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Abstract
Large Vision-Language Models (LVLMs) have001
demonstrated impressive capabilities in multi-002
modal understanding, but they frequently suffer003
from hallucination - generating content incon-004
sistent with visual inputs. In this work, we005
explore a novel perspective on hallucination006
mitigation by examining the intermediate ac-007
tivations of LVLMs during generation. Our008
investigation reveals that hallucinated content009
manifests as distinct, identifiable patterns in010
the model’s hidden state space. Motivated by011
this finding, we propose Activation Steering012
Decoding (ASD), a training-free approach that013
mitigates hallucination through targeted inter-014
vention in the model’s intermediate activations.015
ASD operates by first identifying directional016
patterns of hallucination in the activation space017
using a small calibration set, then employing018
a contrast decoding mechanism that computes019
the difference between positive and negative020
steering predictions. This approach effectively021
suppresses hallucination patterns while preserv-022
ing the model’s general capabilities. Extensive023
experiments demonstrate that our method sig-024
nificantly reduces hallucination across multiple025
benchmarks while maintaining performance on026
general visual understanding tasks. Notably,027
our approach requires no model re-training or028
architectural modifications, making it readily029
applicable to existing deployed models.030

1 Introduction031

Large Vision Language Models (LVLMs), while032

demonstrating impressive capabilities, struggle033

with a fundamental issue known as hallucination034

where generated textual descriptions fail to align035

accurately with visual semantics (Liu et al., 2024a;036

Zhai et al., 2023; Zhao et al., 2023). These failures037

not only degrade the performance of LVLMs in038

practical scenarios but also undermine their credi-039

bility in high-stakes applications like medical imag-040

ing, autonomous driving, and legal systems (Wang,041

2024; Magesh et al., 2024).042

While existing approaches mitigate hallucination 043

through enhanced data quality (Liu et al., 2023a; Yu 044

et al., 2024a) and carefully designed training objec- 045

tives (Chen et al., 2023; Jiang et al., 2024; Yue et al., 046

2024), such post-training solutions may present 047

challenges for real-world deployments where mod- 048

els need to adapt rapidly to scenarios with minimal 049

computational overhead and maximum flexibility. 050

Recent attempts have made significant progress 051

in exploring training-free solutions as crucial al- 052

ternatives. These approaches can be broadly cat- 053

egorized into module-level methods (Zhao et al., 054

2024; Deng et al., 2024; Yu et al., 2025; An et al., 055

2024) that leverage richer visual modules, and logit- 056

level methods (Leng et al., 2024; Zhu et al., 2024) 057

that reduce the model’s reliance on language priors 058

or statistical biases. Both approaches share a fun- 059

damental principle: strengthening visual evidence 060

through either enhanced visual signals or additional 061

visual cues during the inference process. 062

While these approaches provide valuable in- 063

sights, they focus on specific assumptions (such 064

as lost attention in image regions). In contrast, this 065

work aims to address this in a more fundamental 066

way. We propose an approach by directly steering 067

the model with a hallucination-aware distributional 068

indicator to generate hallucination-free descrip- 069

tions. We first analyze hallucination behavior in 070

LVLMs by examining intermediate activation, i.e. 071

hidden state1, distributions. Our empirical investi- 072

gation reveals that hallucinated content manifests 073

as distinct, identifiable patterns in the model’s inter- 074

mediate activation. Building on this insight and to 075

achieve effective steering, we propose Activation 076

Steering Decoding (ASD), a training-free approach 077

that directly intervenes in the model’s intermediate 078

activations to mitigate hallucination. 079

Our method operates by first identifying the di- 080

1In this paper, we do not differentiate between the terms
“hidden state” and “intermediate activation”, treating them as
interchangeable concepts.
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rectional patterns of hallucination in the interme-081

