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Abstract

Developing robust automatic speech recogni-
tion (ASR) systems for Arabic requires effec-
tive strategies to manage its diversity. Exist-
ing ASR systems mainly cover the modern
standard Arabic (MSA) variety and few high-
resource dialects, but fall short in coverage
and generalization across the multitude of spo-
ken variants. Code-switching with English and
French is also common in different regions of
the Arab world, which challenges the perfor-
mance of monolingual Arabic models. In this
work, we introduce a suite of ASR models op-
timized to effectively recognize multiple vari-
ants of spoken Arabic, including MSA, various
dialects, and code-switching. We provide open-
source pre-trained models that cover data from
17 Arabic-speaking countries, and fine-tuned
MSA and dialectal ASR models that include at
least 11 variants, as well as multi-lingual ASR
models covering embedded languages in code-
swtiched utterances. Our open-source/open-
weights models achieve the highest coverage
and generalization for spoken Arabic and SOTA
performance in all Arabic ASR benchamrks.

1 Introduction

The advent of large self-supervised acoustic mod-
els has transformed speech technology, enabling
transfer learning and improving performance for
both high-resource and low-resource languages.
Prominent examples of such models include vari-
ous versions of wav2vec (Schneider et al., 2019;
Baevski et al., 2020), HuBERT (Hsu et al., 2021),
and SpeechT5 (Ao et al., 2021), which have pre-
dominantly been trained on English datasets. Their
multi-lingual variants, e.g. XLS-R (Babu et al.,
2021) with 53 and 128 languages, in addition to
many models that include both self-supervised and
supervised pre-training, such as Whisper (Rad-
ford et al., 2023) with approximately hundred sup-
ported languages, MMS (Pratap et al., 2024) with
thousands of languages, and UniSpeech (Wang

et al., 2021), underscore the potential for cross-
lingual transfer learning for more inclusive ASR.
Yet, while these models indeed show great poten-
tial for transfer learning to new languages, even
those unseen in training (Huang et al., 2013), they
remain sub-optimal for specific target languages. A
case in point is the Arabic Text and Speech Trans-
former (ArTST), a model pre-trained exclusively
on Arabic, which has demonstrated superior per-
formance for Modern Standard Arabic (MSA), sur-
passing larger multilingual models like Whisper
and MMS in benchmark tests, in addition to es-
tablishing a new state-of-the-art (SOTA) perfor-
mance compared to previous efforts for Arabic
ASR. This highlights the advantage of monolin-
gual pre-training when large amounts of unlabeled
data for the target language are available. While
the model showed some potential for dialectal cov-
erage, it was trained and validated mainly on MSA
data, which questions its applicability for spoken
dialectal variants of Arabic. Evaluations on code-
switched data also showed poor performance of
ArTST compared to multi-lingual models (Kadaoui
et al., 2024), demonstrating the delicate trade-off
between monolingual and multilingual optimiza-
tion. Arabic is a pluricentric language (Schup-
pler et al., 2024), diverse in regional variations,
and models trained on MSA frequently struggle to
adapt to these variations. This limitation is partic-
ularly acute given that many Arabic dialects are
underrepresented and considered low-resource in
speech technology research. Consequently, there
is a need for optimized ASR systems that embrace,
rather than overlook, the linguistic diversity of the
Arabic-speaking world.

In light of these challenges, we conduct various
investigations aimed at understanding and enhanc-
ing the dialectal diversity and performance of Ara-
bic ASR systems. We focus on four inquiries aimed
at optimizing potential strategies for integrating di-
alectal variation into ASR systems. First, we mea-
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Figure 1: The architecture of SpeechT5/ArTST, which contains an encoder-decoder module and six modal specific
pre/post-nets. During self-supervised pre-training (left), quantized tokens are shared across speech and text
modalities. Hidden states and latent units are mixed up and used as the inputs of the cross-attention module in the
decoder. The fine-tuning stage for ASR is shown on the right. Refer to Ao et al. (2021) for more details.

sure the impact of incorporating a broad collection
of Arabic dialects during the model’s pre-training
phase. We hypothesize that a wider dialectal foun-
dation could improve the model’s performance
across various dialects in the fine-tuning stage. Sec-
ond, we quantify the comparative effectiveness of
dialect-specific fine-tuning versus a more holistic,
multi-dialectal fine-tuning strategy. The third ques-
tion examines the model’s capacity for zero-shot
transfer to dialects not explicitly included in fine-
tuning. Finally, we evaluate the model on code-
switched utterances, and examine the effect of mul-
tilingual pre-training and fine-tuning on both mono-
lingual and code-switched datasets. Our key find-
ings from experiments spanning over 17 variants of
spoken Arabic are: (1) pre-training with more data
and wider dialectal coverage improves performance
across most dialectal variants, including MSA, (2)
multi-dialectal fine-tuning improves performance
for low-resource dialects, but may not be optimal
for high-resource dialects, (3) multi-dialectal pre-
training and fine-tuning has higher potential for
zero-shot transfer to unseen dialects, and (4) multi-
lingual pre-training and fine-tuning greatly boosts
performance on code-switching, while negatively
impacting monolingual performance due to lan-
guage interference. Our pretraining checkpoints
and joint models were trained exclusively on open-
source data and will be released as open-source,
open-weights models.

2 Related Work

Recent research in Arabic speech recognition, as
presented in Hussein et al. (2022), demonstrates

the potential of contemporary deep learning tech-
niques in decoding Arabic spoken language. How-
ever, this initial success was confined to Modern
Standard Arabic (MSA), the formal variant pre-
dominant in news broadcasts and official commu-
nications. Large-scale multi-lingual ASR models,
Whisper (Radford et al., 2023) and MMS (Pratap
et al., 2024), cover many languages within their
scope, including Arabic. They utilize language
embeddings or adapters to enhance language cov-
erage and performance within the same model, but
their performance across languages vary consider-
ably. Toyin et al. (2023) demonstrated state-of-the-
art performance in multi-task training for Arabic
speech recognition and synthesis, improving over
much larger multi-lingual models like Whisper and
MMS, but their model was trained and evaluated
predominantly on MSA. Kadaoui et al. (2024) eval-
uvated ArTST, Whisper, and MMS, on the Mixat
dataset (Al Ali and Aldarmaki, 2024), and showed
that ArTST struggles with code-switching.

