Architecture Backbone Method
OOD Dataset

iNaturalist SUN Places Textures Average

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

CLIP

ResNet50 MCM 93.86 32.16 90.74 46.21 85.66 60.68 85.71 60.11 88.99 49.79
CoVer 94.57 30.26 90.75 45.51 86.92 54.84 87.66 54.11 89.97 46.18

ViT-B/32 MCM 93.61 33.92 91.42 41.79 89.56 45.64 84.67 61.63 89.82 45.75
CoVer 93.52 34.51 91.66 40.65 88.89 46.92 86.77 57.06 90.21 44.78

ViT-B/16 MCM 94.61 30.95 92.57 37.57 89.77 44.65 86.10 57.77 90.76 42.73
CoVer 95.62 24.35 93.48 31.94 90.67 39.74 88.61 50.44 92.10 36.62

ViT-L/14 MCM 94.95 28.38 94.14 29.0 92.0 35.42 84.88 59.88 91.49 38.17
CoVer 96.16 20.84 94.91 24.58 92.37 32.4 87.0 54.04 92.61 32.96

AltCLIP ViT-L/14 MCM 92.91 43.31 94.56 28.5 91.65 37.92 87.06 53.24 91.54 40.74
CoVer 96.00 22.21 95.17 24.35 92.04 34.61 88.93 47.43 93.04 32.15

MetaCLIP ViT-B/16-quickgelu MCM 87.68 64.97 90.57 48.79 86.63 59.46 85.40 62.64 87.57 58.97
CoVer 89.30 61.67 91.09 46.76 88.07 54.13 86.09 60.16 88.64 55.68

GroupViT ViT-L/14 MCM 89.58 49.08 85.78 58.57 82.01 64.84 83.01 58.92 85.09 57.85
CoVer 91.65 37.08 87.67 53.1 83.74 60.43 84.7 54.15 86.94 51.19

performance under the single-dimensional scoring framework with a single corrupted image as the
input sample. However, considering the multiple inputs, i.e., both original and corrupted inputs,
averaging their confidence scores shows a huge performance enhancement. For example, comparing
the uni-dimensional and multi-dimensional results when the corruption type is Contrast, the incorpo-
ration of the extended dimension provides +17.57% AUROC (from 74.20% to 91.77%) and -52.02%
FPR95 (from 88.61% to 36.95%), indicating that corrupted inputs require the combination of original
inputs to reveal its ability to enhance the distinguishability of OOD samples at the feature level. For
more detailed experiments regarding CoVer expanded by corrupted inputs at other severity levels,
please refer to Appendix C.2.4.

To have a more intuitive understanding on the superiority of multi-dimensional inputs, we provide
a comparison with score distributions and detection results w/w.o. an expanded input dimension
transformed by Brightness, Fog, Motion blur, and Speckle noise in Figure 6. From the middle column,
we notice that the OOD samples are more difficult to detect by the model confidence from single
corrupted inputs. This is mainly because the confidence of the ID sample, which was originally high,
drops drastically when it is corrupted thereby interfering with the model’s judgment of the OOD
sample. In contrast, through a simple but critical average operation, CoVer generally achieves better
ID-OOD separability. This phenomenon can be attributed to two main reasons. First, the ID samples
have an overall higher confidence expectation, eliminating the originally confident ID interference
present under the single corrupted input. Secondly, as illustrated in Figure 2 and Figure 3, the data
lies in the originally overlapped part of the ID and OOD distributions, i.e., unconfident ID data and
overconfident OOD data, demonstrate significant differences in the variation of confidences under the
same corruption. Specifically, the ID data shows resistance while the OOD data shows vulnerability,
thus better exposing the OOD samples to be rejected.

C.2.3 Imapact of the Number of Expanded Measuring Dimensions.

In Figure 5(b), we report the OOD detection performance variations evaluated on different numbers
of expanded measuring dimensions. However, we have not specifically analyzed the impact of
employing different types of corruptions under each number of extended representation dimensions.
In Table 9, we further present the detailed results for different numbers of extended dimensions
under corruption severity levels 1 and 2, with each number we enumerate two different kinds of
combinations of corruption types. The experimental results demonstrate that considering confidence
estimation on both original input and expanded variant dimension constantly enhances the OOD
detection performance across four OOD datasets.

However, as the expanded dimension gives priority to the phenomenon of confidence mutation
that is more discriminative in OOD data than that is in ID data, the newly added representation
dimension sometimes leads to a slight decline in performance. For instance, the best performance
is three expanded dimensions that grouped by Defocus blur, Motion blur and Fog inputs under the
corruption severity level 1; the combination of five types of corruptions including Defocus blur,
Motion blur, Gaussion blur, Fog, and Saturate achieve a better OOD detection performance when
the variants are generated by corruptions at severity level 2. This phenomenon suggests that, while
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Table 8: Fine-grained results of CoVer using different types of corruptions with a severity level of 5
based on CLIP-B/16. The experiments are conducted on ImageNet-1k benchmark

Corruption Type Mode
OOD Dataset

iNaturalist SUN Places Textures Average

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

Brightness Uni 92.84 41.42 90.17 50.25 87.35 54.42 86.48 55.21 89.21 50.33
Multi 95.11 28.29 92.76 36.84 90.05 43.08 88.08 52.3 91.5 40.13

Fog Uni 88.42 60.34 84.71 75.11 81.34 78.46 82.0 65.48 84.12 69.85
Multi 95.61 24.19 93.19 33.77 90.15 40.96 88.11 48.72 91.77 36.91

Contrast Uni 82.0 87.94 71.36 89.42 67.68 91.01 75.77 86.06 74.2 88.61
Multi 96.41 19.6 92.46 36.05 89.17 44.07 89.05 48.07 91.77 36.95

Motion Blur Uni 82.12 71.66 72.48 90.65 67.88 92.11 76.12 73.12 74.65 81.89
Multi 94.98 26.13 91.4 42.02 87.78 50.18 87.24 50.92 90.35 42.31

Defocus Blur Uni 80.75 65.67 77.1 80.25 74.12 83.31 79.03 70.0 77.75 74.81
Multi 94.04 30.8 92.12 39.58 89.09 45.25 88.32 49.8 90.89 41.36

Gaussian Blur Uni 77.49 73.47 73.84 83.98 71.13 86.05 77.61 69.86 75.02 78.34
Multi 93.52 33.3 91.59 42.03 88.64 47.39 88.01 50.25 90.44 43.24

Spatter Uni 75.45 87.44 81.57 83.09 79.15 83.43 71.27 85.57 76.86 84.88
Multi 92.06 44.98 92.3 40.42 89.46 46.1 83.89 62.36 89.43 48.47

Saturate Uni 88.48 57.4 86.37 64.72 84.76 66.84 83.03 64.63 85.66 63.4
Multi 94.24 31.27 92.11 38.41 89.9 43.08 87.23 53.37 90.87 41.53

Elastic Transform Uni 54.9 98.67 65.13 95.6 65.08 94.5 47.27 97.09 58.1 96.47
Multi 90.57 53.15 91.12 45.97 88.52 49.36 77.98 72.84 87.05 55.33

JPEG Compression Uni 79.43 86.23 83.88 75.1 80.99 75.62 77.05 81.49 80.34 79.61
Multi 93.08 39.52 92.95 36.21 89.97 42.17 86.27 57.34 90.57 43.81

Pixelate Uni 82.88 74.39 78.18 85.36 75.9 88.07 73.27 83.65 77.56 82.87
Multi 94.56 29.86 91.79 39.89 89.11 45.89 85.86 58.48 90.33 43.53