diate activation space using a small calibration082

set, then employing a contrast decoding mecha-083

nism that computes the difference between positive084

and negative steering predictions. Extensive ex-085

periments demonstrate that our method achieves086

substantial reductions in hallucination rates (over087

10.0% improvement on CHAIR and over 10% F1088

score improvement on POPE) while maintaining or089

even enhancing performance on general visual un-090

derstanding tasks. Notably, our method requires no091

LVLMs re-training or architectural modifications,092

making it readily applicable to deployed models.093

The main contributions of this paper include: 1)094

a systematic empirical study that reveals the dis-095

tinct patterns of hallucination in LVLMs interme-096

diate activation space, providing insights into the097

internal mechanisms of LVLMs; 2) ASD: a novel,098

training-free method for hallucination reduction099

through targeted intervention in intermediate ac-100

tivations; 3) comprehensive empirical evaluation101

demonstrating significant reduction in hallucina-102

tion across diverse scenarios while maintaining103

model performance on standard tasks.104

2 Related Works105

Hallucination in LVLMs. Hallucination was ini-106

tially studied and defined in the context of language107

models, describing outputs that deviate from fac-108

tual or contextual information. In LVLMs, hallu-109

cination specifically refers to model outputs that110

are inconsistent with the input visual information.111

To address this challenge, various approaches have112

been proposed. Some works enhance visual fea-113

tures through diverse visual encoders or visual114

tools (Jain et al., 2024; He et al., 2024; Jiao et al.,115

2024), and employ specialized modules to control116

cross-modal alignment (Zhai et al., 2023). Other117

researchers have approached this problem from a118

data-centric perspective, introducing contrastive119

examples and adversarial samples to increase train-120

ing data diversity (Liu et al., 2023a; Yu et al.,121

2024a), while also implementing denoising and122

regeneration strategies to improve overall data qual-123

ity (Wang et al., 2024; Yue et al., 2024). Additional124

works have incorporated extra supervision signals125

during training to strengthen visual feature repre-126

sentations (Chen et al., 2023; Jiang et al., 2024; Yue127

et al., 2024), and some have employed reinforce-128

ment learning techniques to suppress model hallu-129

cination (Zhao et al., 2023; Zhou et al., 2024; Sun130

et al., 2023; Yu et al., 2024b). However, these meth- 131

ods either require substantial additional data or in- 132

volve expensive training processes. Furthermore, 133

several training-free methods have been proposed. 134

These include interventions in the model’s output 135

process through contrast decoding (Leng et al., 136

2024; Zhu et al., 2024), guidance from auxiliary 137

models (Zhao et al., 2024; Deng et al., 2024; Yu 138

et al., 2025; An et al., 2024), and post-processing 139

techniques to eliminate hallucinated content from 140

the outputs (Yin et al., 2023; Lee et al., 2023; Zhou 141

et al., 2023). 142

Activation Steering. Our method analyzes and in- 143

tervenes in the model’s representation space, which 144

relates to the recent technique of activation steering 145

(or representation engineering) in language mod- 146

els (Subramani et al., 2022; Turner et al., 2023; 147

Jorgensen et al., 2023; Panickssery et al., 2023; Liu 148

et al., 2023b; Zou et al., 2023). Activation steering 149

is a technique used to guide model behavior by ma- 150

nipulating neuron activations. Most relevant to our 151

work are several studies (Panickssery et al., 2023; 152

Turner et al., 2023), where they use semantically 153

opposite prompt pairs (such as the prompts "Love" 154

and "Hate") to generate steering vectors that, when 155

added to model activations, can control model be- 156

havior. Different from these approaches, our ap- 157

proach identifies hallucination-specific patterns in 158

VLMs through systematic analysis of activations 159

rather than prompt engineering, and presents a con- 160

trast decoding mechanism that enables robust hal- 161

lucination mitigation while maintaining generation 162

quality. 163

3 Preliminary 164

This section introduces the key notations used 165

throughout this paper. Consider a LVLM π(·) that 166

accepts image v and language x inputs to gener- 167

ate text sequences y = (y1, ..., yn). As the in- 168

puts pass through the model’s transformer architec- 169

ture, it generates a series of intermediate activations 170

Z = z1, ..., zL at each layer l, with zl ∈ Rd. The 171

model generates each token through sampling from 172

the following distribution: 173

yt ∼ π(yt|x, v, y<t),

∝ exp(logitπ(yt|x, v, y<t)),
174

where logitπ(yt|·) represents the unnormalized log 175

probabilities for token yt. 176
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Figure 1: Overview of our proposed method. Left: The token-level hallucination feature collection process, where
we extract hidden states from the model and annotate them based on whether they belong to sentences containing
hallucinated objects (not present in the ground truth). The steering vector is computed as the difference between
mean hidden states of hallucinated and non-hallucinated tokens. Right: Illustration of Activation Steering Decoding,
which performs two forward passes with opposite steering directions and contrasts their logits to obtain the final
output distribution, effectively suppressing hallucination patterns while preserving semantic information.

