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Abstract001

Retrieval-Augmented Generation (RAG) sys-002
tems have revolutionized information retrieval003
and question answering, but traditional text-004
based chunking methods struggle with com-005
plex document structures, multi-page tables,006
embedded figures, and contextual dependen-007
cies across page boundaries. We present a novel008
multimodal document chunking approach that009
leverages Large Multimodal Models (LMMs)010
to process PDF documents in batches while011
maintaining semantic coherence and structural012
integrity. Our method processes documents in013
configurable page batches with cross-batch con-014
text preservation, enabling accurate handling of015
tables spanning multiple pages, embedded vi-016
sual elements, and procedural content. We eval-017
uate our approach on our internal benchmark018
dataset of diverse PDF documents, demonstrat-019
ing improvements in chunk quality and down-020
stream RAG performance. Our vision-guided021
approach achieves better quantitative perfor-022
mance on our internal benchmark compared023
to traditional vanilla RAG systems, with quali-024
tative analysis showing better preservation of025
document structure and semantic coherence.026

1 Introduction027

Retrieval-Augmented Generation (RAG) (Lewis028

et al., 2020) has emerged as an important paradigm029

for enhancing large language models with exter-030

nal knowledge sources. The effectiveness of RAG031

systems fundamentally depends on the quality of032

document chunking - the process of segmenting033

documents into coherent, retrievable units. Tra-034

ditional approaches rely on simple text extraction035

followed by rule-based or sliding-window chunk-036

ing (Carbonell and Goldstein, 1998), which often037

fails to preserve semantic coherence and structural038

relationships in complex documents.039

Modern documents, particularly technical man-040

uals, research papers, and business reports, con-041

tain rich multimodal content including tables, fig-042

ures, diagrams, and multi-page structures that span 043

across page boundaries. These elements are crucial 044

for understanding but are often lost or fragmented 045

by conventional text-only processing methods. 046

Recent advances in Large Multimodal Models 047

(LMMs) (Yin et al., 2023) present an opportunity 048

to revolutionize document processing by leverag- 049

ing both visual and textual understanding. We 050

propose a novel chunking methodology that pro- 051

cesses PDF documents using LMMs in config- 052

urable batches while maintaining contextual conti- 053

nuity across batch boundaries. 054

2 Related Work 055

2.1 Traditional Document Chunking 056

Traditional RAG systems employ various chunk- 057

ing strategies. Fixed-size chunking segments doc- 058

uments into fixed-length pieces, often losing se- 059

mantic boundaries and breaking coherent concepts 060

across multiple chunks. Sentence-based chunking 061

uses sentence boundaries as natural breakpoints 062

but ignores document structure and hierarchical 063

relationships between content sections. Paragraph- 064

based chunking preserves paragraph structure but 065

struggles with complex layouts, tables, and multi- 066

page content that spans across traditional paragraph 067

boundaries. Semantic chunking attempts to iden- 068

tify semantic boundaries using natural language 069

processing techniques, but relies solely on text-only 070

features and fails to capture visual and structural 071

elements that are crucial for document understand- 072

ing. 073

2.2 Multimodal Document Understanding 074

Recent work in multimodal document understand- 075

ing has made significant advances across several 076

areas. Document layout analysis using vision trans- 077

formers (Dosovitskiy et al., 2020) has enabled bet- 078

ter understanding of document structure, including 079

detection of headers, paragraphs, and reading or- 080
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der. Pre-trained models like LayoutLM (Xu et al.,081

