
SKOLR: Structured Koopman Operator Linear RNN
for Time-Series Forecasting

Yitian Zhang 1 2 3 Liheng Ma 1 2 3 Antonios Valkanas 1 2 3 Boris N. Oreshkin 4 Mark Coates 1 2 3

Abstract

Koopman operator theory provides a framework
for nonlinear dynamical system analysis and time-
series forecasting by mapping dynamics to a
space of real-valued measurement functions, en-
abling a linear operator representation. Despite
the advantage of linearity, the operator is gener-
ally infinite-dimensional. Therefore, the objec-
tive is to learn measurement functions that yield
a tractable finite-dimensional Koopman opera-
tor approximation. In this work, we establish
a connection between Koopman operator approx-
imation and linear Recurrent Neural Networks
(RNNs), which have recently demonstrated re-
markable success in sequence modeling. We show
that by considering an extended state consisting
of lagged observations, we can establish an equiv-
alence between a structured Koopman operator
and linear RNN updates. Building on this con-
nection, we present SKOLR, which integrates
a learnable spectral decomposition of the input
signal with a multilayer perceptron (MLP) as the
measurement functions and implements a struc-
tured Koopman operator via a highly parallel lin-
ear RNN stack. Numerical experiments on vari-
ous forecasting benchmarks and dynamical sys-
tems show that this streamlined, Koopman-theory-
based design delivers exceptional performance.
Our code is available at: https://github.
com/networkslab/SKOLR.

1Department of Electrical and Computer Engineering, McGill
University, Montreal, Canada 2Mila - Quebec Artificial Intelli-
gence Institute, Montreal, Canada 3ILLS - International Labora-
tory on Learning Systems, Montreal, Canada 4Amazon Science.
This work does not relate to the author’s position at Amazon. Cor-
respondence to: Yitian Zhang <yitian.zhang@mail.mcgill.ca>,
Liheng Ma <liheng.ma@mail.mcgill.ca>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Time-series prediction and analysis of nonlinear dynami-
cal systems remain fundamental challenges across various
domains. Koopman operator theory (Koopman, 1931) of-
fers a promising mathematical framework that transforms
nonlinear dynamics into linear operations in the space of
measurement functions. Practical implementation of this
theory faces significant challenges due to the infinite dimen-
sionality of the resulting linear operator, necessitating finite
dimensional approximations. The dynamic mode decom-
position (DMD) and its variants are the most widely em-
ployed approximations (Rowley et al., 2009; Schmid, 2010;
Williams et al., 2015), although alternative techniques have
emerged (Bevanda et al., 2021; Khosravi, 2023), including
ones employing learnable neural measurement functions (Li
et al., 2017)

In parallel developments, linear Recurrent Neural Networks
(linear RNNs) have emerged as a powerful architecture in
deep learning and sequence modeling (Stolzenburg et al.,
2018; Gu & Dao, 2023; Wang et al., 2024b). These models
leverage the computational efficiency of linear recurrence
while maintaining impressive modeling capabilities.

In this work, we consider the task of time-series forecasting
and establish both an explicit connection and a direct archi-
tectural match between Koopman operator approximation
and linear RNNs. In particular, we show that by represent-
ing the dynamic state using a collection of time-delayed
observations, we can establish an equivalence between the
application of an extended DMD-style approximation of the
Koopman operator and the state update of a linear RNN.

Building on this connection, we introduce Structured
Koopman Operator Linear RNN (SKOLR) for time-series
forecasting. SKOLR implements a structured Koopman op-
erator through a highly parallel linear RNN stack. Through
a learnable spectral decomposition of the input signal,
the RNN chains jointly attend to different dynamical pat-
terns from different representation subspaces, creating a
theoretically-grounded yet computationally efficient design
that naturally aligns with Koopman principles.

Through extensive experiments on various forecasting
benchmarks and dynamical systems, we demonstrate that

1

https://github.com/networkslab/SKOLR
https://github.com/networkslab/SKOLR

SKOLR: Structured Koopman Operator Linear RNN

this streamlined, Koopman-theory-based design delivers ex-
ceptional performance, while maintaining the simplicity of
the linear RNN and its outstanding parameter efficiency.

2. Preliminary
This section provides foundational background for the pro-
posed forecasting methodology. We define the discrete-time
dynamical systems used to model observed time series and
then introduce the Koopman operator.

Definition 2.1 (Discrete-time Dynamical Systems). We con-
sider the (autonomous) discrete-time dynamical system:

xk+1 = F(xk) (1)

where xk ∈ M denotes the system state at time k ∈ Z+;
and F : M → M represents the underlying dynamics map-
ping the state forward in time. We assume a Euclidean state
space M ⊂ RC , although it can be more generally defined
on an n-dimensional manifold (Bevanda et al., 2021).

The Koopman operator framework enables globally linear
representations of nonlinear systems by applying a linear
operator to measurement functions (observables) g of the
state xk. The following theorem formalizes key properties
of the Koopman operator.

Theorem 2.2 (Koopman Operator Theorem (Koopman,
1931; Brunton et al., 2022)). Considering real-valued mea-
surement functions (a.k.a. observables) g : M → R, the
Koopman operator K : F → F is an infinite-dimensional
linear operator on the space of all possible measurement
functions F , which is an infinite-dimensional Hilbert space,
satisfying:

K ◦ g = g ◦ F , (2)

where ◦ is the composition operator.

In other words,

K(g(xk)) = g(F(xk)) = g(xk+1) . (3)

This is true for any measurement function g and for any
state xk.1

While this facilitates analysis via linear maps, Koopman op-
erator is generally infinite-dimensional, acting on a Hilbert
space of functions. For practical learning and inference,
we seek effective finite-dimensional approximations. In
this paper, we construct these approximations efficiently by
leveraging a connection to linear recurrent neural networks
(RNNs). For clarity, we now define a linear RNN.

Definition 2.3 (Linear Recurrent Neural Network (Stolzen-
burg et al., 2018)). Consider a hidden state space H ⊆ Rdh

1Koopman operators can also be defined on a continuous-time
dynamical system, which we disregard here for now.

and input space V ⊆ Rdv . For any sequence (vk)
L
k=1 ∈ V ,

the linear RNN defines a discrete-time dynamical system
through the hidden state transition equation:

hk = Whk−1 +Uvk + b (4)

where W ∈ Rdh×dh is the hidden state transition matrix,
U ∈ Rdh×dv is the weight matrix applied to the input, and
b ∈ Rdh is the bias vector. The evolution of hidden states
hk ∈ H is uniquely determined by this linear map.

In order to prepare the connection to our proposed Koopman
operator learning strategy and forecasting method, let us
introduce vk := ψ(yk) and define g(yk) := Uψ(yk) + b
for a suitable function ψ. Then, if g(yk−s) = 0 for s > L,
we can unroll Eq. 4 to the following form:

hk = g(yk) +

L∑
s=1

Wsg(yk−s) . (5)

Here Ws indicates s applications of W.

3. Methodology
3.1. Problem Statement

Let us denote L steps of the trajectory of a discrete-time
dynamical system as x1, . . . ,xL. We focus on the setting
where xk ∈ X ⊆ RC . We do not directly observe xk, but
instead observe yk = h(xk) for some unknown function h.

We have available a set of training data consisting of mul-
tiple sequences of length L + T . The inference task is to
forecast the values yL+1, . . . ,yL+T given observations of
the first L values of a sequence y1, . . . ,yL.

3.2. Strategy: Directly observable systems

We first consider the setting where we directly observe
the state, i.e., h is the identity, and yk = h(xk) = xk.
Assume that the dynamical system can be captured by
xk+1 = F(xk). Then an appropriate forecasting approach is
to learn a finite dimensional approximation to the Koopman
operator associated with F, and then propagate it forward
in time to construct the forecast. In this section, for nota-
tional simplicity, we describe a setting where learning is
based on a single observation y0, . . . ,yL (which, for now,
= x0, . . . ,xL). The extension to learning using multiple
observed series is straightforward.

Let us introduce measurement functions g1, g2, . . . gng
∈ H,

where H is a Hilbert space containing real-valued functions
defined on X . Denoting L(H) as the space of bounded
linear operators T : H → H, Khosravi (2023) formulates
the learning of the Koopman operator as a minimization

2

SKOLR: Structured Koopman Operator Linear RNN

task with a Tikhonov-regularized empirical loss:

min
K∈L(H)

L∑
k=1

ng∑
l=1

(
xkl − (Kgl)(xk−1)

)2

+ λ||K||2 . (6)

Although this optimization is over an infinite-dimensional
space of linear operators, Khosravi (2023) demonstrates
that if the measurement functions satisfy certain conditions,
then there is a unique solution K̂, which can be derived by
solving a finite-dimensional optimization problem.

A special case occurs when K̂ is invariant in the sub-
space spanned by the measurement functions, G =
span{g1, . . . , gng

}, i.e. K̂ ∈ L(G). In this setting, we
can follow the approach of the Extended Dynamic Mode
Decomposition (EDMD) method (Li et al., 2017), which
approximates the Koopman operator by a finite-dimensional
linear map U : G → G. We can represent the action of
U on gl using a matrix M ∈ Rng×ng . Because the di-
mension of G is finite, we can identify an M such that
Ugl =

∑ng

j=1[M]j,lgj . The matrix M can then be estimated
via the following minimization:

min
M

||PGM−Y||2F . (7)

where PG = [gl(xk−1)]
L,ng

k=1,l=1 and Y = [gl(xk)]
L,ng

k=1,l=1.
When applying EDMD, we assume that PG is full rank so
that a unique minimizer can be identified via the Moore-
Penrose pseudoinverse.

This learning task can be made more flexible by allowing for
learning of the measurement functions gl. Li et al. (2017)
propose a method that incorporates neural network based
learning of the measurement functions and an L1 regularizer
to promote sparsity.

3.3. Unobserved states

In many settings, we do not observe the state of the system
xk directly. Instead we observe yk = h(xk) for some
unknown observation function h(·). In this setting, yk may
not provide sufficient information in isolation to recover the
state xk. We can instead construct a state representation
by considering the past L measurements, i.e., we define
x̃k = [yk−L+1, . . . ,yk]

⊤. With this representation, we can
model the dynamics as x̃k = F̃(x̃k−1) and target learning of
the Koopman operator K̃ associated with F̃. Note that this
permits us to perform prediction, because we are interested
in predicting yk+1, which can be recovered from x̃k+1.

Under the same assumptions of invariance of the Koopman
operator with respect to G, we can adopt the same approach
as outlined above, learning a matrix M. Given the structure
of the constructed x̃k, we are motivated to impose further
structure on the Koopman operator matrix, with the goal of
introducing an inductive bias that can facilitate learning and

make it more robust. In particular, we enforce a structure
on M that allows us to write:

g(x̃k) = Mg(x̃k−1) = g(yk−1) +

L∑
s=1

Wsg(yk−s) . (8)

With this structure, we see that M is a blockwise diagonal
matrix, where each block is a power of a learnable matrix
W. Moreover, by comparing Eq. 8 with Eq. 5, we see that
this structure, which represents the dynamic state using a
collection of time-delayed observations (Arbabi & Mezic,
2017), can be implemented as a linear RNN.

3.4. SKOLR

Building on our analysis of Koopman operator approxi-
mation and the connection to the linear RNN, we present
SKOLR, which integrates a learnable spectral decomposi-
tion of the input signal with a multilayer perceptron (MLP)
for the measurement functions.