3 Methodology

Based on prior work, we start with the premise
that monolingual training is more suitable for max-
imizing performance in Arabic ASR. However, the
current Arabic SOTA models have limited cover-
age of spoken varieties and struggle with code-
switching due to their monolingual training. Our
objective is to maximize performance while also
widening the coverage to include MSA, regional
dialects, and instances of code-switching. To that
end, we start with the current state-of-the-art model
for Arabic, ArTST (Toyin et al., 2023), as the foun-



dation model for our investigation. Figure 1 il-
lustrates the high-level architecture of ArTST for
self-supervised pre-training and fine-tuning. This
model is based on the SpeechT5 approach (Ao
et al., 2021), and supports multi-modal fine-tuning.
The model was pre-trained on the MGB2 (Ali et al.,
2016) dataset, which consists of newswire data,
mainly in MSA, with a small subset of dialectal
variants. In this work, we attempt to understand the
factors that enable both high performance and wide
coverage; we explore the following questions:

1. Is pre-training on dialectal data essential
for improving down-stream dialectal perfor-
mance, and would it negatively impact MSA
performance?

2. Is it better to fine-tune ASR models jointly
on multiple dialects or fine-tune on a specific
target dialect?

3. Can we achieve reasonable zero-shot perfor-
mance on unseen dialects?

4., Can we optimize performance in code-
switched utterances using multilingual pre-
training?

5. What is the effect of multilingual pre-training
and fine-tuning on monolingual Arabic perfor-
mance? (i.e. language interference).

The remaining sections detail our experimental
settings and findings of these questions.

3.1 Terminology

For the rest of the paper, we will refer to Arabic
variants using abbreviations. The categories below
are based on regions and countries, and do not re-
flect any official classification of dialectal families:

MSA: Modern Standard Arabic. This is a com-
mon official variant of Arabic used in news, books,
and education. CA: Classical Arabic. This is an
old variant of Arabic found on religious texts and
old books. It resembles MSA, but also contains
outdated lexical items and structures.

GLF: A broad category of dialects spoken in the
Arabian Peninsula, in particular the Gulf region,
which, in our data sources, include SAU: Saudi,
KUW: Kuwait, UAE, OMA: Oman, QAT: Qatar,
IRA: Iraq, and YEM: Yemen.

LEV: Levantine dialects, which, in our data
sources, include SYR: Syria, JOR: Jordan, LEB:
Lebanon, and PAL: Palestine.

NOR: North African dialects, including EGY:
Egypt, TUN: Tunisia, MOR: Morocco, ALG: Al-
geria, MAU: Mauritania, and SUD: Sudanese.

3.2 Pre-Training Data & Settings

To examine the effect of pre-training data cover-
age on downstream performance, we pre-trained
ArTST from scratch! on both MSA and dialectal
data. We sourced our data from various datasets:
MGB2 (Ali et al., 2016), QASR (Mubarak et al.,
2021) MGB3 (Ali et al., 2017), MGB5 (Ali et al.,
2019), CIACTTS (Kulkarni et al., 2023), ASC (Hal-
abi et al., 2016), and Common Voice (Ardila et al.,
2019). We also used MADAR (Bouamor et al.,
2018) and NADI (Abdul-Mageed et al., 2023) text
datasets for pre-training. In our experiments, we
compare the following:

* ArTST: This variant is as described in Toyin
et al. (2023), pre-trained only on MSA.

e Ours-D: In this variant, we use a mixture of
MSA and dialectal data in pre-training.

e Ours-M: In this variant, we use a mixture
of MSA, dialectal, and multilingual data in
pre-training.

See Table 11 in Appendix B for details of all the
datasets used in pre-training.

3.3 Dialectal Fine-Tuning

The datasets we use for dialectal fine-tuning are
shown in Table 1. We collected as many open-
source data as needed to maximize coverage of
dialects. Note that, for MGB5 and MGB3, as the
data is based on YouTube videos, many of the orig-
inally referenced videos are no longer available, so
at the time of our experiments, only 2.5 hours of
training were available for MGB3 and 2 hours for
MGBS5. Furthermore, multi dialectal datasets, such
as MASC (Al-Fetyani et al., 2021), have unbal-
anced representation of dialects. The high-resource
dialects in our collection include SAU, SYR, EGY,
and MSA; each has at least 200 hours of transcribed
ASR data. UAE, MOR, JOR, LEB, IRA, and TUN
have a medium amount of fine-tuning data between
10 and 50 hours. KUW and PAL are low-resource
dialects with less than 10 hours of transcribed data
in total. Finally, we left ALG, YEM, and SUD
from the MASC dataset for zero-shot testing.

'We used the scripts and configurations provided in
github.com/mbzuai-nlp/ArTST
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Dataset Dialect Hours Words
QASR MSA 2000 hrs  13.33M
MGB2 MSA 1000 hrs 731 M
MGB3[ASR] EGY 2.83hrs  18.93K
MGBS5[ASR] MOR 6.74hrs 5697 K
SADA (Alharbi et al., 2024) SAU 418 hrs 325M
Mixat (Al Ali and Aldarmaki, 2024) UAE I15hrs  57.94K
TARIC-SLU (Mdhaffar et al., 2024) TUN 8hrs  72.00K
ParallelCorp (Almeman et al., 2013) MSA 32 hrs 30.66K
GLF 32 hrs 27.26K
LEV 32 hrs 18.43K
EGY 32 hrs 48.56K
MASC (Al-Fetyani et al., 2021) MSA 612.28 hrs 3.80 M
SAU 45224 hrs 301.92 K
SYR 211.33 hrs 1.06 M
EGY 175.36 hrs 1.03M
JOR 4221 hrs  330.83K
LEB 2520 hrs  155.76 K
IRA 17.37hrs  121.12K
TUN 1217 hrs  34.34K
Multiple ~ 10.57 hrs ~ 80.08 K
UAE 9.87 hrs 6.42 K
MOR 8.60hrs  58.38K
PAL 6.17hrs  4535K
KUwW 4.04hrs  32.37K

Table 1: Summary of Dataset Statistics for Fine-Tuning:
Hours of Audio, Word Counts, and Associated Dialects.
Multiple is mix of several dialects not neccessary from
the listed dialects (no information from the source).

