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Abstract

Developing robust automatic speech recogni-001
tion (ASR) systems for Arabic requires effec-002
tive strategies to manage its diversity. Exist-003
ing ASR systems mainly cover the modern004
standard Arabic (MSA) variety and few high-005
resource dialects, but fall short in coverage006
and generalization across the multitude of spo-007
ken variants. Code-switching with English and008
French is also common in different regions of009
the Arab world, which challenges the perfor-010
mance of monolingual Arabic models. In this011
work, we introduce a suite of ASR models op-012
timized to effectively recognize multiple vari-013
ants of spoken Arabic, including MSA, various014
dialects, and code-switching. We provide open-015
source pre-trained models that cover data from016
17 Arabic-speaking countries, and fine-tuned017
MSA and dialectal ASR models that include at018
least 11 variants, as well as multi-lingual ASR019
models covering embedded languages in code-020
swtiched utterances. Our open-source/open-021
weights models achieve the highest coverage022
and generalization for spoken Arabic and SOTA023
performance in all Arabic ASR benchamrks.024

1 Introduction025

The advent of large self-supervised acoustic mod-026

els has transformed speech technology, enabling027

transfer learning and improving performance for028

both high-resource and low-resource languages.029

Prominent examples of such models include vari-030

ous versions of wav2vec (Schneider et al., 2019;031

Baevski et al., 2020), HuBERT (Hsu et al., 2021),032

and SpeechT5 (Ao et al., 2021), which have pre-033

dominantly been trained on English datasets. Their034

multi-lingual variants, e.g. XLS-R (Babu et al.,035

2021) with 53 and 128 languages, in addition to036

many models that include both self-supervised and037

supervised pre-training, such as Whisper (Rad-038

ford et al., 2023) with approximately hundred sup-039

ported languages, MMS (Pratap et al., 2024) with040

thousands of languages, and UniSpeech (Wang041

et al., 2021), underscore the potential for cross- 042

lingual transfer learning for more inclusive ASR. 043

Yet, while these models indeed show great poten- 044

tial for transfer learning to new languages, even 045

those unseen in training (Huang et al., 2013), they 046

remain sub-optimal for specific target languages. A 047

case in point is the Arabic Text and Speech Trans- 048

former (ArTST), a model pre-trained exclusively 049

on Arabic, which has demonstrated superior per- 050

formance for Modern Standard Arabic (MSA), sur- 051

passing larger multilingual models like Whisper 052

and MMS in benchmark tests, in addition to es- 053

tablishing a new state-of-the-art (SOTA) perfor- 054

mance compared to previous efforts for Arabic 055

ASR. This highlights the advantage of monolin- 056

gual pre-training when large amounts of unlabeled 057

data for the target language are available. While 058

the model showed some potential for dialectal cov- 059

erage, it was trained and validated mainly on MSA 060

data, which questions its applicability for spoken 061

dialectal variants of Arabic. Evaluations on code- 062

switched data also showed poor performance of 063

ArTST compared to multi-lingual models (Kadaoui 064

et al., 2024), demonstrating the delicate trade-off 065

between monolingual and multilingual optimiza- 066

tion. Arabic is a pluricentric language (Schup- 067

pler et al., 2024), diverse in regional variations, 068

and models trained on MSA frequently struggle to 069

adapt to these variations. This limitation is partic- 070

ularly acute given that many Arabic dialects are 071

underrepresented and considered low-resource in 072

speech technology research. Consequently, there 073

is a need for optimized ASR systems that embrace, 074

rather than overlook, the linguistic diversity of the 075

Arabic-speaking world. 076

In light of these challenges, we conduct various 077

investigations aimed at understanding and enhanc- 078

ing the dialectal diversity and performance of Ara- 079

bic ASR systems. We focus on four inquiries aimed 080

at optimizing potential strategies for integrating di- 081

alectal variation into ASR systems. First, we mea- 082
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Figure 1: The architecture of SpeechT5/ArTST, which contains an encoder-decoder module and six modal specific
pre/post-nets. During self-supervised pre-training (left), quantized tokens are shared across speech and text
modalities. Hidden states and latent units are mixed up and used as the inputs of the cross-attention module in the
decoder. The fine-tuning stage for ASR is shown on the right. Refer to Ao et al. (2021) for more details.

sure the impact of incorporating a broad collection083

of Arabic dialects during the model’s pre-training084

phase. We hypothesize that a wider dialectal foun-085

dation could improve the model’s performance086

across various dialects in the fine-tuning stage. Sec-087

ond, we quantify the comparative effectiveness of088

dialect-specific fine-tuning versus a more holistic,089

multi-dialectal fine-tuning strategy. The third ques-090

tion examines the model’s capacity for zero-shot091

transfer to dialects not explicitly included in fine-092

tuning. Finally, we evaluate the model on code-093

switched utterances, and examine the effect of mul-094

tilingual pre-training and fine-tuning on both mono-095

lingual and code-switched datasets. Our key find-096

ings from experiments spanning over 17 variants of097

spoken Arabic are: (1) pre-training with more data098

and wider dialectal coverage improves performance099

across most dialectal variants, including MSA, (2)100

multi-dialectal fine-tuning improves performance101

for low-resource dialects, but may not be optimal102

for high-resource dialects, (3) multi-dialectal pre-103

training and fine-tuning has higher potential for104

zero-shot transfer to unseen dialects, and (4) multi-105

lingual pre-training and fine-tuning greatly boosts106

performance on code-switching, while negatively107

impacting monolingual performance due to lan-108

guage interference. Our pretraining checkpoints109

and joint models were trained exclusively on open-110

source data and will be released as open-source,111

open-weights models.112

2 Related Work113

Recent research in Arabic speech recognition, as114

presented in Hussein et al. (2022), demonstrates115

the potential of contemporary deep learning tech- 116

niques in decoding Arabic spoken language. How- 117

ever, this initial success was confined to Modern 118

Standard Arabic (MSA), the formal variant pre- 119

dominant in news broadcasts and official commu- 120

nications. Large-scale multi-lingual ASR models, 121

Whisper (Radford et al., 2023) and MMS (Pratap 122

et al., 2024), cover many languages within their 123

scope, including Arabic. They utilize language 124

embeddings or adapters to enhance language cov- 125

erage and performance within the same model, but 126

their performance across languages vary consider- 127

ably. Toyin et al. (2023) demonstrated state-of-the- 128

art performance in multi-task training for Arabic 129

speech recognition and synthesis, improving over 130

much larger multi-lingual models like Whisper and 131

MMS, but their model was trained and evaluated 132

predominantly on MSA. Kadaoui et al. (2024) eval- 133

uated ArTST, Whisper, and MMS, on the Mixat 134

dataset (Al Ali and Aldarmaki, 2024), and showed 135

that ArTST struggles with code-switching. 136

3 Methodology 137

Based on prior work, we start with the premise 138

that monolingual training is more suitable for max- 139

imizing performance in Arabic ASR. However, the 140

current Arabic SOTA models have limited cover- 141

age of spoken varieties and struggle with code- 142

switching due to their monolingual training. Our 143

objective is to maximize performance while also 144

widening the coverage to include MSA, regional 145

dialects, and instances of code-switching. To that 146

end, we start with the current state-of-the-art model 147

for Arabic, ArTST (Toyin et al., 2023), as the foun- 148
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dation model for our investigation. Figure 1 il-149