Inspired by multiresolution DMD (Kutz et al., 2016), instead
of learning a single linear RNN acting on a high dimensional
space, we propose to split the space into multiple subspaces,
resulting in learning a structured Koopman operator via
a highly parallel linear RNN stack. This structure also
improves the parameter efficiency, as shown in Fig. 1

Encoder Let the input sequence be Y = [y1,y2, . . . ,yL],
where yk ∈ RP , with P being the dimension of the observa-
tion. The encoder performs learnable frequency decomposi-
tion via reconstruction of the soft-gated frequency spectrum
via Fast Fourier Transform (FFT) and Inverse FFT (IFFT):

S = FFT(Y),

Sn = S · Sigmoid(wn),

Yn = IFFT(Sn).

(9)

The reconstructed signals {Yn}Nn=1 form N parallel
branches, with each branch representing a frequency-based
subspace, while {wn}Nn=1 contain learnable parameters for
frequency selection.

For each branch n we parameterize the measurement func-
tions using non-linear feed-forward network:

zn,k = FFNenc,n(yk), for k = 1, . . . , L (10)

where FFN : RP → RD. We utilize multiple layer percep-
trons (MLPs) for simplicity, generally with only one layer
or two. Other FFNs like wiGLU (Shazeer, 2020) are also
applicable. After this encoding is complete, we have con-
structed the zk = g(yk) (and hence the g(x̃k)) that appear
in Eq. 8 for k = 1, . . . , L. By structuring the architecture
into multiple branches and incorporating both frequency-
domain filtering and time-domain encoding, we enhance
flexibility in learning suitable measurement functions for
diverse time-series patterns.

3

SKOLR: Structured Koopman Operator Linear RNN

hL+1,N

hL+1,2

Encoder

Decoder

y[1:L] ∈ ℝ1×L

…

N

∑
i

D

∑
j

g−1
i,j (hL+1)

ŷ[L+1:L+T] ∈ ℝ1×T

…

… …h1,1 h2,1 h3,1 hL,1 hL+1,1 hL+2,1 hL+T,1
M1

… …h1,2 h2,2 h3,2 hL,2 hL+2,2 hL+T,2
M2

… …h1,N h2,N h3,N hL,N hL+2,N hL+T,N
MN

Z[1:L] ∈ ℝN×D×L

H[1:(L+T)]

…

g1,1(x1)
g1,2(x1)
gN,D(x1)

N

∑
i

D

∑
j

g−1
i,j (hL+2)

N

∑
i

D

∑
j

g−1
i,j (hL+T)

M1

M2

MN

...

Structured Koopman

Operator Approximation

V10

…

g1,1(x2)
g1,2(x2)
gN,D(x2)

…

g1,1(x3)
g1,2(x3)
gN,D(x3)

…

g1,1(xL)
g1,2(xL)
gN,D(xL)

… …

M1 M1 M1 M1 M1

M2 M2 M2 M2 M2

MN MN MN MN MN

̂K =∈ ℝN×D×(L+T)

Figure 1: Architecture of SKOLR (Structured Koopman Operator Linear RNN) The input time series goes through an
encoder with learnable frequency decomposition and a MLP that models the measurement functions. With the branch
decomposition, the highly parallel linear RNN chains jointly attend to different dynamical patterns from different represen-
tation subspaces. Finally, a decoder reconstructs predictions by parameterizing the inverse measurement functions. This
structured approach maintains computational efficiency while naturally aligning with Koopman principles.

RNN Stack Given the collection for each branch n and
time step k: Zn = [z1,n, . . . , zL,n] ∈ RD×L, we take it
as input to a linear RNN and introduce learnable branch-
specific weight matrices Wn for each branch.

hk+1,n = Wnhk,n + zk,n (11)

Each branch weight matrix Wn defines a matrix Mn, as
discussed above, which specifies a finite-dimensional ap-
proximation to a Koopman operator for x̃ for the learned
measurement functions on that branch.

Together, the branch matrices Mn form a structured finite-
dimensional Koopman operator approximation K̂ with block
diagonal structure:

K̂ =

M1 0 · · · 0
0 M2 · · · 0
...

...
. . .

...
0 0 · · · MN

 (12)

By imposing this structure and using a stack of linear RNNs,
we can learn local approximations to the evolution dynamics
of different observables. For each branch n:

Hn = [z1,n, z2,n +Mnz1,n, . . . , zL,n +

L−1∑
s=0

Ms
nzs,n]

(13)

For prediction of length T , we recursively apply the operator
to predict the Koopman space for future steps per branch:

H[L+1:L+T],n = [MnhL,n, . . . ,M
T
nhL,n] (14)

Decoder For reconstruction, we use mirrored feed-
forward networks to parameterize the inverse measurement
functions g−1. The decoder processes the hidden states as:

ŷk,n = FFNdec,n(hk,n) (15)

where FFNdec : RD → RP .

The decoder combines predictions from all branches to gen-
erate the final prediction ŷ[L+1,L+T]. The model is trained
end-to-end using the loss function:

L = ∥ŷ[L+1:L+T] − y[L+1:L+T]∥22. (16)

The structured approach, induced by both the linear RNN
and the branch decomposition, enables efficient parallel pro-
cessing and reduces the parameter count. Since all architec-
tural components are very simple (basic sigmoid frequency
gating, one- or two-layer MLPs for encoding/decoding, lin-
ear RNN), the architecture is very fast to train and has low
memory cost, as we illustrate in the experiments section.

4

SKOLR: Structured Koopman Operator Linear RNN

Table 1: Prediction results on benchmark datasets, L = 2T and T ∈ {48, 96, 144, 192} (ILI: T ∈ {24, 36, 48, 60}). Best
results and second best results are highlighted in red and blue respectively.

Models T SKOLR Koopa iTransformer PatchTST TimesNet Dlinear MICN KNF Autoformer
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

48 0.137 0.229 0.130 0.234 0.133 0.225 0.147 0.246 0.149 0.254 0.158 0.241 0.156 0.271 0.175 0.265 0.164 0.272
96 0.132 0.225 0.136 0.236 0.134 0.230 0.143 0.241 0.170 0.275 0.153 0.245 0.165 0.277 0.198 0.284 0.182 0.289
144 0.143 0.236 0.149 0.247 0.145 0.240 0.145 0.241 0.183 0.287 0.152 0.245 0.163 0.274 0.204 0.297 0.210 0.315ECL

192 0.149 0.244 0.156 0.254 0.154 0.249 0.147 0.240 0.189 0.291 0.153 0.246 0.171 0.284 0.245 0.321 0.221 0.324

48 0.400 0.258 0.415 0.274 0.369 0.256 0.426 0.286 0.567 0.306 0.488 0.352 0.496 0.301 0.621 0.382 0.640 0.361
96 0.368 0.248 0.401 0.275 0.388 0.270 0.413 0.283 0.611 0.337 0.485 0.336 0.511 0.312 0.645 0.376 0.668 0.367
144 0.375 0.255 0.397 0.276 0.375 0.267 0.405 0.278 0.603 0.322 0.452 0.317 0.498 0.309 0.683 0.402 0.681 0.379Traffic

192 0.377 0.256 0.403 0.284 0.373 0.267 0.404 0.277 0.604 0.321 0.438 0.309 0.494 0.312 0.699 0.405 0.692 0.385

48 0.131 0.170 0.126 0.168 0.136 0.174 0.140 0.179 0.138 0.191 0.156 0.198 0.157 0.217 0.201 0.288 0.185 0.240
96 0.154 0.202 0.154 0.205 0.169 0.216 0.160 0.206 0.180 0.231 0.186 0.229 0.187 0.250 0.295 0.308 0.230 0.279
144 0.172 0.220 0.172 0.225 0.192 0.242 0.174 0.221 0.190 0.244 0.199 0.244 0.197 0.257 0.394 0.401 0.268 0.308Weather

192 0.193 0.241 0.193 0.241 0.204 0.251 0.195 0.243 0.212 0.265 0.217 0.261 0.214 0.270 0.462 0.437 0.325 0.347

48 0.280 0.330 0.283 0.333 0.313 0.356 0.286 0.336 0.308 0.354 0.322 0.355 0.294 0.353 1.026 0.792 0.592 0.419
96 0.289 0.340 0.294 0.345 0.302 0.353 0.299 0.346 0.329 0.370 0.309 0.346 0.306 0.364 0.957 0.782 0.493 0.469
144 0.319 0.361 0.322 0.366 0.331 0.374 0.325 0.363 0.358 0.387 0.327 0.359 0.342 0.390 0.921 0.760 0.735 0.569ETTm1

192 0.328 0.373 0.337 0.378 0.343 0.381 0.343 0.375 0.462 0.441 0.337 0.365 0.386 0.415 0.896 0.731 0.592 0.506

48 0.134 0.228 0.134 0.226 0.139 0.234 0.135 0.231 0.142 0.234 0.144 0.240 0.131 0.238 0.621 0.623 0.191 0.280
96 0.171 0.255 0.171 0.254 0.177 0.268 0.171 0.255 0.187 0.269 0.172 0.256 0.197 0.295 1.535 1.012 0.241 0.311
144 0.209 0.283 0.206 0.280 0.216 0.296 0.205 0.282 0.216 0.291 0.200 0.276 0.210 0.297 1.337 0.876 0.300 0.352ETTm2

192 0.241 0.304 0.226 0.298 0.237 0.310 0.221 0.294 0.243 0.313 0.219 0.290 0.248 0.328 1.355 0.908 0.324 0.370

48 0.333 0.373 0.336 0.377 0.342 0.380 0.337 0.375 0.365 0.399 0.343 0.371 0.375 0.406 0.876 0.709 0.442 0.438
96 0.371 0.398 0.371 0.405 0.393 0.412 0.372 0.393 0.411 0.430 0.379 0.393 0.406 0.429 0.975 0.744 0.634 0.523
144 0.405 0.417 0.405 0.418 0.425 0.430 0.394 0.412 0.442 0.447 0.393 0.403 0.437 0.448 0.801 0.662 0.522 0.491ETTh1

192 0.422 0.432 0.416 0.429 0.456 0.454 0.416 0.439 0.469 0.470 0.407 0.416 0.518 0.496 0.941 0.744 0.525 0.501

48 0.238 0.306 0.226 0.300 0.243 0.313 0.223 0.297 0.241 0.319 0.226 0.305 0.260 0.336 0.385 0.376 0.355 0.380
96 0.299 0.352 0.297 0.349 0.306 0.358 0.300 0.353 0.325 0.376 0.294 0.351 0.343 0.393 0.433 0.446 0.427 0.432
144 0.335 0.377 0.333 0.381 0.347 0.385 0.346 0.390 0.374 0.408 0.354 0.397 0.374 0.411 0.441 0.456 0.457 0.461ETTh2

192 0.365 0.397 0.356 0.393 0.375 0.403 0.383 0.406 0.394 0.434 0.385 0.418 0.455 0.464 0.528 0.503 0.503 0.491

24 1.556 0.760 1.621 0.800 1.763 0.843 2.063 0.881 2.464 1.039 2.624 1.118 4.380 1.558 3.722 1.432 2.831 1.085
36 1.462 0.728 1.803 0.855 2.067 0.919 2.178 0.943 2.388 1.007 2.693 1.156 3.314 1.313 3.941 1.448 2.801 1.088
48 1.537 0.798 1.768 0.903 1.667 0.879 1.916 0.896 2.370 1.040 2.852 1.229 2.457 1.085 3.287 1.377 2.322 1.006ILI

60 2.187 0.995 1.743 0.891 2.011 1.000 1.981 0.917 2.193 1.003 2.554 1.144 2.379 1.040 2.974 1.301 2.470 1.061

Rank 1st # 17 15 10 7 3 2 3 3 0 0 5 7 1 0 0 0 0 0

4. Experiments
4.1. Benchmarking SKOLR

4.1.1. DATASETS

We evaluate SKOLR on widely-used public benchmark
datasets. For long-term forecasting, we use Weather, Traf-
fic, Electricity, ILI and four ETT datasets (ETTh1, ETTh2,
ETTm1, ETTm2). We assess short-term performance on
M4 dataset (Makridakis et al., 2020), which includes six
subsets of periodically recorded univariate marketing data.
For more information about the datasets see Appendix A.1.