Speckle Noise Uni 83.54 80.59 69.26 95.65 67.8 94.86 68.17 92.07 72.19 90.79
Multi 96.49 19.3 91.51 44.35 88.92 49.75 85.44 56.95 90.59 42.59

Glass Blur Uni 76.1 82.53 74.05 84.98 70.49 87.97 62.0 86.05 70.66 85.38
Multi 94.51 30.81 92.23 37.47 89.12 45.22 82.46 61.58 89.58 43.77

Gaussian Noise Uni 73.7 87.88 56.11 97.37 55.99 96.32 59.85 95.55 61.41 94.28
Multi 95.47 23.58 90.74 47.27 88.26 52.06 85.4 57.82 89.97 45.18

Shot Noise Uni 76.81 85.35 58.25 97.29 58.1 96.28 60.3 96.1 63.36 93.75
Multi 95.97 21.26 90.85 46.16 88.44 51.13 85.18 58.09 90.11 44.16

Zoom Blur Uni 67.78 93.04 69.32 91.24 66.3 92.24 65.61 90.94 67.25 91.86
Multi 92.35 40.41 90.93 42.52 87.93 49.05 84.46 59.27 88.92 47.81

Snow Uni 85.35 74.35 79.24 85.5 75.88 87.71 76.94 75.55 79.35 80.78
Multi 95.35 26.59 91.94 39.16 88.76 45.93 86.6 53.4 90.66 41.27

Impulse Noise Uni 74.25 90.69 53.61 98.17 54.37 97.44 63.86 94.18 61.52 95.12
Multi 95.75 22.7 90.05 50.09 87.73 53.49 86.06 54.91 89.9 45.3

extended dimensions preferentially provide additional clues that make the OOD samples more salient,
excessive extended dimensions or the inclusion of input dimensions transformed from some specific
uncommon corruptions may result in a greater degree of interference in the ID samples, leading to a
slight declination of the performance.

C.2.4 Full Results of CoVer with Variants Corrupted at Different Severity Levels.

In Figure 5(c), we report three representative variation trends of performance with an increasing level
of the corruption severity. In Table 10 and Table 11, we present the full results of the proposed CoVer
with 18 different types of corruptions at 5 severity levels. It is worth noting that the experimental
results here are all based on the average of the model confidence scores measured on one original
input and one extended corrupted input. Furthermore, we present the performance changing trends
of our CoVer based on all 18 corruption styles in Figure 7. It can be seen that the performance of
CoVer is more sensitive to the severity levels of corruptions compared to the number of extended
representation dimensions analyzed in Appendix C.2.3. Specifically, as shown in Figure 7, some
common corruption types from categories including weather (e.g., Brightness and Fog) and blur
(e.g., Motion blur and Defocus blur) can achieve lower FPR95 values. We further observe that the
commonality of these better-performing corruption types is that their perturbations to image features
are more mild compared to other types (e.g., Spatter and Elastic transform from the digital class,
Impulse noise from the noise category), and they generally do not excessively corrupt the semantic
features. In Appendix C.4, we will more intuitively demonstrate the distinctions between these
various types of corruptions through the visualizations of corrupted ID and OOD samples, illustrating
the varying degrees of enhancement or attenuation they impart on the performance of CoVer.
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Table 9: Comparison with different numbers of expanded representation dimensions at corruption
severity level 1 and 2 based on CLIP-B/16. The ID data are ImageNet-1K. For each number of
expansions, we provide two choices for the corruption types combination.

Severity Level Expanded Nums Input types
OOD Dataset

iNaturalist SUN Places Textures Average

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

0 Original 94.61 30.95 92.57 37.57 89.77 44.65 86.10 57.77 90.76 42.73

1 original + contrast 94.60 30.26 92.77 37.24 89.99 43.93 87.08 55.11 91.11 41.64
original + defocus blur 94.80 29.26 93.57 31.87 90.68 39.19 87.74 52.22 91.70 38.13

2
original + contrast

+ brightness 94.67 29.87 92.85 37.21 90.17 43.79 87.21 55.20 91.22 41.52

original + defocus blur
+ motion blur 94.93 28.15 93.49 32.17 90.65 39.53 87.58 53.19 91.66 38.26

Level 1

3
original + contrast

+ brightness + saturate 94.95 28.36 92.88 36.22 90.16 43.58 87.28 55.11 91.32 40.82

original + defocus blur
+ motion blur + fog 95.18 26.54 93.40 32.72 90.62 39.95 88.08 51.88 91.82 37.77

4

original + contrast
+ brightness + saturate

+ gaussion blur
94.91 28.82 92.99 35.99 90.30 43.08 87.36 55.04 91.39 40.73

original + defocus blur
+ motion blur + fog

+ gaussian blur
94.98 27.92 93.29 33.13 90.55 40.47 87.87 52.71 91.67 38.56

5

original + contrast
+ brightness + saturate
+ gaussion blur + fog

95.03 27.40 92.96 35.84 90.29 42.93 87.66 53.78 91.49 40.04

original + defocus blur
+ motion blur + fog

+ gaussian blur + saturate
95.18 26.49 93.33 32.89 90.57 40.27 87.91 52.8 91.75 38.11

6

original + contrast
+ brightness + saturate
+ gaussion blur + fog

+ motion blur

95.12 26.65 93.09 34.78 90.40 41.84 87.70 53.60 91.58 39.22

original + defocus blur
+ motion blur + fog

+ gaussian blur + saturate
+ brightness

95.20 26.63 93.34 33.23 90.63 40.43 87.93 52.62 91.78 38.23

1 original + brightness 94.63 29.73 92.67 36.69 90.09 43.55 87.07 54.65 91.11 41.16
original + defocus blur 94.85 28.64 93.60 31.77 90.57 39.60 88.21 50.25 91.81 37.56

2
original + brightness

+ contrast 94.91 28.57 92.92 36.53 90.18 43.57 87.81 53.33 91.45 40.50

original + defocus blur
+ motion blur 94.93 27.81 93.52 31.61 90.38 39.85 87.88 51.37 91.68 37.66

Level 2

3
original + brightness
+ contrast + saturate 95.70 24.90 92.83 36.67 90.10 44.22 88.01 52.82 91.66 39.65

original + defocus blur
+ motion blur + gaussion blur 94.44 29.86 93.23 33.15 90.03 40.99 87.70 52.15 91.35 39.04

4

original + brightness
+ contrast + saturate

+ fog
95.74 23.68 92.83 36.66 90.11 44.07 88.36 51.06 91.76 38.87

original + defocus blur
+ motion blur + gaussion blur

+ fog
94.88 27.91 93.29 32.91 90.21 40.72 88.34 50.50 91.68 38.01

5

original + brightness
+ contrast + saturate
+ fog + gaussion blur

95.66 24.14 93.13 34.98 90.32 42.45 88.63 50.12 91.94 37.92

original + defocus blur
+ motion blur + gaussion blur

+ fog + saturate
95.54 25.07 93.33 32.74 90.33 40.87 88.60 50.28 91.95 37.24

6

original + brightness
+ contrast + saturate
+ fog + gaussion blur

+ motion blur

95.68 24.12 93.28 33.70 90.40 41.56 88.59 50.46 91.99 37.46

original + defocus blur
+ motion blur + gaussion blur

+ fog + saturate
+ contrast

95.43 25.45 93.28 33.21 90.25 41.23 88.62 50.09 91.90 37.49
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Original Input Multiple Inputs (CoVer)