lustrates the high-level architecture of ArTST for150

self-supervised pre-training and fine-tuning. This151

model is based on the SpeechT5 approach (Ao152

et al., 2021), and supports multi-modal fine-tuning.153

The model was pre-trained on the MGB2 (Ali et al.,154

2016) dataset, which consists of newswire data,155

mainly in MSA, with a small subset of dialectal156

variants. In this work, we attempt to understand the157

factors that enable both high performance and wide158

coverage; we explore the following questions:159

1. Is pre-training on dialectal data essential160

for improving down-stream dialectal perfor-161

mance, and would it negatively impact MSA162

performance?163

2. Is it better to fine-tune ASR models jointly164

on multiple dialects or fine-tune on a specific165

target dialect?166

3. Can we achieve reasonable zero-shot perfor-167

mance on unseen dialects?168

4. Can we optimize performance in code-169

switched utterances using multilingual pre-170

training?171

5. What is the effect of multilingual pre-training172

and fine-tuning on monolingual Arabic perfor-173

mance? (i.e. language interference).174

The remaining sections detail our experimental175

settings and findings of these questions.176

3.1 Terminology177

For the rest of the paper, we will refer to Arabic178

variants using abbreviations. The categories below179

are based on regions and countries, and do not re-180

flect any official classification of dialectal families:181

MSA: Modern Standard Arabic. This is a com-182

mon official variant of Arabic used in news, books,183

and education. CA: Classical Arabic. This is an184

old variant of Arabic found on religious texts and185

old books. It resembles MSA, but also contains186

outdated lexical items and structures.187

GLF: A broad category of dialects spoken in the188

Arabian Peninsula, in particular the Gulf region,189

which, in our data sources, include SAU: Saudi,190

KUW: Kuwait, UAE, OMA: Oman, QAT: Qatar,191

IRA: Iraq, and YEM: Yemen.192

LEV: Levantine dialects, which, in our data193

sources, include SYR: Syria, JOR: Jordan, LEB:194

Lebanon, and PAL: Palestine.195

NOR: North African dialects, including EGY: 196

Egypt, TUN: Tunisia, MOR: Morocco, ALG: Al- 197

geria, MAU: Mauritania, and SUD: Sudanese. 198

3.2 Pre-Training Data & Settings 199

To examine the effect of pre-training data cover- 200

age on downstream performance, we pre-trained 201

ArTST from scratch1 on both MSA and dialectal 202

data. We sourced our data from various datasets: 203

MGB2 (Ali et al., 2016), QASR (Mubarak et al., 204

2021) MGB3 (Ali et al., 2017), MGB5 (Ali et al., 205

2019), ClArTTS (Kulkarni et al., 2023), ASC (Hal- 206

abi et al., 2016), and Common Voice (Ardila et al., 207

2019). We also used MADAR (Bouamor et al., 208

2018) and NADI (Abdul-Mageed et al., 2023) text 209

datasets for pre-training. In our experiments, we 210

compare the following: 211

• ArTST: This variant is as described in Toyin 212

et al. (2023), pre-trained only on MSA. 213

• Ours-D: In this variant, we use a mixture of 214

MSA and dialectal data in pre-training. 215

• Ours-M: In this variant, we use a mixture 216

of MSA, dialectal, and multilingual data in 217

pre-training. 218

See Table 11 in Appendix B for details of all the 219

datasets used in pre-training. 220

3.3 Dialectal Fine-Tuning 221

The datasets we use for dialectal fine-tuning are 222

shown in Table 1. We collected as many open- 223

source data as needed to maximize coverage of 224

dialects. Note that, for MGB5 and MGB3, as the 225

data is based on YouTube videos, many of the orig- 226

inally referenced videos are no longer available, so 227

at the time of our experiments, only 2.5 hours of 228

training were available for MGB3 and 2 hours for 229

MGB5. Furthermore, multi dialectal datasets, such 230

as MASC (Al-Fetyani et al., 2021), have unbal- 231

anced representation of dialects. The high-resource 232

dialects in our collection include SAU, SYR, EGY, 233

and MSA; each has at least 200 hours of transcribed 234

ASR data. UAE, MOR, JOR, LEB, IRA, and TUN 235

have a medium amount of fine-tuning data between 236

10 and 50 hours. KUW and PAL are low-resource 237

dialects with less than 10 hours of transcribed data 238

in total. Finally, we left ALG, YEM, and SUD 239

from the MASC dataset for zero-shot testing. 240

1We used the scripts and configurations provided in
github.com/mbzuai-nlp/ArTST
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Dataset Dialect Hours Words

QASR MSA 2000 hrs 13.33 M

MGB2 MSA 1000 hrs 7.31 M

MGB3[ASR] EGY 2.83 hrs 18.93 K

MGB5[ASR] MOR 6.74 hrs 56.97 K

SADA (Alharbi et al., 2024) SAU 418 hrs 3.25 M

Mixat (Al Ali and Aldarmaki, 2024) UAE 15 hrs 57.94 K

TARIC-SLU (Mdhaffar et al., 2024) TUN 8 hrs 72.00 K

ParallelCorp (Almeman et al., 2013) MSA 32 hrs 30.66K
GLF 32 hrs 27.26K
LEV 32 hrs 18.43K
EGY 32 hrs 48.56K

MASC (Al-Fetyani et al., 2021) MSA 612.28 hrs 3.80 M
SAU 452.24 hrs 301.92 K
SYR 211.33 hrs 1.06 M
EGY 175.36 hrs 1.03 M
JOR 42.21 hrs 330.83 K
LEB 25.20 hrs 155.76 K
IRA 17.37 hrs 121.12 K
TUN 12.17 hrs 34.34 K
Multiple 10.57 hrs 80.08 K
UAE 9.87 hrs 6.42 K
MOR 8.60 hrs 58.38 K
PAL 6.17 hrs 45.35 K
KUW 4.04 hrs 32.37 K

Table 1: Summary of Dataset Statistics for Fine-Tuning:
Hours of Audio, Word Counts, and Associated Dialects.
Multiple is mix of several dialects not neccessary from
the listed dialects (no information from the source).