Figure 2 illustrates the distribution of dialectal
data we use for pre-training and fine-tuning our di-
alectal model. We exclude MSA from the figure as
it has disproportionally more data than all dialects.

3.4 Multi-Lingual Fine-Tuning

In addition to the above dialectal data, we used
the CommonVoice English, French, and Spanish
sets for the multi-lingual fine-tuning and code-
switching experiments described in section 7. En-
glish and French are commonly spoken in various
Arabic-speaking countries, and to a lesser extent,
Spanish is spoken in some parts of North Africa.

3.5 Experimental Settings

For partitioning the data into training, development,
and test sets, we adhered to the official splits pro-
vided with each dataset. We followed the data
preparation and training methodology established
in the original ArTST implementation. For com-
prehensive details regarding the model architec-
ture and data preprocessing, readers are directed to
Toyin et al. (2023).

Computational Details The pre-training was ex-
ecuted on a cluster of 4 A100 GPUs over a duration
of 14 to 21 days for each model. We used Adam
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Figure 2: Distribution of dialectal speech data in pre-
training and fine-tuning. MSA data are not shown.

optimizer with a learning rate of 2 x 10~%, span-
ning 335K updates, and a warm-up phase of 64K
updates. The maximum speech token length was
set at 250K (equivalent to 15.625 seconds). Each
fine-tuning experiment was run on one A100 GPU
over a duration of 7 days (MGB2, QASR, MASC,
SADA) or 2 days for smaller sets (MGB3, MGBS,
etc.). We used Adam optimizer with a tri-stage
scheduler with learning rate of 6 x 1075, The total
computational budget for all experiments is esti-
mated to be ~6000 GPU-hours.

Normalization Prior to model training, we im-
plemented the same data normalization steps out-
lined in Toyin et al. (2023). In addition, we applied
post-prediction normalization steps before calcu-
lating Word Error Rates (WER), following stan-
dard practices in Arabic ASR. All reported results
reflect post-normalization performance. The nor-
malization script, sourced from a publicly available
GitHub repository?, performs orthographic stan-
dardization of Alef, Yaa, and Taa characters.

4 Effect of Pre-Training Data

We first examine the effect of pre-training on down-
stream ASR performance. As described in section
3.2, we compare a model pre-trained mainly on
MSA (ArTST), and ours, trained on additional di-
alectal data (henceforth Ours-D). Note that pre-
training does not utilize aligned speech and text;
it incorporates un-aligned speech and text data for
self-supervised learning. For these experiments,
we use the same fine-tuning data, and only vary the
pre-training sets.

2github .com/iamjazzar/arabic-nlp/blob/master/
normalization/orthographic_normalization.py
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System WER(%) CER(%)
From (Hussein et al., 2022):

HMM-DNN 15.80 —
E2E, CTC + LM 16.90 —
E2E, Attention + LM 13.40 —
E2E, CTC, Attention + LM 12.50 —
ArTST + LM (Toyin et al., 2023) 12.78 6.33
Ours-D 12.49 6.44
Ours-D + LM 12.39 6.51

Table 2: Comparing our performance against models
reported in Hussein et al. (2022) and Toyin et al. (2023),
which include the best performing models previously
reported on MGB2.

4.1 Benchmarking MSA Performance

We first report results on benchmark datasets to
compare the performance of both models against
the state of the art. MGB2 is the main benchmark
for MSA speech recognition. We evaluated the per-
formance of both ArTST and Our-D models fine-
tuned in MGB2 in Table 2 compared to existing
SOTA models. The results show that incorporating
dialectal data in pre-training does not negatively
affect the performance on MSA, as we achieve the
best WER of 12.39%.

4.2 Benchmarking Dialectal Performance

Tables 3 and 4 show the performance of the models
on the dialectal MGB3 (Egyptian) and MGB5 (Mo-
roccan) benchmarks. Each of these benchmarks
contain multiple references as dialectal speech has
no standard spelling. We report the average and
multi-refrence WER for our model variants, and
compare against the best model in each challenge,
as well as the SOTA model in each benchmark.
Each model is first fine-tuned on MSA, then fine-
tuned again on the target MGB train sets. We also
report the results of the large multilingual models:
Whisper (Radford et al., 2023) and MMS (Pratap
et al., 2024), fine-tuned on the same set. We refer
to the Arabic data the models are previously fine-
tuned on as ‘Adaptation’ data. Starting with MSA
data before fine-tuning on the target dialect has pre-
viously been established as an effective strategy for
dialectal ASR (Ali et al., 2017).

In MGB3, dialectal pre-training (Ours-D) results
in about 4% absolute reduction in WER, establish-
ing a new SOTA result on this benchmark. Smaller
improvement in terms of Average WER is observed
for MGBS, where there is no clear advantage ob-
served using our dialectal version. This difference

System Adaptation Fine-Tuning AV-WER MR-WER
Aalto MGB2 MGB3 37.50 29.30
ComVoice
Whisper Fleurs MGB3 39.04 24.92
Covost2
MMS BibleTrans MGB3 100.04 99.92
NewTestamentRec
ArTST MGB2 MGB3 37.08 29.39
Ours-D MGB2 MGB3 33.20 25.28

Table 3: WER(%) on MGB3 Egyptian ASR. Aalto is
the best system in the MGB3 challenge (Ali et al., 2017)

System Adaptation Fine-Tuning AV-WER MR-WER
RDI-CU MGB2 MGBS 59.40 37.60
ComVoice
Whisper Fleurs MGB5 164.13 227.34
Covost2
MMS BibleTrans MGB5 111.89 102.30
NewTestamentRec

ArTST MGB2 MGBS5 49.39 27.95
Ours-D MGB2 MGB5 48.91 28.02

Table 4: WER(%) on Moroccan ASR. RDI-CU is the
best system in the MGBS5 challenge (Ali et al., 2019)

is likely a result of our pre-training having a lot
more Egyptian than Moroccan data (see Figure 2).