AUROC: 94.63    FPR95: 30.70 AUROC: 83.54    FPR95: 80.59 AUROC: 96.49 ↑  FPR95: 19.30 ↓

Speckle Noise Input

Original Input Multiple Inputs (CoVer)

AUROC: 94.63    FPR95: 30.70 AUROC: 82.12    FPR95: 71.66 AUROC: 94.98 ↑  FPR95: 26.13 ↓

Motion Blur Input

Original Input Fog Input Multiple Inputs (CoVer)

AUROC: 94.63    FPR95: 30.70 AUROC: 88.42    FPR95: 60.34 AUROC: 95.61 ↑  FPR95: 24.19 ↓

Original Input Brightness Input Multiple Inputs (CoVer)

AUROC: 94.63    FPR95: 30.70 AUROC: 92.84    FPR95: 41.42 AUROC: 95.11 ↑  FPR95: 28.29 ↓

Figure 6: Comparison of scores distributions and detection results with different inputs for represen-
tation dimension expansion under various corruptions.
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Table 10: Full results of CoVer under one extended input with 18 alternative types of corruptions at 5
severity levels based on CLIP-B/16. The ID data are ImageNet-1K.

Corruption
Type

Severity
Level

OOD Dataset
iNaturalist SUN Places Textures Average

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

Brightness

1 94.62 30.09 92.71 36.78 90.16 43.53 86.72 55.57 91.05 41.49
2 94.63 29.73 92.67 36.69 90.09 43.55 87.07 54.65 91.11 41.16
3 94.67 30.24 92.63 37.17 90.00 43.53 87.51 53.67 91.20 41.15
4 94.88 29.52 92.67 37.06 90.04 43.86 87.89 52.61 91.37 40.76
5 95.11 28.29 92.76 36.84 90.05 43.08 88.08 52.30 91.50 40.13

Fog

1 95.24 26.09 92.76 37.00 90.12 42.95 87.67 52.68 91.45 39.68
2 95.42 25.20 92.80 36.71 90.13 43.54 88.00 51.28 91.59 39.18
3 95.56 24.11 93.02 34.80 90.21 42.31 88.26 48.94 91.76 37.54
4 95.49 24.68 93.04 34.60 90.15 41.64 88.17 49.17 91.71 37.52
5 95.61 24.19 93.19 33.77 90.15 40.96 88.11 48.72 91.77 36.91

Contrast

1 94.60 30.26 92.77 37.24 89.99 43.93 87.08 55.11 91.11 41.64
2 94.88 28.37 92.88 36.71 90.02 43.87 87.54 53.78 91.33 40.68
3 95.46 25.55 93.04 35.94 90.11 42.90 88.57 50.23 91.80 38.65
4 96.37 20.10 92.95 35.18 89.85 42.13 90.13 43.90 92.32 35.33
5 96.41 19.60 92.46 36.05 89.17 44.07 89.05 48.07 91.77 36.95

Motion Blur

1 95.18 26.65 93.24 33.21 90.54 40.30 87.03 54.38 91.50 38.63
2 95.34 26.04 93.41 32.15 90.44 40.28 87.17 53.35 91.59 37.95
3 95.16 26.14 93.06 32.88 89.75 41.62 87.26 51.88 91.31 38.13
4 94.97 26.03 92.14 37.97 88.58 47.20 87.26 51.12 90.74 40.58
5 94.98 26.13 91.40 42.02 87.78 50.18 87.24 50.92 90.35 42.31

Defocus Blur

1 94.80 29.26 93.57 31.87 90.68 39.19 87.74 52.22 91.70 38.13
2 94.85 28.64 93.60 31.77 90.57 39.60 88.21 50.25 91.81 37.56
3 94.65 29.04 93.14 33.75 90.13 41.39 88.52 50.16 91.61 38.59
4 94.25 30.52 92.66 36.40 89.66 42.88 88.49 49.40 91.27 39.80
5 94.04 30.80 92.12 39.58 89.09 45.25 88.32 49.80 90.89 41.36

Gaussian Blur

1 94.66 30.49 92.97 35.25 90.39 41.49 86.90 55.05 91.23 40.57
2 94.80 29.34 93.39 32.99 90.44 40.33 87.69 51.74 91.58 38.60
3 94.41 30.95 93.16 33.84 90.08 41.50 87.99 51.38 91.41 39.42
4 93.94 33.01 92.65 36.77 89.59 43.91 88.03 50.90 91.05 41.15
5 93.52 33.3 91.59 42.03 88.64 47.39 88.01 50.25 90.44 43.24

Spatter

1 94.48 30.85 92.89 35.54 90.30 42.06 86.45 56.44 91.03 41.22
2 94.25 32.70 93.00 35.24 90.22 41.99 85.46 58.69 90.73 42.16
3 94.18 34.14 93.01 36.06 90.01 42.80 84.68 61.05 90.47 43.51
4 92.25 44.55 92.39 39.15 89.66 44.66 84.29 61.74 89.65 47.52
5 92.06 44.98 92.30 40.42 89.46 46.10 83.89 62.36 89.43 48.47

Saturate

1 95.14 27.49 92.75 36.52 90.00 43.86 86.74 56.31 91.16 41.05
2 96.06 22.22 92.38 38.12 89.74 44.80 87.15 54.27 91.33 39.85
3 94.47 31.40 92.68 37.04 90.07 43.75 86.59 56.24 90.95 42.11
4 94.58 30.42 92.44 38.03 89.86 44.05 87.20 54.11 91.02 41.65
5 94.24 31.27 92.11 38.41 89.90 43.08 87.23 53.37 90.87 41.53

Elastic Transform

1 94.71 29.15 92.69 36.08 90.09 42.86 87.12 54.79 91.15 40.72
2 94.04 31.90 92.15 38.64 89.00 45.90 85.29 58.01 90.12 43.61
3 93.81 34.98 92.17 39.52 89.42 45.50 84.66 61.08 90.02 45.27
4 93.15 38.06 91.80 41.82 88.94 47.06 82.71 64.72 89.15 47.91
5 90.57 53.15 91.12 45.97 88.52 49.36 77.98 72.84 87.05 55.33

JPEG Compression

1 93.36 38.72 92.65 37.15 90.08 43.37 87.11 55.43 90.80 43.67
2 93.39 38.20 92.99 35.26 90.37 41.91 87.04 55.90 90.95 42.82
3 93.26 38.71 93.06 34.75 90.37 41.36 87.14 55.50 90.96 42.58
4 93.11 39.86 93.01 35.27 90.20 41.63 86.92 55.76 90.81 43.13
5 93.08 39.52 92.95 36.21 89.97 42.17 86.27 57.34 90.57 43.81

Pixelate

1 94.17 33.18 92.07 39.90 89.59 45.36 86.50 57.43 90.58 43.97
2 94.32 31.99 92.07 39.41 89.56 45.51 86.69 56.79 90.66 43.42
3 94.59 29.88 91.79 40.42 89.39 45.65 85.90 59.66 90.42 43.90
4 94.66 29.32 91.42 41.88 88.88 47.21 85.64 59.54 90.15 44.49
5 94.56 29.86 91.79 39.89 89.11 45.89 85.86 58.48 90.33 43.53