4.1.2. BASELINES AND EXPERIMENTAL SETTINGS

We compare against state-of-the-art deep forecasting mod-
els. The comparison includes transformer-based models:
Autoformer (Wu et al., 2021), PatchTST (Nie et al., 2023),
iTransformer (Liu et al., 2024), TCN-based models: Times-
Net (Wu et al., 2023), MICN (Wang et al., 2023a), linear
model: DLinear (Zeng et al., 2023), and Koopman-based
models: KNF (Wang et al., 2023b), Koopa (Liu et al., 2023).

We select these representative baselines for their established
performance and public implementations.

Following Koopa (Liu et al., 2023), we set the lookback
window length L = 2T for prediction horizon T ∈
{48, 96, 144, 192} for all datasets, except ILI, for which
we use T ∈ {24, 36, 48, 60}. This setting leverages more
historical data for longer forecasting horizons. We report
baseline results from Liu et al. (2023) except for iTrans-
former; we reproduce iTransformer results with L = 2T
using the officially released code. Performance is measured
using Mean Squared Error (MSE) and Mean Absolute Error
(MAE). Appendix A.2 provides implementation details.

4.1.3. RESULTS AND ANALYSIS

Table 1 reports the experimental results for eight bench-
marks. The performance is measured by MSE and MAE;
the best and second-best results for each case (dataset, hori-
zon, and metric) are highlighted in bold and underlined,
respectively. The results are the average of 3 trials.

We rank the algorithms in Table 1 based on their MSE

5

SKOLR: Structured Koopman Operator Linear RNN

1 2 3 4 5 6 7 8 9
Rank

SKOLR
KooPA

PatchTST
iTransformer

DLinear
TimesNet

MICN
Autoformer

KNF

Figure 2: Boxplot for ranks of the algorithms (based on their
MSE) across seven datasets and four prediction horizons.
The medians and means of the ranks are shown by the
vertical lines and the black triangles respectively; whiskers
extend to the minimum and maximum ranks.

Table 2: Model evaluation results (MSE/MAE) on non-
linear dynamical systems (NLDS)

SKOLR KooPA

Dataset MSE MAE MSE MAE

Pendulum 0.0001 0.0083 0.0039 0.0470
Duffing 0.0047 0.0518 0.0365 0.1479
Lotka-Volterra 0.0018 0.0354 0.0178 0.1050
Lorenz ’63 0.9740 0.7941 1.0937 0.8325

and order them based on their average rank across eight
datasets and four prediction horizons. Figure 2 shows the
relative ranks. We observe that SKOLR achieves SOTA
performance, with the best average rank across all settings.

The model shows strength in capturing complex patterns in
the Weather dataset, matching Koopa’s performance while
surpassing other transformers, indicating effective handling
of meteorological dynamics. For the ILI dataset, which
features highly nonlinear epidemic patterns, SKOLR outper-
forms the baseline methods, with significant error reduction
for the shorter horizons.

While SKOLR demonstrates strong performance in long-
term forecasting, we also evaluate its effectiveness on short-
term predictions with M4 dataset. Results in Appendix B.1
show consistent improvements over both transformer-based
forecasting methods and Koopman-based alternatives across
different time scales.

4.2. State Prediction for Non-Linear Systems

Koopman operator-based approaches have gained attention
for their ability to perform system identification in a fully
data-driven manner. To evaluate SKOLR’s performance in
this context, we conducted a series of experiments on non-
linear dynamical systems (NLDS) (details in Appendix E).

200
400

In
pu

t

FFT

200
400

B
ra

nc
h

1

0 20
Frequency

200
400

B
ra

nc
h

2

1
0
1

Signal

0
1

0 250 500 750 1000 1250 1500
Steps

1
0
1

Input True Pred

Figure 3: Analysis of SKOLR’s branch-wise behavior: (a)
frequency decomposition and (b) prediction performance.
We observe that different branches focus on different fre-
quency components.

Table 2 demonstrates SKOLR’s effectiveness across differ-
ent dynamical systems. For periodic systems like Pendulum,
SKOLR achieves substantial improvements, indicating su-
perior capture of oscillatory patterns. In chaotic systems
like Lorenz ’63, SKOLR shows better stability with 10.9%
reduction on MSE, suggesting robust handling of sensitive
dependence on initial conditions. The model demonstrates
particularly strong performance on mixed dynamics: Lotka-
Volterra and Duffing oscillator. These results validate that
SKOLR’s structured operator design effectively captures
both periodic motions and complex nonlinear dynamics.

Fig. 3 demonstrates SKOLR’s multi-scale decomposition
strategy. The FFT analysis reveals how different branches
place more emphasis on some frequency bands. This nat-
ural frequency partitioning emerges from our structured
Koopman design, enabling each branch to focus on spe-
cific temporal scales. The prediction visualization illustrates
the complementary nature of these branches, where their
combined forecasts reconstruct complex dynamics through
principled superposition of simpler, frequency-specific pre-
dictions. More analysis can be found in Appendix D.3.

4.3. Analysis and Ablation Study

4.3.1. ANALYSIS: STRUCTURED KOOPMAN OPERATOR

We analyze the impact of branch configurations through two
controlled experiments: (1) Fixed parameter count scenario,
where total parameters remain constant (∼1.6M) across con-
figurations while varying the learnable frequency decom-
position w, with N branches and lookback window L; (2)
Fixed dimension scenario: We maintain constant Koopman
operator approximation dimension dim(K̂) = 512 while
varying branch number N . As N increases, each branch’s
dimension D decreases proportionally (D = 512/N), lead-
ing to reduced parameter count.

We conduct experiments on the ETTm1 dataset. As we
can see in Table 3 and Fig. 4, maintaining similar parameter

6

SKOLR: Structured Koopman Operator Linear RNN

T=48 T=96

0.280

0.285

0.290
M

SE
MSE with Different Branch Numbers

N
1 4 16

Figure 4: MSE comparison on ETTm1 dataset across dif-
ferent branch configurations and prediction horizons. Bars
show MSE values for each configuration. All configura-
tions maintain similar parameter counts (∼1.6M). Increas-
ing branch number improves performance.

Table 3: Performance comparison with similar parameter
counts on ETTm1

Config. MSE for Different T

(D, N) 48 96 144 192

(512, 1) 0.284 0.292 0.326 0.330
(256, 4) 0.282 0.291 0.317 0.341

(128, 16) 0.281 0.287 0.323 0.329

counts (∼1.6M) and increasing branch numbers fromN = 1
to N = 16 improves performance for most horizons.

More significantly, when keeping dim(K̂) =512 (Table 4),
models with more branches maintain strong performance
despite substantial parameter reduction. Notably, the con-
figuration with D = 32, N = 16 achieves comparable
performance to the 1-branch model while using only 0.25M
parameters (85% reduction). This demonstrates that struc-
tured decomposition through multiple branches enables sig-
nificantly more efficient parameter utilization while main-
taining or improving forecasting accuracy.

4.3.2. ABLATION: IMPACT OF FREQUENCY
DECOMPOSITION

The improved performance with multiple branches moti-
vates further analysis of our learnable frequency decomposi-
tion strategy. In Equation 9, the learnable matrix w enables
adaptive frequency allocation across branches, in contrast to
uniform decomposition (w = 1). Table 5 demonstrates that
this learnable approach consistently outperforms uniform
allocation across prediction horizons.

This adaptive capability is particularly beneficial for datasets
with complex temporal patterns (Weather, ECL), where dif-
ferent frequency bands may carry varying importance at
different time scales. The learned masks show distinct pat-
terns across datasets, suggesting that the model successfully
adapts its frequency decomposition strategy based on the un-

Table 4: Performance comparison with dim(K̂) = 512 and
varying branch numbers N on ETTm1. Parameter counts
shown for horizon T = 192.

Config. Params MSE for Different T

(D, N) (M) 48 96 144 192

(512, 1) 1.71 0.284 0.292 0.326 0.330
(256, 2) 0.92 0.280 0.294 0.318 0.334
(128, 4) 0.53 0.280 0.293 0.318 0.335
(64, 8) 0.34 0.283 0.297 0.316 0.329

(32, 16) 0.25 0.282 0.292 0.313 0.328

Table 5: Ablation Study on frequency decomposition

Dataset T SKOLR (learn) SKOLR(w = 1)

MSE MAE MSE MAE

ECL

48 0.137 0.229 0.150 0.239
96 0.132 0.225 0.134 0.227

144 0.143 0.236 0.144 0.237
192 0.149 0.244 0.150 0.244

Weather

48 0.131 0.170 0.134 0.173
96 0.154 0.202 0.158 0.203

144 0.172 0.220 0.175 0.221
192 0.193 0.241 0.194 0.242

ETTh1

48 0.333 0.373 0.329 0.371
96 0.371 0.398 0.375 0.400

144 0.405 0.417 0.407 0.419
192 0.422 0.432 0.429 0.433

derlying data characteristics. Notably, on the ETTh1 dataset,
learnable decomposition occasionally underperforms uni-
form masking, particularly at shorter horizons (T = 48).
This suggests potential overfitting on smaller datasets.

4.4. Model Efficiency

To demonstrate the computational efficiency of SKOLR, we
analyze the model complexity in terms of parameter count,
GPU Memory and Running Time. We compare these values
with several baseline models on the ETTm1 and weather
dataset with sequence length 96 and prediction length 48.

Fig. 5 demonstrates SKOLR’s computational advantages.
On ETTm1, SKOLR achieves the best MSE while us-
ing only 3.31 MiB GPU memory. The training speed
is also notably faster than other methods. On Weather
dataset, SKOLR maintains competitive accuracy, while us-
ing significantly less memory and training 4x faster com-
pared to the best. This exceptional efficiency-performance
trade-off stems from our structured linear operations in
Koopman space, avoiding the quadratic complexity of self-
attention while maintaining modeling capacity through par-
allel branch architecture. The computational efficiency for
all datasets can be found in Appendix C.

7

SKOLR: Structured Koopman Operator Linear RNN

0 20 40 60 80 100
Computation Time per Epoch (s)

0.26

0.28

0.30

0.32

0.34
M

ea
n

Sq
ua

re
d

Er
ro

r (
M

SE
)

iTransformer
14.9s, 26.3MB

PatchTST
32.0s, 220MB

MICN
85.9s, 658MB

DLinear
12.0s, 18.2MB

Koopa
52.8s, 31.9MBSKOLR

8.8s, 3.31MB

0 20 40 60 80 100 120
Computation Time per Epoch (s)

0.10

0.12

0.14

0.16

0.18

0.20

M
ea

n
Sq

ua
re

d
Er

ro
r (

M
SE

)

Autoformer
109s, 1339MB

iTransformer
25.1s, 142.6MB

PatchTST
114s, 1187MB

MICN
39.8s, 42.3MB

TimesNet
97.5s, 337MB

DLinear
5.5s, 20.1MB

Koopa
55.9s, 38.3MB

SKOLR
13.9s, 1.92MB

Figure 5: Model comparison on error and training epoch time on P100 GPU. Memory consumption is proportional to circle
radius. On ETTm1 (left) we observe that SKOLR is both the fastest and most accurate method while requiring the smallest
memory footprint. On Weather (right) SKOLR is the second best method with much lower training memory and time
consumption than the best. For an equivalent budget one could train an ensemble of our approach and obtain better results.

