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Abstract

Large language models work better for some001
than others, and lightweight mitigation of per-002
formance disparities across social groups could003
help bridge inequality gaps. Here, we ex-004
plore fairness-promoting adapters as a potential005
mitigation technique. We find that generally006
adapters lead to as good or better performance007
than full fine-tuning, with mixed effects on008
group disparity. Combining fairness-promoting009
adapters does not lead to smaller group dispar-010
ity, and while Adapter Fusion is superior to011
model stipulation, such systems fail to outper-012
form non-fairness promoting adapters. Com-013
binations of fairness-promoting adapters seem014
to positively effect group fairness under tem-015
poral concept drift, although, as expected, we016
observe a generalized performance drop. From017
the perspective of group fairness, our results018
are somewhat negative, and we discuss the po-019
tential bottlenecks for current approaches to020
mitigating group disparity.021

1 Introduction022

The roll-out of language models in recent years has023

raised concerns around fairness and equity, partic-024

ularly across societal groups defined by protected025

attributes such as gender and race. The imperative026

to ensure fairness, i.e., equal performance, across027

such groups has gained substantial traction. On the028

other hand, language models have grown in size029

and the cost of mitigating biases and correcting for030

performance disparities has increased. The need031

for efficient, light-weight mitigation strategies is032

plain to see.033

Adapters (Houlsby et al., 2019; Pfeiffer et al.,034

2020, 2021) have been a prominent technique to035

efficiently fine-tune transformer-based language036

models. Adapters are trained to solve target tasks037

they are fine-tuned on, on top of fixed representa-038

tions from existing models. Only a small set of new039

parameters are introduced –usually less than 2% of040

the total number of model parameters.041

Previous work (Lauscher et al., 2021; Kumar 042

et al., 2023; Hauzenberger et al., 2023) has in- 043

vestigated on-demand modular debiasing methods, 044

achieving on-par task performance compared to 045

the non-debiased models. In this work, we in- 046

vestigate whether adapters can be used to miti- 047

gate performance disparities across societal groups. 048

To this end, we introduce adapters trained with 049

fairness-promoting objectives such as, for example, 050

group distributionally robust optimization or spec- 051

tral decoupling. We evaluate such adapters and 052

combinations thereof on two legal classification 053

datasets from the FairLex benchmark (Chalkidis 054

et al., 2022), namely crime severity prediction in 055

Chinese, and legal outcome forecasting in German. 056

In doing so, we aim to answer the following re- 057

search questions: 058

R1: Do fairness-promoting adapters improve per- 059

formance parity? We train adapters with empirical 060

risk minimization and four fairness-promoting ob- 061

jectives across two datasets, comparing adapters to 062

full fine-tuning. 063

R2: Do combining fairness-promoting adapters 064

through Adapter Fusion (Pfeiffer et al., 2021) or 065

model stipulation improve performance parity? We 066

combine fine-tuned adapters, originally trained in- 067

dividually with different fairness-promoting algo- 068

rithms, and assess their performance concerning 069

fairness compared to the individual ones. 070

R3: What is the effect of the temporal concept 071

drift in empirical fairness? Since our datasets are 072

chronologically split into training, validation, and 073

test sets, we consider the potential performance 074

decrease in the latter ones (validation, test) and 075

the fluctuation in group disparities. We should of 076

course expect a small drop from validation to test, 077

but we will analyze relative differences in drop 078

sizes as the effect of temporal concept drift.1 079

1Theoretically, relative differences could also be caused by
differences in proneness to overfitting.
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Contributions and Findings We evaluate a080

