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ABSTRACT

Imitation Learning from Observation (IfO) offers a powerful way to learn behav-
iors from large-scale, mixed-quality data. Unlike behavior cloning or offline rein-
forcement learning, IfO leverages action-free demonstrations and circumvents the
need for costly action-labeled demonstrations or carefully crafted reward func-
tions. However, current research focuses on idealized scenarios with tailored,
bimodal-quality data distributions. This paper introduces a novel algorithm to
learn from datasets with varying quality, moving closer to a paradigm in which
imitation learning can be performed iteratively via self-improvement. Our method
extends RL-based imitation learning to action-free demonstrations, using a value
function to transfer information between expert and non-expert data. Through
comprehensive evaluation, we delineate the relation between different data dis-
tributions and the applicability of algorithms and highlight the limitations of es-
tablished methods. Our findings provide valuable insights for developing more
robust and practical IfO techniques on a path to scalable behaviour learning.

1 INTRODUCTION

Bringing the cognitive capabilities of large vision and language models to embodied systems is at
the forefront of many researchers’ attention. Given the nature of the underlying data, robotics has
been a popular target domain with a variety of deployed approaches, including prompting based
algorithms (Ahn et al., 2022; Jiang et al., 2023; Kwon et al., 2024; Di Palo et al., 2023) and behavior
cloning (BC) (Brohan et al., 2022; Bousmalis et al., 2024). We are motivated by a practical future
where agents are trained on a large-scale dataset of language and video without requiring explicit
action annotations or targeted task prompts. If required, the agent should further autonomously
collect data to address knowledge gaps. Enabling learning from such data could overcome two key
hurdles to scaling imitation learning: the static limitations of prompt engineering that may hinder
generalization and the high cost of large-scale action-labeled demonstrations.

As a first step towards this setting, this paper studies the problem of training agents assuming access
to two kinds of data: expert demonstrations without action labels, and background datasets which
include actions but do not necessarily solve any task. So while the agent has access to some action
data, it has not directly experienced the task being solved (it may only see solutions within the action-
free expert data) and does not observe any external rewards. This setup can be directly applied to
settings where action labels are difficult to obtain or which would benefit from cross-embodiment
transfer, e.g. autonomous driving datasets (CAR) or data collected with the UMI-gripper (Chi et al.,
2024). Expanding the expert data in our problem setting to include in-the-wild observations of
humans solving tasks would allow scaling to cheaply available large-scale data.

Any applicable method has to address two key challenges: a) collect useful data for imitating the
expert behaviour and b) learn a robust imitation policy from that data. Collecting data and inferring
policies is at the heart of reinforcement learning (RL). Driven by a reward function, RL agents collect
data and improve a policy based on the collected, possibly non-expert, experience. The reward serves
as key signal for improvement and represents the main judge of good and bad. However, engineering
a reward model can be time intensive (Tirumala et al., 2024; OpenAI et al., 2019; Lee et al., 2020)
and cannot capture the breadth of possible contexts and tasks encountered at scale. We are thus
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interested in algorithms that acquire a notion of good and bad directly from data. This brings us
to imitation learning, in particular Imitation learning from Observations (IfO) which addresses the
problem of imitating expert behavior without requiring action annotations (Torabi et al., 2018a;b;
Liu et al., 2018). To date, IfO remains an open research problem (Sikchi et al., 2024) and current
methods do not match the maturity of related methods in RL, which have been shown to scale
to large datasets and models (Springenberg et al., 2024; Chebotar et al., 2021). In contrast, IfO
methods have been benchmarked only in small, single-domain settings with ad-hoc choices for data
generation (Ma et al., 2022; Zolna et al., 2020; Sikchi et al., 2024). We here suggest a concrete
benchmark that moves towards data compositions that better reflect the above large-scale vision.

Concretely, previous work has mainly been focused on offline training on mixed data where a sig-
nificant amount of expert data was diluted in non-expert data (Ma et al., 2022; Zolna et al., 2020;
Sikchi et al., 2024). Instead, we extend previous datasets (Fu et al., 2021) and collect data with a
variety of policies of different quality and examine how much performance can be improved across
this spectrum. We argue that this setup more accurately captures the scenario where an agent collects
its own data for improvement and we underline this with a self-improvement experiment where an
agent uses self-collected data to improve.

In addition to forming a new benchmark, we propose a simple, offline IfO method. Our algorithm
adapts either SQIL (Reddy et al., 2020) or ORIL (Zolna et al., 2020), two RL-based imitation learn-
ing algorithms, to the action free setting. For the SQIL based variant, we simply assign a reward
of 1 to expert data and a reward of 0 to background data before applying a value-function based
offline RL method akin to AWR (Wang et al., 2016; Peng et al., 2019). The use of a value function
instead of state-action value (aka a Q function) overcomes the lack of expert action annotations. In
the second variant, we replace the 0-1 rewards with estimates from a learned discriminator as in Ho
& Ermon (2016); Zolna et al. (2020). In both variants, we combine a simple reward function with
a learned value-function which transfers expert knowledge from the unlabeled expert data onto the
action labeled background data. We name our approach Value learning from Observations (VfO).