4 How Do Hidden States Differ during177

Hallucination?178

We start by analyzing how hallucinations manifest179

in the hidden states of multimodal large language180

models during generation. We hypothesize that181

hallucinated content exhibits distinct patterns in182

the model’s hidden state space compared to factual183

generations. To investigate this hypothesis, we184

propose a framework designed to systematically185

extract the model’s hidden representations paired186

with labels indicating hallucination occurrences in187

Sec. 4.1 and analyze their corresponding hidden188

state representations via linear probing in Sec. 4.2.189

4.1 A Framework for Representation190

Collection191

To systematically investigate hallucination patterns192

in the given base model πbase, we develop a scalable193

framework for collecting paired hidden states and194

hallucination labels for it. Our approach focuses195

specifically on object hallucination, a well-defined196

and measurable form of multimodal hallucination197

that occurs when a model generates references to198

objects not present in the input image. The follow-199

ing details our data collection process:200

Image-Description Pair Generation. We uti-201

lize the MSCOCO dataset (Lin et al., 2014) as202

our primary data source due to its rich annota-203

tions for segmentation and diverse visual con-204

tent. For each image vi in the dataset, we205

query the base mode πbase with prompt x =206

"Please describe the image in detail." to generate a 207

detailed description yi. 208

The generated description yi reflects the model’s 209

intrinsic perception of the input image vi, which 210

may contain hallucinated content that deviates from 211

the actual visual information. 212

Activation Collection and Annotation. O = 213

{o1, o2, ..., o80} represent the set of 80 predefined 214

object categories in the MSCOCO dataset. For each 215

object category o, we collect a set of synonyms C(o) 216

to ensure comprehensive object extraction. Each 217

image vi is associated with its ground truth object 218

set G(vi) ⊆ O based on MSCOCO annotations. 219

For each generated description yi, we employ the 220

Natural Language Toolkit library to segment it into 221

individual sentences {si,1, si,2, . . . , si,j}, where 222

each si,j is a subsequence of tokens representing a 223

single sentence: 224

si,j = (yi,j1 , yi,j2 , . . . , yi,jp ), with
⋃
j

si,j = yi. 225

We then identify all mentioned objects O(si,j) in 226

the sentence si,j by: 227

O(si,j) = {o ∈ O |
substr(o, si,j), or

∃c ∈ C(o), substr(c, si,j)
}, 228

229
substr(x, y) ⇐⇒ x is a substring of y. 230

We define the hallucination label L(yi,jp ) for a to- 231

ken yi,jp ∈ si,j based on whether the sentence si,j 232
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Figure 2: Test accuracy and F1 scores for hallucination
versus non-hallucination classification across different
layers of LLaVA-1.5-7B with varying training sample
sizes (0.2k, 2k, and 20k).

includes any non-existent objects. Mathematically:233

L(yi,jp ) =

{
1 if O(si,j) \G(Ii) ̸= ∅,

0 otherwise.
234

Let Z(y) indicates the hidden state of all layer235

for token y. The final dataset of paired activa-236

tions and hallucination labels is constructed as:237 ⋃
i

(
Z(yi,jp ), L(yi,jp )