Figure 2 illustrates the distribution of dialectal241

data we use for pre-training and fine-tuning our di-242

alectal model. We exclude MSA from the figure as243

it has disproportionally more data than all dialects.244

3.4 Multi-Lingual Fine-Tuning245

In addition to the above dialectal data, we used246

the CommonVoice English, French, and Spanish247

sets for the multi-lingual fine-tuning and code-248

switching experiments described in section 7. En-249

glish and French are commonly spoken in various250

Arabic-speaking countries, and to a lesser extent,251

Spanish is spoken in some parts of North Africa.252

3.5 Experimental Settings253

For partitioning the data into training, development,254

and test sets, we adhered to the official splits pro-255

vided with each dataset. We followed the data256

preparation and training methodology established257

in the original ArTST implementation. For com-258

prehensive details regarding the model architec-259

ture and data preprocessing, readers are directed to260

Toyin et al. (2023).261

Computational Details The pre-training was ex-262

ecuted on a cluster of 4 A100 GPUs over a duration263

of 14 to 21 days for each model. We used Adam264

Figure 2: Distribution of dialectal speech data in pre-
training and fine-tuning. MSA data are not shown.

optimizer with a learning rate of 2 × 10−4, span- 265

ning 335K updates, and a warm-up phase of 64K 266

updates. The maximum speech token length was 267

set at 250K (equivalent to 15.625 seconds). Each 268

fine-tuning experiment was run on one A100 GPU 269

over a duration of 7 days (MGB2, QASR, MASC, 270

SADA) or 2 days for smaller sets (MGB3, MGB5, 271

etc.). We used Adam optimizer with a tri-stage 272

scheduler with learning rate of 6× 10−5. The total 273

computational budget for all experiments is esti- 274

mated to be ∼6000 GPU-hours. 275

Normalization Prior to model training, we im- 276

plemented the same data normalization steps out- 277

lined in Toyin et al. (2023). In addition, we applied 278

post-prediction normalization steps before calcu- 279

lating Word Error Rates (WER), following stan- 280

dard practices in Arabic ASR. All reported results 281

reflect post-normalization performance. The nor- 282

malization script, sourced from a publicly available 283

GitHub repository2, performs orthographic stan- 284

dardization of Alef, Yaa, and Taa characters. 285

4 Effect of Pre-Training Data 286

We first examine the effect of pre-training on down- 287

stream ASR performance. As described in section 288

3.2, we compare a model pre-trained mainly on 289

MSA (ArTST), and ours, trained on additional di- 290

alectal data (henceforth Ours-D). Note that pre- 291

training does not utilize aligned speech and text; 292

it incorporates un-aligned speech and text data for 293

self-supervised learning. For these experiments, 294

we use the same fine-tuning data, and only vary the 295

pre-training sets. 296

2github.com/iamjazzar/arabic-nlp/blob/master/
normalization/orthographic_normalization.py
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System WER(%) CER(%)

From (Hussein et al., 2022):
HMM-DNN 15.80 —
E2E, CTC + LM 16.90 —
E2E, Attention + LM 13.40 —
E2E, CTC , Attention + LM 12.50 —

ArTST + LM (Toyin et al., 2023) 12.78 6.33

Ours-D 12.49 6.44
Ours-D + LM 12.39 6.51

Table 2: Comparing our performance against models
reported in Hussein et al. (2022) and Toyin et al. (2023),
which include the best performing models previously
reported on MGB2.

4.1 Benchmarking MSA Performance297

We first report results on benchmark datasets to298

compare the performance of both models against299

the state of the art. MGB2 is the main benchmark300

for MSA speech recognition. We evaluated the per-301

formance of both ArTST and Our-D models fine-302

tuned in MGB2 in Table 2 compared to existing303

SOTA models. The results show that incorporating304

dialectal data in pre-training does not negatively305

affect the performance on MSA, as we achieve the306

best WER of 12.39%.307

4.2 Benchmarking Dialectal Performance308

Tables 3 and 4 show the performance of the models309

on the dialectal MGB3 (Egyptian) and MGB5 (Mo-310

roccan) benchmarks. Each of these benchmarks311

contain multiple references as dialectal speech has312

no standard spelling. We report the average and313

multi-refrence WER for our model variants, and314

compare against the best model in each challenge,315

as well as the SOTA model in each benchmark.316

Each model is first fine-tuned on MSA, then fine-317

tuned again on the target MGB train sets. We also318

report the results of the large multilingual models:319

Whisper (Radford et al., 2023) and MMS (Pratap320

et al., 2024), fine-tuned on the same set. We refer321

to the Arabic data the models are previously fine-322

tuned on as ‘Adaptation’ data. Starting with MSA323

data before fine-tuning on the target dialect has pre-324

viously been established as an effective strategy for325

dialectal ASR (Ali et al., 2017).326

In MGB3, dialectal pre-training (Ours-D) results327

in about 4% absolute reduction in WER, establish-328

ing a new SOTA result on this benchmark. Smaller329

improvement in terms of Average WER is observed330

for MGB5, where there is no clear advantage ob-331

served using our dialectal version. This difference332

System Adaptation Fine-Tuning AV-WER MR-WER

Aalto MGB2 MGB3 37.50 29.30

Whisper
ComVoice

MGB3 39.04 24.92Fleurs
Covost2

MMS BibleTrans
MGB3 100.04 99.92

NewTestamentRec

ArTST MGB2 MGB3 37.08 29.39

Ours-D MGB2 MGB3 33.20 25.28

Table 3: WER(%) on MGB3 Egyptian ASR. Aalto is
the best system in the MGB3 challenge (Ali et al., 2017)