promising set of techniques for mitigating per-081

formance disparities across social groups in pre-082

trained models: adapters with fairness-promoting083

objectives and combinations thereof. We find that084

only one of the fairness-promoting adapters consis-085

tently reduce performance disparities across-social086

groups: adapters trained with group distribution-087

ally robust optimization. Spectral decoupling some-088

times leads to increased fairness, but not robustly.089

Combinations of different objectives did not seem090

effective in mitigating disparities. As for sensitiv-091

ity to temporal concept drift, we found that perfor-092

mance disparities did not increase over time but093

rather decreased. In sum, we find some support for094

R1 (for G-DRO) and R3 (group disparity), and no095

support for R2.096

2 Experiments097

Standard language models are trained to minimize098

the average training loss via empirical risk mini-099

mization (ERM), i.e., vanilla cross-entropy. Many100

other learning algorithms have been proposed to101

overcome one of the main ERM’s shortcomings:102

ERM is prone to overfitting to spurious correlations103

and, therefore, unable to generalize well across104

domains or subpopulation shifts. In this work,105

we explore the use and combination of adapters106

optimized with standard fairness-promoting algo-107

rithms.108

Adapters We base the implementation of109

adapters on work from Pfeiffer et al. (2021), as110

well as their Adapter Fusion strategy to combine111

them.112

Fairness NLP researchers have uniformly113

adopted John Rawls’ definition of fairness114

(Williamson and Menon, 2019; Ethayarajh and115

Jurafsky, 2020; Cabello and Søgaard, 2022;116

Chalkidis et al., 2022), defining fairness as117

performance parity, except where it worsens the118

conditions of the least advantaged. We do the119

same and evaluate group fairness quantifying120

performance differences across demographic121

groups, referred to as group disparities, while also122

looking at worst-group performance (measured as123

macro-F1).124

Datasets We experiment with two classification125

datasets, which are part of FairLex (Chalkidis et al.,126

2022), a benchmark for the evaluation of empirical127

fairness on legal NLP tasks. CAIL, originally pub-128

lished by Wang et al. (2021b), comprises approx.129

100k criminal cases from China. The task is crime 130

severity prediction, a multi-class classification task, 131

where given the facts of a case, the goal is to pre- 132

dict how severe the committed crime is from 0 to 133

5. We examine fairness with respect to two demo- 134

graphic attributes: (a) the region of the court, and 135

(b) the gender of the defendant. FSCS, originally 136

published by Niklaus et al. (2021), comprises ap- 137

prox. 80k cases from the Federal Supreme Court 138

of Switzerland (FSCS). The task is legal judgment 139

forecasting, in which case is a binary classification 140

task considering the approval, or dismissal of a 141

case (appeal). We consider the subset of cases writ- 142

ten in German, approx. 35k, and examine fairness 143

with respect to two demographic attributes: (a) the 144

region of the court, and (b) the legal area relevant 145

to the case. 146

Pre-trained Models We use the domain-specific 147

transformer-based language models released by 148

Chalkidis et al. (2022). Chalkidis et al. released 149

individual MiniLM (Wang et al., 2021a), distilled 150

versions of XLM-R (Conneau et al., 2020), which 151

have been further pre-trained in domain-specific 152

corpora, e.g., Chinese criminal cases for CAIL. We 153

use these models as our baselines and either fully 154

fine-tune them, or fine-tune plug-in adapters. 155

Fairness-promoting Algorithms We consider 156

four alternative fairness-promoting algorithms that 157

are either attribute-aware, i.e., demographic anno- 158

tations are needed and used, or attribute-unaware, 159

i.e., demographic annotations are not needed and 160

not used. 161

i) Attribute-aware methods: Group distribution- 162

ally robust optimization G-DRO (Sagawa et al., 163

2020) accounts for group-wise losses using adap- 164

tive group weight. We couple models based on 165

G-DRO with strong L2 regularization to improve 166

worst-group generalization, as suggested in Sagawa 167

et al. (2020). Invariant risk minimization IRM (Ar- 168

jovsky et al., 2020) learns a feature representation 169

such that the optimal classifier, on top of that fea- 170

ture representation, matches across data distribu- 171

tions. 172

ii) Attribute-unaware methods: Spectral Decou- 173

pling SD (Pezeshki et al., 2020) introduces a regu- 174

larization loss term that helps to mitigate garadient 175

starvation, a phenomenon that emerges when train- 176

ing with cross-entropy loss. Risk Extrapolation 177

REx (Krueger et al., 2020) introduces a penalty on 178

the variance of training risks to make the model 179

more robust to distributional shifts. 180
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CAIL (ZH) FSCS (DE)

ALGORITHM REGION GENDER REGION LEGAL A.