In summary, we suggest the combination of IfO and iterative self-improvement in order to approach
large scale behavior learning from a novel angle and under realistic, scalable data collection assump-
tions. To this end we introduce a new offline benchmark that is more representative of said setting.
We further propose a novel algorithm (VfO), in two variants, that adapts offline RL mechanisms to
imitation learning from observations. With a broad set of experiments, we confirm the representative
power of our benchmark, underline the competitiveness of our algorithm, and show initial positive
results of IfO in conjunction with iterative self-improvement.

2 RELATED WORK

The classical, straightforward approach to imitation learning is behaviour cloning (BC, Osa et al.
(2018)), i.e., maximising the likelihood of actions in the dataset. However, this approach requires
large numbers of optimal demonstrations. For this reason, a variety of methods have been developed
to additionally benefit from suboptimal and other data sources by for instance extrapolating rewards
from observations (Brown et al., 2019; Chen et al., 2021), imitation via IRL (Davchev et al., 2021a),
or even by using videos from generative models (Bharadhwaj et al., 2024).

In online imitation learning, self-generated agent data represents the best data distribution to learn
how to refine agent behaviour (Ross et al., 2011; Swamy et al., 2022; Lavington et al., 2022). Dif-
ferent methods have been proposed to apply the reinforcement learning formalism to address an
imitation problem - from classical and deep maximum entropy inverse RL (Ziebart et al., 2008;
Wulfmeier et al., 2015; Barnes et al., 2024) to computationally more efficient adversarial imitation
learning (Ho & Ermon, 2016; Fu et al., 2017; Wulfmeier et al., 2017; Kostrikov et al., 2019a). When
treating imitation as matching of agent visited transitions or divergence minimisation, further diver-
gences have been explored (Ke et al., 2021; Ghasemipour et al., 2020). Transitioning from adver-
sarial learning to more stable value function optimisation, SQIL removes the intermediary classifier
from GAIL and instead uses a binary reward (Reddy et al., 2020). IQlearn (Garg et al., 2021) and
ValueDICE (Kostrikov et al., 2020) enable transitioning from explicitly defined to implicitly learned
rewards. Other non adversarial algorithms include PPIL (Viano et al., 2022), PWIL (Dadashi et al.,
2021), and CSIL (Watson et al., 2024). However, online imitation learning can be costly in domains
like robotics, is sometimes not even possible and doesn’t benefit from existing data sources.
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When online data generation is impractical, suboptimal offline datasets can provide an alternative.
Practical and scalable algorithms can be derived when using either discriminator (Zolna et al., 2020)
or optimal transport (Luo et al., 2023) based rewards together with offline RL. Value (Kim et al.,
2022) and model-based approaches (Chang et al., 2021) expand the toolkit. IQLearn can further be
shown to be equivalent to BC with dynamics-aware regularisation term (Wulfmeier et al., 2024).

The online and offline settings described above require access to high-quality demonstrations with
action annotations, often only attainable via complex tele-operation settings in robotics. The exten-
sion towards action-free demonstrations opens considerable scope and has been the target of further
methods. A separately trained inverse dynamics model can be applied to label action-free data, en-
abling behaviour cloning (Radosavovic et al., 2021; Torabi et al., 2018b). Learning rewards provides
a path to instead relabel sub-optimal data for RL style optimisation (Eysenbach et al., 2021; Davchev
et al., 2021b). Here, adversarial approaches present a common mechanism to learn rewards (Ho &
Ermon, 2016). These can be adapted by controlling the discriminator input space, often benefiting
from further regularisation (Zhu et al., 2020b; Liu et al., 2020). Value function based imitation meth-
ods enabled by inverse Bellman updates and dual formulations of the problem like SMODICE (Ma
et al., 2022) and DILO (Sikchi et al., 2024), or variational formulations (Kostrikov et al., 2019b;
Garg et al., 2021), bypass the often hard to optimize adversarial objectives and are related to our
approach. While mathematically appealing, these methods can still be brittle and harder to scale to
the real-world directly from raw observations (Al-Hafez et al., 2023; Watson et al., 2024). Instead,
we base our value-based algorithm on a simple RL backbone which draws on decades of experience.
We compare performance and show competitiveness against various baselines (including SMODICE
and DILO) on a large set of experiments on different domains.

3 METHOD

3.1 OFFLINE IMITATION LEARNING FROM OBSERVATIONS

We consider learning in a dynamical system modelled as Markov decision process with states s ∈ S,
actions a ∈ A, and dynamics p(st+1|st, at). In order to learn useful behaviour, the agent has
access to two sources of information: a dataset of expert state trajectories τE = (s1, . . . , sT ) ∈ DE

without actions and a dataset of state-action trajectories from its own embodiment but of unspecified
origin and quality τB = (s1, a1, . . . , aT−1, sT ) ∈ DB . We will refer to the latter as background
dataset. The agent’s goal is to obtain a policy π(a|s) that imitates the behaviour underlying the
expert trajectories. To support scalability, we limit the use of further information (e.g. rewards,
domain knowledge) and thus do also not expect the agent to outperform expert performance.

Given the lack of expert actions, the agent has to be able to leverage the background dataset to
understand the dynamics, i.e., the relationship between actions and states. However, similar to prior
work on inverse RL (Abbeel & Ng, 2004; Ziebart et al., 2008) as well as for the related problem
of offline RL (Schweighofer et al., 2022; Hong et al., 2023), the quality and distribution of the
background data plays an important role on the achievable performance. In previous work, different
sources have been employed, such as agent replay data, a mixture of expert and non-expert data, or
data collected with a suboptimal policy. Given that we are interested in an agent that can start from
few assumptions and that should be able to leverage the data it collects, we focus on the suboptimal
policy case. In order to generate a corresponding benchmark we suggest to train multiple policies
using BC but vary the number of demonstrations provided. We then run these policies to collect
multiple datasets of varying quality (see Section 4.1).