Speckle Noise

1 94.36 33.35 92.40 38.66 89.68 45.02 87.16 55.50 90.90 43.13
2 94.60 31.45 92.37 38.71 89.60 45.02 87.17 54.96 90.94 42.54
3 95.44 26.28 92.03 41.94 89.27 47.41 86.60 56.37 90.84 43.00
4 96.03 22.62 91.70 43.94 88.95 49.31 86.00 57.23 90.67 43.27
5 96.49 19.30 91.51 44.35 88.92 49.75 85.44 56.95 90.59 42.59

Glass Blur

1 94.75 30.02 92.87 35.99 89.98 42.55 86.00 59.17 90.90 41.93
2 94.79 29.74 92.95 35.19 89.89 42.51 85.70 58.92 90.83 41.59
3 94.30 30.71 91.97 40.13 88.76 46.88 82.40 63.01 89.36 45.18
4 93.79 32.69 91.94 40.11 88.78 46.54 81.75 63.74 89.06 45.77
5 94.51 30.81 92.23 37.47 89.12 45.22 82.46 61.58 89.58 43.77

Gaussian Noise

1 94.12 34.13 92.23 39.59 89.65 45.07 86.95 55.76 90.74 43.64
2 94.34 32.43 92.18 39.25 89.44 45.64 87.27 53.53 90.81 42.71
3 94.84 28.69 92.02 39.78 89.11 45.74 87.29 53.71 90.82 41.98
4 94.87 28.32 91.22 44.79 88.50 49.26 86.40 56.28 90.25 44.66
5 95.47 23.58 90.74 47.27 88.26 52.06 85.40 57.82 89.97 45.18
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Table 11: (Extension of Table 10) Full results of CoVer under one extended input with 18 alternative
types of corruptions at 5 severity levels based on CLIP-B/16. The ID data are ImageNet-1K.

Corruption
Type

Severity
Level

OOD Dataset
iNaturalist SUN Places Textures Average

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

Shot Noise

1 94.37 32.83 92.34 39.34 89.59 45.12 87.14 55.73 90.86 43.25
2 94.82 29.23 92.29 38.92 89.49 44.90 87.18 55.21 90.95 42.07
3 95.23 26.53 91.81 42.03 89.04 47.28 86.77 55.67 90.71 42.88
4 95.80 22.83 91.08 46.01 88.56 50.64 85.74 57.64 90.30 44.28
5 95.97 21.26 90.85 46.16 88.44 51.13 85.18 58.09 90.11 44.16

Zoom Blur

1 94.63 29.75 93.16 32.44 90.20 40.27 87.18 52.57 91.29 38.76
2 94.08 33.05 92.70 35.13 89.62 42.70 87.00 53.03 90.85 40.98
3 93.50 35.87 92.15 37.36 89.01 45.09 85.95 55.66 90.15 43.49
4 92.95 37.98 91.65 39.51 88.48 46.92 85.63 57.04 89.68 45.36
5 92.35 40.41 90.93 42.52 87.93 49.05 84.46 59.27 88.92 47.81

Snow

1 94.35 32.94 92.62 36.32 89.71 43.21 85.82 58.72 90.62 42.80
2 94.63 30.66 92.23 37.93 89.18 44.87 86.15 56.47 90.55 42.48
3 94.57 30.42 92.18 37.94 89.18 44.78 86.20 55.80 90.53 42.23
4 94.59 30.74 91.80 39.69 88.79 46.04 86.35 55.16 90.38 42.91
5 95.35 26.59 91.94 39.16 88.76 45.93 86.60 53.40 90.66 41.27

Impulse Noise

1 93.33 41.46 92.61 38.58 89.70 44.57 86.37 57.32 90.50 45.48
2 94.24 33.91 91.94 43.03 89.11 47.87 86.09 56.26 90.34 45.27
3 94.43 31.89 91.41 45.29 88.63 49.98 86.05 55.76 90.13 45.73
4 95.11 26.64 90.73 47.75 88.04 52.06 86.01 54.56 89.97 45.25
5 95.75 22.70 90.05 50.09 87.73 53.49 86.06 54.91 89.90 45.30

Figure 7: Performance variation trends of CoVer by varying severity levels under different types of
corruptions.
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C.3 Exploration on the Formulation of CoVer

In Section 3.3, we discuss about the scheme of designing the OOD score with extra corrupted inputs:

SCoVer = Ex∼d(X ,X̃ )(S(x)), d(X , X̃ ) := {x, c(x)|x ∈ X , c ∈ C}, (17)

The critical mechanism of SCoVer can be summarized as follows: SCoVer is an confidence expectation
with respect to the OOD score estimated from natural input and its corrupted variant.

To have a closer look at our proposed CoVer, we further separately explain the implementation
mechanism of CoVer at the input level and the output level. At the input level, CoVer is an extension
of the input representation dimension, which introduces additional variant feature inputs into the
model. On the other hand, CoVer is an extension of the confidence assessment dimension at the output
level, which enables the integration of multi-dimensional confidence by averaging the confidence
under every representation dimension. Such a design criterion leaves a further exploration on the
specific formulation of CoVer. In other words, the realization of the estimated confidence score under
each evaluation dimension can have multiple choices.

Table 12 shows the results of different implementation schemes for the CoVer score function. We
also provide the original score function formulations of each method and their performance for
comparison. All experiments in this table are evaluated on ImageNet-1K benchmark and all methods
are based on CLIP-B/16. The results indicate that these scoring methods can achieve more comparable
performances under the setting of the CoVer mode, as analyzed in Section 4.2,

Turning the attention to the implementation form of the proposed CoVer, we divide it into two
categories: traditional scoring functions (from row 1 to row 4) and newly designed scoring functions
based on negative textual logic (from row 5 to row 8). For traditional maximum-softmax and free
energy scoring functions, we simply employ the expectation of them on the expanded multiple
representation dimensions to realize our CoVer, as demonstrated in Eq. (17). For novel CLIPN and
NegLabel scoring functions that exploit extra textual information, we apply the CoVer’s mechanism
to the calculation of the similarity between the image input and the negative text input. Formally it
can be summarized as follows:

SCoVer(x) = Ex∼d(X ),x̃∼d(X ,X̃ )S
∗ (sim(x,y), sim

(
x̃,y−)) (18)

where x ∼ d(X ) is denoted as the input image sampled from original input space, and x̃ ∼ d(X , X̃ )
refers to the input image sampled from expanded input space. x and x̃ are involved in calculating the
similarity to the positive textual concept y and negative textual concept y−, respectively. S∗ is the
realization form of CLIPN and NegLabel, which can be found in row 6 and row 8 of Table 12.

Table 12: Comparison with the original and CoVer’s modified form of different scoring functions
based on CLIP-B/16. All experiments are evaluated on ImageNet-1K benchmark.