mF1 mF1w GD mF1 mF1w GD mF1 mF1w GD mF1 mF1w GD GD

FULL FINE-TUNING

ERM 61.4 57.3 3.9 61.4 60.7 0.6 67.8 58.7 4.4 67.8 55.1 8.7 4.4

G-DRO 60.5 55.9 4.1 61.9 60.3 0.8 67.8 63.7 3.1 64.0 56.2 8.5 4.1
IRM 61.0 54.3 5.2 61.0 59.3 0.9 66.3 59.0 4.9 63.0 51.8 7.2 4.6

SD 61.4 55.3 5.1 61.6 60.6 0.5 67.9 63.6 2.1 67.9 54.6 8.9 4.1
REx 61.6 55.3 4.5 61.5 59.9 0.8 68.0 61.4 3.3 68.0 55.3 8.8 4.4

ADAPTERS

ERM 61.1 49.9 6.2 61.1 61.2 0.2 67.7 63.9 3.5 67.7 52.0 10.1 5.0

G-DRO 59.6 54.4 3.2 56.2 54.0 1.0 67.3 62.6 3.5 60.6 53.2 4.3 3.0
IRM 60.1 52.0 5.8 56.1 51.1 2.7 65.9 62.0 2.4 66.2 52.1 9.7 5.2

SD 55.8 48.8 4.8 56.1 53.1 1.5 69.5 65.4 2.9 69.5 54.6 10.0 4.8
REx 62.1 56.1 4.5 57.2 51.7 3.0 68.1 62.5 3.5 68.1 51.7 10.1 5.3

ENSEMBLE OF PAIRS OF FAIRNESS-PROMOTING ADAPTERS

IRM,G-DRO 60.5 55.5 4.7 62.0 61.8 0.3 66.9 61.8 3.6 62.1 54.5 8.2 4.2
SD,REx 61.0 53.2 5.2 62.6 62.4 0.2 62.6 46.5 8.2 64.4 55.4 9.0 5.7

FUSION OF FAIRNESS-PROMOTING ADAPTERS

IRM,G-DRO 60.2 55.9 3.4 61.8 61.7 0.1 67.2 60.6 4.1 61.7 52.4 10.2 4.5
SD,REx 62.1 56.1 4.8 58.1 54.0 2.2 68.5 61.8 4.1 68.5 54.5 10.3 5.4

ENSEMBLE OF TOP-3 ADAPTERS

ERM,G-DRO,SD 60.0 55.5 4.7 61.0 60.1 0.8 67.0 62.6 3.8 64.4 54.5 10.1 4.9

Table 1: Validation results for all learning algorithms per dataset attribute. We report the average performance across
groups (mF1), the worst-group performance (mF1w) and group disparity among groups (GD). Best overall metric is
in bold; best and second-best metrics within each tuning strategy (FULL or ADAPTERS) are also marked. In FULL
FINE-TUNING, only 2/4 fairness-promoting objectives (G-DRO and SD) reduce group disparity on average. G-DRO
and SD are also the best adapters; with G-DRO being by far most fair. None of the ensembles, including Adapter
Fusion, succeed in lowering group disparity.

Combination strategies We evaluate three dif-181

ferent strategies for combining individually trained182

adapters: (a) a post-hoc ensemble of pairs of183

adapters, where we aggregate their output (soft)184

probabilities before making a prediction, (b)185

Adapter Fusion, as presented in Pfeiffer et al.186

(2021), and (c) a post-hoc ensemble of the three187

best-performing algorithms, including ERM, where188

the label prediction is based on a majority vote.189

3 Results190

In Table 1, we present validation results across all191

datasets, attributes, and learning algorithms. Ta-192

ble 2 in Appendix A shows results on the test sets.193

Full Fine-tuning Focusing on the results for all194

learning algorithms (top group of Table 1) in the195

full fine-tuning setting, we observe that results are196

mixed, and the application of fairness-promoting al- 197

gorithms do not always improve empirical fairness, 198

if not the opposite, compared to ERM. In general, 199

worst-group performance (mF1w) and group dis- 200

parity (GD) improve in 6 out of 16 cases –note that 201

this improvement mainly happens on FSCS data–. 202

This is in line with the literature (Chalkidis et al., 203

2022; Brandl et al., 2023), where they also find that 204

in many cases, when these algorithms that intend 205

to improve fairness are applied to realistic datasets, 206

fail to do so. 207

Adapter-based Fine-tuning Comparing the re- 208

sults of full fine-tuning with ERM (top group 209

of Table 1) to those of adapter-based fine-tuning 210

with ERM (second top group of Table 1), we ob- 211

serve that adapter-based fine-tuning improves the 212

worst-group performance 2 out of 4 times without 213
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severely hurting the overall performance (mF1).214