3.2 VFO: VALUE FROM OBSERVATION

We introduce a simple IfO method that can effectively learn from observations in the self-
improvement setting at hand. For this purpose, we consider two variants of a value-function based
approach that learns a state-value function from observations alone. In the first, we assign binary
rewards (i.e., 1 for expert or 0 for background) to the data – thus adapting SQIL (Reddy et al., 2020)
to our setting. In the second, we use a learned discriminator that performs a soft expert / background
assignment of each state – thus adapting ORIL (Zolna et al., 2020) to our setting. Other imitation
learning-based rewards such as Luo et al. (2023) could also be employed, but note that employing
rewards that rely on prior knowledge such as when derived from goal states may impact generality.
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Algorithm 1 Value from Observation (VfO)
Require: Expert dataset DE , background dataset DB , mixture parameter α, temperature λ, dis-

count γ, initial policy π0, initial value v0. Optional: discriminator d(s) : S 7→ [0, 1]
for k ← 1 to K iterations do

r(s′, z) =

{
d(s′) if discriminator provided
1E(z) otherwise ▷ 1E is the expert indicator function.

Lv
k ← E(s,s′,z)∼(1−α)DE+αDB

(γvk−1(s
′) + r(s′, z)− vk−1(s))

2

Lπ
k ← −E(s,s′,a,z)∈DB

exp ((γvk−1(s
′) + r(s′, z)− vk−1(s))/λ) log(πk−1(a|s))

vk ← AdamUpdate(vk−1, L
v
k), πk ← AdamUpdate(πk−1, L

π
k )

end for

As mentioned above, we resort to learning a state-value function for transferring knowledge from the
expert data without action labels to the background data. We note that a state-action Q-value based
offline RL approach cannot be applied in our setting due to a lack of signal on the background data:
all transitions are labeled with a zero reward in the binary setting or potentially very small rewards
in the learned discriminator setting. In contrast, if we apply an approach based on the state-value
function v, policy evaluation is possible without knowing the action and can thus leverage a mixture
of expert and background data.

First, we define a virtual policy π̄ which mixes the expert and background data-generating processes
at each transition:

π̄(a|s) = p(z = E|s, α)πE(a|s) + p(z = B|s, α)πB(a|s) (1)

with mixture coefficient α and where z denotes the latent indicating the origin of the data, either
expert E or background B. This policy is equivalent to deciding at the beginning of an episode
whether to follow the implicit expert or background policy. Note that the probability of using πE or
πB is state-dependent, and will depend on the likelihood of reaching s under each of those policies.
With discount factor γ and reward r(s′, z), we can define the temporal difference error of a value
function for this policy:

Lv = E(s,s′,z)∼(1−α)DE+αDB
(v(s)− (r(s′, z) + γv(s′)))2. (2)

Leaving aside – for a moment – how the reward can be obtained, we can then utilize this learned
value function to find an improved policy by (exponentiated) advantage weighted regression (Peng
et al., 2019; Wang et al., 2018) which amounts to weighted supervised learning on the background
data (which enforces closeness to the policy that generated the data via a temperature λ) and yields
the following policy loss:

Lπ = −E(s,s′,a)∈DB
exp((γv(s′) + r(s′, z)− v(s))/λ) log(π(a|s)). (3)

An advantage of this presented scheme is its simplicity and use of well established offline RL meth-
ods, allowing for an efficient implementation while utilizing insights from many years of RL re-
search such as the use of target networks and how to deal with terminations (see section 4). The
full method is described in Algorithm 1 with the key differences to the offline RL setting marked in
blue: the reward source and the mixture of expert and background data.

Binary demonstration-based rewards (VfO-bin) In the simplest setting we avoid any additional
learning or estimation bias in the reward function by directly assigning a reward of 1 to expert
transitions and a reward of 0 to background transitions in line with what has been proposed by
Reddy et al. (2020). While this might seem trivial, it recovers what a perfect discriminator with
infinite capacity would output and removes a layer of complexity. It follows the intuition that we
may be able to leverage the value function directly for distinguishing good from bad states in the
background data, rather than learning an intermediary reward function. We can make this notion
more precise by realising that when we only provide a reward of 1 for the expert transitions and 0
otherwise, the learned value can be interpreted as:

vπ̄(st) = p(zt = E|st) + γEa∼π̄(·|st),st+1∼p(·|st,a)vπ̄(st+1), (4)

= E(st+1,st+2,...)∼π̄

∑
i=0

γip(zt+i = E|st+i) =
∑
i=0

γip(zt+i = E), (5)

4
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which is the cumulative discounted likelihood of futures states having been visited by the expert
within the mixed dataset when starting in st. A policy that maximizes this cumulative return thus
prioritises visiting expert states.

A different way to look at it, is that states that are contained in both the expert and background
data will receive a positive and a negative reward signals. Given that policy improvement relies on
weighted regression on the background data this is perfectly fine: actions that lead to states which
are closer to the expert data will automatically receive a higher weight.

