
Under review as a conference paper at ICLR 2023

DIFFERENTIALLY PRIVATE OPTIMIZATION ON
LARGE MODEL AT SMALL COST

Anonymous authors
Paper under double-blind review

ABSTRACT

Differentially private (DP) optimization is the standard paradigm to learn large
neural networks that are accurate and privacy-preserving. The computational cost
for DP deep learning, however, is notoriously heavy due to the per-sample gra-
dient clipping. Existing DP implementations are 2 − 1000× more costly in time
and space complexity than the standard (non-private) training. In this work, we
develop a novel Book-Keeping (BK) technique that implements existing DP op-
timizers (thus achieving the same accuracy), with a substantial improvement on
the computational cost. Specifically, BK enables DP training on large models and
high dimensional data to be roughly as efficient as the standard training, whereas
previous DP algorithms can be inefficient or incapable of training due to memory
error. The computational advantage of BK is supported by the complexity analy-
sis as well as extensive experiments on vision and language tasks. Our implemen-
tation achieves state-of-the-art (SOTA) accuracy with very small extra cost: on
GPT2 and at almost the same memory cost (< 1% overhead), BK has 1.03× the
time complexity of the standard training (0.83× training speed in practice), and
0.61× the time complexity of the most efficient DP implementation (1.36× train-
ing speed in practice). We will open-source the codebase for the BK algorithm.

1 INTRODUCTION

Deep learning with differential privacy (DP; Dwork et al. (2006)) has shown strong performance
while guaranteeing rigorous protection against privacy risks, especially on large models that tend to
memorize and leak the training data Carlini et al. (2021); Haim et al. (2022); Shokri et al. (2017).
For example, recent advances have shed light on the success of DP GPT2 Li et al. (2021); Bu et al.
(2022b); Yu et al. (2021), which achieves 64.6 BLEU score1 at strong privacy guarantee (ϵ = 3),
on the text generation task using E2E restaurant review dataset. This is only marginally below the
standard non-private GPT2 (BLEU score 66.8). Similarly, on computer vision tasks (ϵ = 2), DP
vision transformers and ResNets have obtained 97.1%/86.2% accuracy on CIFAR10/100 by Bu
et al. (2022a) and over 81% accuracy on ImageNet by De et al. (2022); Mehta et al. (2022).

However, DP training of large neural networks is well-known to be computationally burdensome
in comparison to the standard training, in terms of both the training time and the memory cost.
For instance, training a small recurrent neural network (0.598M parameters) experiences a 1000×
slowdown using DP optimizers in Tensorflow-Privacy (TF-Privacy) library Bu et al. (2021), and
training a small convolutional neural network (CNN, 0.605M parameters) on CIFAR10 has a 24×
slowdown with Tensorflow 2 and the XLA compiler Subramani et al. (2021). Even with SOTA
efficient implementations, large models such as RoBERTa Liu et al. (2019), GPT2 Radford et al.
(2019), ResNet He et al. (2016), VGG Simonyan & Zisserman (2014), ViT Dosovitskiy et al. (2020)
and its variants, experience about 2−3× slowdown in Pytorch Li et al. (2021); Bu et al. (2022a) and
2 − 9× slowdown in JAX Kurakin et al. (2022); De et al. (2022), with possibly 4 − 20× memory
overhead Bu et al. (2022a); Li et al. (2021); Subramani et al. (2021) if not out of memory.

The efficiency bottleneck in DP deep learning lies in the per-sample gradient clipping, which restricts
the magnitude of each per-sample gradient in the mini-batch. Applying the clipping jointly with the

1BLEU (BiLingual Evaluation Understudy) is a metric (0-100) for automatically evaluating translated text.
BLEU > 60 is considered as ”very high quality, adequate, and fluent translations, often better than human”.

1

https://cloud.google.com/translate/automl/docs/evaluate#interpretation

Under review as a conference paper at ICLR 2023

Gaussian noise addition, one can privately release the gradient to arbitrary optimizers like SGD and
Adam, and thus guarantee the privacy of the training as described in Section 1.3:

private gradient: Ĝ :=
∑

i
gi · C(∥gi∥2) + σDP · N (0, I),

private optimizer (e.g. SGD): wt+1 = wt − ηĜ.
(1)

Here w is the model parameters, Li is the per-sample loss, gi = ∂Li

∂W is the per-sample gradient, η
is the learning rate, σDP is the noise magnitude that defines the privacy loss, and C(∥gi∥) or simply
Ci is the per-sample clipping factor, e.g. min{R/∥gi∥, 1} in Abadi et al. (2016), with a clipping
threshold R.

At high level, previous work have tackled the efficiency bottleneck with various approaches.

I. optimizer︸ ︷︷ ︸
DP-SGD, DP-Adam

−−−− II. parameter efficiency︸ ︷︷ ︸
last layer, LoRA, Adapter

−−−− III. implementation︸ ︷︷ ︸
Opacus, GhostClip, BK

−−−− IV. platform︸ ︷︷ ︸
Pytorch, JAX, TF

One approach (part II) focuses on the parameter efficiency by partially training a neural network,
in contrast to full fine-tuning all model parameters, e.g. only the last output layer Tramer & Boneh
(2020), the adapter layers Houlsby et al. (2019); Mahabadi et al. (2021), or the Low-Rank Adapta-
tion (LoRA) Hu et al. (2021); Yu et al. (2021). For example, Mehta et al. (2022) accelerate the DP
training on ImageNet Deng et al. (2009) up to 30× by only training the last layer of ResNet152. No-
ticeably, parameter efficient fine-tuning does not improve on the efficiency in terms of complexity
per parameter, rather than reducing the number of parameters. Furthermore, this approach often-
times leads to some accuracy degradation compared to DP full fine-tuning Bu et al. (2020); Mehta
et al. (2022); Li et al. (2021); Yu et al. (2021).