GD is also reduced in the same two cases.215

Moving to the application of fairness-promoting216

algorithms to adapter-based fine-tuning, we ob-217

serve that worst-group performance (mF1w) only218

improves in 7 out of 16 cases. Group disparity is219

consistently reduced (or remains the same) when220

considering court region in both datasets, and legal221

area in FSCS. Specifically, attribute-aware fairness-222

promoting algorithms (G-DRO, IRM) succeed on223

reducing group disparities further than attribute-224

unaware algorithms (SD, REx). While the lat-225

ter perform better in terms of worst-group perfor-226

mance, which is not surprising since the overall227

performance increases as well.228

Results for gender groups in CAIL point to a229

general negative effect of fairness-promoting algo-230

rithms when targeting binary groups.231

Combining Adapters Combination of individual232

adapters is done following different strategies, and233

therefore we expect different behavioral outcomes.234

In the three lower parts of Table 1, we observe that235

Adapter Fusion is beneficial in terms of average236

performance (mF1), but it generally yields lower237

mF1w compared to the naive ensembles. As for238

group disparity, results are mixed. We speculate239

that the general worsen in empirical fairness could240

be due to the knowledge composition step (Pfeiffer241

et al., 2021) based on ERM, which is performed on242

top of the optimized fairness-promoting adapters.243

The effect of the temporal concept drift Train-244

ing, validation and test splits are chronologically245

split; these chronological splits entail a label distri-246

bution shift for a given group. While we confirm an247

overall performance decrease with the correspond-248

ing lower worst-group F1 scores, we also find that249

group disparities are reduced. In other words, the250

effect of temporal concept drift smoothen the dif-251

ferences in performance across groups. Figure 1252

provides a visual for a comparison. Combinations253

of fairness-promoting adapters seem to negatively254

effect group fairness under temporal concept drift.255

4 Discussion: What Goes Wrong?256

G-DRO adapter mitigation showed moderate257

success in our experiments, but most fairness-258

promoting objectives (and combinations thereof)259

failed to reduce performance gaps between groups.260

Why is that? Here, we list some of the options.261

Fine-tune Adapters Fine-tune Adapters
0.0

2.5

5.0

7.5

10.0

12.5

15.0
Val Test

Figure 1: Variance in group disparity. We can observe
the effect of temporal drift by comparing results between
validation (left) and test (right).

Algorithmic limitations Fairness-promoting 262

learning algorithms have only been around for 263

a few years, and it is conceivable that the right 264

objectives for the sort of problems considered here, 265

have not been found yet. 266

Dataset limitations Our experiments make two 267

assumptions: a) that social group membership cor- 268

relate with language and legal outcome, and b) that 269

we have enough data to learn these correlations. We 270

know there are correlations between group mem- 271

bership and model performance, but they may be 272

subtle and hard to model robustly. It is therefore 273

very likely that more data may be needed to learn 274

the relevant patterns. 275

Do protected attributes cut at the joints? Much 276

work on fairness assumes variation is along the axis 277

of protected attributes such as gender and race, but 278

of course, this may not be true. Perhaps variation is 279

primarily along other dimensions such as literacy 280

level or professional interest. 281

5 Conclusion 282

This paper presented a comparative analysis 283

of adapters optimized with standard fairness- 284

promoting algorithms. We explored the use and 285

combination of adapters, and how their empirical 286

fairness compare to full fine-tuning a model. Our 287

findings suggest that attribute-aware algorithms, 288

such as G-DRO, are the most viable approach to 289

mitigate group disparities whenever group mem- 290

bership information is available. However, there is 291

a need for more effective light-weight strategies to 292

reliably mitigate biases and group disparities. 293
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Limitations294

