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ABSTRACT

In recent years, research on point-based architectures has advanced rapidly, show-
casing their competitive performance. However, the unstructured nature of point
clouds limits the application of effective operators such as convolutions in fea-
ture extraction. Although many works have attempted to address the issues of
unstructured data and introduce convolutions or transformers, the complex spa-
tial mappings of point clouds and cumbersome convolution implementations in
these methods limit real-time performance of the model. Furthermore, excessive
structural mapping ignores the independence of point cloud position representa-
tion and fails to capture finer-grained features. To tackle these challenges, we
serialize point clouds to provide them with structure and introduce AdaConv to
directly utilize 2D convolutions, which simplifies the process and better preserves
the relative positional relationship. Additionally, we propose a novel dynamic
refinement approach for point cloud positions, continuously modifying the coor-
dinates of points within the convolutional neighborhood to enhance the flexibility
and adaptability. We also integrate local and global features to compensate for the
loss of point cloud features during downsampling. Finally, we propose DSConv
based on PointNeXt, maintaining scalability and inference speed. By combining
DSConv with new architectural designs, we outperform the current state-of-the-art
methods on ScanObjectNN, Scannet V2, and S3DIS datasets.

1 INTRODUCTION

In the realm of dense point cloud analysis, there are currently two main approaches: one represented
by models like Qian et al. (2022) and Thomas et al. (2019), which utilize MLP and convolutional
structures; the other employing self-attention mechanisms (Guo et al., 2021; Zhao et al., 2021; Wu
et al., 2022; 2024) for point cloud analysis. The former relies on unstructured data or complex
mappings, where the MLPs focuses on point-wise feature analysis, while point cloud convolutional
structures perform complex equivalent convolutions over neighborhoods, failing to achieve the fine-
grained neighborhood feature extraction based on spatial positions like 2D convolutions. The latter
struggles to effectively capture local features. Hence, neither method fully leverages the local rela-
tive positional relationships among points. Redundant MLP computations and complex 3D convo-
lutions also introduce computational burdens. Moreover, the richer degrees of freedom and structure
in three-dimensional objects makes addressing issues such as object rotation and deformation more
challenging. To address these challenges, we propose a flexible sequential convolution method to
extract richer local features with strong real-time performance and leverage the independence of
point cloud positions to cope with changes in object posture.

Recent advancements, such as PointGPT (Chen et al., 2024) have addressed the unstructured nature
of point clouds by employing serialization, allowing for the extraction of features based on rela-
tionships in one-dimensional space. Inspired by this, the core motivation of our work is to utilize
serialization techniques to transform unstructured point cloud data into sequences with structured
spatial features, followed by the extraction of local features through designed convolution. To ex-
plore these methods, we propose Dynamic Sequence Convolution (DSConv) built upon Inverted
Residual MLP (InvResMLP) module of PointNeXt (Qian et al., 2022) for Local Aggregation. We
map points within groups across multiple directions and compute sliding windows along the cor-
responding sequence to extract local features, which is a fine-grained convolution without complex
mappings, while improving the reduction method to ensure global features. We couple point posi-
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tions with convolution parameters to enable dynamic adjustments of these parameters based on the
distribution of points within the convolution neighborhood. Additionally, we propose an efficient
method for point position refinement to handle target pose variations, dynamically adjusting point
positions based on the features of neighbors to enhance flexibility while maintaining high through-
put. Specifically, our contributions are summarized as follows:

* We introduce point cloud serialization and adaptive convolution (AdaConv), which replace the
reliance on unstructured point clouds or complex spatial mapping, enabling better utilization of
relative positional relationships among point clouds and less computational burden.

* We propose a dynamic point position refinement method to address challenges with object pose
variation in three-dimensional space.

* We adopt a local-global structure that enables network to flexibly combine global MLP and local
features, thereby reducing instability and feature loss in traditional models. We also couple point
cloud positions with convolution parameters to improve the generalization of DSConv.

* Our proposed DSConv shares the same scalability and inference speed as Qian et al. (2022),
with fewer parameters. DSConv-XL outperforms PointNeXt-XL by a 4.8% mean IoU (mloU)
increase on S3DIS (Armeni et al., 2016) (6-fold cross-validation). Additionally, through further
architecture designs, DSConv-XXL achieves state-of-the-art performances across multiple tasks.

2 RELATED WORK

Point-based Networks. Point-based networks provide greater flexibility and preserve the original
information more effectively compared to voxel-based methods (Zhou & Tuzel, 2018; Yan et al.,
2018). PointNet (Qi et al., 2017a) introduce MLPs for handling unordered point cloud data. Point-
Net++ (Qi et al., 2017b) introduce a hierarchical structure for feature aggregation at different scales.
Wang et al. (2019b;a); Qian et al. (2021a) utilize graph neural networks for point cloud analysis. Yu
et al. (2022); Pang et al. (2022) utilize self-supervised algorithms for pre-training. Transformer-like
networks (Zhao et al., 2021; Wu et al., 2022; 2024) extract local features via self-attention. Ma et al.
(2022); Qian et al. (2022); Deng et al. (2023) improve model performance through residual connec-
tions and different feature preprocessing techniques. However, the use of unstructured point clouds
in these methods impedes the exploitation of relative position information, while the serialization
and convolution strategies in DSConv effectively utilize this information.