Method Mode Score Function

OOD Dataset

iNaturalist SUN Places Textures Average

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

MSP
Original maxi

esi(x)/τ∑K
j=1 esj(x)/τ 94.61 30.95 92.57 37.57 89.77 44.65 86.10 57.77 90.76 42.73

CoVer Ex∼d(X ,X̃ ) maxi
esi(x)/τ∑K

j=1 esj(x)/τ 95.98 22.55 93.42 32.85 90.27 40.71 90.14 43.39 92.45 34.88

Energy
Original log

∑K
j=1 e

sj(x)/T 85.54 80.49 84.21 78.75 84.81 72.29 66.63 92.89 80.30 81.11

CoVer Ex∼d(X ,X̃ )log
∑K

j=1 e
sj(x)/T 88.28 70.78 86.24 76.39 86.17 70.3 67.87 92.61 82.14 77.52

CLIPN
Original

∑C
j=1

e
sno
i,j(x)/τ

esi,j(x)/τ+e
sno
i,j

(x)/τ · esi,j(x)/τ∑C
k=1 esi,k(x)/τ 95.63 21.62 94.27 25.18 93.15 30.51 90.34 41.68 93.35 29.66

CoVer Ex∼d(X ),x̃∼d(X ,X̃ )

∑C
j=1

e
sno
i,j(x̃)/τ

esi,j(x)/τ+e
sno
i,j

(x̃)/τ · esi,j(x)/τ∑C
k=1 esi,k(x)/τ 95.41 23.14 95.72 17.13 94.80 23.05 88.59 40.82 93.63 26.04

NegLabel
Original

∑K
i=1 esi(x)/τ∑K

i=1 esi(x)/τ+
∑M

j=1 e
s

neg
j

(x)/τ
99.49 1.93 95.46 20.95 91.58 36.45 89.89 45.12 94.10 26.11

CoVer Ex∼d(X ),x̃∼d(X ,X̃ )

∑K
i=1 esi(x)/τ∑K

i=1 esi(x)/τ+
∑M

j=1 e
s

neg
j

(x̃)/τ
99.59 1.15 94.56 28.84 95.01 25.65 92.39 40.39 95.39 24.01
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C.4 Visualization Analysis

C.4.1 Visualization of Corrupted ID and OOD Samples

In Figure 8, we provide the visualized examples under 18 different types of algorithmically generated
corruptions which are officially introduced in [22]. Furthermore, there are 5 severity levels for each
corruption style, ranging from inconsequential to devastating corruption of the original clean image as
shown in Figure 9. By synthesizing these 18 types and 5 severity levels, we generate a comprehensive
and diverse set of 90 distinct forms of corrupted inputs, which can be leveraged to enhance the
dimensionality of input representation.

Original Sample

JPEG Contrast Spatter

Glass Blur Motion Blur Zoom Blur

SaturatePixelate

Gaussian Noise

Impulse Noise

Speckle Noise

Defocus Blur

Elastic

Shot Noise

Gaussian Blur

Snow Fog Brightness

Corrupted Samples

Figure 8: Visualization of an original sample and its corrupted instances under each corruption type
officially defined in [22]

Clean Severity = 1 Severity = 2 Severity = 3 Severity = 4 Severity = 5

Figure 9: Visualization of varying severity levels, with Impulse Noise, Snow, and Glass Blur (all
introduced in [22]) modestly to markedly corrupting the natural clean image.
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C.4.2 Comparison with Salient Maps and Corresponding Confidence Variations.

To better illustrate the effectiveness of CoVer, which primarily stems from the differing confidence
variations between ID and OOD samples under identical corruption conditions, we provide some
visualization results of ID and OOD images, as shown in Figure 10 and Figure 11. All the images are
picked from the datasets in the ImageNet-1K OOD detection benchmark. Each subfigure shows the
feature maps of the original image and its corrupted variants, including Contrast (Severity Level 4)
and Defocus Blur (Severity Level 2). For comparison, we also provide the corresponding confidence
variations between the original (red bar), the corrupted (blue bar), and the averaged (yellow bar)
one. The confidence scores are based on the form of maximum-softmax scoring function given by
CLIP-B/16. We continue to divide the data into four categories, denoted as confident ID data (refer to
row 1 to row 2 in Figure 10), unconfident ID data (refer to row 3 to row 6 in Figure 10), overconfident
OOD data (refer to row 1 to row 4 in Figure 11), and unconfident OOD data (refer to row 5 to row 6
in Figure 11). Here we focus on the differences between unconfident ID data and overconfident OOD
to verify the analysis claimed in Section 3.2.

In Figure 10, it is obvious that ID images have more significant ID-semantic feature activations (see
the foreground salient responses) due to the knowledge of the ID label space. Firstly, for confident ID
data, the changes in confidence post-corruption can manifest as either minor or abrupt. For example,
in the image in row 1, column 1 (ILSVRC2012_val_00020025), the corruption results in only a
negligible loss of the semantics of the ID category present in the foreground. Conversely, for the
image in row 2, column 1 (ILSVRC2012_val_00044407), the corruption enhances disturbances from
non-semantic areas, leading to a loss of model confidence. Nevertheless, by averaging the original
and corrupted confidence scores, the confident ID data remains stable within a higher confidence
interval, demonstrating the superiority of CoVer’s mechanism. Secondly, for unconfident ID data,
due to the presence of ID semantic features, the model exhibits resilience in its confidence when
subjected to corruption. For instance, the image in row 4, column 1 (ILSVRC2012_val_00022503)
shows the model’s resilience, as it continues to focus on the foreground regions belonging to the ID
category despite various degrees of corruption, thus maintaining its confidence score unaffected. The
same results can also be seen in row 3, column 1 (ILSVRC2012_val_00048997) and row 4, column 2
(ILSVRC2012_val_00020119).

In Figure 11, particularly in the case of overconfident OOD images, there is an excessive reaction to
the corruption. This phenomenon is apparent because, unlike ID data, OOD images inherently lack
semantic information about ID categories, leading to the disappearance of areas with high feature
activation under the same type and severity level of corruption. For instance, the image in row 2,
column 1 (f_formal_garden_00003688) demonstrates that regions highly responsive in their original
state become irrelevant after corruption, resulting in the confidence mutation. This shift further
confirms that the model’s overconfidence in them is primarily due to misleading non-semantic features,
such as textures and styles. Similar results can also be found in other OOD datasets, such as the
image in row 3, column 1 (sun_arsrlxiznzlekfvg), and the image in row 4. column 2 (wrinkled_0070).
However, the confidence of unconfident ID data, comparable to that of these overconfident OOD
samples, remains stable. Consequently, by averaging the confidence scores before and after corruption,
CoVer effectively captures the distinctions between OOD and ID data that initially overlap, thus
enhancing the separability of ID and OOD distributions. Furthermore, for unconfident OOD data,
due to their overall low relevance to ID semantics, the confidence scores consistently remain in a
lower range (like the image in row 5, column 1, named 1b0ac86be7f53fd9058646315ed17269).
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Dataset Name: ImageNet
Fig Name: ILSVRC2012_val_00020025

Origin Contrast Defocus Blur

Dataset Name: ImageNet
Fig Name: ILSVRC2012_val_00013357

Origin Contrast Defocus BlurConfidence Variation Confidence Variation

Dataset Name: ImageNet
Fig Name: ILSVRC2012_val_00044407

Origin Contrast Defocus Blur

Dataset Name: ImageNet
Fig Name: ILSVRC2012_val_00040000

Origin Contrast Defocus BlurConfidence Variation Confidence Variation

Dataset Name: ImageNet
Fig Name: ILSVRC2012_val_00048997

Origin Contrast Defocus Blur

Dataset Name: ImageNet
Fig Name: ILSVRC2012_val_00018279

Origin Contrast Defocus BlurConfidence Variation Confidence Variation

Dataset Name: ImageNet
Fig Name: ILSVRC2012_val_00022503

Origin Contrast Defocus Blur

Dataset Name: ImageNet
Fig Name: ILSVRC2012_val_00020119

Origin Contrast Defocus BlurConfidence Variation Confidence Variation

Dataset Name: ImageNet
Fig Name: ILSVRC2012_val_00035061

Origin Contrast Defocus Blur

Dataset Name: ImageNet
Fig Name: ILSVRC2012_val_00031446

Origin Contrast Defocus BlurConfidence Variation Confidence Variation

Dataset Name: ImageNet
Fig Name: ILSVRC2012_val_00020767

Origin Contrast Defocus Blur

Dataset Name: ImageNet
Fig Name: ILSVRC2012_val_00045824

Origin Contrast Defocus BlurConfidence Variation Confidence Variation

Figure 10: Case visualization of ID images. The left part of each subfigure contains the original
image (with the dataset name and filename) and its corruptions with their feature maps. The right
part shows the confidence variations corresponding to each corruption.