)
.238

4.2 Linear Probing of Hidden States239

To investigate the patterns of hidden states when240

occurring hallucination, we perform linear prob-241

ing of LLaVA1.5-7B across its entire architecture.242

Specifically, we randomly sample 500 images from243

the MSCOCO training set and employ the method-244

ology described in Sec. 4.1 to extract hidden state245

representations across all 32 transformer layers.246

This initial collection yields an imbalanced dataset247

comprising 42,160 non-hallucinated samples and248

12,113 hallucinated samples. We then construct a249

balanced dataset by randomly sampling 11,000 in-250

stances from each class, resulting in a final dataset251

of 22,000 samples. Next, we split 2,000 samples252

as a held-out test set for evaluation. With the re-253

maining samples, we conduct a series of training254

experiments with varying amounts of training data.255

We independently train linear classifiers for each256

of the 32 layers’ hidden states, allowing us to track257

how hallucination-related information is encoded258

throughout the model’s depth.259

Fig. 2 presents the accuracy and F1 scores across260

model layers under varying training set sizes. Our261

analysis reveals several significant findings. First,262

the amount of training data exhibits a substantial263

impact on the classifier’s discriminative capability,264

with approximately 20k samples being necessary to 265

establish reliable patterns. This suggests that hallu- 266

cination signatures, while consistent, require suffi- 267

cient data to be accurately characterized. Moreover, 268

we observe that hidden states in the middle and 269

latter layers demonstrate superior representational 270

power for hallucination detection, indicating a pro- 271

gressive accumulation of hallucination-relevant fea- 272

tures through the model’s depth. Most notably, 273

the probing performance reveals that hallucination- 274

related information is remarkably well-preserved 275

and linearly separable in the hidden state space, 276

achieving probing accuracy of 82.49% in the mid- 277

dle layers with just 20k training tokens. This pro- 278

nounced linear separability provides compelling 279

evidence that hallucinated content manifests as dis- 280

tinct, consistent patterns in the model’s hidden state 281

space, thereby supporting our hypothesis that tar- 282

geted intervention at the hidden state level could 283

effectively mitigate hallucination behavior. 284

5 Activation Steering Decoding 285

Motivated by our empirical findings that halluci- 286

nation patterns are distinctly encoded and linearly 287

separable in the model’s hidden states, we propose 288

Activation Steering Decoding, a novel decoding 289

strategy that directly intervenes in the model’s hid- 290

den activations to mitigate hallucination. 291

Steering Vector Modeling. Given the paired data 292⋃
i{
(
Z(yi,jp ), L(yi,jp )

)
} collected from Sec. 4.1, 293

we calculate a steering vector that captures the di- 294

rection from hallucination to non-hallucination in 295

the hidden state space. For each layer l, we com- 296

pute the difference between mean activations of 297

non-hallucinated and hallucinated tokens: 298

vl =
1

P

∑
L(y)=1

zl(y)−
1

N

∑
L(y)=0

zl(y), (1) 299

where P and N are the numbers of factual and 300

hallucinated tokens respectively. 301

Steering Vector Injection. The most straightfor- 302

ward approach to leveraging the extracted steering 303

vectors is directly intervening in the hidden states: 304

zsteered
l = zl + λvl, (2) 305

where λ regulates the steering strength. While this 306

approach effectively reduces hallucination as λ in- 307

creases , it risks distorting the semantic information 308

encoded in the hidden states (see ablation studies 309

in Sec. 6.5.3). 310
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Method
MSCOCO A-OKVQA GQA

%Accuracy %F1 Score %Accuracy %F1 Score %Accuracy %F1 Score

Greedy Decoding

LLaVA1.5-7B 85.13 ↑0.00 86.03 ↑0.00 78.99 ↑0.00 82.61 ↑0.00 76.60 ↑0.00 80.98 ↑0.00
+ VCD 85.16 ↑0.03 86.04 ↑0.01 78.92 ↓0.07 82.58 ↓0.03 76.49 ↓0.11 80.94 ↓0.04
+ VDD-None 86.87 ↑1.74 87.26 ↑1.23 82.02 ↑3.01 84.57 ↑1.96 79.99 ↑3.39 83.04 ↑2.06

+ ASD (Ours) 88.01 ↑2.88 87.87 ↑1.84 85.10 ↑6.11 85.65 ↑3.04 83.49 ↑6.89 83.98 ↑3.00

Qwen-VL-Chat 86.44 ↑0.00 86.12 ↑0.00 85.92 ↑0.00 85.80 ↑0.00 75.23 ↑0.00 67.70 ↑0.00
+ VCD 86.42 ↓0.02 86.31 ↑0.19 85.64 ↓0.28 85.70 ↓0.10 77.06 ↑1.83 71.19 ↑3.49
+ VDD-None 86.72 ↑0.28 86.45 ↑0.33 85.58 ↓0.34 85.58 ↓0.22 75.88 ↑0.65 68.94 ↑1.24

+ ASD (Ours) 88.09 ↑1.65 87.96 ↑1.84 87.29 ↑1.37 87.29 ↑1.49 83.77 ↑8.54 82.21 ↑14.51

Direct Sampling

LLaVA1.5-7B 81.49 ↑0.00 82.93 ↑0.00 75.97 ↑0.00 80.04 ↑0.00 73.71 ↑0.00 78.48 ↑0.00
+ VCD 85.41 ↑3.92 86.27 ↑3.34 78.87 ↑2.90 82.55 ↑2.51 76.53 ↑2.82 80.97 ↑2.49
+ VDD-None 85.77 ↑4.28 86.28 ↑3.35 81.02 ↑5.05 83.73 ↑3.69 79.41 ↑5.70 82.45 ↑3.97