An orthogonal approach, including this work, focuses on the computation efficiency (part III), i.e.
reducing the time and space complexity through efficient implementations, without affecting the DP
optimizers (part I) and thus their performance. We will elaborate on multiple methods in Section 1.2.
Additionally, these methods can be compiled on different platforms (part IV) such as Tensorflow
2(XLA), JAX and Pytorch Li et al. (2021); Subramani et al. (2021); De et al. (2022); Kurakin
et al. (2022), where remarkable speed difference has been observed in some cases, even with the
same implementation. For example, Subramani et al. (2021) implemented DP-SGD using JAX and
claimed its efficiency advantage over the same algorithm using Tensorflow or Pytorch.

1.1 CONTRIBUTIONS

1. [Algorithm] We propose the book-keeping (BK) algorithm that makes existing DP optimizers
fast and memory efficient, especially comparable to non-private optimizers. We demonstrate BK
via the computation graph in Figure 1. The highlight is that BK only uses one back-propagation
and never instantiates per-sample gradients { ∂Li

∂W}
B
i=1.

2. [Analysis] We analyze the complexity to show that BK has almost the same time and space
complexity as non-DP training, especially when the feature dimension is small (see Table 5).

3. [Extension] We strengthen BK using a layerwise decision to mix with Opacus (see Section 3.2),
which proves to be efficient when the feature dimension is large (and difficult for GhostClip).
We also extend BK to the parameter efficient fine-tuning such as DP LoRA and Adapter.

4. [Codebase] We develop a Pytorch (Paszke et al., 2019) codebase for our BK algorithm, leverag-
ing the auto-differentiation technique on the computation graph and a new trick in Appendix D.2.

5. [Experiments] We demonstrate the amazing efficiency of BK on training large models, saving
the memory up to 10× and boosting the speed by 30%− 5× than previous DP implementations.

Dataset SOTA setting Model Time
/Epoch

Relative Speed
over GhostClip over Opacus over non-DP

QQP Li et al. (2021) RoBERTa-large (355M) 70:04 1.36× 1.96× 0.77×(0.89×)
E2E Li et al. (2021) GPT2-large (774M) 10:01 1.36× 4.41× 0.83×(0.97×)

CIFAR Bu et al. (2022a) BEiT-large (304M) 6:35 1.33× 38.3× 0.76×(0.92×)
Table 1: A preview of BK’s efficiency on DP tasks (complexity in orange; extended in Table 9).

2

Under review as a conference paper at ICLR 2023

Figure 1: Forward pass and back-propagation of the l-th linear layer (standard training is in black;
DP training by our book-keeping algorithm is added in red). Here a(l) is the activation tensor, s(l) is
the layer output, W(l),b(l) are weight and bias, Li,L are the per-sample loss and the summed loss.
The dotted arrow represents the inter-layer operation such as activation, pooling, or normalization.

1.2 RELATED WORKS

Previous arts have developed different implementations of the same DP optimizer in Equation (1).
TF-Privacy Tensorflow back-propagates a vectorized loss [L1, · · · ,LB] to compute the per-sample
gradients, each from one back-propagation, which is memory-efficient but slow. Opacus Yousefpour
et al. (2021) and Rochette et al. (2019) accelerate the training significantly using the outer product
trick in Goodfellow et al. (2014), though incurring heavy memory burden so as to store the per-
sample gradients. This memory burden is partially alleviated in FastGradClip Lee & Kifer (2020)
by sharing the space complexity in two rounds of back-propagation, hence almost doubling the time
complexity. In ghost clipping Goodfellow (2015); Li et al. (2021); Bu et al. (2022a), the per-sample
gradients can be clipped without being instantiated, thus both time and space complexity can be
further improved if the feature dimension is small. We refer interested readers to Figure 3 and
Appendix C for algorithmic details of these implementations.

We now compare BK to different implementations in Table 2 and Figure 2. In what follows, B is
the batch size2, T(l) is the feature dimension3, d(l), p(l) are the input or output dimension of a layer.

Non-DP TF-privacy Opacus FastGradClip GhostClip BK (ours)
Instantiating per-sample grad ✗ ✓ ✓ ✓ ✗ ✗

Storing every layer’s grad ✗ ✗ ✓ ✗ ✗ ✗
Instantiating non-DP grad ✓ ✓ ✓ ✗ ✓ ✗

Number of back-propagation 1 B 1 2 2 1
Time Complexity of Clipping 6BTpd 6BTpd 8BTpd 8BTpd 10BTpd+O(BT 2) ≈ 6BTpd
Memory Overhead to non-DP 0 0 Bpd Bpd 2BT 2 min{2BT 2, BTpd}

Scalable to large model ✓ ✗ ✗ ✗ ✓ ✓
Scalable to high-dim input ✓ ✗ ✓ ✓ ✗ ✓

Table 2: Summary of different DP implementations on a linear/convolution layer RB×T(l)×d(l) →
RB×T(l)×p(l) . The main bottleneck is marked in red.