5. Related Work
5.1. Koopman Operator-based Time-series Forecasting

Koopman theory (Koopman, 1931) has been applied for
modeling and analyzing complex dynamical systems for
decades (Mezić, 2005; Brunton et al., 2022). The major
advantage of the Koopman operator is that it can represent
the dynamical system in the form of a linear operator acting
on measurement functions (observables). However, learning
the operator is challenging because it has infinite dimen-
sion. Researchers strive to develop effective strategies for
performing finite dimensional approximations; key to this
is the selection of good measurement functions. To address
this, recent work has explored neural networks for learning
the mapping and the approximate operator simultaneously
(Li et al., 2017; Lusch et al., 2018; Takeishi et al., 2017;
Yeung et al., 2019).

Three recent works address time-series forecasting using
Koopman operators. K-Forecast (Lange et al., 2021) uses
Koopman theory to handle the nonlinearity in temporal sig-
nals and proposes a data-dependent basis for long-term time-
series forecasting. By leveraging predefined measurement
functions, KNF (Wang et al., 2023b) learns the Koopman
operator and attention map to cope with time-series forecast-
ing with changing temporal distributions. Koopa (Liu et al.,
2023) introduces modular Koopman predictors that sepa-
rately address time-variant and time-invariant components
via a hierarchical architecture, using learnable operators
for the latter and eDMD (Williams et al., 2015) for the for-
mer. These prior works rely on hierarchical architectures or
complex spectral decompositions to approximate Koopman
operators. Our work takes a different approach, drawing
a connection with linear RNNs, paving the way to a very
efficient and simple forecasting architecture. Our results
demonstrate that this strategy leads to improved accuracy
with reduced computational overhead and memory.

Although Orvieto et al. (2023) provided insights into the
potential connections between the Koopman operator and
a wide MLP + linear RNN for representing dynamical sys-
tems, this was not the primary focus of their work, and they
did not provide equations demonstrating the connection or
conduct empirical verification. In this work, building on
similar insights, we establish an explicit connection by de-
riving equations that demonstrate a direct analogy between
a structured approximation of a Koopman operator and an
architecture consisting of an MLP encoder combined with a
linear RNN.

5.2. Deep Learning for Time-Series Forecasting

Time-series forecasting has evolved from statistical mod-
els (Makridakis & Hibon, 1997; Hyndman et al., 2008)
to deep learning approaches. Previous methods used
RNNs (Salinas et al., 2020; Smyl, 2020; Mienye et al.,
2024) and CNNs (Bai et al., 2018; Luo et al., 2024) for their
ability to capture temporal dependencies. MLP-based archi-
tectures (Oreshkin et al., 2020; Challu et al., 2023; Vijay
et al., 2023; Wang et al., 2024a) also demonstrated promis-
ing performance for forecasting. Recently, transformer ar-
chitectures (Nie et al., 2023; Zhang et al., 2024; Hounie
et al., 2024; Ilbert et al., 2024) introduced powerful atten-
tion mechanisms, with innovations in basis functions (Ni
et al., 2024) and channel-wise processing (Liu et al., 2024).
To address their quadratic complexity, sparse attention vari-
ants (Lin et al., 2024) were proposed, but these often strug-
gle with capturing long-range dependencies due to infor-
mation loss from pruned attention scores. Foundation mod-
els (Das et al., 2024; Darlow et al., 2024) and unified ap-
proaches (Woo et al., 2024) have recently emerged. These
attempt to mitigate the limitations through pre-training and
multi-task learning, but this comes at the cost of dramati-
cally increased architectural complexity and computational
overhead. To address the complexity challenges in time-

8

SKOLR: Structured Koopman Operator Linear RNN

series forecasting, recent state space models (Gu & Dao,
2023) achieve linear complexity, while physics-informed
approaches (Verma et al., 2024) enhance interpretability.
However, these methods often require complex architec-
tures or domain expertise. Our approach offers a balanced
solution with a principled foundation based on Koopman
theory, achieving excellent prediction performance with
very low computation and memory requirements.

6. Conclusion
This work establishes a connection between Koopman op-
erator approximation and linear RNNs, showing that time-
delayed state representations yield an equivalence between
structured Koopman operators and linear RNN updates.
Based on this, we introduce SKOLR, which integrates learn-
able spectral decomposition with a parallelized linear RNN
stack giving rise to the structured Koopman operator. By
aligning deep learning with Koopman theory, this approach
provides a principled and computationally efficient solution
for nonlinear time-series modeling. Empirical evaluations
on forecasting benchmarks and dynamical systems demon-
strate that SKOLR achieves strong predictive performance
while maintaining the efficiency of linear RNNs. Future
work includes extending this framework to broader dynam-
ical systems and exploring alternative spectral representa-
tions for enhanced expressivity.

Acknowledgement
This research was funded by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC), [reference
number 260250]. Cette recherche a été financée par le
Conseil de recherches en sciences naturelles et en génie
du Canada (CRSNG), [numéro de référence 260250]. Ce
projet de recherche #324302 est rendu possible grâce au
financement du Fonds de recherche du Québec.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Arbabi, H. and Mezic, I. Ergodic theory, dynamic mode

decomposition, and computation of spectral properties of
the koopman operator. SIAM J. Appl. Dyn. Syst., 16(4):
2096–2126, 2017.

Bai, S., Kolter, J. Z., and Koltun, V. An empirical evalua-
tion of generic convolutional and recurrent networks for

sequence modeling. arXiv e-prints: arXiv 1803.01271,
2018.

Bevanda, P., Sosnowski, S., and Hirche, S. Koopman oper-
ator dynamical models: Learning, analysis and control.
Annu. Rev. Control., 52, January 2021.

Brunton, S. L., Budišić, M., Kaiser, E., and Kutz, J. N.
Modern koopman theory for dynamical systems. SIAM
Rev., 64(2), May 2022.

Challu, C., Olivares, K. G., Oreshkin, B. N., Ramirez, F. G.,
Canseco, M. M., and Dubrawski, A. Nhits: Neural hier-
archical interpolation for time series forecasting. In Proc.
AAAI Conf. Artif. Intell., 2023.

Darlow, L., Deng, Q., Hassan, A., Asenov, M., Singh, R.,
Joosen, A., Barker, A., and Storkey, A. Dam: Towards
a foundation model for time series forecasting. In Proc.
Int. Conf. Learn. Represent., 2024.

Das, A., Kong, W., Sen, R., and Zhou, Y. A decoder-only
foundation model for time-series forecasting. In Proc. Int.
Conf. Mach. Learn., 2024.

Gu, A. and Dao, T. Mamba: Linear-time sequence
modeling with selective state spaces. arXiv preprint
arXiv:2312.00752, 2023.

Hounie, I., Porras-Valenzuela, J., and Ribeiro, A. Trans-
formers with loss shaping constraints for long-term time
series forecasting. In Proc. Int. Conf. Mach. Learn., 2024.

Hyndman, R., Koehler, A. B., Ord, J. K., and Snyder, R. D.
Forecasting with exponential smoothing: the state space
approach. Springer Science & Business Media, 2008.

Ilbert, R., Odonnat, A., Feofanov, V., Virmaux, A., Paolo,
G., Palpanas, T., and Redko, I. Samformer: Unlocking
the potential of transformers in time series forecasting
with sharpness-aware minimization and channel-wise at-
tention. In Proc. Int. Conf. Mach. Learn., 2024.

Khosravi, M. Representer theorem for learning Koopman
operators. IEEE Trans. Autom. Control, 68(5):2995–3010,
2023.

Kim, T., Kim, J., Tae, Y., Park, C., Choi, J.-H., and Choo,
J. Reversible instance normalization for accurate time-
series forecasting against distribution shift. In Proc. Int.
Conf. Learn. Represent., 2022.

Koopman, B. Hamiltonian systems and transformation in
hilbert space. Proc. Natl. Acad. Sci., 17(5):315–318,
1931.

Kutz, J. N., Fu, X., and Brunton, S. L. Multiresolution
dynamic mode decomposition. SIAM J. Appl. Dyn. Syst.,
15(2):713–735, 2016.

9

SKOLR: Structured Koopman Operator Linear RNN

Lange, H., Brunton, S. L., and Kutz, J. N. From fourier
to koopman: Spectral methods for long-term time series
prediction. J. Mach. Learn. Res., 22(1):1881–1918, 2021.

Li, Q., Dietrich, F., Bollt, E. M., and Kevrekidis, I. G.
Extended dynamic mode decomposition with dictionary
learning: A data-driven adaptive spectral decomposition
of the koopman operator. Chaos, 27(10), 2017.

Lin, S., Weiwei, L., Wentai, W., Haojun, C., and Junjie, Y.
Sparsetsf: Modeling long-term time series forecasting
with 1k parameters. Proc. Int. Conf. Mach. Learn., 2024.

Liu, Y., Li, C., Wang, J., and Long, M. Koopa: Learning non-
stationary time series dynamics with koopman predictors.
In Adv. Neural Inf. Process. Syst., 2023.

Liu, Y., Hu, T., Zhang, H., Wu, H., Wang, S., Ma, L.,
and Long, M. itransformer: Inverted transformers are
effective for time series forecasting. In Proc. Int. Conf.
Learn. Represent., 2024.

Loshchilov, I. Decoupled weight decay regularization. arXiv
preprint arXiv:1711.05101, 2017.

Luo, H., Wang, S., Zhang, T., Wang, J., Liu, W., and Lin,
W. Moderntcn: A modern pure convolution structure for
general time series analysis. In Proc. Int. Conf. Learn.
Represent., 2024.

Lusch, B., Kutz, J. N., and Brunton, S. L. Deep learning for
universal linear embeddings of nonlinear dynamics. Nat.
Commun., 9(1):4950, 2018.

Makridakis, S. and Hibon, M. ARMA models and the Box–
Jenkins methodology. J. Forecast., 16(3):147–163, 1997.

Makridakis, S., Spiliotis, E., and Assimakopoulos, V. The
m4 competition: 100,000 time series and 61 forecasting
methods. Int. J. Forecast., 36(1):54–74, 2020.

Mezić, I. Spectral properties of dynamical systems, model
reduction and decompositions. Nonlinear Dyn., 41:309–
325, 2005.

Mienye, I. D., Swart, T. G., and Obaido, G. Recurrent neu-
ral networks: A comprehensive review of architectures,
variants, and applications. Information, 15(9):517, 2024.

Ni, Z., Yu, H., Liu, S., Li, J., and Lin, W. Basisformer:
Attention-based time series forecasting with learnable
and interpretable basis. Adv. Neural Inf. Process. Syst.,
36, 2024.

Nie, Y., Nguyen, N. H., Sinthong, P., and Kalagnanam, J.
A time series is worth 64 words: Long-term forecasting
with transformers. In Proc. Int. Conf. Learn. Represent.,
2023.

Oreshkin, B. N., Carpov, D., Chapados, N., and Bengio,
Y. N-BEATS: Neural basis expansion analysis for inter-
pretable time series forecasting. In Proc. Int. Conf. Learn.
Represent., 2020.

Orvieto, A., Smith, S. L., Gu, A., Fernando, A., Gulcehre,
C., Pascanu, R., and De, S. Resurrecting recurrent neural
networks for long sequences. In Proc. Int. Conf. Mach.
Learn., 2023.