+ ASD (Ours) 87.19 ↑5.70 87.15 ↑4.22 84.63 ↑8.66 85.34 ↑5.30 83.19 ↑9.48 83.89 ↑5.41

Qwen-VL-Chat 84.16 ↑0.00 83.59 ↑0.00 83.01 ↑0.00 82.79 ↑0.00 74.54 ↑0.00 67.12 ↑0.00
+ VCD 86.47 ↑2.31 86.24 ↑2.65 85.52 ↑2.51 85.60 ↑2.81 77.42 ↑2.88 71.83 ↑4.71
+ VDD-None 86.10 ↑1.94 85.78 ↑2.19 84.96 ↑1.95 84.99 ↑2.20 75.71 ↑1.17 68.68 ↑1.56

+ ASD (Ours) 87.03 ↑2.87 86.86 ↑3.27 85.69 ↑2.68 85.52 ↑2.73 82.84 ↑8.30 80.77 ↑13.65

Table 1: Performance evaluation of our method against baselines and related approaches on POPE benchmark
under two decoding strategies: Greedy Decoding and Direct Sampling. The base models (LLaVA1.5-7B and
Qwen-VL-Chat) are compared with VCD and VDD-None (existing methods) as well as our proposed approach.
Results are reported in terms of Accuracy (%) and F1 Score (%). The proposed method achieves consistent and
notable improvements over all baselines and related methods, with the best results highlighted in bold.

Activation Steering Decoding. To achieve more311

stable hallucination reduction while preserving gen-312

eration quality, we propose Activation Steering De-313

coding. Let π+ and π− denote the model under314

positive (i.e., λ > 0) and negative (i.e., λ < 0)315

steering using Eq. (2) respectively, applying the316

same steering vector in opposite directions. The317

final logits for next token prediction are obtained318

through following:319

logitASD = (1 + α) · logitπ+ − α · logitπ− . (3)320

This contrast mechanism is effective because the321

difference operation amplifies our steering’s im-322

pact on output logits, while allowing us to use a323

relatively small steering intensity to better preserve324

semantic integrity in the hidden states. This prop-325

erty makes our approach more robust and less likely326

to disturb the model’s normal generation process327

compared to direct steering.328

6 Experiments329

In this section, we evaluate our proposed Activation330

Steering Decoding method on various multimodal331

benchmarks. Our experiments aim to assess both332

hallucination reduction and general visual compre- 333

hension capabilities. 334

6.1 Benchmarks 335

We conduct experiments on two categories of 336

benchmarks: 337

Visual Hallucination. POPE evaluates object hal- 338

lucination through yes/no questions about object 339

presence. It contains 27,000 question-answer pairs 340

sourced equally from MS-COCO, A-OKVQA, and 341

GQA datasets (9,000 each). The questions are cate- 342

gorized into three types Random, Popular, and Ad- 343

versarial. CHAIR measures object hallucination in 344

image captioning tasks. It provides fine-grained an- 345

notations on MS-COCO captions, marking specific 346

object mentions as either hallucinated or faithful. 347

It provides two key metrics CHAIRs, the percent- 348

age of generated captions containing at least one 349

hallucinated object, and CHAIRi, the percentage 350

of hallucinated object instances among all object 351

mentions in the generated captions. Following pre- 352

vious papers, we randomly selected 500 samples 353

from MS-COCO validation set for our experiments. 354

General Visual Understanding. MME is a com- 355
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Model CHAIRS ↓ CHAIRI ↓ Recall ↑

LLaVA-1.5 51.0 ↑0.0 14.7 ↑0.0 82.8 ↑0.0
+ VCD 47.8 ↓3.2 14.1 ↓0.6 82.7 ↓0.1
+ VDD-None 50.2 ↓0.8 14.3 ↓0.4 83.2 ↑0.4

+ ASD (Ours) 40.0 ↓11.0 11.3 ↓3.4 82.0 ↓0.8

Table 2: Comparison of different hallucination miti-
gation methods on CHAIR benchmark. CHAIRS and
CHAIRI measure sentence-level and instance-level hal-
lucination rates respectively (lower is better), while Re-
call measures the model’s ability to describe actually
present objects (higher is better). Our method achieves
substantial reductions in hallucination rates with only
minimal impact on recall performance.