Discriminator-based rewards (VfO-disc) In a second setting, we consider learning a discrimina-
tor to represent the rewards (Ho & Ermon, 2016). When learning from observations, these usually
learn to distinguish expert from non-expert states (Zolna et al., 2020; Ma et al., 2022) in order to
derive a reward for learning a policy. We adopt the objective from ORIL (Zolna et al., 2020) and
pre-train the discriminator by minimizing

Ld = Es∼DE
[− log d(s)] + Es∼DB

[− log(1− d(s))], (6)

where d(s) ∈ [0, 1] is a binary classifier and the objective is akin to training a discriminator in
generative adversarial learning (Goodfellow et al., 2014; Ho & Ermon, 2016). The discriminator
output directly serves as reward similar to was done in Wulfmeier et al. (2017) using the Wasserstein-
1 (or Earth-Mover) distance (Arjovsky et al., 2017).

4 EXPERIMENTS

Bimodal Self-Improvement Proxy Self-Improvement

Figure 1: Schematic visualisation of key differences between bimodal (left) and self-improvement
(right) based data configurations. Even this simple visualisation intuits how different algorith-
mic properties benefit in each setting. Explicitly learning classifiers or discriminators between
demonstrations and other data is intuitively easier with stronger split. The intermediate offline
self-improvement benchmark serves as a good proxy and enables quick evaluation bypassing se-
rial dependencies between self-improvement steps. The source of all dataset for individual training
steps is described in Section 4 in further detail.

We aim to evaluate the two settings schematically shown in Figure 1: bimodal, where the background
data exhibits a bimodal distribution with a clear gap; and self-improvement, with a more nuanced
distribution without a clear expert mode. While the bimodal setting is commonly employed for
evaluation in previous work we argue that the self-improvement setting can better serve as an offline
proxy for the online iterative self-improvement that motivates our paper. We thus also investigate
how representative this proxy is when compared to actual self-improvement style data collection on
a subset of the simulation domains. The following questions guide our experiments:

• How do different data distributions affect the performance across algorithms and how ef-
fective is VfO? (Sections 4.3 and 4.4)?

• Does the offline self-improvement proxy correlate with full iterative self-improvement
(Section 4.6)?

• Can VfO deal with complex inputs such as images (Section 4.5)?

5
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4.1 DATASETS AND BENCHMARKS

Our experiments are based on two established benchmarks: D4RL (Fu et al., 2021) with many base-
line results in the literature and Robomimic (Mandlekar et al., 2021), from which the robosuite (Zhu
et al., 2020a) tasks in particular provide a more realistic challenge for our algorithms – and include
tasks that require the ability to process image data. D4RL contains data from various OpenAI gym
(Brockman et al., 2016) MuJoCo (Todorov et al., 2012) environments, from which we use the Ant,
HalfCheetah, Hopper and Walker2D domains. The expert data for these environments comes from
policies trained via RL. For each domain, there are 1000 expert demonstrations available; and we
drop the action information to obtain the IfO setting. The Robomimic benchmark contains a variety
of simulated and real robotics datasets of human demonstrations. From the simulated domains, we
use Lift, PickPlaceCan and NutAssembly. For each of these tasks, there are 200 demonstrations.

The most realistic, scalable source of background robot data is agent-generated. Therefore in con-
trast to existing datasets – which are mostly bimodal (very high and low performance) – we target
self-improvement as a data source. To emulate the sequential nature of different quality levels that
we would expect during self-improvement, we introduce a proxy Self-Improvement Benchmark
(SIBench) which uses data generated by a set of varying policies.

To produce data for this benchmark we use a set of policies with various levels of performance;
which we train via BC with varying numbers of demonstrations. For each task τ we train a set
of BC policies {πd

τ |d ∈ {1, 2, 5, 10, 20, 50, 100, 200, 500, 1000}, d ≤ Nτ}, where d indicates the
number of demonstrations that the policy was trained on and Nτ is the number of demonstrations
available. For each of these policies, we collect 1000 episodes, which we use as our background
data1. This setting leads to considerably faster experimental iteration compared to running a full
self-improvement experiment (since the data is pre-generated and fixed) and creates a consistent
benchmark for fair comparisons; but comes at the cost of removing the data generation or exploration
process from the analysis. Importantly, looking at the return distributions for all settings in Figure 1
we can observe that this proposed background data is qualitatively close to the data encountered in
self-improvement. Further, the different background datasets will exhibit different levels of overlap
with the expert data, ranging from a scenario where the expert data is mostly out of distribution to a
regime where the expert data is contained in the background data.

For comparability with prior work and to investigate the added value of our evaluation scheme, we
also constructed datasets of what we refer to as bimodal data composed of expert demonstrations
and trajectories generated with a random policy (i.e., actions sampled from a uniform distribution).
To obtain a more complete picture we sweep over the data mixture: we interpolate linearly from
1000 random demonstrations to 1000 expert demonstration.

Using simulated rollouts of the stochastic policy, we report returns and success rates2 averaged
over 5 seeds and over the last 1e5 training steps to reduce noise (the last 5e5 for Robomimic). We
display most results as the difference between the average return observed in the data and the average
return obtained from the policy to be evaluated. In contrast to simply reporting policy returns, we
argue that this clearly visualises improvement of imitation learning algorithms and allows for better
comparison against baselines via improved resolution.