System Adaptation Fine-Tuning AV-WER MR-WER

RDI-CU MGB2 MGB5 59.40 37.60

Whisper
ComVoice

MGB5 164.13 227.34Fleurs
Covost2

MMS BibleTrans
MGB5 111.89 102.30

NewTestamentRec

ArTST MGB2 MGB5 49.39 27.95

Ours-D MGB2 MGB5 48.91 28.02

Table 4: WER(%) on Moroccan ASR. RDI-CU is the
best system in the MGB5 challenge (Ali et al., 2019)

is likely a result of our pre-training having a lot 333

more Egyptian than Moroccan data (see Figure 2). 334

4.3 Zero-Shot & Fine-Tuning Results 335

To further quantify the effect of dialectal pre- 336

training, we evaluate the performance of our model 337

across different datasets. We first fine-tune models 338

on MSA using MGB2 dataset. We test the model 339

performance on dialects directly (zero-shot) and 340

with dialectal fine-tuning. The results are shown in 341

Table 5. On average, we see improvements in per- 342

formance in both zero-shot and fine-tuning exper- 343

iments using dialectal pre-training (Ours-D) com- 344

pared to MSA-centric pre-training (ArTST). We 345

also see that both models perform better than Whis- 346

per and MMS in zero-shot settings in most cases. 347

There are some exceptions, such as in KUW, where 348

Whisper performs better than all other models, in- 349

cluding the fine-tuned models, but in most cases 350

Ours-D performs best. This underscores the ad- 351

vantage of monolingual models compared to multi- 352

lingual performance, as observed in Toyin et al. 353

(2023) and Radford et al. (2023). In addition, the 354

results underscore the importance of dialectal cov- 355

erage in pre-training: the cases where Ours-D does 356

not perform better than ArTST are all dialects for 357

which pre-training data are limited, such as TUN 358

(no pre-training data) and JOR (smallest dialect 359

size in pre-training). 360

5



Dataset Zero-Shot Fine-Tuning
Whisper MMS ArTST Ours-D ArTST Ours-D

TUN (TARIC-SLU) 138.14 93.54 107.56 106.46 14.70 14.80
MULT (ParallelCorp) 99.17 83.16 128.72 141.92 9.57 9.31
SAU (SADA) 82.16 78.28 39.41 29.77 39.24 29.91
MASC
SAU 48.39 65.30 61.23 58.72 27.40 27.33
SYR 26.65 33.21 21.99 18.37 18.64 17.42
EGY 41.73 66.04 50.87 47.17 38.47 36.43
JOR 28.65 54.63 61.23 34.97 19.72 21.08
LEB 40.95 64.58 35.65 42.66 30.01 28.05
IRA 41.69 59.33 50.46 48.03 31.10 34.64
TUN 47.45 60.58 50.37 46.67 19.26 18.52
MOR 65.87 80.84 78.92 66.87 47.59 49.40
PAL 53.20 83.72 77.94 73.53 55.88 53.53
KUW 36.00 81.71 64.74 52.02 50.29 46.24

Table 5: WER (%) in zero-shot and fine-tuning settings. We compare zero-shot performance of Whisper, MMS,
ArTST, and Ours dialectal pre-training (Ours-D). ArTST and Ours-D are fine-tuned on MGB2 (MSA), whereas
Whisper and MMS are fine-tuned with multi-lingual data, including Arabic.

5 Joint Models & Dialect ID361

So far, models were fine-tuned on MSA, followed362

by additional fine-tuning on the target dialect. This363

results in a separate model per dialect, which incurs364

memory costs and may have practical limitations365

as it requires deploying a specific model for each366

dialect.367

In this section, we assess the relative effective-368

ness of individual dialectal fine-tuning compared369

with joint dialect fine-tuning, where we train a sin-370

gle model for all dialects. To that end, we joined371

multiple dialectal train sets as shown in Table 6.372

From MASC, we excluded ALG, YEM, SUD for373

zero-shot evaluation. The resulting joint corpus374

consists of 12 dialects including MSA, with ap-375

proximately 1,501 hours in total. We fine-tune a376

single joint model using this data.377

Dialect Hours Words Source

MSA 612.28 hrs 3.80 M MASC
SAU 452.24 hrs 301.92 K SADA, MASC
SYR 211.33 hrs 1.06 M MASC
EGY 175.36 hrs 1.03 M MGB3, MASC
JOR 42.21 hrs 330.83 K MASC
LEB 25.20 hrs 155.76 K MASC
IRA 17.37 hrs 121.12 K MASC
TUN 12.17 hrs 34.34 K TARIC-SLU, MASC
UAE 9.87 hrs 6.42 K Mixat, MASC
MOR 8.60 hrs 58.38 K MASC
PAL 6.17 hrs 45.35 K MASC
KUW 4.04 hrs 32.37 K MASC

Table 6: Datasets used to train the joint model.

5.1 Dialect ID 378

We trained another model with the aforementioned 379

joint dataset, but with the inclusion of explicit di- 380

alect identifiers. We augmented the dictionary with 381

special tokens for dialect IDs, and used them to 382

prepend the decoding string: 383

<S> DIALECT T1 T2 ... Tn </S> 384

For inference, we experimented with two strate- 385

gies: (1) Transcribing with dialect forcing, where 386

we manually add the dialect ID to condition the de- 387

coder output; the decoder is forced to start predic- 388

tions with the tokens <S> DIALECT . (2) Transcrib- 389

ing with dialect inference, where we let the model 390

predict the dialect token automatically. We use this 391

approach for zero-shot ASR on unseen dialects. 392

The results of the models trained with joint di- 393

alects compared to models trained on MGB2 and 394

QASR are shown in Table 7. Note that both MGB2 395

and QASR contain mostly MSA, but also a small 396

amounts of various dialects, but their exact distri- 397

bution is unknown. We also show the fine-tuning 398

results from Table 5 for easy comparison. We see 399

that joint modeling results in improvement for low- 400

resource dialects, including: JOR, TUN, and KUW, 401

but degrades performance of the high-resource 402

SYR and EGY dialects. Interestingly, dialect forc- 403

ing was worse on average than joint modeling with 404

no dialect ID, while dialect inference resulted in 405

the best performance overall. We surmise that the 406

model learns dialectal patterns that do not perfectly 407

align with the dialect ID as indicated in the training 408

data. Since the dialect IDs are coarse country-level 409

approximations, letting the model infer the dialect 410
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Approach Zero-Shot Fine-Tuning No Dialect ID Dialect Forcing Dialect Inference
Fine-Tuning Data MGB2 QASR MGB2→ Target Joint Mutli-Dialectal Set (Table 6)
SAU 58.72 43.41 27.33 29.41 30.56 29.94
SYR 18.37 16.20 17.42 19.20 22.41 20.30
EGY 47.17 38.78 36.43 45.17 61.06 46.79
JOR 34.97 25.42 21.08 19.63 21.49 20.11
LEB 42.66 40.51 28.05 28.22 29.43 26.89
IRA 48.03 40.27 36.10 29.33 31.75 30.83
TUN 46.67 45.93 26.67 37.23 28.47 27.74
MOR 66.87 55.42 56.63 57.49 53.89 49.10
PAL 73.53 45.59 53.53 46.22 43.90 44.48
KUW 52.02 45.09 46.24 35.43 39.43 37.71
MSA 21.09 16.78 15.34 11.59 12.66 12.09
Macro Average 46.37 37.58 33.17 32.63 34.09 31.45