1.3 PRELIMINARIES

We work with the (ϵ, δ)-DP by Dwork et al. (2006), which makes it difficult for any privacy at-
tacker to distinguish or detect an arbitrary training sample, even with full access to the model (see
Appendix A for details). In deep learning, DP is achieved by training on the private gradient in
Equation (1) with any optimizer such as SGD, Adam, FedAvg, etc. Essentially, the private gradient
is the addition of Gaussian noise to the sum of clipped per-sample gradients, which guarantees the
DP protection through the privacy accounting theorems Abadi et al. (2016); Mironov (2017); Dong
et al. (2019); Zhu et al. (2021); Gopi et al. (2021); Koskela et al. (2020).

2We report the physical batch size, which affects the efficiency; the accuracy is only affected by the logical
batch size, which can be implemented through the gradient accumulation of physical batch size.

3For non-sequential data, T = 1; for texts, T is the sequence length, which is layer-independent; for images
(or videos), T(l) is the height×width(×time) of hidden feature representation, which is layer-dependent.

3

Under review as a conference paper at ICLR 2023

10 20 30 40 50 60
Speed (iter/sec)

0

5

10

15

20

25

30

M
em

or
y

(G
B)

Non-DP
BK (ours)
GhostClip
FastGradClip
Opacus

40 60 80 100 120 140
Speed (iter/sec)

0

2

4

6

8

10

35 40 45 50 55 60
Speed (iter/sec)

0

2

4

6

8

10

16 17 18 19 20 21
Speed (iter/sec)

0

2

4

6

8

10

Figure 2: Speed and memory on MLP and CIFAR100 (images are flattened into vectors). Left
to right: deep network (50 layers, width 1000, 50M parameters, batch size 128), shallow network
(10 layers, width 1000, 10M parameters, batch size 128), and wide network (10 layers, width 5000,
250M parameters, batch size 128 or 1024; Opacus is OOM). See more ablation study in Appendix F.

2 BOOK-KEEPING: EFFICIENT DP TRAINING IN LOW DIMENSION

The main computational bottleneck of DP training comes from the per-sample gradient clipping,
or from the computation of per-sample gradient norms, to be exact. One widely used approach in
Opacus, TF-privacy, and FastGradClip, is to instantiate the per-sample gradients and then deriving
their norms. Straight-forward implementation of this approach on a mini-batch of per-sample losses
requires B rounds of back-propagation (unacceptable slowdown) or B× gradient storage (unaccept-
able memory burden; see Opacus in Figure 2). Consequently, these implementations are not suitable
for large model training. For instance, Li et al. (2021) shows that, when training GPT2-large (774M
parameters), Opacus Yousefpour et al. (2021) and JAX Subramani et al. (2021) cannot fit even one
single sample into a 24GB GPU.

An alternative approach, termed as the ghost clipping (GhostClip), directly computes the per-sample
gradient norms without computing the gradients themselves. This is made possible, unfortunately,
through two rounds of back-propagation. During the first back-propagation, one uses the regular loss∑

i Li and extracts the activation tensor and the output gradient (a, ∂L
∂s). One can use an algebraic

trick in Equation (2) to compute the per-sample gradient norms {∥ ∂Li

∂W∥}i and the clipping factors
{Ci}i in Equation (1). During the second back-propagation, one uses the reweighted loss

∑
i CiLi

whose gradient is directly the weighted gradient
∑

i Cigi, which constitutes the private gradient
we need. Note that this double back-propagation roughly doubles the training time (or to be more
precise, 10/6 ≈ 1.667× when T is small; see Table 2).

Figure 3: Standard (non-DP), Opacus, FastGradClip, GhostClip, BK implementations. Notice that
BK learns to directly compute weighted gradient from Opacus, to compute the ghost norm from
GhostClip, to use auto-differentiation instead of full back-propagation from FastGradClip.

To make the DP training as efficient as the standard training, we propose the book-keeping technique
(BK) that ⟨1⟩ only requires a single back-propagation, like Opacus and standard training; ⟨2⟩ does
not instantiate the per-sample gradients, like GhostClip.

2.1 BOOK-KEEPING ALGORITHMS

BK algorithms in their base forms are built on GhostClip and especially the ghost norm trick, so as
to avoid instantiating the memory costly per-sample gradients: as can be seen in Algorithm 1 and
Figure 3, ∂Li

∂W = a⊤
i

∂L
∂si

is not computed throughout the training. In comparison to GhostClip, our

4

Under review as a conference paper at ICLR 2023

significant improvement is solely on the speed (see Table 2) through two novel tricks: the book-
keeping and the ghost differentiation. The entire BK algorithm is built on the understanding of
computation graph in Appendix A. Note that these tricks also offer improved efficiency for existing
implementations, to be presented in Section 2.4. We now elaborate on these tricks.

BK (base) = ghost norm︸ ︷︷ ︸
from GhostClip

+ book-keeping︸ ︷︷ ︸
ours

+ ghost differentiation︸ ︷︷ ︸
ours

Algorithm 1 Differentially private deep learning with BK algorithm (one iteration)
Parameters: l-th layer weights W(l), number of layers L, noise level σ.
1: for layer l ∈ 1, 2, · · · , L do
2: Get activation tensor {a(l),i} by Pytorch forward hook
3: for layer l ∈ L,L− 1, · · · , 1 do
4: Get output gradient { ∂L

∂s(l),i
} by Pytorch backward hook

5: Compute per-example gradient norm ∥ ∂Li

∂W(l)
∥2F by ghost norm trick in Equation (2)

6: Aggregate gradient norm across all layers: ∥ ∂Li

∂W∥
2
F =

∑
l ∥

∂Li

∂W(l)
∥2F

7: Compute clipping factor: Ci = C(∥ ∂Li

∂W∥F ;R)
8: for layer l ∈ L,L− 1, · · · , 1 do
9: Compute sum of clipped gradients Gl = a⊤