Convolution in Point Clouds. Convolution, as one of the effective methods for processing local
features, has always been a focus in point cloud analysis. SpiderCNN (Xu et al., 2018) defines con-
volution kernels as Taylor-expansion-based polynomials, encoding geometric information via step
functions within local neighborhoods. PointCNN (Li et al., 2018) learns an X-transformation from
input points to reassign associated features and feature weights, enabling convolution to process
regularized input features. PointConv (Wu et al., 2019) generates convolution kernels by applying
MLPs and kernel density estimation to points, convolving them with neighborhood points. KPConv
(Thomas et al., 2019) introduces rigid kernel point deformable convolution, where the parameters of
kernel points are used to process the points mapped to that position. These convolution methods in
point clouds rely on complex mappings that affect the algorithm speed, while our serialized mapping
approach is simpler and reduces the computational cost.

Utilization of Point Cloud Serialization. Recent works have begun exploring serialization meth-
ods to process raw point clouds, aiming to overcome their inherent disorder and non-structural na-
ture. OctFormer (Wang, 2023) applies Morton-like sorting to octree-based point cloud data and
performs windowing along the resulting sequence. PointGPT (Chen et al., 2024) utilizes Z-order
(Morton, 1966) sorting on points during self-supervised pre-training, leveraging remaining points
to predict missing patches. Point Transformer V3 (Wu et al., 2024) alternates between Z-order and
Hilbert curves (Hilbert & Hilbert, 1935) to convert point clouds into patches, aiming to mitigate
the impact of K-Nearest Neighbors (KNN) search on speed. These methods suggest that serialized
raw point cloud data still maintains a good spatial proximity relationship. However, the aforemen-
tioned serialization methods can only ensure compactness within the sequence, with relatively poor
ability to preserve relative positional information among point clouds. In contrast, our approach to
serialization leveraging positional relationships avoids this limitation.
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Figure 1: Overview of the DSConv module. The red point serves as the center for feature extraction.
All input points are treated as center points once during DSConv module processing.

3 METHOD

We propose a local feature extraction method based on serialized point clouds and convolution to
enhance the utilization of relative positional information, as shown in Fig. 1. This section covers the
serialization of point clouds in Sec. 3.1, the design of feature extraction on serialized point clouds
in Sec. 3.2, the introduction of dynamic point cloud position refinement in Sec. 3.3, a description
of the coupling between position feature and convolution parameters, along with the integration of
global and local features in Sec. 3.4, and the overall structure of DSConv in Sec. 3.5.

3.1 POINT CLOUD SERIALIZATION

(a) Z-order (b) Hilbert (c) Axis (d) Axis-Group

Figure 2: The effects of four serialization algorithms on the plane, with red points indicating the
center points. A total of 4 points (excluding the center point) are sampled. The lower part shows
the feature sequence of the sampled points. (a) Z-order serialization. (b) Hilbert serialization. (c)
Serialization along the coordinate axis. (d) Serialization along the coordinate axis with group con-
straints. The green arrow indicates the sampling sequence along the x-axis, while the blue arrow
indicates the sampling sequence along the y-axis. Additionally, the red circle is the range of groups.

Point cloud collection methods and data storage formats often result in sparse and unordered point
clouds. To address this issue, point clouds are typically converted into voxels (Zhou & Tuzel, 2018)
or pillars (Lang et al., 2019). However, these approaches not only incur significant computational
overhead but also lead to the loss of information in dense regions. In contrast, point cloud se-
rialization, while imparting structure, can preserve all point cloud information intact and achieve
higher efficiency. By designing appropriate mapping methods, points in multi-dimensional space
can be mapped to a one-dimensional continuous sequence, preserving the local relationships be-
tween points. We propose a multi-directional point cloud serialization method and compare it with
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existing methods. Mapping methods based on distance relationships, such as those shown in Fig. 2a
and Fig. 2b, can better ensure the compactness of adjacent points in the sequence, but are limited
in representing the relative positional relationships of points. By comparison, our proposed method,
based on mapping along three coordinate axes (as shown in Fig. 2¢ and Fig. 2d), can directly repre-
sent the relative positional relationships of points in the point cloud, thereby preserving local relative
positional features of objects to a certain extent and providing better geometric representation capa-
bilities. Additionally, our approach does not require encoding, leading to greater efficiency.

In most cases, simply serializing along coordinate axes may map points that are far apart to nearby
positions in the sequence (as shown in Fig. 2¢). Therefore, we map the point clouds after grouping
module, and by leveraging the compactness of the grouped point clouds, we can effectively avoid
the issue of distant points being mapped to close positions due to non-encoded mapping. With the
constraint of grouping, our serialization method achieves similar results to those based on encoded
distance serialization, and the order within each sequence also reflects the relative positional rela-
tionships between point clouds, as shown in Fig. 2d. The serialized point cloud, which can directly
reflect the spatial physical distribution, simplifies the implementation of 3D spatial convolution and
enables finer-grained point cloud convolution.