Table 7: WER (%) of various models compared with joint dialectal fine-tuning with different dialect ID strategies

that best aligns with the speech is the best approach411

for most cases. Many dialectal sets, such as SYR412

and SAU, contain a lot of MSA utterances that are413

incorrectly identified as dialectal, and low-resource414

dialects, such as KUW, are predicted as their clos-415

est high-resource variant, such as SAU.416

Figure 3 illustrates dialect inference errors. Note417

that the number of errors is proportional to the418

test data size. The overall dialect identification419

performance is around 90%.420

Figure 3: Dialect identification performance: true (left),
predicted (right). All lines are proportional to their ratio
over the total errors except for SAU→MSA, which is
reduced 5 times for clarity.

6 Zero-Shot Performance421

We show the zero-shot performance on the three422

held-out sets: ALG, SUD, and YEM. We compare423

the baseline, ArTST, with our multi-dialectal pre-424

training. We also compare models fine-tuned on425

MGB2, QASR, or our joint dialectal set. The re-426

sults are in Table 8. Our model achives slighly427

System
Dialect ALG SUD YEM

ArTST→MGB2 73.18 69.20 41.64
Ours-D→MGB2 70.82 69.31 39.45
Ours-D→QASR 51.72 46.64 34.78
Ours-D →Joint 45.20 40.69 33.08
Ours-D →Joint (w. dialect inference) 47.12 40.15 31.84

Table 8: WER% of various models on held-out dialects.

lower error rates compared to ArTST, even when 428

fine-tuned on the same MGB2 set. Better perfor- 429

mance is achieved with QASR, which includes 430

some dialectal data. The joint dialectal fine-tuning 431

achieves the best performance on the held-out di- 432

alects. In general, performance in held-out sets 433

is on a par with low-resource dialects, with WER 434

above 30%. Table 13 in the Appendix shows the 435

zero-shot performance after fine-tuning on a single 436

target dialect. 437

7 Code-Switching Performance 438

The models analyzed so far were trained exclu- 439

sively on Arabic data. While small amounts of 440

code-switching (CS) exist in these sources, they 441

are insufficient to learn the characteristics of the 442

embedded languages. Large multi-lingual models 443

are generally more effective on CS data (Kadaoui 444

et al., 2024), even if they are less competent on 445

monolingual Arabic. To make our models more 446

inclusive, improving performance in the presence 447

of code-switching is necessary. To that effect, we 448

train a multilingual version of the model (we will 449

refer to this as Ours-M). The pre-training data 450

for this version are listed in Table 11 in the Ap- 451

pendix. We test Ours-M against Ours-D on avail- 452

able CS data for Arabic: ArZN and TunSwich. 453

These sets cover Egyptian-English and Tunisian- 454

French, respectively. In addition, we train a joint 455
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Languages Hours Words Source

EN 1601.92 hrs 10.35 M CommonVoice
FR 732.02 hrs 5.03 M CommonVoice
SP 408.34 hrs 2.79 M CommonVoice
TUN-FR 10.89 hrs 70.86 K TunSwitch
UAE-EN 8.97 hrs 57.82 K Mixat
EGY-EN 5.61 hrs 52.00 K ArzEn

Table 9: Additional datasets used to train the joint mul-
tilingual model.

multi-lingual model. In addition to the datasets456

described in Table 6, we add the multi-lingual and457

code-switching data shown in Table 9. The results458

are shown in Table 10. First, for models fine-tuned459

directly on the target set, we observe that multi-460

lingual pre-training significantly improves perfor-461

mance across all CS test sets, resulting in around462

30% absolute reductions in WER for ArzEn and463

TunSwitch. This clearly illustrates the advantage464

of multi-lingual models in code-switching scenar-465

ios. We also evaluated models initialized from the466

joint models followed by target fine-tuning on the467

CS train sets, and this reduced error rates further.468

The effect is much larger on Ours-D with up to469

40% WER reduction, which may be attributed to470

instances of code-switching in the joint set.471

Pre-training Joint Fine-Tuning

Dataset Language Ours-D Ours-M Ours-D Ours-M

MGB2 MSA 12.5 13.0 - -

ArzEn EGY-EN 73.0 39.3 32.2 32.2
TunSwitch TUN-FR 64.5 34.0 35.0 29.2

Table 10: ASR Results using our dialectal model (Ours-
D) vs. multi-lingual model (Ours-M). We compare mod-
els trained directly from pre-trained checkpoint vs. start-
ing with the joint model with no dialect/language ID.

Language Interference: We test the effect of472

multi-lingual pre-training on MSA performance.473

Language interference is known to negatively af-474

fect monolingual performance (Toyin et al., 2023),475

so we test our multi-lingual model on the MGB2476

benchmark to quantify this effect (see Table 10).477

The model achieves 13.0% WER, which is indeed478

worse than the SOTA result we achieve with the479

Arabic-only model (see Table 2), but the difference480

at 0.5% absolute WER is rather small. When it481

comes to dialects, however, we find that language482

interference has a significant negative effect, result-483

ing in 4% to 16% absolute increase in error rates,484

as shown in Figure 4.485

Figure 4: WER (%) and absolute difference on a subset
of dialects, comparing our joint dialectal fine-tuning vs.
joint multi-lingual fine-tuning on Arabic dialects.