(l)diag(C1, C2, · · ·) ∂L
∂s(l)

10: Delete {a(l),i}, { ∂L
∂s(l),i

}
11: Add Gaussian noise Ĝ = G+ σR · N (0, I)

12: Apply SGD/Adam/LAMB with the private gradient Ĝ on W

Ghost norm trick The ghost norm trick Goodfellow (2015) computes the gradient norm without
the gradient: while the gradient is instantiated by the multiplication in Equation (2), the gradient
norm can be computed without ai meeting ∂L

∂si
. This is applicable to generalized linear layers

including the linear, the embedding Li et al. (2021), and the convolution layers Bu et al. (2022a). We
demonstrate this trick using a simple linear layer si = aiW, where W ∈ Rd×p is the weight matrix,
a ∈ RB×T×d is the mini-batch input of this layer (a.k.a. the activation tensor) and s ∈ RB×T×p

is the output. Given that the output gradient ∂L
∂s is readily available in the back-propagation, for DP

and standard training, one can directly derive the per-sample gradient norm∥∥∥∥ ∂Li

∂W

∥∥∥∥2
Frobenius

= vec
(∂L
∂si

∂L
∂si

⊤)
· vec

(
aia

⊤
i

)
without computing

∂Li

∂W
= a⊤

i

∂L
∂si

. (2)

Here ‘vec’ means flattening the T × T matrix to a vector. This trick is particularly efficient when T
is small, reducing the space complexity from O(Bpd) to O(BT 2) by Table 3.

Figure 4: Backward
propagation of BK algo-
rithm (L̂ =

∑
i CiLi).

Book-keeping trick This trick improves the time complexity by re-
moving the second back-propagation from GhostClip. Our idea is to
book-keep and re-use the output gradient ∂L

∂s(l)
, which is deleted after the

first back-propagation of GhostClip and must be re-computed during the
second back-propagation. The difference between GhostClip and BK is
clearly illustrated via a line-by-line comparison in Appendix C.1. In fact,
denoting the total number of model parameters as M =

∑
l p(l)d(l), our

trick reduces the time complexity from 10BTM + O(BT 2) by Ghost-
Clip to 8BTM + O(BT 2) according to Table 3. In contrast to Opa-
cus, which book-keeps the per-sample gradients g

(l)
i using O(BM) =

O(B
∑

l p(l)d(l)) memory, we instead book-keep the output gradient
with substantially cheaper O(BT

∑
l p(l)) memory for small T .

Ghost differentiation trick This trick improves the time complex-
ity on the first back-propagation in GhostClip, further reducing from
8BTM +O(BT 2) to 6BTM +O(BT 2) in Table 2. Our idea is to only
compute the output gradient ∂L

∂s(l)
but not the parameter gradient ∂L

∂W .

5

Under review as a conference paper at ICLR 2023

That is, we break the 4BTM time complexity of the full back-propagation into two sub-processes,
each of 2BTM complexity, and remove the unnecessary one.

To be more specific, during the back-propagation of Opacus and GhostClip, the output gradient ∂L
∂s

and then the parameter gradient ∂L
∂W = a⊤ ∂L

∂s are computed. However, we can stop after we obtain
∂L
∂s : we only need the output gradient to compute the clipped parameter gradient ∂

∑
i CiLi

∂W in Line 9
of Algorithm 1. Therefore, the ghost differentiation trick sets all parameters to not require gradients
(see technical details in Appendix D.2, including the origin parameter trick that propagates on a
computation graph even when no parameters require gradients).

2.2 COMPLEXITY OF DP IMPLEMENTATIONS: A MODULAR ANALYSIS

In this section, we analyze the complexity of DP implementations from their opearation modules.
We summarize the time and space complexity in Table 3 and give the derivation in Appendix B. We
will refer to these modules by indices, e.g. 2a for the computation of output gradient.

Module 1 Forward pass 2 Back-propagation
3 Ghost norm 4 Per-sample grad

instantiation
5 Weighted sum of
per-sample grad(a)output gradient (b)parameter gradient

Time complexity 2BTpd 2BTpd 2BTpd 2BT 2(p+ d) 2BTpd 2Bpd
Space complexity pd+BTd BT (p+ d) pd 2BT 2 Bpd 0

Table 3: Time and space complexity of modules in DP training for one generalized linear layer.

Now we are ready to decompose each implemen-
tation, following the flowcharts in Figure 3. Con-
sequently, we can easily write down the complex-
ity of different implementations in Table 2. Such a
modular analysis displays the clear effects of the
tricks in BK algorithm: the ghost norm trick re-
moves the memory costly 4 from Opacus and
FastGradClip; the book-keeping trick removes the
2b in the second back-propagation of FastGrad-

Clip and GhostClip; the ghost differentiation trick
removes the 2b in the first back-propagation of
Opacus and GhostClip.

• Standard (non-DP)= 1 + 2a + 2b

• Opacus= 1 + 2a + 2b + 4 + 5

• FastGradClip= 1 + 2a + 4 + 2a + 2b

• GhostClip= 1 + 2a + 2b + 3 + 2a + 2b

• BK (ours)= 1 + 2a + 3 + 2b

2.3 BK IS OPTIMALLY EFFICIENT IN LOW DIMENSION

When the feature dimension T is small, we claim that BK is almost as efficient as the standard
non-private training, with a negligible O(BT 2) time and memory overhead by Table 2:

Memory complexity: non-DP ≈ BK ≈ GhostClip < FastGradClip≪ Opacus
Time complexity: non-DP ≈ BK < FastGradClip ≈ Opacus < GhostClip

Now, we discuss the cases where the data has low dimension and thus T is small. Generally speak-
ing, the feature dimension T(l) depends on both the data and the model.