4.2 ALGORITHMS AND BASELINES

We compare our algorithm to a broad set of baselines including behaviour cloning (BC) on the back-
ground data, BCO (Torabi et al., 2018a), SMODICE (Ma et al., 2022), DILO (Sikchi et al., 2024)3.
Finally, to provide a performance upper bound and thereby support usefulness of the background
data, we also report results for Advantage-Weighted Regression (AWR; Peng et al., 2019) trained
with ground-truth rewards available for the background data. This can be interpreted as an oracle
algorithm that does not perform IfO (and is not directly comparable) but serves as indicator of what
could be learned from the data. Please refer to Appendix A for further implementation details.

1The data will be publicly released following the manuscript’s review decision.
2Note, that this may not be the best metrics for imitation learning performance, as it may provide a distorted

view of imitation. E.g. success rate may be blind to any improvement as long as the task is not solved.
3Re-implemented in a shared code base for improved comparability. See Appendix B for details. Where

possible we verify performance against reported results in prior work.
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4.3 SIBENCH RESULTS

The results for the D4RL tasks of our SIBench data are shown in Figure 2 (see plots with absolute
returns in Appendix E and SQIL with privileged actions in Appendix G). Both VfO-bin and VfO-
disc perform well on the Ant and HalfCheetah tasks, getting close to the oracle AWR performance
across the full spectrum of background data. All methods underperform on the Hopper task. On
Walker2D, VfO-disc performs on par with AWR and better than VfO-bin. A possible explanation
for VfO-bin’s decreased performance could be its lack of immediate reward on the background
data which could impact its performance on cyclic tasks. SMODICE and DILO perform poorly in
comparison on all tasks, only improving on the data on scattered occasions. Generally in this more
realistic settings VfO performs remarkably strong; close to ’oracle’ performance in many settings
despite it having to deal with lack of reward information and lack of action data on the expert
demonstrations. The baselines SMODICE and DILO clearly underperform; we hypothesize that
similar to residual gradient algorithms in RL (Baird, 1995), which do not make use of stop-gradients
or target networks, the signal from the bellman residual may be very weak when there is significant
overlap between good and bad trajectories, such as is the case for the background data here.
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Figure 2: Difference in cumulative return of various algorithms on D4RL tasks using the SIBench
data. We plot the average return in the background data against the difference in return (relative
to the background data return) achieved by an algorithm. I.e. positive differences mean the policy
produced by the algorithm is better than the policy that generated the background data. The boxplots
average across the spectrum of background data. AWR, VfO-disc, VfO-bin all show good improve-
ment across the spectrum of background data with the oracle AWR performing best. SMODICE and
DILO only rarely improve on the data.

Figure 3 depicts the results for the Robomimic tasks of the SIBench data. Overall the results are less
conclusive here and this could be related to how improvement is measured: Given that there is no
dense reward for these tasks, we resort to success, which is much less indicative of learning progress,
i.e. behavior could become more similar to the expert demonstration without higher success rate.
Nevertheless, VfO-bin is able to yield positive improvement across all tasks and performs on par
or better than AWR, while VfO-disc, SMODICE, and DILO perform worse. Comparing AWR
against VfO effectively also compares the underlying driving sources of information, i.e. reward
annotations against demonstration. In a scenario with sparse rewards, such as for Robomimic, it is
entirely possible that relying on demonstrations allows for better performance.
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Figure 3: Difference in success of various algorithms on Robomimic tasks using the SIBench data.
AWR and VfO-bin mostly yield good improvement. DILO, SMODICE, and VfO-disc have more
troubles generating improvement.

4.4 BIMODAL RESULTS
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Figure 4: Difference in cumulative return of various algorithms on D4RL tasks using the bimodal
data. As reported in previous work, SMODICE and DILO exhibit strong improvement when the data
is composed of a little amount of expert demonstrations. VfO-bin and VfO-disc both underperform
in that case.

To investigate how SIBench data differs from existing data mixtures and to enable comparability
with previous work, we report results for the bimodal D4RL data in Figure 4. DILO and SMODICE
exhibit strong improvement, particularly when the data is composed of relatively few expert demon-
strations. In most cases, DILO reaches expert performance for the third data point (200 expert
demonstrations) which is in line with results from Sikchi et al. (2024). Improvement then degrades
smoothly with increasing data quality as there is less room for improvement.

VfO-bin and VfO-disc underperform when compared to BC. The improvement of BC itself can be
attributed to the bimodal state distribution and to dynamic effects that can lead BC to pick the more
consistent underlying policy (Zhang et al., 2024). These results are also in line with our hypoth-
esis that bimodal data of this type turns imitation learning into a filtering problem of separating
the good from bad trajectories and may not effectively measure the properties of imitation learning
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algorithms that matter in practical self-improvement scenarios. Instead, the mostly distinct expert
and background state distributions render it more important to pick the right action when the dis-
tributions bifurcate. VfO likely struggles to do so because the learned values are not sufficiently
discriminative. However, lowering temperatures to increase the effect incurs instabilities.

4.5 VISION-BASED RESULTS

We also investigate the ability to learn from image observations (see Figure 5), as is often required
in real-world robotics applications. For this we report results on the Robomimic tasks using the
SIBench image data. While improvement is more difficult to measure here, we can observe some
improvement in the Lift domain for AWR and VfO-bin, again highlighting the fact that our simple
VfO scheme is a strong algorithm even in high-dimensional, difficult settings.
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Figure 5: Difference in success of various algorithms on Robomimic tasks using the SIBench image
data. In this difficult setup both VfO-bin and AWR manage to achieve some improvement on Lift.