prehensive benchmark designed to assess VLMs356

through yes/no questions. It comprises 14 sub-357

sets: 10 perception-based tasks (including color,358

count, position, scene, action, etc.) and 4 reasoning-359

based tasks (including commonsense, numerical,360

mathematical reasoning). MMMU is a challenging361

multiple-choice benchmark containing 11.5K ques-362

tions spanning 30 academic subjects at the college363

level. The benchmark is particularly challenging,364

with even GPT-4V achieving less than 60% accu-365

racy. TextVQA validation set consists of 5,000366

questions that can only be correctly answered by367

reading and reasoning about text present in images.368

LLaVA-Bench consists of 60 carefully designed369

open-ended questions across 24 images, evaluating370

models’ visual reasoning and understanding capa-371

bilities. The responses are evaluated using GPT-4-372

1106-preview as an automatic evaluator, providing373

standardized scoring metrics. MM-Vet contains374

217 challenging open-ended tasks that require mod-375

els to simultaneously demonstrate multiple capa-376

bilities including detailed perception, cross-modal377

reasoning, and world knowledge. We use the offi-378

cial online evaluator, powered by GPT-4-0613, to379

ensure fair comparison with existing approaches.380

6.2 Implementation Details381

We conduct experiments on two base model:382

LLaVA1.5-7B (Liu et al., 2024b) and Qwen-VL-383

Chat (Bai et al., 2023). For each model, we ran-384

domly sample 1,000 images from MSCOCO train-385

ing set for steering vector extraction of Eq. (1).386

We set α = 5 in Equation (2) and conduct grid387

search over λ ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5} for both388

π+ and π− (detailed analysis in Sec. 6.5.1). For389

comparison, we implement VCD (Leng et al.,390

2024) with optimized hyperparameters, and VDD-391

None (Zhang et al., 2024) using their recommended392

parameters.393

Figure 3: Analysis of hallucination rates (CHAIRS and
CHAIRI ) with respect to generated token length, with
LLaVA1.5-7b as the base model.

6.3 Hallucination Reduction Performance 394

Tab. 1 presents a comprehensive evaluation of our 395

method against existing approaches on the POPE 396

benchmark. We evaluate performance under two 397

decoding strategies: Greedy Decoding and Direct 398

Sampling (which generates responses by directly 399

sampling from the raw logit probability distribu- 400

tion without normalization) across three subset 401

(MSCOCO, A-OKVQA, and GQA), using both ac- 402

curacy and F1 score as metrics. Our method demon- 403

strates consistent and substantial improvements 404

across all experimental settings. Under Greedy 405

Decoding, when applied to LLaVA1.5-7B, our ap- 406

proach achieves absolute gains of 2.88%, 6.11%, 407

and 6.89% in accuracy on MSCOCO, A-OKVQA, 408

and GQA respectively. The improvements were 409

even more pronounced when applied to Qwen-VL- 410

Chat, particularly on the GQA dataset where we 411

observed a remarkable 8.54% increase in accuracy 412

and 14.51% improvement in F1 score. Notably, our 413

method not only surpasses the baseline models but 414

also outperforms existing hallucination mitigation 415

approaches (VCD and VDD-None) by a signifi- 416

cant margin. The effectiveness of our method is 417

further validated under Direct Sampling, where it 418

maintains robust performance improvements. For 419

instance, with LLaVA1.5-7B, our method achieves 420

accuracy gains of 5.70%, 8.66%, and 9.48% on 421

the three subset respectively. Unlike other methods 422

showing more significant improvements under di- 423

rect sampling, our approach demonstrates robust 424

effectiveness under both greedy decoding and di- 425

rect sampling strategies, validating its stability and 426

reliability across different inference settings. The 427

superior performance can be attributed to our con- 428

trast decoding mechanism, which effectively iso- 429

lates and suppresses hallucination patterns while 430
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Method MME MMBench MMMU TextVQA MMVet LLaVABench Overall

LLaVA1.5-7B 1810.70 ↑0.00 65.46 ↑0.00 35.44 ↑0.00 45.76 ↑0.00 31.10 ↑0.00 58.90 ↑0.00 ↑0.00
+ VCD 1800.41 ↓10.29 64.69 ↓0.77 36.00 ↑0.56 44.26 ↓1.50 30.90 ↓0.20 57.20 ↓1.70 ↓4.18
+ VDD-None 1763.80 ↓46.90 63.75 ↓1.71 36.78 ↑1.34 42.19 ↓3.57 32.30 ↑1.20 62.10 ↑3.20 ↓2.13