For non-sequential input and 1D audio data, T = 1. For sequential data such as texts (T
being sentence length) or time series (T being time duration), T(l) is fixed across layers. In
this case, BK is efficient on short-sequence datasets including GLUE Wang et al. (2019) (e.g.
SST2/QNLI/MNLI/QQP) and natural language generation datasets (e.g. E2E/DART), since T 2 ≪
p(l)d(l). For instance, Yu et al. (2021); Li et al. (2021); Bu et al. (2022b) applied GPT2 on E2E
dataset, which has a sequence length T ≈ 100 and the number of parameters p(l)d(l) per layer is
2 − 4M; Yu et al. (2021); Li et al. (2021) applied RoBERTa-large on GLUE datasets, which has a
sequence length T = 256 and the number of parameters per layer is 1 − 4M. As illustrated in Fig-
ure 5 and Table 1 (extended in Table 9), BK improves the throughput of existing implementations
by 25− 388% on multiple language tasks in Li et al. (2021); Bu et al. (2022b), with minor memory
overhead compared to GhostClip and non-private training.

6

Under review as a conference paper at ICLR 2023

However, on the convolution layers with image data, T(l) is the product of hidden feature sizes (c.f.
(Bu et al., 2022a, Section 3)), thus T(l) depends on the original image size and network architecture.
For example, larger kernel size/dilation/stride in convolution layer reduces T(l), while larger images
have larger T(l) at each layer. Therefore, BK (and GhostClip) may suffer on when training ResNet
on ImageNet (224 × 224), as we show in Figure 6 (see also (Bu et al., 2022a, Table 7)), although
training the same network efficiently on CIFAR10/100 (32× 32).

GPT2 GPT2-medium GPT2-large
0

20

40

60

80

100

120

140

160

M
ax

im
um

 b
at

ch
 si

ze
 (4

0G
B

RA
M

) 157

70

29

149

69

29

156

70

29

43

15
5

Non-private
BK (ours)
GhostClip
Opacus

GPT2 (B=100) GPT2-medium (B=50) GPT2-large (B=20)
0

50

100

150

200

250

300

350

400

Th
ro

ug
hp

ut
 (e

xa
m

pl
es

 p
er

 se
co

nd
)

341

148

71

294

130

63

209

91

44

0 0 0

GhostClip +book-keeping trick +ghost diff trick(=BK) Non-private
0

20

40

60

80

100

M
ax

im
um

 th
ro

ug
hp

ut

50
60

70

85GPT2-large speed in theory
GPT2-large speed in practice

Max batch size Throughput (B=16) SST2 Throughput QNLI Throughput QQP Throughput MNLI
0

20

40

60

80

100

51

97 96 97 97

41

72 73 72 73

48
54 54 53 54

16

49 49 49 50

Figure 5: Memory and speed of different DP implementations. Upper: GPT2 on E2E dataset (fixing
B, DP speed is 0.86 ∼ 0.89× of non-DP). Lower: RoBERTa-large on GLUE datasets. Note here
the hybrid implementations are equivalent to the base ones, because of the short sequence length.

2.4 APPLYING OUR TRICKS TO EXISTING IMPLEMENTATIONS

Our tricks in Section 2.1 can also improve other existing implementations, reducing the time com-
plexity of GhostClip from 10BTpd + 2BT 2(p + d) to 6BTpd + 2BT 2(p + d), that of Opacus
and FastGradClip from 8BTpd to 6BTpd. We highlight that these improved implementations are
leveraged to design hybrid implementation in Section 3.2. In addition to DP full fine-tuning, BK is
demonstrated in Appendix E.2 to also apply to the parameter efficient fine-tuning like Adapters.

GhostClip = 1 + 2a + 2b + 3 + 2a + 2b
ghost differentiation−−−−−−−−−−→

book-keeping
1 + 2a + 3 + 2b (our BK)

Opacus = 1 + 2a + 2b + 4 + 5
ghost differentiation−−−−−−−−−−→ 1 + 2a + 4 + 5

FastGradClip = 1 + 2a + 4 + 2a + 2b
book-keeping−−−−−−−−−−→ 1 + 2a + 4 + 2b

3 HYBRID BOOK-KEEPING: EFFICIENT DP TRAINING IN HIGH DIMENSION

In previous section, we have analyzed DP implementations in the small T regime, where the ghost
norm-based GhostClip and BK are efficient. Nevertheless, in the large T and large model regime,
none of the base implementations may be efficient (see Figure 6) and we turn to hybrid methods.

3.1 LARGE T NECESSITATES NON-GHOST NORM METHOD

A closer look at the space complexity in Table 3 shows that, the ghost norm trick is favored over
the per-sample gradient instantiation if and only if 2T 2

(l) < p(l)d(l), where p(l)d(l) is the number of
parameters at one layer. When this criterion is violated for large T , GhostClip/BK can significantly
under-perform Opacus/FastGradClip, as shown in Figure 6, Figure 7 and Table 10.