3.2 LocAL FEATURE EXTRACTION ON SERIALIZED POINT CLOUDS

Adaptive convolution. Although serialization structures point cloud data, allowing for the direct
application of 2D convolution, there is still a drawback in using convolution for point cloud pro-
cessing: the point cloud needs to overcome the influence of absolute positions and focus solely on
the local positional relationships within the convolution neighborhood. Therefore, we propose an
adaptive convolution to address this issue, thereby achieving the translation invariance of convolu-
tion and extracting the local features. To ensure that convolution attends only to relative positional
information in the neighborhood, we fix certain parameters of the convolutional operator and embed
the decentering process into the convolution operation. We modify the center position parameters in
the input channels of position coordinates as follows:

N
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where wf®*"""°" represents the parameter for processing the position channel at the convolution

center point, w o510 Jenotes the parameters at other positions of the convolution operator when
processing the position channel and N is the size of 1xN convolutional kernel. Redefining the
convolutional parameters according to Eq. 1, the convolution computation, which takes features
incorporating positional coordinates as input, is transformed into the following:
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where p; and p;; represent the coordinates of the central point and its neighboring point, respec-
tively, f denotes the corresponding feature values, w?*""€ is the convolution parameters on feature
value channel, and feature; is a single convolution result in the neighborhood of the central point
1. This calculation achieves dynamic decentralization of coordinates during convolution.

Feature extraction on serialized point clouds. After grouping and serialization, the point fea-
tures are represented in a form similar to a four-dimensional tensor of images, allowing for the
application of convolutions along the group dimension to perform sliding window calculations and
extract features. In order to ensure sufficient receptive fields in the spatial dimensions and reduce
memory usage, we propose a multi-sequence fusion method based on AdaConv, enabling processing
of features from different sequences, akin to 2D convolutions, as depicted in Fig. 3.
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Figure 3: Multi-sequence fusion. After sorting points along three directions, three sets of sequences
are obtained. Then, the padded results are convolved using AdaConv, where padding ensures that
the lengths of the three sets of sequences remain the same as the original sequence after convolution,
which is necessary. For one point in original sequence, different neighborhoods of this point along
the three sequences are convolved separately, and then fused into a feature point. This method is
equivalent to using a 33 convolution to process a 3 x 3 receptive field.

3.3 DYNAMIC POINT POSITION REFINEMENT

The objects in three-dimensional space exhibit richer geometric transformations. To reduce the
impact of these intricate pose variations on feature extraction, we propose point position refine-
ment, leveraging the characteristic of position information embedded in the feature channels of
point clouds. This method dynamically modifies the position of input points for each group using
the convolution introduced in Sec. 3.2, thereby enhancing the stability and consistency of features.
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Figure 4: Position refinement and convolutions after refinement. (a) Sequential position fine-tuning,
adjusting the positions of points within the convolutional neighborhood as needed without modifying
the original point cloud distribution. (b) Fine-tuning points within each group individually.

Sequential Position Refinement (SPR). We utilize the convolution strategy discussed in the pre-
vious section to compute the required offsets for each point within the receptive field when convolv-
ing at any position. Then, these offsets are applied to the position channels (as shown in Fig. 4a),
enabling different fine-tuning for convolutional inputs at different positions without affecting the
original positions. We attempt to implement this operation using Deformable Convolutional Net-
work (DCN) (Dai et al., 2017b; Zhu et al., 2019; Wang et al., 2023). However, DCNs result in
significant memory consumption and considerably slow down the algorithm. Therefore, we propose
a more efficient method, as shown in Eq. 3&4:

Ap = Fuse(AdaConv;(Ser;([(p — Deenter)/R; f]))), i = z,y, 2. 3)

Output; = AdaConv? (Ap;) + AdaConvarf([(p — Deenter) [R5 f1),1 = 3,9, 2, 4)

where Ser denotes the serialization process, R represents the group radius, and peep e denotes the
center point coordinates. By employing the method mentioned in Sec. 3.2, we generate a offset Ap
in the number of channels corresponding to a 3 xreceptive field size, representing the offset of each
point in three directions within the convolutional neighborhood. The original input is computed
using AdaConvP*7, and the offsets are calculated using AdaConvP, which is a part of the param-
eters of the former, aiming to fine-tune the input positional features. This calculation eliminates the
need to generate expanded feature maps, thereby significantly reducing memory usage and improv-
ing speed. Additionally, it offers high flexibility and adaptability. Unlike directly modifying the
positions of the original point cloud, it can fine-tune the neighborhood points at different positions
according to their needs, better adapting to complex spatial structures and morphological changes.

Point-wise Position Refinement (PPR). Despite optimizations, the above method still consumes
a lot of resources, as it requires storing the coordinate offsets of all points within the convolutional
neighborhood at each convolutional position. Therefore, we propose a simpler position refinement
method that only calculates the offset of the center point in convolutional neighborhood and then
directly modifies its position within the group using that offset, as shown in Fig. 4b.
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3.4 NETWORK DETAILS

Local-global structure. Local Aggregation (LA) structure employs saturation sampling during
the downsampling process, resulting in significant redundant computations. Additionally, its max
pooling excessively emphasizes the features of individual points within a group, neglecting others
and missing out on holistic features. Therefore, we retain the original LA module in DSConv module
but replace its max pooling with sum pooling to enhance the speed and improve its ability to extract
global features, reducing over-reliance on individual key points. A MLP is used to mix them.