8 Conclusions 486

We presented the largest study on dialectal Ara- 487

bic ASR to empirically demonstrate the effect of 488

various training paradigms on ASR performance. 489

We compared models pre-trained with and with- 490

out dialects, in high, low, and medium-resource 491

settings, in addition to zero-shot. We find that 492

overall, dialectal pre-training improves perfor- 493

mance in zero-shot and low-resource cases, and 494

mostly maintains performance on MSA and high- 495

resource dialects. We also find that all dialects 496

benefit from adaptation of models pre-fine-tuned 497

on MSA, and this effect is most noticeable for low 498

and medium-resource dialects. We experimented 499

with multi-dialectal fine-tuning, where we joined 500

the train sets of 12 dialects. We observe perfor- 501

mance improvements on average, and at least the 502

same performance as the target-dialect fine-tuning 503

setting, and the best performance on held-out di- 504

alects. Interestingly, while using dialect ID in de- 505

coding is effective, forcing the dialect ID results 506

in worse performance compared to dialect in- 507

ference. While joint training results in improved 508

performance for the medium and low-resource 509

dialects, target-dialect fine-tuning is more ef- 510

fective for high-resource dialects. Finally, we 511

experimented with multi-lingual pre-training and 512

fine-tuning for improving performance on code- 513

switched utterances, and achieved significant re- 514

ductions in error rates on all available test sets. 515

However, reductions in monolingual performance 516

were also observed due to language interference. 517

To enable easier adoption and further experiments, 518

we will release the pre-trained dialectal and multi- 519

lingual checkpoints, the fine-tuned MGB2 models, 520

and the joint dialectal and multilingual models with 521

dialect inference. 522
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Limitations523

One of the limitations in dialect-related work is524

the coarse classification of dialect IDs; dialects in525

our datasets are classified by regions or countries,526

whereas actual dialectal variations are far more fine-527

grained. For example, the Saudi dataset, SADA,528

covers a large geographical area and many dialects,529

but it is considered as one dialect based on our530

classification. Moreover, the way the datasets are531

collected do not guarantee that the data are indeed532

dialectal. For instance, with manual inspection533

of the Syrian test and dev sets from MASC, we534

observed that all instances are in MSA rather than535

Syrian dialects. In addition, Arabic dialects are spo-536

ken varieties that do not have a standard spelling537

system. This results in large variations in tran-538

scriptions, but standard WER does not account for539

these variations, resulting in more pessimistic re-540

sults. With the exception of the MGB3 and MGB5541

benchmarks where we report average and multi-542

reference WER across 4 references, all datasets543

have only a single reference.544
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(SAU)

(SYR)

(EGY)

(JOR)

(LEB)

(IRA)

(TUN)

(MOR)

(PAL)

(KUW)

 فعشان كذا راح اخليكم تكملون ذاك الفلوق وبرجعلكم بعده
فعشان كذا راح اخليكم تكملون ذاك الفلوق وبرجع لكم بعده
 
وصف المجتمع الاسلامي من بعده في اخر الزمان بالمجتمع الكاف
فعشان كذا راح اخليكم تكملون ذاك الفلوق وبرجع لكم بعدها

وصف المجتمع الاسلامي من بعده في اخر الزمان بالمجتمع الكافر
وصف المجتمع الاسلامي من بعده في اخر الزمان بالمجتمع الكاف

و ياريت الناس اللي بتكتب اسماء الشهور تكتب اسماء سهل ان هي تتحف
وصف المجتمع الاسلامي من بعده في اخر الزمان بالمجتمع الكافر

 و ياريت الناس اللي بتكتب اسماء الشهور تكتب اسماء سهل ان هي تتحفظ
وياليت الناس اللي تكتب اسماء الشهور تكتب اسماء سهل انها تتحف
 
ولادنا ذوي الاحتياجات الخاصه بدهم وقت اطول بالنسبه لهاي الاشيا
وياليت الناس اللي تكتب اسماء الشهور تكتب اسماء سهل انها تتحفظ

  ولادنا ذوي الاحتياجات الخاصه بدهم وقت اطول بالنسبه لهاي الاشياء
ولادنا بالاحتياجات الخاصه بدهم وقت اطول بالنسبه لهالاشيا

و كل واحد بيامن فيه بيلاقي باب السما مفتوح على اخر
ولادنا بالاحتياجات الخاصه بدهم وقت اطول بالنسبه لهالاشياء

  و كل واحد بيامن فيه بيلاقي باب السما مفتوح على اخرو
وكل واحد بيامن فيه بيلاقب بالسما مفتوح على اخر
  
بعدين اجى حيوان قوي مغطي بفرو لونه برتقالي وخطوط سو
وكل واحد بيامن فيه بيلاقب بالسما مفتوح على اخرو

   
   

   و على خاطر انور و التوانسه الي كيفو يحبو يقدمو في خدمتهم ادارتي قربتلهم
وعلى خاطر انور و توانس الي كيفو يحبو يقدمو في خدمتهم اداره قربتله
   
وبالضبط بعد بدايه الانتشار الاخير لايبو
وعلى خاطر انور و توانس الي كيفو يحبو يقدمو في خدمتهم اداره قربتلهم

 وبالضبط بعد بدايه الانتشار الاخير لايبولا
وبالضبط بعده في تهيئه الانتشار الاخير لوباء ايبو
   
يعقم نفسه انه كيف ما يتقدمش على الاطفال الثانيه او ممكن يقدم على
وبالضبط بعده في تهيئه الانتشار الاخير لوباء ايبولا

 
 الشخص الثاني
نفسه انه كيف ما يتجزمش على الاطفال الثاني او ممكن يقدم على الشق

 

لكن الفيديو الاخير جدا قوي ورح يغير وجهه نظركم ع
الثاني

 لكن الفيديو الاخير جدا قوي ورح يغير وجهه نظركم عن
لكن الفيديو الاخير جدا قوي راح يغير وجهه النظر كم عل
  لكن الفيديو الاخير جدا قوي راح يغير وجهه النظر كم علي









    بعدين اجى حيوان قوي مغطي بفرو لونه برتقالي وخطوط سود
عدين تجي حيوان قوي مغطى الفرو لونه برتقالي خطوط شو

 



  يعقم نفسه انه كيف ما يتقدمش على الاطفال الثانيه او ممكن يقدم على الشخص الثان











    
و على خاطر انور و التوانسه الي كيفو يحبو يقدمو في خدمتهم ادارتي قربتله
عدين تجي حيوان قوي مغطى الفرو لونه برتقالي خطوط شود

 

 

  نفسه انه كيف ما يتجزمش على الاطفال الثاني او ممكن يقدم على الشق الثان

 

Figure 5: Examples of dialectal recognition after tar-
geted fine-tuning, following MGB2 adaptation.
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Dataset Dialect Hours Words ArTST Ours-D Ours-M
ASC MSA 3.7 hrs 20.58 K ✓ ✓