4.3 Zero-Shot & Fine-Tuning Results

To further quantify the effect of dialectal pre-
training, we evaluate the performance of our model
across different datasets. We first fine-tune models
on MSA using MGB2 dataset. We test the model
performance on dialects directly (zero-shot) and
with dialectal fine-tuning. The results are shown in
Table 5. On average, we see improvements in per-
formance in both zero-shot and fine-tuning exper-
iments using dialectal pre-training (Ours-D) com-
pared to MSA-centric pre-training (ArTST). We
also see that both models perform better than Whis-
per and MMS in zero-shot settings in most cases.
There are some exceptions, such as in KUW, where
Whisper performs better than all other models, in-
cluding the fine-tuned models, but in most cases
Ours-D performs best. This underscores the ad-
vantage of monolingual models compared to multi-
lingual performance, as observed in Toyin et al.
(2023) and Radford et al. (2023). In addition, the
results underscore the importance of dialectal cov-
erage in pre-training: the cases where Ours-D does
not perform better than ArTST are all dialects for
which pre-training data are limited, such as TUN
(no pre-training data) and JOR (smallest dialect
size in pre-training).



Zero-Shot

Fine-Tuning

Dataset Whisper MMS ArTST Ours-D | AFTST Ours-D
TUN (TARIC-SLU) | 138.14 9354 10756 10646 | 1470  14.80
MULT (ParallelCorp) | 99.17  83.16 12872 14192 | 957 931
SAU (SADA) 8216 7828 3941 2977 | 3924 2991
MASC

SAU 4839 6530 6123 5872 | 2740  27.33
SYR 2665 3321 2199 1837 | 18.64  17.42
EGY 4173 6604 5087  47.07 | 3847 3643
JOR 2865 5463 6123 3497 | 1972 21.08
LEB 4095 6458 3565 4266 | 3001  28.05
IRA 4169 5933 5046 4803 | 3L10  34.64
TUN 4745 6058 5037 4667 | 1926  18.52
MOR 6587 8084 7892 6687 | 47.59 4940
PAL 5320 8372 7794 7353 | 5588  53.53
KUW 3600 8171 6474 5202 | 5029 4624

Table 5: WER (%) in zero-shot and fine-tuning settings. We compare zero-shot performance of Whisper, MMS,
ArTST, and Ours dialectal pre-training (Ours-D). ArTST and Ours-D are fine-tuned on MGB2 (MSA), whereas
Whisper and MMS are fine-tuned with multi-lingual data, including Arabic.

5 Joint Models & Dialect ID

So far, models were fine-tuned on MSA, followed
by additional fine-tuning on the target dialect. This
results in a separate model per dialect, which incurs
memory costs and may have practical limitations
as it requires deploying a specific model for each
dialect.

In this section, we assess the relative effective-
ness of individual dialectal fine-tuning compared
with joint dialect fine-tuning, where we train a sin-
gle model for all dialects. To that end, we joined
multiple dialectal train sets as shown in Table 6.
From MASC, we excluded ALG, YEM, SUD for
zero-shot evaluation. The resulting joint corpus
consists of 12 dialects including MSA, with ap-
proximately 1,501 hours in total. We fine-tune a
single joint model using this data.

Dialect Hours Words Source
MSA 612.28 hrs 3.80 M MASC
SAU 45224 hrs  301.92 K SADA, MASC
SYR 211.33 hrs 1.06 M MASC
EGY 175.36 hrs 1.03M MGB3, MASC
JOR 4221 hrs  330.83 K MASC
LEB 2520 hrs 155.76 K MASC
IRA 17.37 hrs  121.12 K MASC
TUN 12.17 hrs 3434 K TARIC-SLU, MASC
UAE 9.87 hrs 6.42 K Mixat, MASC
MOR 8.60 hrs 58.38 K MASC
PAL 6.17 hrs 4535K MASC
KUW 4.04hrs  32.37K MASC

Table 6: Datasets used to train the joint model.

5.1 Dialect ID

We trained another model with the aforementioned
joint dataset, but with the inclusion of explicit di-
alect identifiers. We augmented the dictionary with
special tokens for dialect IDs, and used them to
prepend the decoding string:
<S> DIALECT T T2 . T, </S>

For inference, we experimented with two strate-
gies: (1) Transcribing with dialect forcing, where
we manually add the dialect ID to condition the de-
coder output; the decoder is forced to start predic-
tions with the tokens <S> DIALECT . (2) Transcrib-
ing with dialect inference, where we let the model
predict the dialect token automatically. We use this
approach for zero-shot ASR on unseen dialects.

The results of the models trained with joint di-
alects compared to models trained on MGB2 and
QASR are shown in Table 7. Note that both MGB2
and QASR contain mostly MSA, but also a small
amounts of various dialects, but their exact distri-
bution is unknown. We also show the fine-tuning
results from Table 5 for easy comparison. We see
that joint modeling results in improvement for low-
resource dialects, including: JOR, TUN, and KUW,
but degrades performance of the high-resource
SYR and EGY dialects. Interestingly, dialect forc-
ing was worse on average than joint modeling with
no dialect ID, while dialect inference resulted in
the best performance overall. We surmise that the
model learns dialectal patterns that do not perfectly
align with the dialect ID as indicated in the training
data. Since the dialect IDs are coarse country-level
approximations, letting the model infer the dialect



Approach Zero-Shot Fine-Tuning No Dialect ID Dialect Forcing Dialect Inference
Fine-Tuning Data | MGB2 QASR | MGB2— Target Joint Mutli-Dialectal Set (Table 6)
SAU 58.72 4341 27.33 29.41 30.56 29.94
SYR 18.37  16.20 17.42 19.20 22.41 20.30
EGY 47.17  38.78 36.43 45.17 61.06 46.79
JOR 3497 2542 21.08 19.63 21.49 20.11
LEB 42.66  40.51 28.05 28.22 29.43 26.89
IRA 48.03  40.27 36.10 29.33 31.75 30.83
TUN 46.67 45.93 26.67 37.23 28.47 27.74
MOR 66.87 5542 56.63 57.49 53.89 49.10
PAL 73.53  45.59 53.53 46.22 43.90 44.48
KUW 52.02  45.09 46.24 35.43 39.43 37.71
MSA 21.09 16.78 15.34 11.59 12.66 12.09
Macro Average 46.37  37.58 33.17 32.63 34.09 31.45

Table 7: WER (%) of various models compared with joint dialectal fine-tuning with different dialect ID strategies

that best aligns with the speech is the best approach
for most cases. Many dialectal sets, such as SYR
and SAU, contain a lot of MSA utterances that are
incorrectly identified as dialectal, and low-resource
dialects, such as KUW, are predicted as their clos-
est high-resource variant, such as SAU.