2020) and LayoutLMv2 (Xu et al., 2021) have im-082

proved the ability to process structured data within083

documents. Large-scale vision foundation mod-084

els like InternVL (Chen et al., 2024b) have ad-085

vanced generic visual-linguistic understanding ca-086

pabilities for complex document processing tasks.087

Table detection and extraction using multimodal088

models has improved the ability to process struc-089

tured data within documents, with specialized ap-090

proaches for contextualizing tabular data in RAG091

systems (Allu et al., 2024), though challenges re-092

main for tables spanning multiple pages. Mod-093

ern document conversion toolkits like Docling (Li-094

vathinos et al., 2025) have provided efficient open-095

source solutions for AI-driven document process-096

ing workflows. Figure captioning and visual ques-097

tion answering for documents (Mathew et al., 2021)098

has enhanced the extraction of information from099

charts, diagrams, and images embedded within text.100

End-to-end document understanding with unified101

multimodal architectures has shown promise in cre-102

ating comprehensive document representations that103

combine visual and textual information.104

2.3 RAG System Optimization105

Prior work on improving RAG systems has focused106

on several key areas. Better retrieval mechanisms,107

including dense retrieval (Karpukhin et al., 2020)108

and hybrid search approaches (Li et al., 2018),109

have improved the accuracy of finding relevant110

information. Query expansion and reformulation111

techniques (Nogueira and Cho, 2019) have en-112

hanced the matching between user queries and doc-113

ument content. Re-ranking and filtering strategies114

have helped prioritize the most relevant retrieved115

chunks for generation. Multi-hop reasoning ap-116

proaches (Yang et al., 2018) have enabled more117

complex question answering that requires combin-118

ing information from multiple sources. Techniques119

like vision-RAG (Chen et al., 2024a) and Video-120

RAG (Zhang et al., 2024) have allowed the frame-121

work to use multimodality. However, limited atten-122

tion has been paid to improving the fundamental123

chunking process using multimodal understanding,124

which represents a significant gap in the current125

literature.126

3 Methodology127

Traditional document chunking approaches face128

several fundamental limitations when processing129

complex PDF documents. Fixed-size and sliding- 130

window methods fragment coherent content across 131

chunk boundaries, breaking multi-page tables, step- 132

by-step procedures, and cross-referential relation- 133

ships. Text-only extraction completely ignores vi- 134

sual elements such as figures, charts, and document 135

layout structure, which often contain critical infor- 136

mation for understanding. Furthermore, conven- 137

tional approaches fail to preserve semantic relation- 138

ships that span across page boundaries, resulting in 139

contextually incomplete chunks that hinder effec- 140

tive retrieval. The hierarchical organization of doc- 141

uments—including nested sections, subsections, 142

and procedural sequences—is typically lost, mak- 143

ing it difficult for RAG systems to understand the 144

logical flow and dependencies within the document. 145

These limitations become particularly pronounced 146

in technical documents, financial reports, and regu- 147

latory filings where structural integrity and visual 148

elements are essential for accurate interpretation. 149

3.1 Problem Formulation 150

Let D be a PDF document with n pages: 151

D = {p1, p2, . . . , pn} (1) 152

Traditional text-only chunking produces chunks 153

C = {c1, c2, . . . , cm} (2) 154

where each chunk ci contains only textual content 155

extracted from pages. 156

Our multimodal approach processes D in 157

batches 158

B = {B1, B2, . . . , Bk} (3) 159

where each batch Bi contains up to b consecutive 160

pages (typically b = 4): 161

Bi = {pj : (i−1) ·b+1 ≤ j ≤ min(i ·b, n)} (4) 162

This ensures that batch i contains pages from 163

(i−1)·b+1 to min(i·b, n), properly handling cases 164

where the document length is not evenly divisible 165

by the batch size. 166

For each batch Bi, we generate contextually- 167

aware chunks Ci using a Large Multimodal Model 168

M : 169

Ci = M(Bi, contexti−1, prompt) (5) 170

where contexti−1 represents relevant context from 171

previous batches. 172
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Figure 1: Multimodal Document Chunking Architecture: Our framework processes PDF documents in configurable
page batches using Large Multimodal Models (LMMs), maintaining cross-batch context through continuation
flags and hierarchical heading structures. The system preserves semantic coherence across page boundaries while
handling complex elements like multi-page tables, embedded figures, and procedural content.