Coupling position with convolution parameters. We improve the flexibility of DSConv by cou-
pling the positional information of local point cloud with convolution parameters, providing different
computation parameters for points at different locations within the local space. We propose using
positional encoding to implement the coupling process, for each channels as follows:

w(f + PE(p)) = wf + bias*™"", )
where f and p represent the features and positional coordinates of each point within each group after
coordinate decentralization, respectively. PF() is positional encoding. This approach introduces a
bias that couples position with convolution parameters for each channel computation result. Unlike
Vision Transformer (Dosovitskiy et al., 2020; Carion et al., 2020; Liu et al., 2021) model, we use
pointwise convolution to encode relative positional information into each feature channel, avoiding
complex trigonometric operations. Notably, experiment shows that simply adding PE to the LA
module does not lead to a significant performance improvement.

Feature preprocess. We calculate the feature differences between neighboring points and center
point, thereby highlighting important features in local region. With the coupling step, we process
the input features as follows:

f/ = f - fcenter + Relu(BN(Conlel(p))>7 (6)

where C'onvy x1 denotes a mapping from coordinate dimensions to feature dimensions, and feenter
corresponds to the features of the central point in groups. Therefore, we can use Eq. 6 to couple
positional features and capture salient changes in local features.

Grouping strategy. Excessive summation of points may result in large feature values that affect
parameter convergence. On the other hand, the traditional grouping method is overly redundant in
sampling, while DSConv only requires less points that can reflect the spatial structure for extracting
geometric features, so we reduce the number of sampled points. Although this may lead to uneven
sampling and produce different results between consecutive samplings, it significantly improves
speed and resolves convergence issues. To enhance sampled point quality, we modify the sampling
method: firstly, N points are sampled by ball-query (Qi et al., 2017b) or KNN, then Farthest Point
Sampling (FPS) is used to resample N/4 points, ensuring consistent and representative sampling.

3.5 ARCHITECTURE

We adjust the original architecture (Qian et al., 2022), with the improvements primarily reflected in
the XXL scale model. We refer to PointNeXt for model scaling and further increase the number of
DSConvs in each stage. In DSConv-XXL, to fully leverage the advantages of DSConv, we remove
the initial MLP stem and the first downsampling, directly operating on the input point cloud, effec-
tively increasing the number of processed points by x 4. To handle the large point cloud data, we
adopt grid-sampling for faster downsampling, inspired by Thomas et al. (2019); Wu et al. (2022).
Additionally, due to the increased complexity of feature extraction in DSConv, residual connections
preprocess the original input with an MLP to better adapt to the feature changes. Furthermore, we
retain the inverted bottleneck structure, using it after every two DSConv layers. We represent the
channel of the initial embedding MLP as C and the number of DSConv modules as B, and designed
four sizes of models as follows:

* DSConv-B:C=32,B=1,1,2,1 * DSConv-XL: C=64,B=3,3,6,3
* DSConv-L: C=32,B=2,2,4,2 * DSConv-XXL: C=64,B=4,4,8,4

In segmentation tasks, we adopt the encoder-decoder structure of PointNet++ (Qi et al., 2017b). In
classification tasks, only one encoder and one classification layer are used. For extremely large point
cloud data, we use 5 stages for deeper downsampling. The overall architecture is depicted in Fig. 5.
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Figure 5: Overall Architecture. We retain the Set Abstraction (SA) module and Feature Propagation
(FP) structure from PointNet++, and introduce the DSConv module. AdaConv refer to the adaptive
convolution mentioned in Sec. 3.2&3.4, while Convs are 1x 1 convolutions by default.

4 EXPERIMENTS

To validate the effectiveness of our approach, we conduct experimental evaluations on the semantic
segmentation datasets ScanNet V2 (Dai et al., 2017a) and S3DIS (Armeni et al., 2016), as well as the
point cloud classification dataset ScanObjectNN (Uy et al., 2019). To ensure fair contrast, except for
the hyperparameters of the method proposed in this paper, we maintain the same data augmentation
and hyperparameter settings as Qian et al. (2022), and use the same evaluation criteria. For the new
DSConv-XXL, we use larger point cloud input and independent hyperparameter settings.

Experimental setups. We train DSConv using CrossEntropy loss with label smoothing (Szegedy
et al., 2016), AdamW (Loshchilov & Hutter, 2019) optimizer, and cosine decay. For semantic
segmentation task, we set the initial learning rate Ir=0.01, weight decay 10~*, and train for 100
epochs. In classification task, DSConv is trained with an initial 1r=0.002, weight decay of 0.05,
and the number of input points is set to 1024 for 400 epochs. For DSConv-XXL, we set Ir to 0.006
and warmup epoch to 10, while employing dropout to enhance generalization. For segmentation
tasks, the voxel size is set to 0.02m and 0.04m for ScanNet V2 and S3DIS. In ScanNet V2, we adopt
the latest training strategy from Chen et al. (2023) and expand the input points to 80,000. For fair
comparison, we utilize the testing scheme provided by PointNext (Qian et al., 2022) for our tests.
Model parameter size and GFLOPs are provided, and we also compare the model inference speed
using throughput (TP) following Qian et al. (2021b; 2022). Throughput for segmentation models
is measured with 8x 15000 points, while for classification models, it is measured with 32x2048
points. We evaluate model performance using an RTX 4070 12GB GPU.