Figure 3 illustrates dialect inference errors. Note
that the number of errors is proportional to the
test data size. The overall dialect identification
performance is around 90%.
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Figure 3: Dialect identification performance: true (left),
predicted (right). All lines are proportional to their ratio
over the total errors except for SAU—MSA, which is
reduced 5 times for clarity.

6 Zero-Shot Performance

We show the zero-shot performance on the three
held-out sets: ALG, SUD, and YEM. We compare
the baseline, ArTST, with our multi-dialectal pre-
training. We also compare models fine-tuned on
MGB2, QASR, or our joint dialectal set. The re-
sults are in Table 8. Our model achives slighly

Dialect ALG SUD YEM
System
ArTST—MGB2 73.18 69.20 41.64
Ours-D—MGB2 70.82 69.31 39.45
Ours-D—QASR 51.72 46.64 3478
Ours-D —Joint 45.20 40.69 33.08
Ours-D —Joint (w. dialect inference) | 47.12 40.15 31.84

Table 8: WER% of various models on held-out dialects.

lower error rates compared to ArTST, even when
fine-tuned on the same MGB?2 set. Better perfor-
mance is achieved with QASR, which includes
some dialectal data. The joint dialectal fine-tuning
achieves the best performance on the held-out di-
alects. In general, performance in held-out sets
is on a par with low-resource dialects, with WER
above 30%. Table 13 in the Appendix shows the
zero-shot performance after fine-tuning on a single
target dialect.

7 Code-Switching Performance

The models analyzed so far were trained exclu-
sively on Arabic data. While small amounts of
code-switching (CS) exist in these sources, they
are insufficient to learn the characteristics of the
embedded languages. Large multi-lingual models
are generally more effective on CS data (Kadaoui
et al., 2024), even if they are less competent on
monolingual Arabic. To make our models more
inclusive, improving performance in the presence
of code-switching is necessary. To that effect, we
train a multilingual version of the model (we will
refer to this as Qurs-M). The pre-training data
for this version are listed in Table 11 in the Ap-
pendix. We test Ours-M against Ours-D on avail-
able CS data for Arabic: ArZN and TunSwich.
These sets cover Egyptian-English and Tunisian-
French, respectively. In addition, we train a joint



Languages Hours  Words Source
EN 1601.92 hrs 10.35M CommonVoice
FR 732.02hrs  5.03M CommonVoice
SP 408.34hrs 279 M Common Voice
TUN-FR 10.89 hrs  70.86 K TunSwitch
UAE-EN 897 hrs 57.82K Mixat
EGY-EN 5.6l hrs  52.00 K ArzEn

Table 9: Additional datasets used to train the joint mul-
tilingual model.

multi-lingual model. In addition to the datasets
described in Table 6, we add the multi-lingual and
code-switching data shown in Table 9. The results
are shown in Table 10. First, for models fine-tuned
directly on the target set, we observe that multi-
lingual pre-training significantly improves perfor-
mance across all CS test sets, resulting in around
30% absolute reductions in WER for ArzEn and
TunSwitch. This clearly illustrates the advantage
of multi-lingual models in code-switching scenar-
i0s. We also evaluated models initialized from the
joint models followed by target fine-tuning on the
CS train sets, and this reduced error rates further.
The effect is much larger on Ours-D with up to
40% WER reduction, which may be attributed to
instances of code-switching in the joint set.

Pre-training Joint Fine-Tuning
Dataset Language Ours-D Ours-M  Ours-D  Ours-M
MGB2 MSA 12.5 13.0
ArzEn EGY-EN 73.0 39.3 32.2 32.2
TunSwitch ~ TUN-FR 64.5 34.0 35.0 29.2

Table 10: ASR Results using our dialectal model (Ours-
D) vs. multi-lingual model (Ours-M). We compare mod-
els trained directly from pre-trained checkpoint vs. start-
ing with the joint model with no dialect/language ID.

Language Interference: We test the effect of
multi-lingual pre-training on MSA performance.
Language interference is known to negatively af-
fect monolingual performance (Toyin et al., 2023),
so we test our multi-lingual model on the MGB2
benchmark to quantify this effect (see Table 10).
The model achieves 13.0% WER, which is indeed
worse than the SOTA result we achieve with the
Arabic-only model (see Table 2), but the difference
at 0.5% absolute WER is rather small. When it
comes to dialects, however, we find that language
interference has a significant negative effect, result-
ing in 4% to 16% absolute increase in error rates,
as shown in Figure 4.

WER (%)
N
S

+16%
+6%

5
+11% +11% +4% +10% +8% %

+7%

+8%

JOR LEB IRA PAL KUW JOR LEB IRA PAL KUW
No Dialect ID Dialect Inference
EEE Dialectal [ Multilingual

Figure 4: WER (%) and absolute difference on a subset
of dialects, comparing our joint dialectal fine-tuning vs.
joint multi-lingual fine-tuning on Arabic dialects.

8 Conclusions

We presented the largest study on dialectal Ara-
bic ASR to empirically demonstrate the effect of
various training paradigms on ASR performance.
We compared models pre-trained with and with-
out dialects, in high, low, and medium-resource
settings, in addition to zero-shot. We find that
overall, dialectal pre-training improves perfor-
mance in zero-shot and low-resource cases, and
mostly maintains performance on MSA and high-
resource dialects. We also find that all dialects
benefit from adaptation of models pre-fine-tuned
on MSA, and this effect is most noticeable for low
and medium-resource dialects. We experimented
with multi-dialectal fine-tuning, where we joined
the train sets of 12 dialects. We observe perfor-
mance improvements on average, and at least the
same performance as the target-dialect fine-tuning
setting, and the best performance on held-out di-
alects. Interestingly, while using dialect ID in de-
coding is effective, forcing the dialect ID results
in worse performance compared to dialect in-
ference. While joint training results in improved
performance for the medium and low-resource
dialects, target-dialect fine-tuning is more ef-
fective for high-resource dialects. Finally, we
experimented with multi-lingual pre-training and
fine-tuning for improving performance on code-
switched utterances, and achieved significant re-
ductions in error rates on all available test sets.
However, reductions in monolingual performance
were also observed due to language interference.
To enable easier adoption and further experiments,
we will release the pre-trained dialectal and multi-
lingual checkpoints, the fine-tuned MGB2 models,
and the joint dialectal and multilingual models with
dialect inference.