Rowley, C. W., Mezić, I., Bagheri, S., Schlatter, P., and
Henningson, D. S. Spectral analysis of nonlinear flows.
J. Fluid Mech., 641:115–127, 2009.

Salinas, D., Flunkert, V., Gasthaus, J., and Januschowski,
T. DeepAR: Probabilistic forecasting with autoregressive
recurrent networks. Int. J. Forecast., 36(3):1181–1191,
2020.

Schmid, P. Dynamic mode decomposition of numerical and
experimental data. J. Fluid Mech., 656:5–28, 2010.

Shazeer, N. Glu variants improve transformer. arXiv
preprint arXiv:2002.05202, 2020.

Smyl, S. A hybrid method of exponential smoothing and
recurrent neural networks for time series forecasting. Int.
J. Forecast., 36(1):75–85, 2020.

Stolzenburg, F., Litz, S., Michael, O., and Obst, O. The
power of linear recurrent neural networks. arXiv preprint
arXiv:1802.03308, 2018.

Takeishi, N., Kawahara, Y., and Yairi, T. Learning koopman
invariant subspaces for dynamic mode decomposition. In
Adv. Neural Inf. Process. Syst., 2017.

Tay, Y., Dehghani, M., Abnar, S., Shen, Y., Bahri, D., Pham,
P., Rao, J., Yang, L., Ruder, S., and Metzler, D. Long
range arena : A benchmark for efficient transformers. In
Proc. Int. Conf. Learning Representations (ICLR), 2021.

Trindade, A. Electricity load diagrams 20112014.
UCI Machine Learning Repository, 2015. DOI:
https://doi.org/10.24432/C58C86.

Verma, Y., Markus, H., and Vikas, G. Climode: Climate and
weather forecasting with physics-informed neural odes.
Proc. Int. Conf. Learn. Represent., 2024.

Vijay, E., Jati, A., Nguyen, N., Sinthong, G., and
Kalagnanam, J. TSMixer: Lightweight MLP-mixer
model for multivariate time series forecasting. In Proc.
ACM SIGKDD Int. Conf. Knowl. Discov. Data Min.,
2023.

Wang, H., Peng, J., Huang, F., Wang, J., Chen, J., and Xiao,
Y. MICN: Multi-scale local and global context modeling
for long-term series forecasting. In Proc. Int. Conf. Learn.
Represent., 2023a.

10

SKOLR: Structured Koopman Operator Linear RNN

Wang, R., Dong, Y., Arik, S. Ö., and Yu, R. Koopman neural
forecaster for time series with temporal distribution shifts.
In Proc. Int. Conf. Learn. Represent., 2023b.

Wang, S., Wu, H., Shi, X., Hu, T., Luo, H., Ma, L., Zhang,
J. Y., and Zhou, J. Timemixer: Decomposable multiscale
mixing for time series forecasting. Proc. Int. Conf. Learn.
Represent., 2024a.

Wang, Z., Kong, F., Feng, S., Wang, M., Yang, X., Zhao,
H., Wang, D., and Zhang, Y. Is mamba effective for time
series forecasting? Neurocomputing, pp. 129178, 2024b.

Williams, M., Kevrekidis, I., and Rowley, C. A data–driven
approximation of the koopman operator: Extending dy-
namic mode decomposition. J. Nonlinear Sci., 25:1307–
1346, 2015.

Woo, G., Liu, C., Kumar, A., Xiong, C., Savarese, S., and
Sahoo, D. Unified training of universal time series fore-
casting transformers. Proc. Int. Conf. Mach. Learn., 2024.

Wu, H., Xu, J., Wang, J., and Long, M. Autoformer: Decom-
position transformers with auto-correlation for long-term
series forecasting. In Adv. Neural Inf. Process. Syst.,
2021.

Wu, H., Hu, T., Liu, Y., Zhou, H., Wang, J., and Long, M.
Timesnet: Temporal 2d-variation modeling for general
time series analysis. In Proc. Int. Conf. Learn. Represent.,
2023.

Yeung, E., Kundu, S., and Hodas, N. Learning deep neural
network representations for koopman operators of non-
linear dynamical systems. In Proc. Amer. Control Conf.
IEEE, 2019.

Zeng, A., Chen, M., Zhang, L., and Xu, Q. Are transformers
effective for time series forecasting? In Proc. AAAI Conf.
Artif. Intell., 2023.

Zhang, Y., Ma, L., Pal, S., Zhang, Y., and Coates, M. Multi-
resolution time-series transformer for long-term forecast-
ing. In Int. Conf. Artif. Intell. Stat., 2024.

Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H.,
and Zhang, W. Informer: Beyond efficient transformer
for long sequence time-series forecasting. In Proc. AAAI
Conf. Artif. Intell., 2021.

Zhou, T., Ma, Z., Wen, Q., Sun, L., Yao, T., Yin, W., Jin, R.,
et al. Film: Frequency improved legendre memory model
for long-term time series forecasting. In Adv. Neural Inf.
Process. Syst., 2022.

11

SKOLR: Structured Koopman Operator Linear RNN

A. Experimental Details
A.1. Dataset

We evaluate the performance of our proposed SKOLR on eight widely-used public benchmark datasets, including Weather,
Traffic, Electricity, ILI and four ETT datasets (ETTh1, ETTh2, ETTm1, ETTm2). Weather is a collection of 2020 weather
data from 21 meteorological indicators, including air temperature and humidity, provided by the Max-Planck Institute
for Biogeochemistry. 2 Traffic is a dataset provided by Caltrans Performance Measurement System (PeMS), collecting
hourly data of the road occupancy rates measured by different sensors on San Francisco Bay area freeways from California
Department of Transportation. 3 Electricity contains hourly time series of the electricity consumption of 321 customers
from 2012 to 2014 (Trindade, 2015; Wu et al., 2021). 4 ILI dataset5 contains the weekly time series of ratio of patients seen
with ILI and the total number of the patients in the United States between 2002 and 2021. ETT datasets are a series of
measurements, including load and oil temperature, from electricity transformers between 2016 and 2018, provided by Zhou
et al. (2021). Following the standard pipelines, the dataset is split into training, validation, and test sets with the ratio of
6:2:2 for four ETT datasets and 7:1:2 for the remaining datasets.

The M4 dataset (Makridakis et al., 2020) consists of 100,000 real-world time series across six frequencies: yearly, quarterly,
monthly, weekly, daily, and hourly. It includes data from diverse domains such as finance, economics, demographics, and
industry, making it a comprehensive benchmark for evaluating forecasting models. Detailed statistics of the datasets are
summarized in Table. 6.

Table 6: Forecasting dataset descriptions. The dataset size is organized in (Train, Validation, Test).

Tasks Dataset Dim Prediction Length Dataset Size Information (Frequency)

Long-term

ETTm1, ETTm2 7 {48, 96, 144, 192} (34465, 11521, 11521) Electricity (15 mins)
ETTh1, ETTh2 7 {48, 96, 144, 192} (8545, 2881, 2881) Electricity (15 mins)

Electricity 321 {48, 96, 144, 192} (18317, 2633, 5261) Electricity (Hourly)
Traffic 862 {48, 96, 144, 192} (12185, 1757, 3509) Transportation (Hourly)

Weather 21 {48, 96, 144, 192} (36792, 5271, 10540) Weather (10 mins)
ILI 7 {24, 36, 48, 60} (617, 74, 170) Illness (Weekly)

Short-term

M4-Yearly 1 6 (23000, 0, 23000) Demographic
M4-Quarterly 1 8 (24000, 0, 24000) Finance
M4-Monthly 1 18 (48000, 0, 48000) Industry
M4-Weekly 1 13 (359, 0, 359) Macro
M4-Daily 1 14 (4227, 0, 4227) Micro

M4-Hourly 1 48 (414, 0, 414) Other

A.2. Implementation Details

We implement SKOLR in PyTorch, applying instance-normalization and denormalization (Kim et al., 2022) to inputs and
predictions respectively. Following the protocol in the previous works (Zeng et al., 2023; Nie et al., 2023), SKOLR processes
each y1:L,c independently to generate the output ŷL+1:L+T,c, and subsequently combine them to form a multivariate
forecast. This technique is termed channel-independence and we omit the variate index m in order to simplify the notation
in the Section 3.

To improve computational efficiency, we adopt non-overlapping patch tokenization (Nie et al., 2023) before feeding the
frequency-decomposed signals {Yn}Nn=1 into the linear RNN branches. This reduces the sequence length by a factor of P ,
significantly decreasing computation time while maintaining model effectiveness.

The model architecture employs a single-layer linear RNN to preserve linear state transitions between time steps, with

2https://www.bgc-jena.mpg.de/wetter
3https://pems.dot.ca.gov
4Wu et al. (2021) selected 321 of 370 customers from the original dataset in Trindade (2015). This version is widely used in the

follow-up works.
5https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html

12

SKOLR: Structured Koopman Operator Linear RNN

MLPs using ReLU activation functions in both encoder and decoder components. The patch length adapts to the input
window length as P = L/6. Through grid search, we optimize the branch number N ∈ {2, 3, 4, 8}, number of MLP layers
M ∈ {1, 2, 3} and dynamic dimension D ∈ {128, 256, 512}, while maintaining the hidden dimension at H = 2D. We
train using AdamW optimizer (Loshchilov, 2017) with learning rate 1× e−4 and weight decay 5× e−4, using batch size 32
across all datasets. Complete hyperparameter configurations are detailed in Table 7.

Table 7: Hyperparameters of SKOLR

Dataset Traffic ELC Weather ETTh1 ETTh2 ETTm1 ETTm2 ILI

Number of Branches N 2 2 2 2 2 2 2 2

Number of MLP hidden layers M 2 2 2 1 1 1 1 1

Dynamic Dimension D 256 256 128 256 128 256 256 256

Dropout 0.05 0.05 0.2 0.2 0.2 0.2 0.1 0.2

B. Additional Experimental Results
B.1. Short-term Forecasting

B.1.1. EXPERIMENTAL SETTING

For the short-term forecasting, following the N-BEATS (Oreshkin et al., 2020), we adopt the symmetric mean absolute
percentage error (sMAPE), mean absolute scaled error (MASE), and overall weighted average (OWA) as the metrics, where
OWA is a special metric used in the M4 competition. These metrics can be calculated as follows:

sMAPE =
200

T

T∑
i=1

|Yi − Ŷi|
|Yi|+ |Ŷi|

,

MASE =
1

T

T∑
i=1

|Yi − Ŷi|
1

T−m

∑T
j=m+1 |Yj − Yj−m|

,

OWA =
1

2

(
sMAPE

sMAPENaı̈ve2
+

MASE
MASENaı̈ve2

)
,

where m is the periodicity of the data. Y, Ŷ ∈ RT×C are the ground truth and prediction results of the future with T time
points and C dimensions. Yi represents the i-th future time point.

We compare SKOLR against state-of-the-art models on the M4 competition dataset, which contains six diverse domains
(Yearly, Quarterly, Monthly, Weekly, Daily, Hourly) with prediction horizons ranging from 6 to 48 steps, as shown in
Table 6. The baselines includes: N-BEATS (Oreshkin et al., 2020), N-HiTS (Challu et al., 2023), PatchTST (Nie et al.,
2023), TimesNet (Wu et al., 2023), DLinear (Zeng et al., 2023), MICN (Wang et al., 2023a), KNF (Wang et al., 2023b),
FiLM (Zhou et al., 2022), Autoformer (Wu et al., 2021), and KooPA (Liu et al., 2023). These models are not specifically
designed for long-term forecasting, but also generalize well on short-term tasks.