4.1 3D SEMANTIC SEGMENTATION ON S3DIS AND SCANNET

Segmentation on S3DIS. S3DIS (Stanford Large-Scale 3D Indoor Spaces) (Armeni et al., 2016)
comprises laser-scanned data from 271 rooms across six different large-scale indoor areas, encom-
passing 13 categories. Results for both Area 5 and 6-fold cross-validation are presented in Tab. |
and Tab. 2. With more modules and updated training strategies, DSConv-XXL achieves 75.5%
mloU on S3DIS Area 5 surpassing KPConvX by 2.0% mloU. By removing the stem MLP from
DSConv-XXL, the number of points processed by DSConv in each stage increases, while the num-
ber of feature channels is halved. This reduces parameters but increases GFLOPs. On S3DIS 6-fold
cross-validation, DSConv-XL also achieves state-of-the-art performance, with a 4.8% improvement
in mIoU compared to PointNeXt and outperforming the state-of-the-art PointVector (Deng et al.,
2023) by 1.3% mloU, with faster inference speed. The performance of DSConv-XL matches Point
Transformer V3 on S3DIS Area 5, surpassing it by 2.0% mloU on S3DIS 6-fold cross-validation
and achieving a higher throughput. Notably, Point Transformer V3 (Wu et al., 2024) is trained using
PPT (Wu et al., 2023). Thus, we compare with its original training results to ensure fairness.
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Table 1: Semantic segmentation on S3DIS Area 5. Only the best test results of all algorithms are
reported. The methods are listed in chronological order. The highest scores are marked in bold.

Method | mloU (%) mAcc(%) OA (%) | Params. (M) FLOPs(G) TP (ins./sec.)
SparseUNet (Choy et al., 2019) 67.7 73.1 90.1 37.9 1.43 52
RepSurf (Ran et al., 2022) 68.9 76.0 90.2 0.98 1.04 -
PointNeXt (Qian et al., 2022) 70.5 76.8 90.6 41.6 84.8 40
PTv2 (Wueet al., 2022) 72.6 78.0 91.6 12.9 305 13
PointVector (Deng et al., 2023) 723 78.1 91.0 24.1 58.5 37
PointMetaBase (Lin et al., 2023) 72.3 78.0 91.3 19.7 11.0 83
Swin3D (Yang et al., 2023) 72.5 - - 23.6 50.6 6
PTv3 (Wuet al., 2024) 73.4 79.0 91.7 46.2 4.7 29
LPFP (Han et al., 2024) 73.5 78.7 92.0 312 24.2 -
OA-CNNs (Peng et al., 2024) 71.1 - 90.7 515 235 22
KPConvX (Thomas et al., 2024) 73.5 78.7 91.7 13.5 - -
DSConv-B(our) 70.9 76.3 90.9 34 9.7 129
DSConv-L(our) 724 78.2 91.3 55 14.5 101
DSConv-XL(our) 73.5 78.8 92.1 27.3 74.3 40
DSConv-XXL(our) 75.5 81.2 92.7 23.5 99.6 26

Table 2: Semantic segmentation on S3DIS 6-fold. Table 3: Semantic segmentation on ScanNet V2.

Method | mloU (%)  OA (%) Method | ValmloU (%)  Params.(M)
RepSurf-U (Ran et al., 2022) 74.3 90.9 StratTrans (Lai et al., 2022) 74.3 18.8
CBL (Tang et al., 2022) 73.1 89.6 DeLA (Chen et al., 2023) 75.9 8.0
PointNeXt (Qian et al., 2022) 74.9 90.3 OctFormer (Wang, 2023) 75.7 39.0
PTv2 (Wu et al., 2022) 73.5 - Swin3D (Yang et al., 2023) 76.4 23.6
PointVector (Deng et al., 2023) 78.4 91.9 AVS-Net (Yang et al., 2024) 76.0 20.9
PointMetaBase (Lin et al., 2023) 71.0 91.3 OA-CNNs (Peng et al., 2024) 76.1 51.5
Swin3D (Yang et al., 2023) 76.9 - PTv3 (Wu et al., 2024) 77.5 46.2
PTv3 (Wu et al., 2024) 77.7 - KPConvX (Thomas et al., 2024) 76.3 13.5
DSConv-XL(our) | 79.7 92.2 DSConv-XXL(our) | 77.8 25.9

Segmentation on ScanNet. ScanNet V2 (Dai et al., 2017a) comprises scans in indoor rooms,
divided into 1201 training scenes, 312 validation scenes, and 100 testing scenes, with a total of 20
categories. We use mloU as the validation metric for ScanNet V2. In ScanNet V2, we add a DSConv
stage at the beginning of architecture like Chen et al. (2023), and experiments show that this stage
at higher resolution is beneficial. As shown in Tab. 1, DSConv-XXL achieves the state-of-the-art
performance among all methods without extra training data and outperforms PTv3 by 0.3% mloU.

4.2 3D OBIJECT CLASSIFICATION ON SCANOBJECTNN

ScanObjectNN (Uy et al., 2019) consists of ap- Taple 4: Classification on ScanObjectNN
proximately 15,000 actual scanned objects with wijthout pre-training.