Limitations

One of the limitations in dialect-related work is
the coarse classification of dialect IDs; dialects in
our datasets are classified by regions or countries,
whereas actual dialectal variations are far more fine-
grained. For example, the Saudi dataset, SADA,
covers a large geographical area and many dialects,
but it is considered as one dialect based on our
classification. Moreover, the way the datasets are
collected do not guarantee that the data are indeed
dialectal. For instance, with manual inspection
of the Syrian test and dev sets from MASC, we
observed that all instances are in MSA rather than
Syrian dialects. In addition, Arabic dialects are spo-
ken varieties that do not have a standard spelling
system. This results in large variations in tran-
scriptions, but standard WER does not account for
these variations, resulting in more pessimistic re-
sults. With the exception of the MGB3 and MGB5
benchmarks where we report average and multi-
reference WER across 4 references, all datasets
have only a single reference.

References

Muhammad Abdul-Mageed, AbdelRahim Elmadany,
Chiyu Zhang, El Moatez Billah Nagoudi, Houda
Bouamor, and Nizar Habash. 2023. NADI 2023: The
fourth nuanced Arabic dialect identification shared
task. In Proceedings of ArabicNLP 2023, Singapore
(Hybrid). Association for Computational Linguistics.

Maryam Khalifa Al Ali and Hanan Aldarmaki. 2024.
Mixat: A data set of bilingual emirati-English speech.
In Proceedings of the 3rd Annual Meeting of the Spe-
cial Interest Group on Under-resourced Languages
@ LREC-COLING 2024.

Mohammad Al-Fetyani, Muhammad Al-Barham,
Gheith Abandah, Adham Alsharkawi, and Maha
Dawas. 2021. Masc: Massive arabic speech corpus.

Sadeen Alharbi, Areeb Alowisheq, Zoltan Tiiske, Ka-
reem Darwish, Abdullah Alrajeh, Abdulmajeed Al-
rowithi, Aljawharah Bin Tamran, Asma Ibrahim,
Raghad Aloraini, Raneem Alnajim, Ranya Alkahtani,
Renad Almuasaad, Sara Alrasheed, Shaykhah Alsub-
aie, and Yaser Alonaizan. 2024. Sada: Saudi audio
dataset for arabic. In ICASSP 2024 - 2024 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 10286—10290.

Ahmed Ali, Peter Bell, James Glass, Yacine Messaoui,
Hamdy Mubarak, Steve Renals, and Yifan Zhang.
2016. The mgb-2 challenge: Arabic multi-dialect
broadcast media recognition. In 2016 IEEE Spoken
Language Technology Workshop (SLT). IEEE.

Ahmed Ali, Suwon Shon, Younes Samih, Hamdy
Mubarak, Ahmed Abdelali, James Glass, Steve Re-
nals, and Khalid Choukri. 2019. The mgb-5 chal-
lenge: Recognition and dialect identification of di-
alectal arabic speech. In 2019 IEEE Automatic
Speech Recognition and Understanding Workshop
(ASRU). IEEE.

Ahmed Ali, Stephan Vogel, and Steve Renals. 2017.
Speech recognition challenge in the wild: Arabic
mgb-3. In 2017 IEEE Automatic Speech Recognition
and Understanding Workshop (ASRU). IEEE.

Khalid Almeman, Mark Lee, and Ali Abdulrahman
Almiman. 2013. Multi dialect arabic speech par-
allel corpora. In 2013 Ist International Conference

on Communications, Signal Processing, and their
Applications (ICCSPA).

Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang,
Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li,
Yu Zhang, et al. 2021. Speecht5: Unified-modal
encoder-decoder pre-training for spoken language
processing. arXiv preprint arXiv:2110.07205.

Rosana Ardila, Megan Branson, Kelly Davis, Michael
Henretty, Michael Kohler, Josh Meyer, Reuben
Morais, Lindsay Saunders, Francis M Tyers, and
Gregor Weber. 2019. Common voice: A massively-
multilingual speech corpus. arXiv preprint
arXiv:1912.06670.

Arun Babu, Changhan Wang, Andros Tjandra, Kushal
Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh,
Patrick Von Platen, Yatharth Saraf, Juan Pino, et al.
2021. Xls-r: Self-supervised cross-lingual speech
representation learning at scale. arXiv preprint
arXiv:2111.09296.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed,
and Michael Auli. 2020. wav2vec 2.0: A framework
for self-supervised learning of speech representations.
Advances in neural information processing systems.

Houda Bouamor, Nizar Habash, Mohammad Salameh,
Wajdi Zaghouani, Owen Rambow, Dana Abdul-
rahim, Ossama Obeid, Salam Khalifa, Fadhl Eryani,
Alexander Erdmann, and Kemal Oflazer. 2018. The
MADAR Arabic dialect corpus and lexicon. In Pro-
ceedings of the Eleventh International Conference on
Language Resources and Evaluation (LREC 2018),
Miyazaki, Japan. European Language Resources As-
sociation (ELRA).

Nawar Halabi et al. 2016. Arabic speech corpus. Oxford
Text Archive Core Collection.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai,
Kushal Lakhotia, Ruslan Salakhutdinov, and Abdel-
rahman Mohamed. 2021. Hubert: Self-supervised
speech representation learning by masked prediction
of hidden units. IEEE/ACM Transactions on Audio,
Speech, and Language Processing.


https://doi.org/10.18653/v1/2023.arabicnlp-1.62
https://doi.org/10.18653/v1/2023.arabicnlp-1.62
https://doi.org/10.18653/v1/2023.arabicnlp-1.62
https://doi.org/10.18653/v1/2023.arabicnlp-1.62
https://doi.org/10.18653/v1/2023.arabicnlp-1.62
https://aclanthology.org/2024.sigul-1.26
https://doi.org/10.21227/e1qb-jv46
https://doi.org/10.1109/ICASSP48485.2024.10446243
https://doi.org/10.1109/ICASSP48485.2024.10446243
https://doi.org/10.1109/ICASSP48485.2024.10446243
https://doi.org/10.1109/ICCSPA.2013.6487288
https://doi.org/10.1109/ICCSPA.2013.6487288
https://doi.org/10.1109/ICCSPA.2013.6487288
https://aclanthology.org/L18-1535
https://aclanthology.org/L18-1535
https://aclanthology.org/L18-1535

Jui-Ting Huang, Jinyu Li, Dong Yu, Li Deng, and Yifan
Gong. 2013. Cross-language knowledge transfer us-
ing multilingual deep neural network with shared hid-
den layers. In 2013 IEEE international conference
on acoustics, speech and signal processing, pages
7304-7308. IEEE.