Similar to Section 2.3, we discuss two cases where T is large. For paragraph or document-level
language tasks like WikiHop Welbl et al. (2018) and TriviaQA Joshi et al. (2017), T can range from
2000 − 20000, which makes 2T 2 = 8 − 800M. For image tasks, particularly on CNN, T(l) varies
at each layer with large values on top layers, as the features are less compressed by convolution and
pooling. Taking ImageNet and the first convolution layer of VGG11 as an example (Bu et al., 2022a,

7

Under review as a conference paper at ICLR 2023

Table 3), 2T 2
(1) = 5 × 109 ≫ p(1)d(1) = 1.7 × 103. Consequently, ghost norm-based implementa-

tions (i.e. GhostClip and BK) costs more than 40GB memory on ResNet18, under B = 32, while
Opacus only costs 2.5GB. This curse of dimension grows from a difficult issue on ImageNet to an
impossible challenge on videos or high-resolution images, e.g. GhostClip cannot train ResNet18
with even one single CelebA-HQ image (1024× 1024) using a 40GB GPU.

In short, the ghost norm trick is inefficient for large T and the per-sample gradient instantiation is
inefficient for large model. Therefore, we must hybridize the base implementations.

2242 3842 5122 10242

Input dimension T
0

5

10

15

20

25

30

35

40

M
em

or
y

co
st

 (G
B)

2242 3842 5122 10242

Input dimension T
0

100

200

300

400

500

600

700

800

900

M
ax

 th
ro

ug
hp

ut

833

208

117

29

417

174

99

23

435

149

80
18

299

148
91

2215 0 0 0

2242 3842 5122

Input dimension T
0

5

10

15

20

25

30

35

40

M
em

or
y

co
st

 (G
B)

2242 3842 5122

Input dimension T
0

25

50

75

100

125

150

175

200

M
ax

 th
ro

ug
hp

ut

169

43

18

127

30

13

95

23
9

3 1 1

93

23
9

Non-private
BK-MixOpt (ours)
MixGhostClip
Opacus
GhostClip

Figure 6: Memory and speed by different implementations on 50000 images. Left: VGG11
(133M;Simonyan & Zisserman (2014)), right is BEiT-large (304M;Bao et al. (2021)). Memory
cost uses a physical batch size 1. Throughput uses the maximum physical batch size.

3.2 HYBRID IMPLEMENTATIONS VIA LAYERWISE DECISION

We adopt the same layerwise decision as Bu et al. (2022a), known as the mixed ghost norm tech-
nique: we use the ghost norm trick on a layer if 2T 2

(l) < p(l)d(l), and instantiate per-sample gradients
otherwise. Therefore, the space complexity of computing the per-sample gradient norm reduces to
min{2T 2

(l), p(l)d(l)}, which is significantly cheaper than either the ghost norm or the per-sample
gradient instantiation in high dimension, as depicted in Table 4 and Figure 7. Consequently, over
all layers, the space complexity is lower than both constituting methods, e.g. saving more than 10×
memory for the per-sample gradient clipping on ResNet18 (see more models in Table 10).

Output size Space complexity

Hout ×Wout

18-layer 34-layer 50-layer

Ghost norm
Per-sample grad

instantiation Ghost norm
Per-sample grad

instantiation Ghost norm
Per-sample grad

instantiation

2T 2
(l) = 2H2

outW
2
out p(l)d(l) = # params 2T 2

(l) p(l)d(l) 2T 2
(l) p(l)d(l)

conv1 112× 112 3.1× 108 9.4× 103 3.1× 108 9.4× 103 3.1× 108 9.4× 103

conv2 x 56× 56 [2.0× 107]× 4 [3.7× 104]× 4 [2.0× 107]× 6 [3.7× 104]× 6 [2.0× 107]× 9
[4.1× 103]× 1

[3.7× 104]× 3

[1.6× 104]× 5

conv3 x 28× 28 [1.2× 106]× 4
[7.4× 104]× 1

[1.5× 105]× 3
[1.2× 106]× 8

[7.4× 104]× 1

[1.5× 105]× 7

[2.0× 107]× 1

[1.2× 106]× 11

[3.3× 104]× 1

[6.6× 104]× 7

[1.5× 105]× 4

conv4 x 14× 14 [7.7× 104]× 4
[2.9× 105]× 1

[5.9× 105]× 3
[7.7× 104]× 12

[2.6× 105]× 1

[5.9× 105]× 11

[1.2× 106]× 1

[7.7× 104]× 17

[1.3× 105]× 1

[2.6× 105]× 11

[5.9× 105]× 6

conv5 x 7× 7 [4.8× 103]× 4
[1.2× 106]× 1

[2.4× 106]× 3
[4.8× 103]× 6

[1.2× 106]× 1

[2.4× 106]× 5
[4.8× 103]× 9

[5.2× 105]× 1

[1.0× 106]× 5

[2.4× 106]× 3

linear 1× 1 2 5.1× 105 2 5.1× 105 2 2.0× 106

Total complexity 399M 11.5M 444M 21.6M 528M 22.7M
Complexity by 1.0M 2.3M 2.8Mmixed ghost norm

Table 4: Space complexity of the per-sample gradient clipping (not the entire DP algorithm) for
B = 1 on ImageNet 224× 224. Layerwise decision of hybrid BK algorithms is highlighted in bold.
In contrast to the mixed ghost clipping (MixGhostClip) in Bu et al. (2022a), which hybridizes Fast-
GradClip and GhostClip, we boost the efficiency by hybridizing our BK with the improved Fast-
GradClip/Opacus in Section 2.4. We propose BK-MixOpt (and BK-MixGhostClip as an intermedi-
ate product only for comparison) and use MixGhostClip as a reference point,

• MixGhostClip = 1 + 2a + 2b +min
{

3 , 4
}
+ 2a + 2b ≈ min{GhostClip, FastGradClip},

• BK-MixGhostClip = 1 + 2a +min
{

3 , 4
}
+ 2b = min{BK, improved FastGradClip},

• BK-MixOpt = 1 + 2a +min
{

3 + 2b , 4 + 5

}
= min{BK, improved Opacus}.