15 categories. Similar to PointNeXt, we evalu-

. X Method | OA(%) mAcc(%)
ate the challenging variant PB_T50_RS of ScanOb- boimNetrs (O et al.20170) p— —
. . o s ointNet++ (Q1 et al., . E
jectNN, using the .meanistd dev1a.t10n pf OA and RepSurf-U (Ran et al.. 2022) 26.0 831
mAcc as our metrics. In the classification model, PointMLP (Ma et al., 2022) 854+13 839415

we use max pooling for reduction. As shown in PointNeXt (Qian et al,, 2022) | 87.7+04  85.8+0.6
PointVector (Deng et al., 2023) 87.8+0.4 86.2+0.5

Tab. 4, our DSConv-S surpasses PointNeXt-S by poinMetaBase (Linetal, 2023) | 87.9+02 862407
0.6% OA, and a 1% increase in mAcc demonstrates SPoTr (Park et al., 2023) 88.6 86.8

. . _ DeLA (Chen et al., 2023) 90.1+£0.2  89.0+04
that our algorlthm.achleves a more balanced per KPConvX (Thomas et al.. 2024) | 883404 867405
formance across different categories. Meanwhile, P— 53504 868100
our DSConv-XXL achieves a best result of 91.0% DSComRX o 006107 896404

OA, reaching the state-of-the-art performance.

4.3 ABLATION STUDY

We conduct ablation studies on DSConv, focusing on the impact of algorithm design on accuracy
and throughput. By default, we test DSConv-L on S3DIS (Armeni et al., 2016) Area 5, employing
Sequential Position Refinement method. All training parameters are configured identically.

Effectiveness of serialization. To validate the effectiveness of our serialization method, we com-
pare it with other serialization methods. The 3rd-order Z-order represents serialization with three
different encodings, while random indicates no serialization. As both Z-order (Morton, 1966) and
Hilbert (Hilbert & Hilbert, 1935) are encoding distance-based serialization strategies, we only test
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Table 5: Effectiveness of serialization. Table 6: Point cloud position refinement methods.
Method \ OA(%) mAcc(%) mloU(%) Method \ OA(%) mAcc(%) mloU(%) TP
Random (w/o ser.) 90.2 76.2 69.9 w/o refine 90.6 77.0 71.3 107
Z-order 90.5 77.0 70.8 PPR 91.0 77.4 71.8 105
3rd-order Z-order | 90.5 772 71.1 D-SPR 91.4 78.0 723 59
Coordinate-Axis 91.3 78.2 72.4 SPR 91.3 78.2 72.4 101

Table 7: Convolution shape and sequence fusion Table 8: Module design ablation. FPS ensures
methods. 3x1x3 (xyz) means using three 1x3 that sequences have engough spatial coverage, so
convolutions along the three sequences of X, y, z. it is included in Seq.AdaConv.

Method | OA(%) mAcc(%) mloU(%) TP PPC  Global path ~ Seq.Adaconv ~ SPR | mloU(%)
MLPs 90.9 71.3 71.2 105 69.0
3x1x5(xyz) | 905 772 71.0 96 v 69.3
2x1x3 (xy) 91.0 77.6 71.7 110 v v 69.5
3x1x3 (xyz) 91.3 78.2 724 101 v v v 71.3
v v v 69.8
Maxpool 90.7 77.0 7.1 93 v Y Y 707
Concat 91.2 77.9 718 92 Y Y Y Y 724

Add 91.3 78.2 72.4 101 .

Z-order. As shown in Tab. 5, our method proposed in Sec. 3.1 outperforms other serialization meth-
ods, indicating that our approach can better express relative positional relationships and is effectively
utilized by convolution. The inferior performance of 3rd-order Z-order method compared to ours
shows that the improvement of our algorithm is not solely due to an increase in model parameters.

Point cloud position refinement methods. We explore the effectiveness of different point cloud
position refinement methods proposed in Sec. 3.3 and their impact on model throughput. As shown
in Tab. 6, our SPR method achieves performance close to D-SPR (a SPR based on DCN method,
which samples neighborhoods for each sequence to generate intermediate feature maps of size 9
x the original feature size), demonstrating a certain level of flexibility and significantly improving
throughput. Despite having less flexibility, the PPR method still enhances performance. This result
indicates that incrementally refining point cloud positions as needed during feature extraction is
effective, and the higher flexibility, the more pronounced the performance improvement.

Convolution strategies. We evaluate different receptive field shapes and multi-sequence fusion
algorithms. As shown in Tab. 7, the receptive field of 3x1x5 is limited by the number of sampling
points, resulting in a lower mloU. In contrast, the 3x 1x3 receptive field achieves higher perfor-
mance with fewer parameters and computational cost. Using BEV (Yang et al., 2018) perspective
(xy sequences) for receptive fields performs poorly due to the loss of information in the Z-axis di-
rection. Additionally, using different convolution parameters for sequences in different directions is
beneficial. Using addition for sequence fusion has fewer parameters and a higher mloU than others.

Module design. We analyze each modules introduced in DSConv: the position-parameter cou-
pling (PPC), Local-Global structure, sequence adaptive convolution and point position refinement.
The results are illustrated in Tab. 8. PointNeXt-L (Qian et al., 2022) is our baseline. Simply adding
PPC or global path in baseline do not significantly improve performance. However, removing them
from DSConv leads to a significant performance decline, indicating that sequence convolution re-
lies on global information and is more sensitive to position. Additionally, it shows that the cou-
pling of position and parameters enhances the flexibility of convolution. By gradually adding each
component we propose, we improve the baseline results to 72.4% mloU. The increase in mloU
demonstrates the effectiveness of each component. More experiments are provided in Appendix B.