4.6 ITERATIVE SELF-IMPROVEMENT RESULTS

To confirm the validity of our SIBench proxy, we run self-improvement experiments akin to what
we envisioned in the introduction. In these experiments after learning an initial policy from a seed
dataset, we collect 1,000 episodes to form a new dataset for the next learning iteration (and then
repeat this process in an improvement loop). We perform 20 iterations in total and seed with data
with bad but non-zero performance in order to avoid regions with low signal-to-noise ratios. In order
to observe correlation with SIBench we pick VfO-bin as our method to benchmark (for which we
expect good performance) and use SMODICE as a baseline. We again run AWR (assuming rewards
on all data) to compare to a form of oracle performance. Further baselines are shown in Appendix F.

Figures 6 and 7 plot policy performance against the performance of the input data for each self-
improvement iteration. A saw-tooth pattern is observed when consistent improvement is achieved
during iterative self-improvement: The achieved performance of one iteration (y-axis) is used as
base performance for the next iteration (x-axis), thus the projections onto the diagonal. A box-tooth
pattern is observed when performance increases and decreases alternate. This might be caused by
oscillating effects, such as the temporary emergence of stationary regions: During one iteration a
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Figure 6: Self-improvement experiments for D4RL tasks. We evaluate VfO-bin, SMODICE, and
AWR with ground-truth rewards. Starting with low-performance initial policies, we generate data to
train the next iteration of policies for each algorithm and iterate. The policy return (averaged over
1000 episodes) at each iteration is projected on the diagonal and used as background data for the
next step. Both AWR with ground-truth rewards and VfO-bin lead to strong results.
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Figure 7: Self-improvement experiments for Robomimic tasks. Starting from different initial per-
formances we can observe whether performance increases or not. Results are mixed, VfO-bin is
good on two out of three tasks. Given AWR’s dependency on informative rewards (here: sparse),
VfO-bin can slightly outperform offline RL in this setting.

policy might decide to remain stationary within a region of high expert density. This would however
likely be resolved during the next self-improvement iteration due to an over-proportional visitation
of these states.

The plots confirm that whenever we see performance improvement in SIBench we also attain self-
improvement when collecting data online, confirming the representative power of our offline proxy.
For Ant, HalfCheetah, and Walker2D the self-improvement has not converged within the alotted
iterations. Interestingly, for Hopper VfO-bin converges roughly where the zero-crossing of the
performance lies in SIBench between 1’500 and 2’000. Additionally, self-improvement is also
obtained for Robomimic when starting from data that shows positive SIBench improvement.

Additionally, VfO-bin clearly outperforms SMODICE in this setting and, remarkably, obtains per-
formance similar to the AWR oracle in all settings. We want to highlight that this is a highly non
trivial result, bootstrapping imitation learning to mastery via self-collection starting from low signal
(near random data) is an open problem in imitation learning (see e.g. Sun et al. (2017)).

5 LIMITATIONS AND FUTURE OPPORTUNITIES

While a key application of IfO targets transfer from direct human provided (third person) demon-
strations of a task rather than trained first person control, all presented experiments are limited to
consistent embodiment between demonstrations and additional data source. Intermediate steps in
this direction might utilize state estimation techniques to map correspondences between robot and
human states (Luo et al., 2024), but the final goal should remain to exploit existing semantic un-
derstanding in pre-trained vision-language and other foundation models (Stone et al., 2023; Yuan
et al., 2024; Zitkovich et al., 2023; Wulfmeier et al., 2023; Majumdar et al., 2023). The considerable
computational requirements of such models renders the iterative offline learning setting we describe
in Section 4.1 more tractable than the pure online learning setting. Self-generated data remains
however the most targeted path to obtain the most relevant background data for agent training.

6 CONCLUSIONS

Imitation learning from observation has the potential to become a principal component of large-scale
behaviour learning. We advance this paradigm by suggesting the use of IfO in conjunction with self-
improvement. We provide a novel offline benchmark, which we find to be much more representative
of this self-improvement setting when compared to existing benchmarks. We also present a simple
algorithm (VfO) that builds on ideas from SQIL, ORIL, and AWR to effectively train agents by
relying on offline reinforcement learning as the mechanism to learn to imitate. Remarkably, across
nearly all experiments in our analysis, VfO is competitive with RL from ground-truth rewards when
using just a few action-free trajectories as the defining good behaviour. VfO, and IfO in general, pro-
vides an efficient path to real-world RL, where reward function design often becomes the restricting
factor.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Carla leaderboard. http://leaderboard.carla.org.

P. Abbeel and A. Ng. Apprenticeship learning via inverse reinforcement learning. Proceedings of
the twenty-first international conference on Machine learning, 2004.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Daniel Ho, Jasmine
Hsu, Julian Ibarz, Brian Ichter, Alex Irpan, Eric Jang, Rosario Jauregui Ruano, Kyle Jeffrey, Sally
Jesmonth, Nikhil J Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang, Kuang-Huei Lee,
Sergey Levine, Yao Lu, Linda Luu, Carolina Parada, Peter Pastor, Jornell Quiambao, Kanishka
Rao, Jarek Rettinghouse, Diego Reyes, Pierre Sermanet, Nicolas Sievers, Clayton Tan, Alexander
Toshev, Vincent Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Mengyuan Yan, and Andy
Zeng. Do as i can, not as i say: Grounding language in robotic affordances, 2022. URL https:
//arxiv.org/abs/2204.01691.