28



Dataset Name: iNaturalist
Fig Name: 740a68e988259f377b319dafb2e7e0dd

Origin Contrast Defocus Blur

Dataset Name: iNaturalist
Fig Name: 30bbe31cab9b83df7582a891924ab75e

Origin Contrast Defocus BlurConfidence Variation Confidence Variation

Dataset Name: Places
Fig Name: f_formal_garden_00003688

Origin Contrast Defocus Blur

Dataset Name: Places
Fig Name: h_hayfield_00003239

Origin Contrast Defocus BlurConfidence Variation Confidence Variation

Dataset Name: SUN
Fig Name: sun_arsrlxiznzlekfvg

Origin Contrast Defocus Blur

Dataset Name: SUN
Fig Name: sun_bofnqnjunvcoqtpu

Origin Contrast Defocus BlurConfidence Variation Confidence Variation

Dataset Name: Textures
Fig Name: grid_0127

Origin Contrast Defocus Blur

Dataset Name: Textures
Fig Name: wrinkled_0070

Origin Contrast Defocus BlurConfidence Variation Confidence Variation

Dataset Name: iNaturalist
Fig Name: 1b0ac86be7f53fd9058646315ed17269
Origin Contrast Defocus Blur

Dataset Name: Places
Fig Name: s_sky_00002134

Origin Contrast Defocus BlurConfidence Variation Confidence Variation

Dataset Name: SUN
Fig Name: sun_asfgylptpdqklqtx

Origin Contrast Defocus Blur

Dataset Name: Textures
Fig Name: smeared_0122

Origin Contrast Defocus BlurConfidence Variation Confidence Variation

Figure 11: Case visualization of OOD images. The left part of each subfigure contains the original
image (with the dataset name and filename) and its corruptions with their feature maps. The right
part shows the confidence variations corresponding to each corruption.
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D Preliminary Statistical Analysis

In this section, we present the statistical implications with detailed definitions and assumptions. The
primary objective is to show that CoVer can lead to an increase in the separability of the distributions
of ID and OOD by introducing confidence expectations under the extended representation dimension.
In the following parts, we first introduce the considering performance metric and some preliminary
setups for the analyses.

Metric. The separability between ID and OOD data can be reflected by the FPRλ, which is the
performance metric of an OOD detector, defined as follows,

FPRλ = Fout
(
F−1

in (λ)
)

(19)

where Fin and Fout represent the cumulative distribution functions (CDFs) corresponding to the
confidence scores obtained by ID and OOD samples, respectively. λ ∈ [0, 1] is denoted as the true
positive rate (TPR), indicating the proportion of samples that are correctly classified as one of the ID
categories. The metric FPRλ quantifies the overlap degree between the scores that the OOD detector
assigns to ID and OOD samples, with lower values indicative of superior performance.

Preliminary setups. Following previous works [32, 31], owing to the robust representational
capabilities of pre-trained DNNs and the consistent alignment between cosine similarity scores and
labels observed in CLIP-like models, we assume that the features extracted from DNNs or the cosine
similarity scores in CLIP-like models approximately conform to a Gaussian Mixture Model (GMM)
with equal class priors:

(
1
2N (µpi, σpi) +

1
2N (µpo, σpo)

)
, where µpi and µpo are the means of the

ID and OOD distribution, while σpi and σpo are the corresponding standard deviations.. Specifically,
we use DID = N (µpi, σpi) and DOOD = N (µpo, σpo) denote the ID marginal distribution and the
OOD marginal distribution, respectively.

Assumptions. Refer to Figure 1 and Figure 6, the comparisons of score distributions obtained by
different input modes, we can derive a series of assumptions about the variation relationships between
µpi and µpo, and between σpi and σpo. Empirical exploration can be found in Figure 12.

Assumption D.1 (Variation of µpi and µpo). Let ∆µpi and ∆µpo represent the changes in the
means of ID and OOD distributions, respectively, after corruption and averaging. We assume that
|∆µpi| > |∆µpo|, resulting in a narrowing gap between µpi and µpo.

This assumption is predicated on the observation that the means of ID distributions, µpi, decrease more
significantly under identical corruption levels compared to OOD distributions, µpo. The generally
higher initial confidence scores of ID samples make their means more susceptible to substantial
decreases (refer to the left panel of Figure 12). This reduction is greater than that experienced by
OOD samples, thereby significantly narrowing the gap between µpi and µpo. For an intuitive example,
the gap between the means of confident ID data (left panel of Figure 12) and overconfident OOD data
(right-middle panel of Figure 12) is closer. This illustrates the pronounced impact of the averaging
operation on ID distributions compared to OOD distributions.

Assumption D.2 (Variation of σpi and σpo). We define the changes in the variances of ID and OOD
distributions as ∆σpi and ∆σpo, respectively. We postulate that the reduction in variance for ID
distributions, ∆σpi, is greater than that for OOD distributions, ∆σpo: |∆σpi| > |∆σpo|.

This assumption is supported by the observation that high-confidence ID samples, due to their higher
initial confidence levels, experience larger and more abrupt drops in confidence upon corruption
(see the left panel of Figure 12). Consequently, the averaging process post-corruption results in
a significantly greater reduction in the variance σpi in ID distributions compared to σpo in OOD
distributions. This marked decrease in variability within ID confidence scores, relative to the OOD
ones, underscores the efficacy of the averaging operation in dramatically stabilizing the ID confidence
scores more than the adjustments observed in OOD confidence scores.

Given the preliminaries and assumptions above, we can derive the following extended lemma to
demonstrate the superior performance of CoVer.

Lemma D.3 (Declination of FPRλ). Assuming the variation relationships between µpi and µpo, and
between σpi and σpo, CoVer enables a lower FPRλ.
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Figure 12: Empirical exploration to evidence the proposed assumptions. Based on Figure 2, we
further present scatter maps of averaged confidence scores for comparison.

Proof of Lemma D.3. We aim to investigate the relationship between the FPRλ metric and the
variations in µpi, µpo, σpi, and σpo. The FPRλ metric can be reformulated as follows:

FPRλ = Φ
(
Φ−1(λ;µpi, σpi);µpo, σpo

)
= Φ

(
µpi + σpi · Φ−1(λ);µpo, σpo

)
= Φ

(
µpi + σpi · Φ−1(λ)− µpo

σpo

)
(20)

where Φ is he cumulative distribution function of the Gaussian distribution, and Φ−1 is its inverse
function. Considering the differences before applying CoVer:

∆µ = µpi − µpo

∆σ = σpi − σpo (21)

With the assumptions that ∆µ and ∆σ are affected by the averaging process in CoVer, we express
these changes as:

∆µnew = µ′
pi − µ′

po

∆σnew = σ′
pi − σ′

po (22)

where µ′
pi and µ′

po are the new means post-CoVer, σ′
pi and σ′

po are the new variances post-CoVer.
Given that ∆µnew is reduced and ∆σnew indicates a significant contraction, particularly a reduction in
σ′
pi relative to σ′

po, the numerator in (µpi+σpi ·Φ−1(λ)−µpo)/σpo, decreases while the denominator
basically unchanged. This results in the argument of Φ becoming smaller. Since Φ is monotonically
increasing, a decrease in the argument directly translates to a lower value of FPRλ, thereby reducing
the probability of falsely classifying OOD samples as ID.