8

Under review as a conference paper at ICLR 2023

The hybrid BK algorithms are presented in Algorithm 5. We summarize the layerwise complexity in
Table 5, from which we derive the overall complexity in Table 8 and observe that BK has almost the
same complexity as non-DP training. Note that in low dimension, the mixed ghost norm is equivalent
to the ghost norm, hence MixGhostClip/BK-MixOpt is equivalent to GhostClip/BK, respectively.

Method Type Modification to previous variant Time complexity Space complexity
Non-DP 6BTpd pd+ 3BTd+BTp

Opacus

base

Instantiate per-sample gradient 8BTpd Bpd+ 3BTd+BTp

FastGradClip
Not store per-sample gradient

using a second back-propagation 8BTpd Bpd+ 2BTd+BTp

GhostClip
Not instantiate per-sample gradient

using ghost norm trick 10BTpd+ 2BT 2(p+ d) 2BT 2 + 3BTd+BTp

BK (ours) Simplify the two back-propagations 6BTpd+ 2BT 2(p+ d) 2BT 2 + 3BTd+BTp
MixGhostClip

hybrid Mix ways to compute grad norm 8BTpd+ ⟨2BTpd, 2BT 2(p+ d)⟩ min{2BT 2, Bpd}+ 3BTd+BTp
BK-MixGhostClip 6BTpd+ ⟨2BTpd, 2BT 2(p+ d)⟩ min{2BT 2, Bpd}+ 3BTd+BTp

BK-MixOpt Mix ways to compute weighted grad 6BTpd+ ⟨0, 2BT 2(p+ d)⟩ min{2BT 2, Bpd}+ 3BTd+BTp

Table 5: Complexity of DP implementations on one layer. Here ⟨⟩ means between two values. The
time complexity of BK-MixOpt is 6BTpd+ 2BT 2(p+ d) · I{2T 2 < pd}.

3.3 EFFECT OF MODEL ARCHITECTURE & FEATURE DIMENSION ON HYBRIDIZATION

We dive deeper to understand when the hybridization favors the ghost or non-ghost norm tricks.

From a model architecture viewpoint, transformers such as ViT, RoBERTa, GPT tend to prefer the
ghost norm: for moderate-sequence text data and moderate-dimension image data, hybrid BK algo-
rithms are close or equivalent to the base BK algorithm (see right-most plot in Figure 7). However,
CNN prefers the per-sample gradient instantiation at top layers, and there exists a depth threshold
below which the ghost norm is more efficient. Hence the hybridization is necessary to take advan-
tages of both worlds. From the feature dimension viewpoint, larger input means this depth threshold
is deeper, e.g. from the 9-th layer of ResNet18 to the 17-th layer in Figure 7, when the image size
increases from 224 × 224 to 512 × 512. We visualize this effect of feature dimension on various
models in Appendix G.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Index of layer

101

103

105

107

Sp
ac

e
co

m
pl

ex
ity

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Index of layer

101

103

105

107

109

Sp
ac

e
co

m
pl

ex
ity

0 2 4 6 8 10
Index of layer

101

103

105

107

109

Sp
ac

e
co

m
pl

ex
ity

0 10 20 30 40 50
Index of layer

100

101

102

103

104

105

106

Sp
ac

e
co

m
pl

ex
ity

Ghost norm
Per-sample grad instantiation
Hybrid

Figure 7: Layerwise space complexity of computing the per-sample gradient norm. Left to right:
ResNet18 (224× 224), ResNet18 (512× 512), VGG11 (224× 224), and ViT-base (224× 224).

4 DISCUSSION

In this work, we propose the Book-Keeping (BK) algorithms to effciently implement DP optimizers
using three tricks: ghost norm, book-keeping, and ghost differentiation. Our BK reduces the time
and space complexity of DP training to the similar level of the standard training. Specially, we
develop hybrid BK to overcome the computational challenge of training large models with high-
dimensional data, and we extend BK to parameter efficient fine-tuning such as LoRA and Adapter.

One minor limitation of this work is that BK (and GhostClip) only applies to the weights, not the
biases, of the generalized linear layers, i.e. embedding, linear, and convolution layers, though these
weights constitute 99.9% of the trainable parameters (see Table 7). Implementation-wise, although
BK should be as fast as the standard training for small T , e.g. on MLP where T = 1, we observe
some gap between the theoretical complexity and the throughput in practice. This gap is mainly
due to the mechanism of Pytorch hooks which can be possibly optimized by customizing the CUDA
kernel or using the symbolic programming.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 308–318, 2016.

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image transformers.
In International Conference on Learning Representations, 2021.

Zhiqi Bu, Jinshuo Dong, Qi Long, and Weijie J Su. Deep learning with gaussian differential privacy.
Harvard data science review, 2020(23), 2020.

Zhiqi Bu, Sivakanth Gopi, Janardhan Kulkarni, Yin Tat Lee, Hanwen Shen, and Uthaipon Tan-
tipongpipat. Fast and memory efficient differentially private-sgd via jl projections. Advances in
Neural Information Processing Systems, 34, 2021.

Zhiqi Bu, Jialin Mao, and Shiyun Xu. Scalable and efficient training of large convolutional neural
networks with differential privacy. arXiv preprint arXiv:2205.10683, 2022a.