Amir Hussein, Shinji Watanabe, and Ahmed Ali. 2022.
Arabic speech recognition by end-to-end, modular
systems and human. Computer Speech & Language,
71:101272.

Karima Kadaoui, Maryam Al Ali, Hawau Olamide
Toyin, Ibrahim Mohammed, and Hanan Aldarmaki.
2024. PolyWER: A holistic evaluation framework for
code-switched speech recognition. In Findings of the
Association for Computational Linguistics: EMNLP
2024, pages 6144—-6153, Miami, Florida, USA. Asso-
ciation for Computational Linguistics.

Ajinkya Kulkarni, Atharva Kulkarni, Sara Abedal-
mon’em Mohammad Shatnawi, and Hanan Aldar-
maki. 2023. Clartts: An open-source classical arabic
text-to-speech corpus. In 2023 INTERSPEECH.

Salima Mdhaffar, Fethi Bougares, Renato de Mori,
Salah Zaiem, Mirco Ravanelli, and Yannick Esteve.
2024. TARIC-SLU: A Tunisian benchmark dataset
for spoken language understanding. In Proceedings
of the 2024 Joint International Conference on Compu-
tational Linguistics, Language Resources and Evalu-
ation (LREC-COLING 2024), pages 15606-15616,
Torino, Italia. ELRA and ICCL.

Hamdy Mubarak, Amir Hussein, Shammur Absar
Chowdhury, and Ahmed Ali. 2021. QASR: QCRI
aljazeera speech resource a large scale annotated Ara-
bic speech corpus. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 2274-2285, Online. Association for
Computational Linguistics.

Vineel Pratap, Andros Tjandra, Bowen Shi, Paden
Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky,
Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi,
et al. 2024. Scaling speech technology to 1,000+
languages. Journal of Machine Learning Research.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2023.
Robust speech recognition via large-scale weak su-

pervision. In International conference on machine
learning, pages 28492-28518. PMLR.

Steffen Schneider, Alexei Baevski, Ronan Collobert,
and Michael Auli. 2019. wav2vec: Unsupervised
pre-training for speech recognition. arXiv preprint
arXiv:1904.05862.

Barbara Schuppler, Martine Adda-Decker, Catia Cuc-
chiarini, and Rudolf Muhr. 2024. An introduction to
pluricentric languages in speech science and technol-
ogy. Speech Communication, 156:103007.

10

Hawau Toyin, Amirbek Djanibekov, Ajinkya Kulkarni,
and Hanan Aldarmaki. 2023. ArTST: Arabic text and
speech transformer. In Proceedings of ArabicNLP
2023, pages 41-51, Singapore (Hybrid). Association
for Computational Linguistics.

Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani,
Shujie Liu, Furu Wei, Michael Zeng, and Xuedong
Huang. 2021. Unispeech: Unified speech represen-
tation learning with labeled and unlabeled data. In
Proceedings of the 38th International Conference
on Machine Learning, ICML 2021, 18-24 July 2021,
Virtual Event, Proceedings of Machine Learning Re-
search. PMLR.

A Inference examples
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Figure 5: Examples of dialectal recognition after tar-
geted fine-tuning, following MGB2 adaptation.

B Pre-Training Dataset Statistics
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Dataset Dialect Hours Words ArTST Ours-D Ours-M
ASC MSA 3.7 hrs 20.58 K v v
ArzEnlcs] EGY 561 5200K v
Common Voice Dialect Mix 133.24 hrs  494.83 K v v
ENG 1601.92 10.35M v
Common Voice FR 732.02 5.03M v
ES 408.34 2.79M v
CIAITTS CA 12 hrs 76.31 K v v
ALG v
Escwales] TUN v
MOR v
EGY 175.36 hrs 1.03M v
IRA 17.37 hrs  121.12K v
JOR 4221 hrs  330.83 K v
KUW 4.04 hrs 32.37K v
LEB 2520 hrs 155.76 K v
MOR 8.60 hrs  58.38K v
MASC MSA 61228 hrs 380 M v
PAL 6.17hrs  4535K v
SAU 45224 hrs  301.92 K v
SYR 211.33 hrs 1.06 M v
TUN 12.17 hrs 3434 K v
UAE 9.87 hrs 6.42 K v
MGB2 Mostly MSA 1000 hrs 731 M v v v
QASR Mostly MSA 2000 hrs  13.33 M v v
MGB3[ASR] EGY 2.83 hrs 18.93 K v v
MGB3[ADI] EGY 11.15 hrs — v v
GLF 8.92 hrs — v v
LAV 9.27 hrs — v v
MSA 9.39 hrs — v v
NOR 9.49 hrs — v v
MGBS[ADI] ALG 115.7hrs — v v
EGY 451.1 hrs — v v
IRA 815.8 hrs — v v
JOR 25.9 hrs — v v
KSA 186.1 hrs — v v
KUW 108.2 hrs — v v
LEB 116.8 hrs — v v
LIB 127.4 hrs — v v
MAU 456.4 hrs — v v
MOR 57.8 hrs — v v
OMA 58.5 hrs — v v
PAL 121.4 hrs — v v
QAT 62.3 hrs — v v
SUD 47.7 hrs — v v
SYR 119.5 hrs — v v
UAE 108.4 hrs — v v
YEM 53.4 hrs — v v
Mixat UAE 9.97 hrs 57.82K v
ParallelCorp EGY 32hrs 4856 K v
GLF 32 hrs 2726 K v
LEV 32 hrs 18.43 K v
MSA 32 hrs 30.66 K v
MOR ALG TUN
MADAR LIB EGY LEV —  532.37K v v
IRA GLF YEM
ALG BAH EGY
IRA JOR KUW
LEB LIB MOR
NADI OMN PAL QAT —  702.67K v v
SAU SUD SYR
TUN UAE YEM
SADA SAU v
TARIC-SLU TUN v
TunSwitch[ ¢S] TUN 10.89 hrs  70.86K v

Table 11: Summary of Dataset Statistics for Pre-Training: Hours of Audio, Word Counts, and Associated Dialects.
#[cs] refers to Code Switching datasets. *LtXt] refers to textual datasets.
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Adaptation
Fine-Tuning o MGB2 - QASR
MGB3 136.52 2528 19.53
MGBS 94.84  28.02 27.58
TARIC-SLU 3046 1480 1448
ParallelCorp 28.97 9.31 9.08
SADA 29.77 2991  29.55
Mixat 100.0 3340 35.21

Table 12: WER (%) of fine-tuned models on various
datasets with different adaptation methods: —: no adap-
tation, MGB2, or QASR.