B.1.2. RESULTS

Table 8 demonstrates SKOLR’s effectiveness in handling diverse temporal patterns across M4 domains. At yearly, quarterly
and monthly predictions, where data exhibits strong seasonality and multiple frequency components, SKOLR’s parallel
branch design allows simultaneous tracking of different temporal scales. Our structured Koopman operator design proves
particularly powerful for the M4 dataset, which contains richer dynamic information than typical long-term forecasting
benchmarks, resulting in consistently outperforming both traditional forecasting models (N-BEATS, N-HiTS) and other
Koopman-based approaches (KooPA) across all evaluation metrics.

13

SKOLR: Structured Koopman Operator Linear RNN

Table 8: Comparison of Models for short-term prediction. Best results and second best results are highlighted in red and
blue respectively.

M4 Metric SKOLR KooPA N-HiTS N-BEATS PatchTST TimesNet DLinear MICN KNF FiLM Autoformer

Year
sMAPE 13.291 13.352 13.371 13.466 13.517 13.394 13.866 14.532 13.986 14.012 14.786
MASE 2.996 2.997 3.025 3.059 3.031 3.004 3.006 3.359 3.029 3.071 3.349
OWA 0.784 0.786 0.790 0.797 0.795 0.787 0.802 0.867 0.804 0.815 0.874

Quarter
sMAPE 9.986 10.159 10.454 10.074 10.847 10.101 10.689 11.395 10.343 10.758 12.125
MASE 1.166 1.189 1.219 1.163 1.315 1.183 1.294 1.379 1.202 1.306 1.483
OWA 0.878 0.895 0.919 0.881 0.972 0.890 0.957 1.020 0.965 0.905 1.091

Month
sMAPE 12.536 12.730 12.794 12.801 14.584 12.866 13.372 13.829 12.894 13.377 15.530
MASE 0.921 0.953 0.960 0.955 1.169 0.964 1.014 1.082 1.023 1.021 1.277
OWA 0.867 0.901 0.895 0.893 1.055 0.894 0.940 0.988 0.985 0.944 1.139

Others
sMAPE 4.652 4.861 4.696 5.008 6.184 4.982 4.894 6.151 4.753 5.259 5.841
MASE 3.233 3.124 3.130 3.443 4.818 3.323 3.358 4.263 3.138 3.608 4.308
OWA 0.999 1.004 0.988 1.070 1.140 1.048 1.044 1.319 1.019 1.122 1.294

Average
sMAPE 11.704 11.863 11.960 11.910 13.022 11.930 12.418 13.023 12.126 12.489 14.057
MASE 1.572 1.595 1.606 1.613 1.814 1.597 1.656 1.836 1.641 1.690 1.954
OWA 0.843 0.858 0.861 0.862 0.954 0.867 0.891 0.960 0.874 0.902 1.029

Table 9: Prediction results on benchmark datasets with L = 96. Best results and second best results are highlighted in red
and blue respectively.

Dataset T SKOR Koopa iTransformer PatchTST Crossformer TIDE TimesNet Dlinear SCINet Stationary Autoformer
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.313 0.356 0.330 0.368 0.334 0.368 0.329 0.367 0.404 0.426 0.364 0.387 0.338 0.375 0.345 0.372 0.418 0.438 0.386 0.398 0.505 0.475
192 0.359 0.384 0.385 0.395 0.377 0.391 0.367 0.385 0.450 0.451 0.398 0.404 0.374 0.387 0.380 0.389 0.439 0.450 0.459 0.444 0.553 0.496
336 0.389 0.406 0.402 0.413 0.426 0.420 0.399 0.410 0.532 0.515 0.428 0.425 0.410 0.411 0.413 0.413 0.490 0.485 0.495 0.464 0.621 0.537ETTm1

720 0.449 0.443 0.472 0.449 0.491 0.459 0.454 0.439 0.666 0.589 0.487 0.461 0.478 0.450 0.474 0.453 0.595 0.550 0.585 0.516 0.671 0.561

96 0.173 0.256 0.181 0.263 0.180 0.264 0.175 0.259 0.287 0.366 0.207 0.305 0.187 0.267 0.193 0.292 0.286 0.377 0.192 0.274 0.255 0.339
192 0.239 0.300 0.248 0.308 0.250 0.309 0.241 0.302 0.414 0.492 0.290 0.364 0.249 0.309 0.284 0.362 0.399 0.445 0.280 0.339 0.281 0.340
336 0.302 0.341 0.303 0.343 0.311 0.348 0.305 0.343 0.597 0.542 0.377 0.422 0.321 0.351 0.369 0.427 0.637 0.591 0.334 0.361 0.339 0.372ETTm2

720 0.398 0.396 0.403 0.401 0.412 0.407 0.402 0.400 1.730 1.042 0.558 0.524 0.408 0.403 0.554 0.522 0.960 0.735 0.417 0.413 0.433 0.432

96 0.371 0.397 0.401 0.413 0.386 0.405 0.414 0.419 0.423 0.448 0.479 0.464 0.384 0.402 0.386 0.400 0.654 0.599 0.513 0.491 0.449 0.459
192 0.423 0.427 0.449 0.439 0.441 0.436 0.460 0.445 0.471 0.474 0.525 0.492 0.436 0.429 0.437 0.432 0.719 0.631 0.534 0.504 0.500 0.482
336 0.471 0.453 0.494 0.461 0.487 0.458 0.501 0.466 0.570 0.546 0.565 0.515 0.491 0.469 0.481 0.459 0.778 0.659 0.588 0.535 0.521 0.496ETTh1

720 0.499 0.484 0.484 0.472 0.503 0.491 0.500 0.488 0.653 0.621 0.594 0.558 0.521 0.500 0.519 0.516 0.836 0.699 0.643 0.616 0.514 0.512

96 0.293 0.344 0.316 0.361 0.297 0.349 0.302 0.348 0.745 0.584 0.400 0.440 0.340 0.374 0.333 0.387 0.707 0.621 0.476 0.458 0.346 0.388
192 0.370 0.384 0.384 0.405 0.380 0.400 0.388 0.400 0.877 0.656 0.528 0.509 0.402 0.414 0.477 0.476 0.860 0.689 0.512 0.493 0.456 0.452
336 0.410 0.428 0.423 0.438 0.428 0.432 0.426 0.433 1.043 0.731 0.643 0.571 0.452 0.452 0.594 0.541 1.000 0.744 0.552 0.551 0.482 0.486ETTh2

720 0.431 0.446 0.450 0.458 0.427 0.445 0.431 0.446 1.104 0.763 0.874 0.679 0.462 0.468 0.831 0.657 1.249 0.838 0.562 0.560 0.515 0.511

96 0.153 0.246 0.146 0.244 0.148 0.240 0.181 0.270 0.219 0.314 0.237 0.329 0.168 0.272 0.197 0.282 0.247 0.345 0.169 0.273 0.201 0.317
192 0.168 0.259 0.169 0.266 0.162 0.253 0.188 0.274 0.231 0.322 0.236 0.330 0.184 0.289 0.196 0.285 0.257 0.355 0.182 0.286 0.222 0.334
336 0.189 0.282 0.189 0.285 0.178 0.269 0.204 0.293 0.246 0.337 0.249 0.344 0.198 0.300 0.209 0.301 0.269 0.369 0.200 0.304 0.231 0.338ECL

720 0.230 0.318 0.226 0.314 0.225 0.317 0.246 0.324 0.280 0.363 0.284 0.373 0.220 0.320 0.245 0.333 0.299 0.390 0.222 0.321 0.254 0.361

96 0.427 0.270 0.462 0.290 0.395 0.268 0.462 0.295 0.522 0.290 0.805 0.493 0.593 0.321 0.650 0.396 0.788 0.499 0.612 0.338 0.613 0.388
192 0.455 0.289 0.566 0.386 0.417 0.276 0.466 0.296 0.530 0.293 0.756 0.474 0.617 0.336 0.598 0.370 0.789 0.505 0.613 0.340 0.616 0.382
336 0.472 0.298 0.514 0.331 0.433 0.283 0.482 0.304 0.558 0.305 0.762 0.477 0.629 0.336 0.605 0.373 0.797 0.508 0.618 0.328 0.622 0.337Traffic

720 0.519 0.326 0.552 0.346 0.467 0.302 0.514 0.322 0.589 0.328 0.719 0.449 0.640 0.350 0.645 0.394 0.841 0.523 0.653 0.355 0.660 0.408

96 0.162 0.207 0.157 0.202 0.174 0.214 0.177 0.218 0.158 0.230 0.202 0.261 0.172 0.220 0.196 0.255 0.221 0.306 0.173 0.223 0.266 0.336
192 0.208 0.249 0.209 0.251 0.221 0.254 0.225 0.259 0.206 0.277 0.242 0.298 0.219 0.261 0.237 0.296 0.261 0.340 0.245 0.285 0.307 0.367
336 0.266 0.292 0.266 0.290 0.278 0.296 0.278 0.297 0.272 0.335 0.287 0.335 0.280 0.306 0.283 0.335 0.309 0.378 0.321 0.338 0.359 0.395Weather

720 0.344 0.343 0.350 0.348 0.358 0.347 0.354 0.348 0.398 0.418 0.351 0.386 0.365 0.359 0.345 0.381 0.377 0.427 0.414 0.410 0.419 0.428

B.2. Results for a shorter look-back window

For a fair comparison, we also conduct the experiments under the L = 96 setting that is the default for iTransformer,
TimesNet, and other transformer-based models, except PatchTST. For the shorter look-back window, we use the patch length
P = 16 to obtain the tokens for SKOLR. By default, SKOLR follow the hyperparameters in Table 7. As shown in Table 9,
SKOLR emerges as the leading performer, achieving Rank 1 or 2 in 24 cases out of 28 cases in terms of MSE and 25 cases
in terms of MAE.

14

SKOLR: Structured Koopman Operator Linear RNN

Table 10: Model performance across different datasets with mean ± standard deviation for MSE and MAE metrics.

Dataset Models MSE MAE

ECL

48 0.137± 0.0003 0.229± 0.0003
96 0.132± 0.0005 0.225± 0.0004
144 0.143± 0.0001 0.236± 0.0001
192 0.149± 0.0001 0.244± 0.0001

Traffic

48 0.400± 0.0003 0.258± 0.0040
96 0.368± 0.0007 0.248± 0.0007
144 0.375± 0.0003 0.255± 0.0002
192 0.377± 0.0003 0.256± 0.0002

Weather

48 0.131± 0.0009 0.170± 0.0008
96 0.154± 0.0015 0.202± 0.0015
144 0.172± 0.0009 0.220± 0.0006
192 0.193± 0.0004 0.241± 0.0005

ETTm1

48 0.280± 0.0013 0.330± 0.0015
96 0.287± 0.0003 0.340± 0.0001
144 0.313± 0.0020 0.361± 0.0023
192 0.328± 0.0019 0.373± 0.0018

ETTm2

48 0.134± 0.0011 0.228± 0.0007
96 0.171± 0.0015 0.255± 0.0013
144 0.209± 0.0014 0.283± 0.0014
192 0.241± 0.0013 0.304± 0.0015

ETTh1

48 0.333± 0.0009 0.373± 0.0007
96 0.371± 0.0011 0.398± 0.0008
144 0.405± 0.0019 0.417± 0.0020
192 0.422± 0.0030 0.432± 0.0034

ETTh2

48 0.238± 0.0012 0.306± 0.0004
96 0.299± 0.0034 0.352± 0.0042
144 0.335± 0.0042 0.377± 0.0048
192 0.365± 0.0033 0.397± 0.0040

ILI

24 1.556± 0.0213 0.760± 0.0159
36 1.462± 0.0711 0.728± 0.0676
48 1.537± 0.0038 0.798± 0.0030
60 2.187± 0.0435 0.995± 0.0498

B.3. Experimental Variability

Table 10 reports standard deviation (std) across 3 independent runs for all datasets and forecast horizons. The low stds
(<0.003 for most datasets) demonstrate the consistency of SKOLR’s performance.