Zhiqi Bu, Yu-Xiang Wang, Sheng Zha, and George Karypis. Automatic clipping: Differentially
private deep learning made easier and stronger. arXiv preprint arXiv:2206.07136, 2022b.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data
from large language models. In 30th USENIX Security Symposium (USENIX Security 21), pp.
2633–2650, 2021.

Soham De, Leonard Berrada, Jamie Hayes, Samuel L Smith, and Borja Balle. Unlock-
ing high-accuracy differentially private image classification through scale. arXiv preprint
arXiv:2204.13650, 2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Jinshuo Dong, Aaron Roth, and Weijie J Su. Gaussian differential privacy. arXiv preprint
arXiv:1905.02383, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An im-
age is worth 16x16 words: Transformers for image recognition at scale. In International Confer-
ence on Learning Representations, 2020.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
in private data analysis. In Theory of cryptography conference, pp. 265–284. Springer, 2006.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci., 9(3-4):211–407, 2014.

Ian Goodfellow. Efficient per-example gradient computations. arXiv preprint arXiv:1510.01799,
2015.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Sivakanth Gopi, Yin Tat Lee, and Lukas Wutschitz. Numerical composition of differential privacy.
Advances in Neural Information Processing Systems, 34, 2021.

Niv Haim, Gal Vardi, Gilad Yehudai, Ohad Shamir, and Michal Irani. Reconstructing training data
from trained neural networks. arXiv preprint arXiv:2206.07758, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

10

Under review as a conference paper at ICLR 2023

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International Conference on Machine Learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
PMLR, 2015.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1601–1611,
2017.

Antti Koskela, Joonas Jälkö, and Antti Honkela. Computing tight differential privacy guarantees
using fft. In International Conference on Artificial Intelligence and Statistics, pp. 2560–2569.
PMLR, 2020.

Alexey Kurakin, Steve Chien, Shuang Song, Roxana Geambasu, Andreas Terzis, and Abhradeep
Thakurta. Toward training at imagenet scale with differential privacy. arXiv preprint
arXiv:2201.12328, 2022.

Jaewoo Lee and Daniel Kifer. Scaling up differentially private deep learning with fast per-example
gradient clipping. arXiv preprint arXiv:2009.03106, 2020.

Xuechen Li, Florian Tramer, Percy Liang, and Tatsunori Hashimoto. Large language models can be
strong differentially private learners. arXiv preprint arXiv:2110.05679, 2021.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient low-rank
hypercomplex adapter layers. arXiv preprint arXiv:2106.04647, 2021.

Sébastien Marcel and Yann Rodriguez. Torchvision the machine-vision package of torch. In Pro-
ceedings of the 18th ACM international conference on Multimedia, pp. 1485–1488, 2010.

Harsh Mehta, Abhradeep Thakurta, Alexey Kurakin, and Ashok Cutkosky. Large scale transfer
learning for differentially private image classification. arXiv preprint arXiv:2205.02973, 2022.

Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th computer security foundations sympo-
sium (CSF), pp. 263–275. IEEE, 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Gaspar Rochette, Andre Manoel, and Eric W Tramel. Efficient per-example gradient computations
in convolutional neural networks. arXiv preprint arXiv:1912.06015, 2019.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference at-
tacks against machine learning models. In 2017 IEEE symposium on security and privacy (SP),
pp. 3–18. IEEE, 2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

11

Under review as a conference paper at ICLR 2023

Pranav Subramani, Nicholas Vadivelu, and Gautam Kamath. Enabling fast differentially private
sgd via just-in-time compilation and vectorization. Advances in Neural Information Processing
Systems, 34, 2021.

Tensorflow. Tensorflow/privacy: Library for training machine learning models with privacy for
training data. URL https://github.com/tensorflow/privacy.

Florian Tramer and Dan Boneh. Differentially private learning needs better features (or much more
data). arXiv preprint arXiv:2011.11660, 2020.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. 2019.
In the Proceedings of ICLR.

Johannes Welbl, Pontus Stenetorp, and Sebastian Riedel. Constructing datasets for multi-hop read-
ing comprehension across documents. Transactions of the Association for Computational Lin-
guistics, 6:287–302, 2018.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gug-
ger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations, pp. 38–45, Online, October 2020. As-
sociation for Computational Linguistics. URL https://www.aclweb.org/anthology/
2020.emnlp-demos.6.

Ashkan Yousefpour, Igor Shilov, Alexandre Sablayrolles, Davide Testuggine, Karthik Prasad, Mani
Malek, John Nguyen, Sayan Ghosh, Akash Bharadwaj, Jessica Zhao, Graham Cormode, and
Ilya Mironov. Opacus: User-friendly differential privacy library in PyTorch. arXiv preprint
arXiv:2109.12298, 2021.

Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A Inan, Gautam Kamath, Janardhan
Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, et al. Differentially private fine-tuning
of language models. arXiv preprint arXiv:2110.06500, 2021.

Yuqing Zhu, Jinshuo Dong, and Yu-Xiang Wang. Optimal accounting of differential privacy via
characteristic function. arXiv preprint arXiv:2106.08567, 2021.

12

https://github.com/tensorflow/privacy
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

	Introduction
	Contributions
	Related works
	Preliminaries

	Book-keeping: Efficient DP training in low dimension
	Book-keeping algorithms
	Complexity of DP implementations: a modular analysis
	BK is optimally efficient in low dimension
	Applying our tricks to existing implementations

	Hybrid Book-keeping: Efficient DP training in high dimension
	Large T necessitates non-ghost norm method
	Hybrid implementations via layerwise decision
	Effect of model architecture & feature dimension on hybridization

	Discussion