This analysis underscores the benefit of CoVer, particularly through its influence on expanding
representation dimensions and optimizing the detection framework. By narrowing the gap between
the mean scores and significantly reducing the variance in ID distributions relative to OOD, CoVer
enhances the model’s discriminative capability and improves its robustness, ultimately leading to
more reliable OOD detection.

E Future Analysis

E.1 Discussion about Extra Runtime

Considering the addition of corrupted inputs, CoVer would result in non-negligible additional runtime.
If there are N expanded dimensions, it will take N times the duration of a single input to implement
CoVer. However, our CoVer is only applied in the inference phase of OOD detection, and it is
generally fast, as shown in Table 13. We believe that the performance improvements offered by
CoVer are well-worth the extra few minutes of runtime.
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Table 13: Inference runtime of a single input using a single RTX 3090 GPU based on CLIP-B/16.

Dataset Type Inference time (s)

ImageNet ID 121 (±11)
iNaturalist OOD 45 (±15)
SUN OOD 41 (±12)
Places OOD 33 (±8)
Textures OOD 16 (±1)

E.2 Exploring the Impact of Corruption Types and Severity Levels

Appropriate types of corruptions and corresponding severity levels are crucial for the optimization
of our CoVer. In all experiments, we use the SVHN dataset as the validation set to select the most
effective corruption types for each method. Specific examples of selections are provided in Table 14.
For the types of corrupted inputs and their corresponding severity levels, we have conducted related
explorations (e.g., Tables 10 and 11, Figures 6 and 7 of our original submission) for performance
references. Some specific corruptions (e.g., Brightness, Fog, Contrast, Motion Blur, Defocus Blur)
can generally improve the OOD detection performance, as the corruptions are mainly on the non-
semantic level of the input, instead of damaging the semantic features too much like the other types.
Empirically, refer to Table 15, we can use the same type of corruption as the expanded input (e.g.,
here Brightness with severity 1 used) to perform better than the original version. This provides the
verification of the previous intuition about the general guidance for choosing appropriate corruption
types, and understanding dimension expansion for OOD detection.

Table 14: Examples of corruption types selections in the utilized validation set SVHN based on
ResNet50

Selected? Din Dval Method Expanded Type AUROC↑ FPR95↓
ImageNet-1K SVHN MSP / 97.45 13.80

✓ ImageNet-1K SVHN MSP Brightness 98.81 6.36
✓ ImageNet-1K SVHN MSP Fog 98.83 6.52
✓ ImageNet-1K SVHN MSP Motion Blur 98.62 7.69
✗ ImageNet-1K SVHN MSP Snow 89.43 56.47
✗ ImageNet-1K SVHN MSP Impulse Noise 94.71 29.74
✗ ImageNet-1K SVHN MSP Spatter 95.87 28.03

Table 15: CoVer combined with each method using the same expanded corruption type.

Architecture Din Method Expanded Type AUROC↑ FPR95↓
ResNet50 ImageNet-1K ReAct / 92.95 31.43
ResNet50 ImageNet-1K ReAct + CoVer Brightness(1) 93.94 28.10
ResNet50 ImageNet-1K DICE / 90.77 34.75
ResNet50 ImageNet-1K DICE + CoVer Brightness(1) 91.96 31.66
ResNet50 ImageNet-1K ASH-B / 90.91 39.04
ResNet50 ImageNet-1K ASH-B + CoVer Brightness(1) 92.24 30.55
CLIP-B/16 ImageNet-1K MCM / 90.76 42.73
CLIP-B/16 ImageNet-1K MCM + CoVer Brightness(1) 91.05 41.49
CLIP-B/16 ImageNet-1K CLIPN / 93.35 29.66
CLIP-B/16 ImageNet-1K CLIPN + CoVer Brightness(1) 93.47 27.82
CLIP-B/16 ImageNet-1K NegLabel / 94.10 26.11
CLIP-B/16 ImageNet-1K NegLabel + CoVer Brightness(1) 95.15 24.99
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E.3 Exploration on the harder OOD dataset

NINCO [4] has proposed three OOD datasets with no categorical contamination which include
NINCO, OOD unit-tests, and NINCO popular OOD datasets subsamples, which are demonstrated to
be harder than common OOD detection benchmarks. Here, we evaluate the effectiveness of CoVer on
these datasets in 16. The results demonstrate that CoVer, when combined with ASH, consistently
achieves better performance across the three NINCO OOD datasets.

Table 16: The overall results of CoVer on three NINCO OOD datasets without leveraging VLMs/CLIP.
The ID data are ImageNet-1K.

Architecture Din Dout Method AUROC↑ FPR95↓

ResNet50 ImageNet-1K

NINCO ASH 82.26 69.22
NINCO AHS + CoVer 82.80 68.59

NINCO unit-tests ASH 99.13 4.85
NINCO unit-tests AHS + CoVer 99.49 2.12

NINCO subsamples ASH 82.07 56.10
NINCO subsamples AHS + CoVer 82.67 54.44

E.4 Comparison with other Competitive Methods

Comparison with NNGuide and MaxLogit. To provide a comprehensive comparisons, we have
conducted comparison experiments with NNGuide [39] and MaxLogit [21] to enrich our analysis in
Table 17. First, our experimental results show that CoVer outperforms these competitive post-hoc
methods on the ResNet50 architecture. Second, the performance of these post-doc methods, especially
NNGuide, encounter significant drop when conducted on CLIP-B/16 architecture. We believe the
reason for the poor performance is the difference in training data. Many pos-hoc methods are designed
on ImageNet pre-trained networks, where only ID data are used during training. In contrast, when
training CLIP, both ID datas and OOD datas are used. This leads to different activations of OOD
data. Another reason is that the pos-hoc method relies heavily on the choice of hyperparameters.
The hyperparameters of NNGuide need to be re-selected on different models. Despite these issues,
our CoVer can still perform better than these methods. Furthermore, we also combine our CoVer
with MaxLogit and NNGuide and report the results in Table 18, which further demonstrates the
effectiveness and compatibility of our method.

Table 17: Comparison with NNGuide and MaxLogit based on ResNet50 and CLIP-B/16. The ID
data are ImageNet-1K.

Architecture Method
OOD Dataset

iNaturalist SUN Places Textures Average

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

ResNet50

MaxLogit 91.93 50.91 86.59 59.87 84.18 65.68 86.40 54.36 87.07 57.70
NNGuide(k=1) 93.13 34.06 90.41 38.86 88.06 47.46 91.67 29.89 90.82 37.57
NNGuide(k=10) 94.33 29.27 91.23 36.4 88.71 46.2 92.93 26.31 91.80 34.55
NNGuide(k=100) 95.10 26.06 91.44 36.86 88.63 47.64 93.61 24.17 92.19 33.68
CoVer (ours) 97.14 14.04 94.12 25.77 91.05 35.93 91.93 30.39 93.56 26.53

CLIP-B/16

MaxLogit 89.31 61.66 87.43 64.39 85.95 63.67 71.68 86.61 83.59 69.08
NNGuide(k=1) 65.06 99.38 68.56 97.27 72.19 93.51 66.06 98.49 67.97 97.16
NNGuide(k=10) 60.98 99.68 68.06 98.06 71.65 94.83 62.61 98.99 65.83 97.89
NNGuide(k=100) 51.34 99.85 64.84 98.83 68.74 96.49 53.26 99.63 59.54 98.70
CoVer (ours) 95.98 22.55 93.42 32.85 90.27 40.71 90.14 43.39 92.45 34.88

Table 18: Compatibility experiments of CoVer combined with NNGuide and MaxLogit based on
ResNet50 and CLIP-B/16. The ID data are ImageNet-1K.