B.4. Comparison with Orvieto et al. (2023)

The Linear Recurrent Unit (LRU) presented by Orvieto et al. (2023) is derived from vanilla recurrent neural networks
(RNNs) through a sequence of principled modifications including linearization of the recurrence, diagonalization, exponential
parametrization for stability, and forward-pass normalization. These changes yield a model that can match the performance
of recent deep state-space models (SSMs) such as S4 and S5 on benchmarks like the Long Range Arena (Tay et al., 2021),
without relying on discretization of continuous-time dynamics.

We implement our code in PyTorch. Our implementation follows from the JAX pseudocode presented in the original paper’s
appendix (Orvieto et al., 2023). Additionally, we consulted a community implementation in PyTorch6. The LRU is trained
using the AdamW optimizer with no weight decay applied to the recurrent parameters. Learning rates are selected via grid
search on a logarithmic scale. All experiments use networks of 6 LRU layers with residual and normalization layers between
blocks and a final linear output layer and a 64-dimensional hidden state.

6https://github.com/Gothos/LRU-pytorch

15

https://github.com/Gothos/LRU-pytorch

SKOLR: Structured Koopman Operator Linear RNN

Table 11: Performance comparison of LRU, Koopa and SKOLR on non-linear dynamical systems (NLDS)

SKOLR KooPA LRU

Dataset MSE MAE MSE MAE MSE MAE

Pendulum 0.0001 0.0083 0.0039 0.0470 0.0572 0.0242
Duffing 0.0047 0.0518 0.0365 0.1479 0.0573 0.5970
Lotka-Volterra 0.0018 0.0354 0.0178 0.1050 0.2058 0.3779
Lorenz ’63 0.9740 0.7941 1.0937 0.8325 1.1905 0.8932

Whereas our focus in SKOLR is time-series forecasting, Orvieto et al. (2023) target long-range reasoning. Although it is
possible to convert their architecture to address forecasting, performance suffers because it is not the design goal, as shown
in Table 11.

C. Model Efficiency
C.1. Theoretical Complexity Analysis

SKOLR achieves computational efficiency through its structured design and linear operations. For a time series of length L
with patch length P , embedding dimension D, and N branches, we analyze both time and space complexity.

The time complexity of SKOLR consists of several components: spectral decomposition, encoder/decoder MLPs, and
linear RNN computation. If we perform a single FFT operation O(L logL) followed by branch-specific frequency filtering,
the main computational cost comes from encoder/decoder MLPs O(N × (L/P) × D2) and linear RNN computation
O(N × (L/P)×D2), giving a total time complexity of O(N × (L/P)×D2). The memory complexity includes model
parameters O(N ×D2) and activation memory O(N × (L/P)×D).

Our structured approach with N branches provides substantial efficiency gains compared to a non-structured approach with
equivalent representational capacity. For a non-structured model with dimensionD′ = N×D, the time complexity would be
O((L/P)×N2D2) and memory complexity O(N2D2). This represents an N -fold increase in computational requirements.
For example, with N = 16 branches, our structured approach requires approximately 16× fewer parameters and operations
while maintaining equivalent or better modeling capacity, as shown in Section 4.3.1. Compared to transformer-based
approaches with time complexity O((L/P)2 ×D + (L/P) ×D2) and memory complexity O((L/P)2 + (L/P) ×D),
SKOLR demonstrates a fundamental advantage for long sequences by avoiding the quadratic scaling with sequence length.

C.2. Parallel Computing

SKOLR further benefits from parallel processing capabilities. The N separate branches can be processed completely
independently, reducing the effective time complexity to O((L/P)×D2) with sufficient parallel resources. This branch-
level parallelism is implemented in our current code.

In future work, we plan to implement additional parallelization of the linear RNN computation itself. Since our RNN has no
activation functions, we can express the hidden state evolution for each branch with sequence length L/P in closed form:
hk = g(yk) +

∑L/P
s=1 W

sg(yk−s), where W s indicates s applications of W (the state transition matrix). This formulation
allows us to compute all hidden states simultaneously through efficient matrix operations, potentially reducing the time
complexity further to O(D3 log(L/P) + (L/P)2 ×D) per branch.

For time series with patching where L/P ≪ D, this approach achieves significant speedups by eliminating the sequential
dependency in RNN computation. With both branch and RNN parallelism implemented, SKOLR can achieve greater
computational efficiency while maintaining its forecasting performance.

C.3. Computational Efficiency

We provided efficiency results on the ETTm2 and Traffic datasets in Fig. 5. We have expanded our evaluation across
additional datasets to offer a more comprehensive assessment in Table 12. In all datasets, the proposed architecture provides
a compelling trade-off between efficiency and accuracy compared to baselines.

16

SKOLR: Structured Koopman Operator Linear RNN

Table 12: Model Efficiency and Performance Comparison for Different Datasets with T = 96. Parameters (Params) are
measured in millions (M), GPU memory (GPU) in MiB, computation time per epoch in seconds (s) on NVIDIA V100 GPU
with batch size 32.

(a) Traffic

Model Params (M) GPU(MiB) Time (s) MSE

Autoformer 14.914 18.811 51.0 0.668
iTransformer 6.405 62.710 126.0 0.388
PatchTST 3.755 22.132 1042.0 0.413
MICN 236.151 32.310 84.0 0.511
TimesNet 30.170 111.998 6563.0 0.611
DLinear 0.009 12.861 7.7 0.485
Koopa 5.429 50.335 25.5 0.401

SKOLR 1.479 5.915 216.0 0.368

(b) Electricity

Model Params (M) GPU(MiB) Time (s) MSE

Autoformer 11.214 17.373 68.7 0.182
iTransformer 4.957 86.478 58.6 0.134
PatchTST 6.904 73.517 1231.0 0.143
MICN 6.635 32.668 18.0 0.165
TimesNet 15.037 33.435 11351.0 0.170
DLinear 0.019 76.016 6.8 0.153
Koopa 4.076 31.067 33.1 0.136

SKOLR 1.541 6.163 99.1 0.132

(c) ETTh1

Model Params (M) GPU(MiB) Time (s) MSE

Autoformer 10.536 16.523 29.5 0.634
iTransformer 0.237 27.245 4.1 0.393
PatchTST 3.752 22.018 8.5 0.372
MICN 252.001 65.974 21.1 0.406
TimesNet 0.605 26.053 22.1 0.411
DLinear 0.140 26.440 0.6 0.379
Koopa 0.135 31.951 10.1 0.371

SKOLR 0.429 1.717 2.8 0.371

(d) ETTm2

Model Params (M) GPU(MiB) Time (s) MSE

Autoformer 10.536 14.599 152.6 0.241
iTransformer 0.237 27.245 13.1 0.177
PatchTST 10.056 39.910 980.0 0.171
MICN 252.001 65.974 84.2 0.197
TimesNet 1.192 34.783 113.0 0.187
DLinear 18.291 9.312 1.9 0.172
Koopa 0.135 31.951 48.2 0.171

SKOLR 0.429 1.717 12.6 0.171

D. Additional Analysis
D.1. Scaling Up Forecast Horizon

We have conducted experiments to explore performance in the setting where the forecast horizon is increased at test-time. In
this experiment, SKOLR and Koopa were evaluated by scaling up from the training horizon (Ttr) to a larger test horizon
(Tte). Unlike Koopa (Liu et al., 2023), SKOLR does not incorporate an operator adaptation (OA) mechanism to update its
Koopman operator using incoming ground truth. Instead, our architecture possesses a natural recursive structure that enables
straightforward extension to longer horizons. Even when weights are trained to minimize a loss function specified over a
given horizon, the algorithm can be recursively applied to predict over extended periods.

As demonstrated in Table 13, SKOLR maintains competitive performance without requiring additional adaptation mecha-
nisms. The structured Koopman operator and linear RNN design enable robust long-term predictions, with error percentages
remaining comparable to Koopa OA across various datasets. This demonstrates SKOLR’s inherent capability to handle
extended forecast horizons efficiently through its recursive architecture.

D.2. Ablation Study

We have also conducted a more comprehensive ablation study on the design elements of SKOLR. As shown in Table 14, we
compare our full SKOLR model with two ablated variants: (1) “w/o Structure”: no structured decomposition, using a single
branch with dimension (N×D); (2) “w/o Spectral Encoder”: no learnable frequency decomposition, while maintaining the
multi-branch structure.

The results show that both components contribute meaningfully. Removing the structured decomposition leads to perfor-
mance degradation on 27/32 tasks, with notable declines on ETTh1 and ILI, while increasing computational overhead.
Similarly, removing the spectral encoder impacts performance on 23/32 tasks, though with a smaller overall effect.

17

SKOLR: Structured Koopman Operator Linear RNN

Table 13: Scaling up forecast horizon: (T tr, T te) = (24, 48) for ILI and (T tr, T te) = (48, 144) for others. Koopa and
SKOLR conducts vanilla rolling forecast and Koopa OA has operator adaptation.

ETTh2 ILI ECL Traffic Weather
(ADF -4.135) (ADF -5.406) (ADF -8.483) (ADF -15.046) (ADF -26.661)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Koopa (T tr) 0.226 0.300 1.621 0.800 0.130 0.234 0.415 0.274 0.126 0.168

Koopa(T te) 0.437 0.429 2.836 1.065 0.199 0.298 0.709 0.437 0.237 0.276
Error(+ %) 93% 43% 75% 33% 53% 27% 71% 59% 88% 64%

Koopa OA(T te) 0.372 0.404 2.427 0.907 0.182 0.271 0.699 0.426 0.225 0.264
Error(+ %) 65% 35% 50% 13% 40% 16% 68% 55% 79% 57%

SKOLR (T tr) 0.238 0.306 1.556 0.760 0.137 0.229 0.400 0.258 0.131 0.170

SKOLR (T te) 0.393 0.402 2.392 0.958 0.204 0.289 0.612 0.383 0.222 0.257
Error(+ %) 65% 31% 54% 26% 49% 26% 53% 48% 69% 51%

Table 14: Ablation study comparing SKOLR with versions without structure and without spectral encoder

Dataset T SKOLR w/o Structure w/o Spectral Encoder
MSE MAE MSE MAE MSE MAE

ECL

48 0.137 0.229 0.148 0.238 0.149 0.238
96 0.132 0.225 0.135 0.228 0.133 0.227
144 0.143 0.236 0.146 0.241 0.142 0.235
192 0.149 0.244 0.150 0.245 0.148 0.243

Traffic

48 0.400 0.258 0.395 0.255 0.397 0.257
96 0.368 0.248 0.367 0.249 0.369 0.249
144 0.375 0.255 0.375 0.255 0.375 0.255
192 0.377 0.256 0.378 0.256 0.377 0.256

Weather

48 0.131 0.170 0.134 0.173 0.134 0.172
96 0.154 0.202 0.157 0.203 0.158 0.202
144 0.172 0.220 0.177 0.225 0.175 0.221
192 0.193 0.241 0.195 0.242 0.197 0.244

ETTm1

48 0.280 0.330 0.284 0.334 0.282 0.332
96 0.287 0.340 0.292 0.343 0.291 0.342
144 0.313 0.361 0.325 0.365 0.319 0.361
192 0.328 0.373 0.332 0.372 0.332 0.372

ETTm2

48 0.134 0.228 0.135 0.229 0.162 0.259
96 0.171 0.255 0.174 0.259 0.169 0.253
144 0.209 0.283 0.206 0.280 0.209 0.282
192 0.241 0.304 0.241 0.305 0.230 0.299

ETTh1

48 0.333 0.373 0.338 0.377 0.336 0.374
96 0.371 0.398 0.387 0.408 0.373 0.399
144 0.405 0.417 0.414 0.423 0.410 0.420
192 0.422 0.432 0.409 0.421 0.413 0.422

ETTh2

48 0.238 0.306 0.233 0.304 0.239 0.305
96 0.299 0.352 0.301 0.350 0.303 0.350
144 0.335 0.377 0.341 0.382 0.337 0.381
192 0.365 0.397 0.370 0.398 0.370 0.401

ILI

24 1.556 0.760 1.795 0.842 1.522 0.741
36 1.462 0.728 1.990 0.889 1.496 0.734
48 1.537 0.798 1.875 0.909 1.571 0.810
60 2.187 0.995 2.407 1.056 2.263 0.999

18

SKOLR: Structured Koopman Operator Linear RNN

25
50
75

In
pu

t

FFT

25
50
75

Br
an

ch
 1

0 50
Frequency (Hz)

25
50
75

Br
an

ch
 2

1
0

Signal

1
0

0 100 200 300 400 500 600
Steps

1
0

Input True Pred

Figure 6: Analysis of SKOLR’s branch-wise behavior on ETTm2 feature 6: (a) frequency decomposition and (b) prediction
performance.