5 CONCLUSION

In this paper, we introduce DSConv, which achieves state-of-the-art performance on S3DIS, Scan-
NetV2 and ScanObjectNN. We utilize coordinate-based serialization to preserve the relative posi-
tional information of point clouds, followed by feature extraction using convolution. Additionally,
we propose adaconv and multi-sequence fusion strategies to achieve finer-grained sequential convo-
lution. Local-global structure ensures the global features within the groups. Position refinement and
parameter coupling enhances the flexibility in processing point clouds. By adjusting input features
and optimizing sampling methods, our model still maintains excellent scalability and speed.
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A CLASSIFICATION ARCHITECTURE
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Figure 6: DSConv-S architecture for classification. We replace the SetAbstraction modules with
DSConv modules and make adjustments to the DSConv modules, while the rest of the components

remain unchanged.

As shown in Fig. 6, we replace the middle three SetAbstraction modules of PointNeXt with our
DSConv modules. We keep the first SetAbstraction module to guarantee the accuracy of model, and
maintain the last SetAbstraction module for its global pooling function. Meanwhile, to ensure the
extraction of key points, we set the number of neighbor points to 32 and move the FPS block after
grouping to the front for downsampling. Additionally, we swap the sum pooling in the MLP path
with max pooling to improve performance in classification tasks. For DSConv-XXL, we design
it according to Sec. 3.5 without changing SetAbstraction module, and reduce the arrangement of

DSConvs to [2, 2, 2].

B EXPERIMENTS

B.1 3D SEMANTIC SEGMENTATION ON S3DIS

Table 9: S3DIS 6-fold cross-validation.

Method Metric Areal Area2 Area3 Area4 Area5 Area6 6-Fold
OA 9269 91.14 93.81 90.24 91.01 9427 91.86

PointVector-XL mAcc 89.58 79.07 9222 83.81 78.09 92.84 86.12
mloU 8238 70.56 84.64 70.17 7229 8640 78.4l

OA 9196 89.05 93.74 89.89 9127 9436 9141

DSConv-L mAcc 88.02 75.38 9286 8286 7821 9237 85.46
mloU 80.88 6594 8499 7246 7243 86.76 77.99

OA 9246 91.17 9392 90.57 92.09 9434 9222

DSConv-XL mAcc 8940 79.82 9290 8241 7879 9286 87.07
mloU 82.08 70.18 85.11 71.10 7349 87.21 79.65
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We introduce the detailed results on S3DIS with 6-fold cross-validation and compare them with the
previous state-of-the-art method, PointVector (Deng et al., 2023). As shown in Tab. 9, our DSConv-
XL surpasses PointVector in all three metrics: OA, mAcc, and mloU, and it performs better in 4
areas, including an improvement of 1.2% mloU on Area 5. Meanwhile, we observe the mloU of
DSConv-XL is 1.36% lower than that of DSConv-L on S3DIS Area 4. Further experiments indicate
that DSConv-XXL performs with lower accuracy than DSConv-XL in some areas. Therefore, we

select DSConv-XL as the best model on S3DIS 6-fold cross-validation.

B.2 3D OBJECT CLASSIFICATION ON MODELNET40

ModelNet40 (Wu et al., 2015) is a
commonly used dataset for 3D ob-

Table 10: Classification on ModelNet40.

ject recognition and classification, Method \ OA(%) mAcc(%)
comprising 40 different categories, PointNet (Qi et al., 2017a) 892 362
each containing unique 100 CAD PointNet++ (Qi et ai 2017b) 91'9 B
models with varying orientations and PointCNN (Li et al.’ 2018) 92'2 88 1
poses. Due to the inclusion of mul- DGCNN (Wang et al" 2019b) 92'9 90'2
tiple categories and a large num- KPConv (Thomas et a’l 2019) 92'9 B
ber of 3D object models, the Mod- ASSANet-L (Qian et all’2021b) 92'9 .
elNet40 dataset presents challenges MVTN (Hamdi et al "2021) 93'5 92.2
for algorithm generalization and ro- CurveNet (Xiang et a.l, 2021) 93'8 -
bustness. However, recent research PTv1 (Zhao et al 2'621) 93'7 90.6
has favored ScanObjectNN, which is PointMLP (Ma et a’l 2022) 9 4'1 91'3
based on rea'll—world objects. There- PTV2 (Wu et al., 2'622) 9 4:2 91: 6
fore, we mainly benchmark DSConv. 5 o Nesey (Qian et al., 2022) | 94.0 91.1
on ScanObjectNN. Here, our results DeLA (Chen et al., 2023) 94.0 9.1
on ModelNet40 are also provided. ” : :
We employ the exact same training DSConv-XXL(our) | 94.0 92.2

strategy as DeLA, including AdamW
optimizer, a learning rate of 0.002, cosine learning rate decay, weight decay of 0.05, a batch size of
32 for 600 epochs, and 1024 input points, with random scaling and translation as data augmenta-
tion. As shown in Tab. 10, our algorithm achieves results similar to DeLA (Chen et al., 2023) and
PointNeXt (Qian et al., 2022). Furthermore, consistent with the ScanObjectNN test, the weighted
sum downsampling of convolution does not effectively extract crucial edge features, which is the
primary reason for the lack of greater performance improvement in our algorithm.