ArzEn[cs] EGY 5.61 52.00 K ✓
CommonVoice Dialect Mix 133.24 hrs 494.83 K ✓ ✓

CommonVoice
ENG 1601.92 10.35 M ✓
FR 732.02 5.03 M ✓
ES 408.34 2.79 M ✓

ClArTTS CA 12 hrs 76.31 K ✓ ✓

ESCWA[cs]
ALG ✓
TUN ✓
MOR ✓

MASC

EGY 175.36 hrs 1.03 M ✓
IRA 17.37 hrs 121.12 K ✓
JOR 42.21 hrs 330.83 K ✓

KUW 4.04 hrs 32.37 K ✓
LEB 25.20 hrs 155.76 K ✓
MOR 8.60 hrs 58.38 K ✓
MSA 612.28 hrs 3.80 M ✓
PAL 6.17 hrs 45.35 K ✓
SAU 452.24 hrs 301.92 K ✓
SYR 211.33 hrs 1.06 M ✓
TUN 12.17 hrs 34.34 K ✓
UAE 9.87 hrs 6.42 K ✓

MGB2 Mostly MSA 1000 hrs 7.31 M ✓ ✓ ✓
QASR Mostly MSA 2000 hrs 13.33 M ✓ ✓
MGB3[ASR] EGY 2.83 hrs 18.93 K ✓ ✓
MGB3[ADI] EGY 11.15 hrs — ✓ ✓

GLF 8.92 hrs — ✓ ✓
LAV 9.27 hrs — ✓ ✓
MSA 9.39 hrs — ✓ ✓
NOR 9.49 hrs — ✓ ✓

MGB5[ADI] ALG 115.7hrs — ✓ ✓
EGY 451.1 hrs — ✓ ✓
IRA 815.8 hrs — ✓ ✓
JOR 25.9 hrs — ✓ ✓
KSA 186.1 hrs — ✓ ✓
KUW 108.2 hrs — ✓ ✓
LEB 116.8 hrs — ✓ ✓
LIB 127.4 hrs — ✓ ✓

MAU 456.4 hrs — ✓ ✓
MOR 57.8 hrs — ✓ ✓
OMA 58.5 hrs — ✓ ✓
PAL 121.4 hrs — ✓ ✓
QAT 62.3 hrs — ✓ ✓
SUD 47.7 hrs — ✓ ✓
SYR 119.5 hrs — ✓ ✓
UAE 108.4 hrs — ✓ ✓
YEM 53.4 hrs — ✓ ✓

Mixat UAE 9.97 hrs 57.82 K ✓
ParallelCorp EGY 32 hrs 48.56 K ✓

GLF 32 hrs 27.26 K ✓
LEV 32 hrs 18.43 K ✓
MSA 32 hrs 30.66 K ✓

MADAR
MOR ALG TUN

— 532.37K ✓ ✓LIB EGY LEV
IRA GLF YEM

NADI

ALG BAH EGY

— 702.67K ✓ ✓

IRA JOR KUW
LEB LIB MOR
OMN PAL QAT
SAU SUD SYR
TUN UAE YEM

SADA SAU ✓
TARIC-SLU TUN ✓

TunSwitch[cs] TUN 10.89 hrs 70.86K ✓

Table 11: Summary of Dataset Statistics for Pre-Training: Hours of Audio, Word Counts, and Associated Dialects.
*[cs] refers to Code Switching datasets. *[txt] refers to textual datasets.
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Fine-Tuning
Adaptation

— MGB2 QASR

MGB3 136.52 25.28 19.53
MGB5 94.84 28.02 27.58
TARIC-SLU 30.46 14.80 14.48
ParallelCorp 28.97 9.31 9.08
SADA 29.77 29.91 29.55
Mixat 100.0 33.40 35.21

Table 12: WER (%) of fine-tuned models on various
datasets with different adaptation methods: —: no adap-
tation, MGB2, or QASR.

C Effect of Data Adaptation699

In the above experiments, we followed the strat-700

egy of initializing the models by first fine-tuning701

on MSA data. In most cases, we used MGB2 as702

the base model, following previously established703

results on Egyptian ASR (Ali et al., 2017). This704

adaptation approach is meant to enhance the perfor-705

mance on low-resource dialects, facilitating faster706

convergence with limited training samples. How-707

ever, as pre-training on more diverse sets proved708

to be effective, adaptation on more diverse data is709

also likely to be fruitful. As observed in Table 7,710

models trained on QASR resulted in far better zero-711

shot performance, approaching the performance712

of joint-dialects models. This is attributed to the713

fact that QASR is both larger in size and known714

to have more dialectal data compared to MGB2715

(but both have no documented statistics of dialectal716

coverage). To validate this observation, we experi-717

mented with dialectal fine-tuning adapted from two718

variants: one based on MGB2 and one based on719

QASR (Mubarak et al., 2021), followed by dialect-720

specific fine-tuning. Table 4 shows fine-tuning re-721

sults with no adaptation (directly fine-tuning on the722

target dialect), compared with starting from MGB2723

or QASR. First, our results corroborate the previous724

findings that adapting models from MSA results725

in large reduction in error rates. In all except the726

Mixat dataset, starting from QASR results in better727

performance compared to MGB2. However, the728

difference is negligible except on MGB3 Egyptian729

set (around 10% absolute WER reduction). There730

are two factors that we speculate underline this731

result: The small size of the MGB3 set, and the732

existence of Egyptian dialect in the QASR corpus733

more substantially than the other dialects. Overall,734

using the QASR dataset as a basis for adapting di-735

alectal models is recommended as it improves or736

maintains performance.737

Figure 5 lists examples of ASR outputs using738

True (Algeria):

Inference from (SAU) dialect

Inference from (SYR) dialect

Inference from (EGY dialect

Inference from (JOR) dialect

Inference from (LEB) dialect

Inference from (IRA) dialect

Inference from (TUN) dialect

Inference from (MOR) dialect

Inference from (PAL) dialect

Inference from (KUW) dialect

Inference from (UAE) dialect
 


True (Sudan):

Inference from (SAU) dialect

Inference from (SYR) dialect

Inference from (EGY dialect

Inference from (JOR) dialect

Inference from (LEB) dialect

Inference from (IRA) dialect

Inference from (TUN) dialect

Inference from (MOR) dialect

Inference from (PAL) dialect

Inference from (KUW) dialect

Inference from (UAE) dialect 


True (Yemen):

Inference from (SAU) dialect

Inference from (SYR) dialect

Inference from (EGY dialect

Inference from (JOR) dialect

Inference from (LEB) dialect

Inference from (IRA) dialect

Inference from (TUN) dialect

Inference from (MOR) dialect

Inference from (PAL) dialect

Inference from (KUW) dialect

Inference from (UAE) dialect
       

الحمد لله انا لما اجيت يعني كنت خايف
الحمدلله انا لما جيت يعني كنت خاي
الحمدلله انا لما جيت يعني كنت خايف
والحمد لله انا عندما اجيت عليكم بخي
والحمد لله انا عندما اجيت عليكم بخير
لكن الحمد لله لما لا جيت يعني كنت خاي