100
200

In
pu

t

FFT

100
200

Br
an

ch
 1

0 20 40 60
Frequency (Hz)

100
200

Br
an

ch
 2

0.0
2.5

Signal

0.0
2.5

0 100 200 300 400 500 600
Steps

0.0
2.5

Input True Pred

Figure 7: Analysis of SKOLR’s branch-wise behavior on Electricity feature 11: (a) frequency decomposition and (b)
prediction performance.

D.3. Branch-wise Visualization

We add examples from ETTm2 and Electricity in order to analyze SKOLR’s branch-wise behavior. The figures show distinct
frequency specializations. In Fig. 6, SKOLR decomposes the time series into complementary frequency components, with
Branch 1 focusing on lower, distributed frequencies, and Branch 2 capturing more specific dominant frequency peaks. In
Fig. 7, Branch 1 shows higher amplitudes across most of the very low (0− 20µHz) frequency components compared to
Branch 2. The time-domain plots demonstrate how these spectral differences translate into signal reconstruction; Branch 2
focuses more on prediction of the higher-frequency components of the time series.

D.4. Analysis of Error Accumulation

Time-series forecasting has two main prediction methods: direct prediction, which forecasts the entire horizon at once but is
parameter-inefficient and cannot extend the prediction horizon after training, and recursive prediction, which iteratively uses
predictions as inputs but may suffer from error accumulation over long sequences.

In SKOLR, we use a patching approach (Appendix A.2) to create an effective middle ground between these methods. Instead
of operating at the individual timestep level, we work with patches of multiple timesteps, directly predicting all values
within each patch while only applying recursion between patches. This dramatically reduces the number of recursive steps
(e.g., from 720 to just 5 with patch length 144), controlling error accumulation. Additionally, this method also reduces
complexity to O(LP)) from RNN standard timestamp-based approaches (O(L)) while maintaining the core principle of
Koopman operator theory.

19

SKOLR: Structured Koopman Operator Linear RNN

0 100 200 300 400 500 600 700
Time Steps in Prediction Horizon

0.1

0.2

0.3

0.4

0.5

M
ea

n
Sq

ua
re

d
Er

ro
r

Step-wise MSE Evolution
SKOLR P=16
SKOLR P=24
SKOLR P=48
SKOLR P=144
SKOLR P=240
iTransformer

Figure 8: Error progression across 720 time steps: SKOLR (multiple patch sizes) vs. iTransformer

To better address this question, we add an experiment on a longer horizon L = 720, T = 720 on dataset ETTm2 with
varying iteration steps. We vary the patch length P = {16, 24, 48, 144, 240} of the SKOLR model to see the difference
performance caused by the number of iterations. SKOLR with P = 16 requires 45 recursive steps, while P = 240 needs
only 3, yet they maintain comparable error profiles in Fig. 8. This empirically demonstrates that SKOLR’s patch-based
approach effectively controls error accumulation, even with increased recursion.

We also compare SKOLR with iTransformer (Liu et al., 2024), which performs direct prediction without recurrence. Both
models show similar patterns of error increase with longer horizons, suggesting that this modest increase is inherent to all
forecasting approaches when extending the prediction range, rather than being caused by recurrent error accumulation.

D.5. Analysis on Koopman operator eigenvalue

The Koopman modes are derived through eigendecomposition of the RNN weight matrices Mi. These modes represent
dynamical patterns in the data. Each mode captures specific components of the time series. The stability and oscillatory
behavior of each mode is determined by the corresponding eigenvalue’s position in the complex plane. The eigenvalue
plots in Fig. 9 show that each branch learns complementary spectral properties, with all eigenvalues within the unit circle,
indicating stable dynamics. Branch 1 shows concentration at magnitude 0.4, while Branch 2 exhibits a more uniform
distribution.

Moreover, this observation provides some reassurance against error accumulation concerns, as error divergence is more
likely for unstable systems. Our learned system’s stability encourages error effects to naturally decay over time during
forward prediction steps rather than compounding.

E. State Prediction for Nonlinear Dynamical Systems (NLDS)
We generated datasets for four nonlinear dynamical systems (NLDS) to evaluate the performance of Koopman-based models
in state prediction tasks. Each dataset contains a trajectory with a total of 20000 time steps. The first 14000 steps were
designated for training, 2000 steps were used for validation, while the remaining 4,000 steps were used for inference. Below,
we describe the generation process for each system:

• Pendulum: A simple nonlinear pendulum system described by its angular displacement and velocity. The trajectory
was initialized with random a angle and angular velocity, with updates computed using the equations of motion under
gravity. The system being simulated is a simple pendulum, consisting of a mass m attached to the end of a rigid,
massless rod of length l. The pendulum swings in a two-dimensional plane under the influence of gravity, with the
gravitational acceleration g. The motion of the pendulum is governed by the equation of motion:

20

SKOLR: Structured Koopman Operator Linear RNN

1 0 1
Real Part

1.0

0.5

0.0

0.5

1.0
Im

ag
in

ar
y

Pa
rt

Branch 1 Eigenvalues
Branch 1

1 0 1
Real Part

1.0

0.5

0.0

0.5

1.0

Im
ag

in
ar

y
Pa

rt

Branch 2 Eigenvalues
Branch 2

1 0 1
Real Part

1.0

0.5

0.0

0.5

1.0

Im
ag

in
ar

y
Pa

rt

Combined Eigenvalues
Branch 1
Branch 2

Koopman Operator Eigenvalues: traffic

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Magnitude (| |)

0

5

10

15

20

25

Fr
eq

ue
nc

y

Distribution of Eigenvalue Magnitudes: traffic
Branch 1
Branch 2
Unit Magnitude

(b)

Figure 9: Koopman operator eigenvalue analysis for SKOLR on the Traffic dataset

θ′′(t) +
g

l
sin(θ(t)) = 0 (17)

where:

– θ(t) is the angular displacement of the pendulum at time t,
– θ′′(t) is the angular acceleration,
– g is the acceleration due to gravity (9.81m/s2),
– l is the length of the pendulum (set to 1.0m).

The system is further characterized by its initial conditions:

– The initial angle θ0, which is randomly chosen from a uniform distribution between −π and π,
– The initial angular velocity ω0, which is randomly chosen from a uniform distribution between −1 rad/s and
1 rad/s.

The motion of the pendulum is modeled using numerical methods, specifically the Euler method, which approximates
the solution of the system of equations over discrete time steps.

• Duffing Oscillator: A nonlinear oscillator characterized by damping and cubic stiffness terms. Trajectories were
generated using randomized initial positions and velocities, with dynamics influenced by an external periodic driving
force. The system modeled by the code is a Duffing oscillator, a type of nonlinear second-order differential equation

21

SKOLR: Structured Koopman Operator Linear RNN

commonly used to describe systems with nonlinear restoring forces and damping. The equation of motion for the
Duffing oscillator is given by:

ẍ+ δẋ+ αx+ βx3 = γ cos(ωt)

where x(t) represents the displacement of the oscillator, y(t) = ẋ(t) represents its velocity, and t is time. The
parameters of the system are: α = 1.0 (linear stiffness), β = 5.0 (nonlinear stiffness), δ = 0.3 (damping coefficient),
γ = 8.0 (driving force amplitude), and ω = 0.5 (angular frequency of the driving force). The system undergoes
periodic driving forces, and its motion is influenced by both the nonlinear restoring force and damping. The motion of
the oscillator is simulated by numerically integrating the equations of motion using a simple time-stepping method,
where dt is the time step, and the initial conditions for x and y are randomly selected within a small range. The system’s
behavior is characterized by chaotic dynamics for the chosen parameter values.

• Lotka-Volterra: A predator-prey population model, where the prey and predator populations interact dynamically.
Trajectories were initialized with random population sizes, and updates followed the Lotka-Volterra equations. The
equations governing the Lotka-Volterra predator-prey model are given by:

dNprey

dt
= αNprey − βNpreyNpredator

dNpredator

dt
= δNpreyNpredator − γNpredator

where:

– Nprey is the population of the prey species,
– Npredator is the population of the predator species,
– α is the natural growth rate of the prey,
– β is the predation rate (rate at which predators kill prey),
– δ is the rate at which predators increase due to consuming prey,
– γ is the natural death rate of the predator.

In this model, the prey species grows exponentially in the absence of predators, and the predator species declines expo-
nentially in the absence of prey. The interaction between the species causes cyclical fluctuations in their populations.

We implement this model by numerically integrating the differential equations using a simple Euler method. The
process starts by initializing the prey and predator populations randomly within a given range. The parameters α = 1.1,
β = 0.4, δ = 0.1, and γ = 0.4 are then used to update the populations at each time step.

• Lorenz ’63: A chaotic system described by three variables: x, y, and z. Each trajectory is started with randomized
initial conditions, and updated using the Lorenz equations with standard parameters. The equations governing the
Lorenz system are given by:

dx

dt
= σ(y − x)

dy

dt
= x(ρ− z)− y

dz

dt
= xy − βz

where:

– x, y, and z represent the state variables of the system, typically interpreted as the variables describing the
convection rolls in the atmosphere,

– σ is the Prandtl number, a measure of the fluid’s viscosity, set to 10.0,

22

SKOLR: Structured Koopman Operator Linear RNN

– ρ is the Rayleigh number, representing the temperature difference between the top and bottom of the fluid, set to
28.0,

– β is a geometric factor, set to 8
3 .

The Lorenz system exhibits chaotic behavior for these parameter values, meaning that small differences in initial
conditions can lead to vastly different outcomes over time. In the simulation, the system of differential equations is
solved using the Euler method over a series of time steps. A visualization of the system is shown in Fig. 10.

20 15 10 5 0 5 10 15 20
x 20

10
0

10
20

30

y

10

20

30

40

50

z

Lorenz System 3D Trajectory
Lorenz System Trajectory

Figure 10: Lorentz ’63 system plotted in 3D

23