Firas Al-Hafez, Davide Tateo, Oleg Arenz, Guoping Zhao, and Jan Peters. Ls-iq: Implicit re-
ward regularization for inverse reinforcement learning. In ICLR, 2023. URL https://
openreview.net/pdf?id=o3Q4m8jg4BR.
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A IMPLEMENTATION DETAILS

The policies are simple MLPs with two hidden layers of either 512 units for D4RL or 1024 units
for Robomimic. For the VfO algorithms we set the temperature parameter λ to 1 on the D4RL
tasks and to 0.1 on the Robomimic tasks (see Appendix D for an overview of parameters and a
sensitivity analysis). For the methods that learn value functions, we use a target network that gets
updated every 200 steps. Some additional implementation details are worth pointing out: We use a
multi-scale encoder similar to the one used in the Perceiver Actor-Critic model (Springenberg et al.,
2024) that circumvents issues with saturation of non-linearities or insensitivity to lower amplitude
signals. This setting reduces dependence on exact input normalisation and can simplify later exten-
sions to multi-task scenarios. Instead of continuous action predictions, we discretize the actions in
101 uniformly spaced bins for which we learn a categorical distribution as is common for recent
transformer architectures in control domains (Reed et al., 2022). However, we apply a Gaussian
kernel on the last layer to provide sufficient inductive bias in the low data regime. For tasks with
terminations, we further bootstrap the values by assuming the agent to continue receiving the same
reward, i.e. v(st) = rt

1−γ . This increases the effect of terminating states and improved performance
on terminating tasks. All algorithms are trained for 1e6 learning steps.

B BASELINES DETAILS

BCO For the BCO (Torabi et al., 2018a) baseline, we train an inverse dynamics model to predict
p(at|st, st+1) on the background data and subsequently use this to label the demonstrations. After
this, regular BC learning is done on a 50/50 mixture of the background data and the now action
annotated demonstrations. To implement this, we used the same architecture for the dynamics model
as we used for the policies in our experiments.

SMODICE Like in the paper that proposes SMODICE (Ma et al., 2022), we first train a dis-
criminator network to distinguish between the expert and background data based on the observa-
tions/states. We apply early stopping at 10000 steps as we found this to be beneficial in prelimi-
nary experiments. Subsequently, we learn the value function as suggested and derive weights for
weighted BC. Unlike the original paper, we don’t apply entropy regularization to policy and don’t
apply gradient penalization to the discriminator. The SMODICE discriminator has the same archi-
tecture as the discriminator for VfO-disc.

DILO This algorithm learns a state-state value function that takes as input two adjacent states
and does policy improvement via AWR. We implemented the same loss as in Sikchi et al. (2024).
Unlike in that work, we found the orthogonal gradient method from Mao et al. (2024) to lead to
worse learning stability than simply using the true-gradient update in which no target networks
or stop-gradients are used. Despite not using the orthogonal gradient update, DILO was still the
strongest baseline for the bimodal data. We hypothesize that this difference in results could be due
to architectural differences like the discretized actions and multi-scale encoder that we used. For the
AWR part of the algorithm we use a temperature of 10 – note that this would be a setting of 0.1 in
the notation of Sikchi et al. (2024) where the parameter τ is the inverse of our temperature parameter
λ. We found that increasing the temperature further led to more stable results on the Robomimic but
at the cost of essentially turning the algorithm into BC. Otherwise, the settings for this baseline are
the same as for the other methods. At the time of writing, the code for DILO is not available yet, so
there could be more subtle implementation differences.

C EXTENDED RELATED WORK

In addition to the areas described in the main paper, our work strongly relates to and directly builds
on research on self-improvement including fundamental reinforcement learning research. The clas-
sical idea to have a policy generate its own data to learn and adapt has a long-standing history in
RL (Wulfmeier et al., 2023). More recently various works explicitly split the data generation and
learning processes (Riedmiller et al., 2022) via model-based (Matsushima et al., 2020) and model-
free RL approaches (Lampe et al., 2023; Bousmalis et al., 2024; Springenberg et al., 2024). While
many of these works rely on externally defined reward functions, related signals, or vision-language
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models as reward sources (Ma et al., 2024), ours directly uses demonstration data to define optimal
behaviour (Abbeel & Ng, 2004). Self-improvement research has further gained strong relevance for
other foundation model applications such as language modelling (Huang et al., 2022; Choi et al.,
2024).

D HYPERPARAMETERS

Table 1 provides an overview of the employed parameters. Further Figures 8 and 9 provide hyper-
parameter ablation for the temperature λ and the mixing parameter α. They confirm that for both
there is a wide range of parameters that enable improvement.