B.3 CONTRAST WITH 3D CONVOLUTION-BASED METHODS.

Table 11: Contrast with 3D convolution-based methods upon PointNeXt baseline on S3DIS Area 5.

Method | OA (%) mloU (%) | Params. (M) TP (ins./sec.)
PointConv (Wu et al., 2019) 89.5 67.9 29.9 30
KPConv (Thomas et al., 2019) 89.9 69.5 17.3 54
PAConv (Xu et al., 2021) 90.7 70.5 27.3 31
DSConv(our) 91.3 72.4 5.5 101

To validate the effectiveness of our serialization method and adaptive convolution, we conduct a
comparative analysis with 3D convolution-based methods. To compensate for potential shortcom-
ings in the training strategies of previous 3D convolution-based methods and to ensure a fair com-
parison, all methods are trained and evaluated under the PointNeXt-L (Qian et al., 2022) baseline
by default, employing identical training and testing parameters. Similar to DSConv, we solely re-
place the LA module of PointNeXt with other 3D convolution-based methods, while preserving the
residual structure in PointNeXt. Furthermore, we adopt the same block stacking strategy. For speed
test, 16 x 15, 000 points are used to measure throughput. As shown in Tab. 11, our method demon-
strates a significant advantage among all approaches applying 2D convolutions to 3D point clouds,
achieving an accuracy improvement of 1.9% mloU over PAConv (Xu et al., 2021). Moreover, our
method significantly outperforms other convolution-based methods in terms of speed, primarily due
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to the combination of serialization and AdaConv, which effectively avoids the complexities of spa-
tial mapping in point clouds. Additionally, DSConv has only 5.5M parameters, because we directly
compute the point cloud sequences using 2D convolutions, rather than employing a large number of
MLPs to simulate convolution, as seen in previous methods.

B.4 ABLATION STUDY

MLPs in DSConv module. In ad-
dition to convolution, our DSConv
module also employs MLPs to ac-

Table 12: The results of different MLP combinations for
feature fusion on S3DIS Area 5.

complish feature fusion at the front- Method \ OA(%) mAcc(%) mloU(%)
fend and termlna}l positions. To val- Precony 913 782 104
idate the necessity of these two parts .
. . Preconv+Attention 90.6 75.8 70.2

of MLPs, we conduct ablation studies .

. . . Attention 90.3 76.9 70.5
on DSConv-L, testing various combi- w/o Pre-MLPs 90.8 77.4 71.6
nations of MLPs. Preconv and Post- : ' ’
conv are located after the positional Postconv 91.3 78.2 72.4
encoding and before the summation  Bottleneck Postconv |  90.8 77.0 71.0
of residual connections, respectively. w/o Post-MLPs 90.5 76.0 70.3

They are respectively used to fuse in-
put features with positional encoding and integrate features from MLP path and sequential con-
volution path. Both Preconv and Postconv are composed of point-wise convolutions. In addition,
Attention refers to the use of a channel attention mechanism to process the input features. As shown
in Tab. 12, using a simple MLPs structure for positional encoding fusion is more effective. Further-
more, since the DSConv module introduces multi-layer convolutions during feature processing, the
original use of bottleneck convolutions would excessively increase the network depth, affecting the
performance of the residual structure. Therefore, using a single MLP layer in Postconv achieves
higher mIoU and OA.

Skip connection. We experiment with

different residual structures. Concat+MIp Table 13: Skip connection in DSConv module.

refers to concatenating the output of the Method | OA(%) mAcc(%) mloU(%)

cross-layer connection with the result of -

the main path, and then fusing them Identity 91.0 76.8 70.8

through a MLP. As shown in Tab, 13,  Concat+MLP | 91.1 76.2 71.1
Linear 91.3 78.2 72.4

the method of fusing the main path and
the skip connection through Concat+MLP
outperforms the residual structure (He et al., 2016) of PointNeXt. But using only linear for the skip
connection achieves better results. Therefore, we choose it as our baseline.

C VISUALIZATION

As shown in Fig. 7, our algorithm is able to perform better at the boundary planes, with more distinct
segmentation lines for planar regions. This indicates that our algorithm is more sensitive to edge
information, similar to 2D convolution algorithms. The utilization of local-global features gives
us an advantage in both large complex scenes and simple scenarios. However, like most methods,
our algorithm also exhibits limitations in segmenting small embedded components, such as small
windows on walls.

D EFFECTIVENESS OF DSCONV

We visualize output features of the last module in DSConv using Grad-CAM (Selvaraju et al., 2017)
and compare it with KPConv to analyze the effectiveness of DSConv. As shown in Fig. 8, DSConv
demonstrates a higher sensitivity to edge features, with a greater distinction between high and low
attention regions. This is because DSConv performs convolution within serialized group points,
allowing it to extract more fine-grained features. Additionally, the high flexibility of DSConv make
it easier to learn complex shapes, such as airplane tail fins and computer brackets.
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Figure 7: Qualitative comparisons of Ground Truth (2"¢ column), PointNeXt (3"¢ column), and
DSConv (4t column) on S3DIS semantic segmentation. The specific differences are highlighted
with red anchor boxes.
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Figure 8: Attention visualization results of DSConv (1% row) and KPConv (2"¢ row) on Model-
Net40. High activations are in yellow and low activations in blue.
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