Architecture Method
OOD Dataset

iNaturalist SUN Places Textures Average

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

CLIP-B/16 MaxLogit 89.31 61.66 87.43 64.39 85.95 63.67 71.68 86.61 83.59 69.08
MaxLogit+CoVer 91.78 49.93 89.20 59.64 87.89 59.15 74.01 84.50 85.72 63.31

ResNet50

MaxLogit 91.13 50.91 86.59 59.87 84.18 65.68 86.40 54.36 87.07 57.70
MaxLogit+CoVer 92.85 42.19 87.19 58.17 84.97 63.04 86.59 54.10 87.90 54.38
NNGuide(k=1) 93.13 34.06 90.41 38.86 88.06 47.46 91.67 29.89 90.82 37.57
NNGuide (k=1)+CoVer 94.98 25.16 91.17 36.51 88.82 44.52 91.91 29.24 91.72 33.86
NNGuide(k=10) 94.33 29.27 91.23 36.4 88.71 46.20 92.93 26.31 91.80 34.55
NNGuide (k=10)+CoVer 95.84 21.61 91.91 34.45 89.38 43.42 93.12 25.80 92.56 31.32
NNGuide(k=100) 95.10 26.06 91.44 36.86 88.63 47.64 93.61 24.17 92.19 33.68
NNGuide (k=100)+CoVer 96.42 19.46 92.20 34.43 89.39 44.34 93.79 23.58 92.95 30.45
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Comparison with Watermarking. In addition, Watermarking [54] is another competitive methods
needed to be considered. We have added the analysis about the Watermarking method with our CoVer
in the following two aspects.

Conceptually, we have noticted that Watermarking utilizes a well-trained mask to help the original
images be distinguishable from the OOD data. However, Watermarking is still trying to excavate the
useful feature representation in a single-input perspective. In contrast, the critical distinguishable
point and also the advantage of our CoVer method lies in input dimension expansion with the corrupt
variants, which instead provide a extra dimension to explore the confidence mutation to better identify
the OOD samples.

Experimentally, we have conducted the comparison and report the results in Table 19. The results
show that, on the one hand, training an optimized watermarking for effectively distinguishing
between ID and OOD samples is a time-consuming process. On the other hand, CoVer achieves
this by introducing corrupted inputs to capture the confidence variations between ID and OOD data
during the test phase, which is simpler, faster, and more effective.

Table 19: Comparison with competitive OOD detection method Watermark based on ResNet50. The
ID data are ImageNet-1K.

Architecture Method
OOD Dataset

iNaturalist SUN Places Textures Average
RuntimeAUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

ResNet50 Watermark 80.31 74.45 79.21 73.27 79.78 71.43 80.44 67.53 79.94 71.67 3 h/epoch
MSP+CoVer 90.81 44.90 82.51 66.38 81.57 69.34 81.00 65.43 83.97 61.41 10 mins

Comparison with Data Depth, Information Projection, and Isolation Forest. We have also
conducted comparison experiments between our CoVer and baselines methods from data depths,
information projections, and isolation forest, as detailed in Table 20.

Due to the large scale of the ImageNet training set, we sampled 50 samples per class to construct a
subset from the training data to represent the training distribution, as recommended by the similar
work named NNGuide [39]. For data depths, we reimplemented APPROVED [41] for comparison.
For information projections, we reproduced REFEREE [40] for comparison. For Isolation Forest, we
use logits as the input to detect the anomaly logits in ID and OOD samples.

The results indicate that AD and textual OOD detection methods, such as Data Depth and Information
Projection, may not suit for visual OOD detection tasks, a view also mentioned in related surveys [8,
9]. Similarly, classical ML methods for AD, such as Isolation Forest, seem to be failed to excavate
discriminative representations when applied to image OOD detection. However, since these methods
are insightful in distinguishing the outliers, we believe it is worth further efforts in the future to adopt
the critical intuition into the OOD detection problem.

Table 20: Comparison with competitive anomaly detection and textual OOD detection baselines based
on ResNet50. The selected methods’ types are Data Depth, Information Projection and Isolation
Forest, respectively. The ID data are ImageNet-1K.

Architecture Method
OOD Dataset

iNaturalist SUN Places Textures Average

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

ResNet50

APPROVED 53.25 95.90 60.01 94.63 56.77 94.26 70.21 78.30 60.06 90.77
REFEREE 79.77 94.76 73.28 96.91 72.9 96.80 74.01 94.08 74.99 95.64
Isolation Forest 70.76 85.94 59.55 94.78 60.27 93.91 65.89 81.37 64.12 89.00
MSP+CoVer 90.81 44.90 82.51 66.38 81.57 69.34 81.00 65.43 83.97 61.41

E.5 Compatibility with each DNN-based mehtods

It is worth to note that, in Table 1, we only reported the results of CoVer combined with ASH because
it best demonstrates the excellence of CoVer. In Table 3, we also show the results of CoVer combined
with DICE and ReAct, and CoVer can also provide performance gains for them. Here in Table 21, we
further report the comparison of CoVer combined with each mentioned DNN-based methods (adding
MSP, ODIN, and Energy score), which strongly demonstrates its superiority.
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Table 21: Compatibility experiments of CoVer combined with each mentioned DNN-based OOD
detection method. The ID data are ImageNet-1K.

Architecture Method
OOD Dataset

iNaturalist SUN Places Textures Average

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

ResNet50

MSP 87.74 54.99 80.86 70.83 79.76 73.99 79.61 68.00 81.99 66.95
MSP+CoVer 90.81 44.49 82.51 66.38 81.57 69.34 81.00 65.43 83.97 61.41
ODIN 91.37 41.57 86.89 53.97 84.44 62.15 87.57 45.53 87.57 50.80
ODIN+CoVer 93.66 31.56 88.14 51.47 85.98 58.69 87.97 44.77 88.94 46.62
Energy score 89.95 55.72 85.89 59.26 82.86 64.92 85.99 53.72 86.17 58.41
Energy+CoVer 92.23 46.67 87.42 56.50 84.98 63.16 86.99 51.70 87.91 54.51
ReAct 96.22 20.38 94.20 24.20 91.58 33.85 89.80 47.30 92.95 31.43
ReAct+CoVer 97.58 13.35 95.7 18.91 93.08 29.02 91.55 40.74 94.48 25.51
DICE 94.49 25.63 90.83 35.15 87.48 46.49 90.30 31.72 90.77 34.75
DICE+CoVer 96.8 16.56 93.53 28.52 90.00 40.54 91.14 31.15 92.87 29.19
ASH-B 94.25 28.95 90.32 40.21 87.52 49.52 91.53 33.48 90.91 39.04
ASH-B+CoVer 97.14 14.04 94.12 25.77 91.05 35.93 91.93 30.39 93.56 26.53
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All used assets in the paper are properly credited, with explicit mentions of
their licenses and terms of use, in full compliance with the recommended guidelines.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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