+ ASD (Ours) 1832.44 ↑21.74 65.38 ↓0.08 38.78 ↑3.34 46.40 ↑0.64 33.80 ↑2.70 61.60 ↑2.70 ↑10.50

Qwen-VL-Chat 1839.55 ↑0.00 61.34 ↑0.00 33.56 ↑0.00 60.79 ↑0.00 46.10 ↑0.00 66.40 ↑0.00 ↑0.00
+ VCD 1847.85 ↑8.30 60.40 ↓0.94 35.67 ↑2.11 59.31 ↓1.48 45.20 ↓0.90 67.50 ↑1.10 ↑0.34
+ VDD-None 1861.01 ↑21.46 62.97 ↑1.63 33.67 ↑0.11 59.91 ↓0.88 41.40 ↓4.70 65.20 ↓1.20 ↓3.87

+ ASD (Ours) 1825.20 ↓14.35 61.08 ↓0.26 36.56 ↑3.00 60.42 ↓0.37 46.60 ↑0.50 68.20 ↑1.80 ↑3.89

Table 3: Performance comparison on general visual understanding benchmarks. Bold numbers indicate the best
scores for each benchmark. When calculating overall improvements, percentage changes are used for MME scores
and absolute changes for other benchmarks due to scale differences. Results show that our method maintains or
improves performance across diverse tasks compared to baseline models and other approaches.

preserving the model’s ability to generate accurate431

and contextually appropriate responses. This is432

evidenced by the consistent improvements across433

both metrics and all datasets, suggesting that our434

method successfully addresses hallucination with-435

out compromising general visual understanding436

capabilities.437

The result on the CHAIR benchmark is reported438

in Tab. 2. Our method demonstrates substan-439

tial improvements in reducing hallucination rates440

compared to the baseline LLaVA1.5-7B model441

and other mitigation approaches. Specifically, we442

achieve a significant 10.0% reduction in sentence-443

level hallucination (CHAIRS) compared to the444

baseline, substantially outperforming both VCD445

(-3.2%) and VDD-None (-0.8%). The CHAIRI446

metric exhibited a similar trend. Notably, while447

VDD-None achieves the best recall performance448

with a 0.4% improvement over the baseline, our449

method still maintains competitive recall (-0.8%)450

while achieving significantly better hallucination451

reduction, demonstrating a favorable trade-off be-452

tween reliability and comprehensiveness. This min-453

imal trade-off in recall suggests that our approach454

effectively reduces hallucination while largely pre-455

serving the model’s ability to describe actually456

present objects in the images.457

Fig. 3 illustrates the relationship between gener-458

ated token length and hallucination rates across dif-459

ferent methods, where the base model is LLaVA1.5-460

7B. Our analysis reveals that hallucination rates461

increase progressively with the length of gener-462

ated content across all methods. A particularly463

concerning observation is the presence of a sharp464

increase in hallucination rates around the 80-token465

mark across all methods, suggesting that extended466

generation lengths pose heightened risks for hal-467

lucination. Notably, our approach demonstrates468

particularly strong advantages beyond this thresh-469

Figure 4: Impact of steering intensities on ASD,
measured as percentage point improvements over
LLaVA1.5-7B baseline (85.13%) on POPE-COCO ac-
curacy. The optimal performance (+2.88%) is achieved
with λ = 0.2 for π+ and λ = 0.4 for π−.

old, maintaining substantially lower hallucination 470

rates with a notably smaller slope in both CHAIRS 471

and CHAIRI metrics compared to baseline and 472

existing methods. 473

6.4 General Performance Maintenance 474

Table 3 presents the results on six general visual 475

understanding benchmarks. Our method demon- 476

strates comparable or improved performance across 477

most tasks for both models. For LLaVA1.5-7B, we 478

observe notable improvements on MME (+21.74), 479

MMMU (+3.34), and MMVet (+2.70) while main- 480

taining performance on other benchmarks with min- 481

imal variation (<0.1% on MMBench). Similarly, 482

for Qwen-VL-Chat, our method achieves the best 483

performance on MMMU (+3.00), MMVet (+0.50), 484

and LLaVABench (+1.80), with negligible degrada- 485

tion on other benchmarks. This dual achievement - 486

substantial hallucination reduction while preserv- 487
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Count POPE CHAIRS ↓ MME TextVQA