لكن الحمد لله لما لا جيت يعني كنت خايف
الحمد لله انا لما جيت يعني كنت خاي
الحمد لله انا لما جيت يعني كنت خايف
الحمد لله انا لما جيت ع لون الخي

الحمد لله انا لما جيت ع لون الخيف
الحمد لله انا لما جيت يعني كنت خي
الحمد لله انا لما جيت يعني كنت خيف
الحمد لله انا لما جيت على كنت خاي
الحمد لله انا لما جيت على كنت خايف
الحمد لله انا لما جيت على كنت خاي
الحمد لله انا لما جيت على كنت خايف
الحمد لله انا لما جيت يعني كنت خاي

الحمد لله انا لما جيت يعني كنت خايف
الحمد لله انا لما جيت يعني كنت خاي
الحمد لله انا لما جيت يعني كنت خايف
الحمد لله انا لما جيت يعني كنت خي

ما ادري ليش تجيني تعليقات زي كد
الحمد لله انا لما جيت يعني كنت خيف 

ما ادري ليش تجيني تعليقات زي كده
ما ادري ليش جيت تعليقات زي كذ
ما ادري ليش جيت تعليقات زي كذا
ما عادوا لي سجين تعليقات زي كد
ما عادوا لي سجين تعليقات زي كدا
ما هذا ليس جيد تعليقات زي كد

ما هذا ليس جيد تعليقات زي كده
ما ادوا ليش جيت تعليقات زي كد
ما ادوا ليش جيت تعليقات زي كدا
ما زالت جيده علاقات زايقته


ما زالت جيده علاقات زايقتها
ما ادوا لسجين تعليقات زي كذا
Iما ادوا لسجين تعليقات زي كذ
ماهو لاش جي تعليقات زي كدا
ما هذا الشيء تعليقات زي كدIماهو لاش جي تعليقات زي كد

ما هذا الشيء تعليقات زي كدا
ما ادوا ليش جيت تعليقات زي كد
ما ادوا ليش جيت تعليقات زي كدا
ما ذا ليش جيت تعليقات زي كذ

ما ذا ليش جيت تعليقات زي كذا ما دوا ليش جي تعليقات زي كذ

امال ايش الشيء الذي بيكون مهم طي
ما دوا ليش جي تعليقات زي كذا

امال ايش الشيء الذي بيكون مهم طيب
عمال ايش الشي الذي بيكون مهم طي

عمال ايش الشي الذي بيكون مهم طيب

and this the the becomالعمال يشيش هي الذي بيكون مهم طي المهم طي
المهم طيب
العمال يشيش هي الذي بيكون مهم طيب
عمال ايش الشيء الذي يكون مهم طي

عمال ايش الشيء الذي يكون مهم طيب
عمالي شي الشي الذي يكون مهم طي
عمالي شي الشي الذي يكون مهم طيب
العمال يشيش هي الذي بيكون مهم طي

العمال يشيش هي الذي بيكون مهم طيب
عمال ايش الشي الذي يكون مهم طي
عمال ايش الشي الذي يكون مهم طيب
عمال ليس الشيء الذي يكون مهم طي

عمال ليس الشيء الذي يكون مهم طيب
عمال ايش الشيء الذي بيكون مهم طي
عمال ايش الشيء الذي بيكون مهم طيب
عمال ليش الشي الذي يكون مهم طي

عمال ليش الشي الذي يكون مهم طيب
عمال ليش الشي الذي بيكون مهم طي
       
عمال ليش الشي الذي بيكون مهم طيب

Figure 6: Example of ASR outputs on held-out dialects
from dialect-specific fine-tuning.

the dialect-specific fine-tuned models. Note that 739

the ‘errors’ in SAU, EGY, and JOR examples are 740

in fact alternative spellings. 741

D Cross-Dialectal Performance 742

Table 13 shows the cross-dialectal performance, 743

where models trained on a single target dialect are 744

tested on other dialects, including the three held- 745

out sets: ALG, SUD, and YEM. In most cases, the 746

best performance is achieved by the model trained 747

on the same target dialect (the diagonal in Table 748

13). However, for low-resource dialects, like KUW 749

and PAL, the model trained on SAU achieved the 750

lowest WER. This is likely a result of the large size 751

of the SAU train set and the wide geographical area 752

and dialectal variants it covers. Curiously, all mod- 753

els perform well on the SYR test set; upon close 754

inspection, we found that the set consists mostly of 755

MSA utterances, which explains the result since all 756

models are adapted from MSA. 757
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Dialect Fine-Tuning Set
SAU(%) SYR(%) EGY(%) JOR(%) LEB(%) IRA(%) TUN(%) MOR(%) PAL(%) KUW(%) UAE(%)

test set

SAU 27.33 53.88 63.24 43.95 56.64 46.10 49.36 50.02 45.48 46.85 46.14
SYR 19.54 17.42 23.91 16.88 25.71 16.85 24.36 17.58 16.86 17.38 17.53
EGY 38.07 53.43 36.43 40.08 51.61 41.37 45.58 43.88 40.41 41.88 40.38
JOR 22.88 30.37 34.14 21.08 28.11 28.68 32.96 30.50 25.25 27.88 28.05
LEB 41.03 42.53 53.23 39.07 28.05 41.23 48.53 42.34 41.55 42.14 40.97
IRA 35.18 49.10 56.91 40.47 46.72 36.10 47.84 42.55 40.76 41.00 42.16
TUN 44.44 57.78 51.85 46.67 45.19 45.19 26.67 44.44 47.41 46.67 47.41
MOR 59.04 71.69 74.70 54.82 69.88 57.23 74.70 56.63 56.02 59.64 57.83
PAL 48.53 66.18 62.65 52.35 60.59 58.53 60.00 63.24 53.53 58.53 60.59

KUW 26.59 59.54 78.03 43.93 67.63 46.82 53.18 51.45 44.51 46.24 50.87

held-out
ALG 50.21 60.09 73.61 52.58 62.02 57.51 57.51 59.01 52.79 58.37 57.30
SUD 40.89 64.97 64.32 53.15 64.86 54.12 56.51 58.79 52.39 56.18 55.53
YEM 38.40 42.16 38.49 34.68 39.69 34.92 30.68 35.73 33.06 34.68 34.11

Table 13: (WER(%) for various models on unseen dialects. All models are adapted from v2→MGB2.
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