C Effect of Data Adaptation

In the above experiments, we followed the strat-
egy of initializing the models by first fine-tuning
on MSA data. In most cases, we used MGB?2 as
the base model, following previously established
results on Egyptian ASR (Ali et al., 2017). This
adaptation approach is meant to enhance the perfor-
mance on low-resource dialects, facilitating faster
convergence with limited training samples. How-
ever, as pre-training on more diverse sets proved
to be effective, adaptation on more diverse data is
also likely to be fruitful. As observed in Table 7,
models trained on QASR resulted in far better zero-
shot performance, approaching the performance
of joint-dialects models. This is attributed to the
fact that QASR is both larger in size and known
to have more dialectal data compared to MGB2
(but both have no documented statistics of dialectal
coverage). To validate this observation, we experi-
mented with dialectal fine-tuning adapted from two
variants: one based on MGB2 and one based on
QASR (Mubarak et al., 2021), followed by dialect-
specific fine-tuning. Table 4 shows fine-tuning re-
sults with no adaptation (directly fine-tuning on the
target dialect), compared with starting from MGB2
or QASR. First, our results corroborate the previous
findings that adapting models from MSA results
in large reduction in error rates. In all except the
Mixat dataset, starting from QASR results in better
performance compared to MGB2. However, the
difference is negligible except on MGB3 Egyptian
set (around 10% absolute WER reduction). There
are two factors that we speculate underline this
result: The small size of the MGB3 set, and the
existence of Egyptian dialect in the QASR corpus
more substantially than the other dialects. Overall,
using the QASR dataset as a basis for adapting di-
alectal models is recommended as it improves or
maintains performance.

Figure 5 lists examples of ASR outputs using
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True (Algeria):

Inference from (SAU) dialect
Inference from (SYR) dialect
Inference from (EGY dialect
Inference from (JOR) dialect
Inference from (LEB) dialect
Inference from (IRA) dialect
Inference from (TUN) dialect
Inference from (MOR) dialect
Inference from (PAL) dialect
Inference from (KUW) dialect
Inference from (UAE) dialect

038 (55 wldge Liuxd yind (57l Lo
I.\S‘.;)uLn.«waqudplln
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True (Sudan):

Inference from (SAU) dialect
Inference from (SYR) dialect
Inference from (EGY dialect
Inference from (JOR) dialect
Inference from (LEB) dialect
Inference from (IRA) dialect
Inference from (TUN) dialect
Inference from (MOR) dialect
Inference from (PAL) dialect
Inference from (KUW) dialect
Inference from (UAE) dialect

ub 8o 95w 6.\” ;L,u.t” owl Jbl
Cub ago 09w L;;JI u.A.dl ol Jlee
and th|s the the’becom ub ceall
ub o 0sSw S o Ly Jlesll
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True (Yemen):

Inference from (SAU) dialect
Inference from (SYR) dialect
Inference from (EGY dialect
Inference from (JOR) dialect
Inference from (LEB) dialect
Inference from (IRA) dialect
Inference from (TUN) dialect
Inference from (MOR) dialect
Inference from (PAL) dialect
Inference from (KUW) dialect
Inference from (UAE) dialect

Figure 6: Example of ASR outputs on held-out dialects
from dialect-specific fine-tuning.

the dialect-specific fine-tuned models. Note that
the ‘errors’ in SAU, EGY, and JOR examples are
in fact alternative spellings.

D Cross-Dialectal Performance

Table 13 shows the cross-dialectal performance,
where models trained on a single target dialect are
tested on other dialects, including the three held-
out sets: ALG, SUD, and YEM. In most cases, the
best performance is achieved by the model trained
on the same target dialect (the diagonal in Table
13). However, for low-resource dialects, like KUW
and PAL, the model trained on SAU achieved the
lowest WER. This is likely a result of the large size
of the SAU train set and the wide geographical area
and dialectal variants it covers. Curiously, all mod-
els perform well on the SYR test set; upon close
inspection, we found that the set consists mostly of
MSA utterances, which explains the result since all
models are adapted from MSA.



Fine-Tuning Set

Dialect | ¢\t %) SYR(%) EGY(%) JOR(%) LEB(%) IRA(%) TUN(%) MOR(%) PAL(%) KUW(%) UAE(%)
SAU | 2733 5388 6324 4395 5664 4610 4936 50.02 45.48 7685 36.14
SYR | 1954 1742 2391 1688 2571 1685 2436 17.58 16.86 17.38 17.53
EGY | 3807 5343 3643 4008 5161 4137 4558 43.88 40.41 41.88 40.38
JOR | 2288 3037 3414 2108 2811 2868  32.96 30.50 25.25 27.88 28.05
westset | LEB | 4103 4253 5323 3907 2805 4123 4853 4234 41.55 42.14 40.97
IRA | 3518 4910 5691 4047 4672 3610  47.84 42.55 40.76 41.00 42.16
TUN | 4444 5778 5185 4667 4519 4519 2667 44.44 47.41 46.67 47.41
MOR 59.04 71.69 74.70 54.82 69.88 57.23 74.70 56.63 56.02 59.64 57.83
PAL | 4853 6618  62.65 5235 6059 5853 60.00 63.24 53.53 58.53 60.59
KUW | 2659 5954  78.03 4393 6763 4682  53.18 51.45 4451 46.24 50.87
ALG | 5021 6009 7361 5258 6202 5751 5751 59.01 52.79 5837 5730
held-out SUD | 40.89 6497 6432 5315 6486 5412 56.51 58.79 52.39 56.18 55.53
YEM | 3840 4216  38.49 3468 39.69 3492 30.68 35.73 33.06 34.68 34.11

Table 13: (WER(%) for various models on unseen dialects. All models are adapted from v2—MGB2.
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