The study presented in this paper is general and295

extensible to analyse other forms of performance296

inequalities in language models. We root the ex-297

periments in one model architecture (Wang et al.,298

2021a) and one adapter (Pfeiffer et al., 2021). How-299

ever, our work would benefit from analyzing a300

wider range of models and parameter-efficient train-301

ing strategies.302

We consider two datasets from the legal domain,303

with well defined demographic attributes. Fur-304

ther research on the interaction between parameter-305

efficient training and fairness-promoting algo-306

rithms should account for the application to other307

domains, where the conceptualization of fairness308

might differ.309

Additional experiments would help to gain a310

better insight. For instance, accounting for the vari-311

ance of the fine-tuning processes –for both full fine-312

tuning and addapters– when varying the random313

weight initialization.314

Ethics Statement315

The models and datasets used in this study are pub-316

licly available, and we strictly follow the ethical317

implications of previous research related to the data318

sources. We do not anticipate other ethical risks319

derived from our work.320
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Figure 2: Evolution of macro-F1 scores, evaluated on
the validation split, when fine-tuning on CAIL. Fairness-
promoting algorithms target court region groups.
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CAIL (ZH) FSCS (DE)

ALGORITHM REGION GENDER REGION LEGAL A.

mF1 mF1w GD mF1 mF1w GD mF1 mF1w GD mF1 mF1w GD GD

FULL FINE-TUNING

ERM 58.9 54.8 3.6 58.9 58.1 3.5 63.7 58.8 3.2 63.7 51.3 7.2 4.4

G-DRO 58.4 50.5 4.2 57.4 56.4 0.6 64.5 58.3 3.3 61.4 52.0 6.9 3.8
IRM 58.8 53.2 4.4 59.8 59.3 1.6 62.4 57.8 2.0 59.9 51.0 6.1 3.5

SD 59.7 56.9 3.0 60.0 59.8 0.9 63.2 58.8 3.6 63.2 51.2 6.9 3.6
REx 59.6 56.4 3.3 59.7 59.0 2.6 63.8 61.2 2.8 63.8 51.3 7.4 4.0

ADAPTERS

ERM 58.7 53.1 5.7 59.3 58.9 1.4 65.1 58.0 3.4 65.1 49.0 10.0 5.1

G-DRO 57.7 52.8 4.1 52.7 50.4 1.3 64.9 62.8 1.4 59.0 51.5 5.1 3.0
IRM 58.4 53.5 3.8 52.7 52.3 1.5 63.6 60.2 1.8 63.7 50.9 7.9 3.8

SD 52.5 44.4 4.9 52.5 52.0 1.8 64.8 60.9 2.3 64.8 50.8 9.0 4.5
REx 60.2 54.4 4.4 54.2 53.9 0.9 66.3 61.5 2.6 66.3 50.7 10.0 4.5

ENSEMBLE OF FAIRNESS-PROMOTING ADAPTERS

IRM,G-DRO 60.1 55.8 4.8 59.1 57.9 1.2 63.7 59.3 2.7 60.5 53.1 5.5 3.5
SD,REx 60.3 56.8 3.1 60.0 59.0 1.0 63.4 59.2 2.7 61.1 49.5 8.0 3.7

FUSION OF FAIRNESS-PROMOTING ADAPTERS

IRM,G-DRO 59.6 54.1 3.5 58.8 58.0 0.4 63.2 59.3 2.7 59.5 52.8 7.2 3.5
SD,REx 61.3 55.7 5.2 56.5 55.5 0.6 63.5 59.3 2.7 63.5 48.9 9.3 4.5

ENSEMBLE OF TOP-3 ADAPTERS

ERM,G-DRO,SD 58.2 53.2 4.3 60.2 58.5 1.7 64.6 61.0 2.3 61.0 50.6 8.8 2.8

Table 2: Test results for all learning algorithms per dataset attribute. We report the average performance across
groups (mF1), the worst-group performance (mF1w) and group disparity among groups (GD). Best overall metric is
in bold; best and second-best metrics within each tuning strategy (FULL or ADAPTERS) are also marked.
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