3.2 Multimodal Batch Processing173

Our multimodal batch processing framework, de-174

picted in Figure 1, addresses the fundamental limi-175

tations of traditional text-only chunking by leverag-176

ing the visual understanding capabilities of Large177

Multimodal Models. Documents are split into178

batches of b pages, with each batch processed179

through our vision-guided pipeline that maintains180

contextual relationships across page boundaries.181

3.2.1 Batch Creation182

Documents are split into batches of b pages. The183

batching process ensures that related content span-184

ning multiple pages can be processed together,185

maintaining contextual relationships that would be186

lost in traditional page-by-page processing.187

For a document with n pages, the number of188

batches k is calculated as:189

k = ⌈n
b
⌉ (6)190

Each batch Bi contains at most b pages, with the191

final batch potentially containing fewer pages if n192

is not divisible by b.193

3.2.2 Context Preservation194

To maintain continuity across batches, we imple-195

ment a context mechanism that includes the final196

chunk from the previous batch to handle content197

spanning batch boundaries, and maintained head-198

ing hierarchy to ensure consistent organization.199

The context for batch Bi is constructed as:200

contexti = {last_chunki−1,

heading_hierarchyi−1}
(7)201

This context mechanism ensures that information 202

from previous batches informs the processing of 203

subsequent batches, preventing the loss of semantic 204

relationships across batch boundaries. 205

3.3 Intelligent Chunk Generation 206

3.3.1 Hierarchical Heading Structure 207

We enforce a consistent 3-level heading hierarchy 208

throughout the document processing based on em- 209

pirical analysis of our document corpus. Our eval- 210

uation showed that 2-level hierarchies lost impor- 211

tant contextual granularity for complex documents, 212

while 4+ levels introduced unnecessary fragmen- 213

tation that degraded retrieval performance. The 3- 214

level structure strikes an optimal balance between 215

semantic granularity and retrieval efficiency. Level 216

1 headings represent the document or product title 217

with full details including location and context in- 218

formation. Level 2 headings capture major sections 219

such as "Features", "Procedures", or "Specifica- 220

tions". Level 3 headings identify specific subtopics 221

including "Step 1", "Table Row", or detailed sub- 222

sections. 223

This hierarchical structure ensures that each 224

chunk maintains its contextual position within 225

the overall document structure, enabling better re- 226

trieval and understanding during the RAG process. 227

The whole prompt used can be found in the Ap- 228

pendix. 229

3.3.2 Content Preservation Rules 230

Critical rules for maintaining document integrity in- 231

clude several key principles. Step preservation en- 232

sures that all numbered steps or procedures remain 233
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in the same chunk, preventing fragmentation of in-234

structional content. Table integrity maintains that235

each table row becomes a separate chunk while pre-236

serving headers for context. List continuity keeps237

related list items together as coherent units. Multi-238

page structures are properly merged when content239

spans across page boundaries.240

These rules are implemented through careful241

parsing of the multimodal model output and post-242

processing validation to ensure compliance with243

structural requirements.244

3.3.3 Continuation Flags245

Each chunk is tagged with a continuation246

flag to enable intelligent post-processing.247

The flag system uses three categories:248

[CONTINUES]True[/CONTINUES] for chunks249

that continue from previous content,250

[CONTINUES]False[/CONTINUES] for chunks251

representing new content, and252

[CONTINUES]Partial[/CONTINUES] for uncer-253

tain continuation relationships.254

This tagging system enables automated merging255

of related content during post-processing, ensuring256

that semantically related chunks are appropriately257

combined while maintaining proper boundaries be-258

tween distinct topics.259

3.4 Mathematical Framework for Retrieval260

In the retrieval phase, given a query q, we com-261

pute similarity scores using cosine similarity, as a262

method to compare similarity between sentences263

(Reimers and Gurevych, 2019):264

sim(q, ci) =
E(q) · E(ci)

||E(q)|| · ||E(ci)||
(8)265

where E(·) represents the embedding function266

that maps text to dense vector representations.267

The top-K chunks are selected as:268

K = {ci1 , ci2 , . . . , cik},
where sim(q, cij ) ≥ sim(q, cij+1)