Hyperparameter Value
learning rate 3e-4
batch size 256
MLP layers D4RL (512, 512)
MLP layers Robomimic (1024, 1024)
target network update period 200
weight decay D4RL 0
weight decay Robomimic 0.1
λ (temperature) D4RL 1.0
λ (temperature) Robomimic 0.1
α (mixture ratio) 0.5
γ (discount ratio) 0.99

Table 1: Shared Algorithmic Hyperparameters
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Figure 8: Difference in cumulative return of VfO-bin on D4RL tasks using the SIBench data for
different temperature parameters and mixing parameter 0.5. We plot the average return in the back-
ground data against the return of the trained policy. We can observe a fairly wide range of hyperpa-
rameter settings leading to improvement.
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Figure 9: Difference in cumulative return of VfO-bin on D4RL tasks using the SIBench data for
different mixing parameters and temperature 1.0. We plot the average return in the background data
against the return of the trained policy. Except for Hopper, we can observe that picking a parameter
between 0.1 and 0.9 yields consistent improvement.

E ABSOLUTE RETURN PLOTS

The relative plots in Figures 2 to 5 are not very common. We thus provide the absolute counterparts
in Figures 10 to 13.

F FURTHER SELF-IMPROVEMENT BASELINES

We ran further self-improvement baselines including DILO, BC, and BCO. Figure 14 shows the
average returns against the self-improvement iteration. It further confirms that methods bad perfor-
mance on SIBench are less suited to attain positive self-improvement.

G OFFLINE SQIL WITH PRIVILEGED EXPERT ACTIONS

Figures 15 and 16 show results for our offline implementation of SQIL with privileged access to
expert actions. We provide hyperparameter ablation for the temperature λ and the mixing parameter
α and can observe that a higher mixing parameter is required to avoid overfitting on the scarce expert
actions.

H IMPROVEMENT PLOTS WITH STANDARD DEVIATIONS

Figure 17 shows the mean and standard deviation of differences in cumulative return of AWR and
VfO-disc on D4RL tasks using the SIBench data. Except for Hopper, VfO-disc achieves consistent
improvement and exhibits a variance similar to that of AWR.

We further also provide results with an updated evaluation procedure. Here, only the final model
weights from each training run are evaluated, using 1000 simulated rollouts each. We keep training
with 5 different seeds to capture the distribution of average returns and report mean and standard
deviation across training seeds. These are plotted in Figure 18. Adding more rollouts reduces the
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Figure 10: Cumulative return of various algorithms on D4RL tasks using the SIBench data. We plot
the average return in the background data against the return of the trained policy. AWR, VfO-disc,
VfO-bin all show good improvement across the spectrum of background data with the oracle AWR
performing best. The corresponding relative plots can be seen in Figure 2.
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Figure 11: Success of various algorithms on Robomimic tasks using the SIBench data. As the abso-
lute performance range is considerably larger than the differences due to highly different initial data
quality, relative rankings require a closer look. AWR and VfO-bin mostly yield good improvement.
The corresponding relative plots can be seen in Figure 3.

variance of the results and we can now claim that most VfO model weights attain good performance
improvement.
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Figure 12: Cumulative return of various algorithms on D4RL tasks using the bimodal data. As
reported in previous work, SMODICE and DILO exhibit strong improvement when the data is com-
posed of a little amount of expert demonstrations. The corresponding relative plots can be seen in
Figure 4.
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Figure 13: Success of various algorithms on Robomimic tasks using the SIBench image data. Im-
provement is difficult to discern in these plots. The corresponding relative plots can be seen in
Figure 5.
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Figure 14: Self-improvement experiments for D4RL tasks. We evaluate VfO-bin, SMODICE,
DILO, BC, BCO, and AWR with ground-truth rewards. Starting with low-performance initial poli-
cies, we generate data to train the next iteration of policies for each algorithm and iterate. Both
AWR with ground-truth rewards and VfO-bin lead to strong results.
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Figure 15: Difference in cumulative return of offline SQIL (with privileged expert actions) on D4RL
tasks using the SIBench data for different temperature parameters and mixing parameter 0.9. We plot
the average return in the background data against the return of the trained policy. We can observe a
fairly wide range of hyperparameter settings leading to improvement.
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Figure 16: Difference in cumulative return of offline SQIL (with privileged expert actions) on D4RL
tasks using the SIBench data for different mixing parameters and temperature 1.0. We plot the
average return in the background data against the return of the trained policy. In comparison to the
action-free VfO, we need a higher mixing parameter to avoid overfitting on the scarce expert data.
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Figure 17: Mean and standard deviation of differences in cumulative return of AWR and VfO-disc
on D4RL tasks using the SIBench data. We plot the average return across 5 seeds and across the last
1e5 steps of training.

0 1000 2000 3000 4000
Background Data Return

1000

500

0

500

1000

Po
lic

y 
Re

tu
rn

 D
iff

er
en

ce

Ant

0 2000 4000 6000 8000
Background Data Return

4000

2000

0

2000

4000

Po
lic

y 
Re

tu
rn

 D
iff

er
en

ce

HalfCheetah

0 500 1000 1500 2000 2500 3000
Background Data Return

2500

2000

1500

1000

500

0

500

1000

1500

Po
lic

y 
Re

tu
rn

 D
iff

er
en

ce

Hopper

0 1000 2000 3000 4000 5000
Background Data Return

2000

1000

0

1000

2000

Po
lic

y 
Re

tu
rn

 D
iff

er
en

ce

Walker2D

0.04 0.02 0.00 0.02 0.04
0.05
0.00
0.05

AWR BC BCO SMODICE DILO VfO-disc VfO-bin

Figure 18: Mean and standard deviation of differences in cumulative return of for different algorithm
on D4RL tasks using the SIBench data.
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