LLaVA1.5-7B 85.13 51.00 1810.70 45.76

100 87.72 40.40 1813.01 46.22
500 87.79 38.80 1821.98 46.24
1,000 88.01 40.00 1832.44 46.40

Table 4: Impact of calibration data size (number of
images used for steering vector computation) on model
performance across different benchmarks. POPE refers
to POPE-COCO subset.

ing and sometimes improving general capabilities488

- validates the effectiveness of our contrast decod-489

ing mechanism in mitigating hallucination patterns490

without compromising essential visual understand-491

ing features.492

6.5 Ablation Study493

6.5.1 Impact of Steering Strength494

Fig. 4 illustrates the effect of steering intensities495

λ of ASD method. Most parameter combina-496

tions yield positive improvements over the base-497

line, demonstrating the robustness of our method.498

However, we observe that positive steering (π+)499

requires more careful tuning - performance begins500

to degrade when λ > 0.3, with accuracy dropping501

by 2.71% at λ = 0.5. In contrast, negative steer-502

ing (π−) shows greater tolerance to larger values,503

maintaining improvements even at λ = 0.5. The504

optimal configuration is achieved with moderate505

positive steering (λ = 0.2 for π+) and stronger neg-506

ative steering (λ = 0.4 for π−), achieving 88.01%507

accuracy (a 2.88% improvement over the baseline),508

which represents a state-of-the-art performance on509

this benchmark.510

6.5.2 Impact of Calibration Data Size511

Tab. 4 examines the sensitivity of our method to512

the amount of calibration data used for computing513

steering vectors. Notably, our approach demon-514

strates strong performance even with mini calibra-515

tion data - using just only 100 images already yields516

substantial improvements across all selected bench-517

marks. These results suggest that our method can518

effectively capture hallucination patterns with a519

very small calibration set, making it highly practi-520

cal for real-world applications.521

6.5.3 Direct Vector Steering522

We investigate the effectiveness of vector steering523

without contrast decoding to understand its impact524

in isolation. Fig. 5 shows the accuracy improve-525

ments over the LLaVA1.5-7B baseline on POPE526

benchmark. The y-axis represents the relative ac-527

Figure 5: Impact of steering intensity on Direct Vec-
tor Steering, measured as relative improvement over
LLaVA1.5-7B baseline.

curacy change in percentage points compared to 528

the baseline performance. First, we observe that 529

the optimal steering intensity varies significantly 530

across datasets, with COCO achieving peak perfor- 531

mance at λ = 0.3, while AOKVQA and GQA show 532

improvements at lower intensities. This variation 533

suggests that the effectiveness of steering vectors is 534

sensitive to the specific characteristics of each task. 535

Second, we observe a consistent pattern where per- 536

formance deteriorates at higher steering intensities. 537

This degradation becomes particularly pronounced 538

at λ = 0.5, where AOKVQA and GQA show ac- 539

curacy drops of approximately 3% and 3.5% re- 540

spectively. This decline can be attributed to exces- 541

sive distortion of the hidden state semantics, indi- 542

cating that overly aggressive steering can disrupt 543

the model’s learned representations. While COCO 544

shows substantial improvements of up to 1.8%, the 545

gains on AOKVQA and GQA are notably smaller. 546

This performance gap is expected, as the calcula- 547

tion of steering vectors relies on COCO-defined 548

object categories. This suggests that direct vec- 549

tor steering may have limitations in generalizing 550

across different visual understanding tasks. 551

7 Conclusion 552

We present a systematic investigation of halluci- 553

nation in Large Vision-Language Models through 554

the lens of intermediate activations, revealing that 555

hallucinated content manifests as distinct patterns 556

in the model’s hidden state space. Building on 557

this insight, we propose Activation Steering Decod- 558

ing, a training-free approach that effectively mit- 559

igates hallucination through targeted intervention 560

in model activations. Our extensive experiments 561

demonstrate that ASD significantly reduces halluci- 562

nation rates while maintaining model performance 563

across general visual understanding tasks. 564
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8 Limitation565

While our proposed Activation Steering Decoding566

demonstrates promising results in mitigating ob-567

ject hallucination, several limitations warrant dis-568

cussion. First, our method primarily focuses on569

object-level hallucination, and its effectiveness on570

other types of hallucinations (e.g., attributes, rela-571

tionships, or abstract concepts) remains to be inves-572

tigated. Additionally, the contrast decoding mecha-573

nism introduces additional computational overhead574

by requiring two forward passes during inference,575

which may impact real-time applications.576
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