(9)269

The enhanced chunks from our multimodal pro-270

cessing provide richer context for similarity compu-271

tation, leading to improved retrieval performance272

compared to traditional text-only chunks.273

4 Implementation Details274

4.1 System Architecture275

Our implementation consists of several key compo-276

nents working in coordination. The PDF Processor277

handles document downloading and batch creation, 278

managing the splitting of large documents into pro- 279

cessable units. The Multimodal Interface manages 280

communication with LMMs including Gemini-2.5- 281

Pro, handling API calls and response processing. 282

The Context Manager maintains cross-batch con- 283

text and heading hierarchies, ensuring continuity 284

across processing boundaries. The Chunk Proces- 285

sor extracts and validates chunks from model re- 286

sponses, applying the continuation rules and struc- 287

tural requirements. Finally, the Database Integra- 288

tion component prepares chunks for vector storage 289

and retrieval in the RAG system. 290

4.2 Model Configuration 291

We experiment with the current state-of-the-art mul- 292

timodal model for our evaluation. Gemini-2.5-Pro 293

represents Google’s latest multimodal model with 294

enhanced document understanding capabilities, par- 295

ticularly strong in handling complex layouts and 296

visual elements. 297

The model is configured with low temperature 298

settings (T = 0.1) to ensure consistent and reliable 299

chunk generation, minimizing variability in output 300

structure while maintaining the quality of content 301

extraction. 302

4.3 Prompt Engineering 303

Our prompt design incorporates several critical el- 304

ements for effective chunk generation. Detailed 305

chunking instructions with priority rules guide the 306

model in making decisions about content segmen- 307

tation. Examples of proper heading hierarchy pro- 308

vide concrete templates for maintaining consistent 309

structure across batches. Special handling instruc- 310

tions for tables, steps, and multi-page content en- 311

sure that complex structural elements are processed 312

correctly. Context integration guidelines specify 313

how previous batch information should influence 314

current processing decisions. 315

The prompt engineering process involved itera- 316

tive refinement based on initial results, with particu- 317

lar attention to edge cases involving table structures 318

and procedural content that spans multiple pages. 319

5 Experiment 320

5.1 Setup 321

We evaluate our vision-guided chunking approach 322

within a complete RAG pipeline to demonstrate the 323

impact of improved document parsing on down- 324
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Chunking Method Accuracy
Vanilla RAG (Fixed-size chunking) 0.78
Vision-Guided RAG (Our approach) 0.89

Table 1: RAG System Performance Comparison

stream performance. Our experimental setup con-325

sists of two main components:326

Vision-Guided Chunking Pipeline: We employ327

our proposed multimodal batch processing frame-328

work using Gemini-2.5-Pro to process PDF docu-329

ments in batches of 4 pages with context preserva-330

tion mechanisms. The chunking pipeline generates331

semantically coherent chunks while maintaining332

document structure, table integrity, and cross-page333

relationships as described in Section 3.334

RAG System Configuration: Following chunk335

generation, we construct a standard RAG pipeline336

where document chunks are embedded using Ope-337

nAI text-embedding-3-small (Neelakantan et al.,338

2022) and stored in an Elasticsearch (Gormley and339

Tong, 2015) vector database. For retrieval, we use340

top-k similarity search (k=10) to identify relevant341

chunks for each query. Post-retrieval, we employ342

GPT-4.1 for response generation. We use GPT-4.1-343

mini for evaluation, as this task does not require the344

complexity of larger models and allows for efficient345

evaluation while maintaining response quality.346

5.2 Dataset347

We curated a comprehensive dataset comprising348

documents from multiple domains to evaluate the349

effectiveness of our vision-guided chunking ap-350

proach. The dataset includes technical manuals,351

financial reports, research publications, regulatory352

documents, and business presentations, ensuring353

diverse document structures and complexity levels.354

We are developing a comprehensive, large-scale355

dataset that will serve as a universal benchmark356

for PDF document understanding and processing.357

This dataset, which we plan to open-source in the358

near future, comprises documents from multiple359

domains and is continuously being expanded to360

address the growing need for robust evaluation361

Our dataset is strategically designed to test vari-362

ous challenging aspects of document understand-363

ing:364

Document Structure Complexity: Documents365

containing multi-level hierarchical organization366

with our enforced 3-level heading structure (Docu-367

ment Title > Section Heading > Subsection Head-368

ing), nested tables spanning multiple pages, embed- 369

ded figures and diagrams, and cross-references and 370

footnotes. 371

Content Diversity: Technical procedural in- 372

structions with step-by-step workflows, financial 373

data with complex tabular structures, regulatory 374

compliance documentation, research papers with 375

mathematical formulations, and business reports 376

with mixed content types. 377

Visual Elements: Multi-page tables requiring 378

header preservation, flowcharts and process dia- 379

grams, embedded charts and graphs, and complex 380

layouts with multi-column text. 381

For evaluation, we manually developed a com- 382

prehensive set of realistic queries that test both 383

simple factual retrieval and complex analytical rea- 384

soning. These queries are designed to assess: 385

• Factual Information Extraction: Direct re- 386

trieval of specific data points, figures, and 387

statements 388

• Cross-Table Analysis: Queries requiring in- 389

formation synthesis across multiple table sec- 390

tions 391

• Procedural Understanding: Questions about 392

step-by-step processes and instructions 393

• Multi-Section Reasoning: Complex queries 394

requiring integration of information from dif- 395

ferent document sections 396

• Structural Comprehension: Questions that 397

test understanding of document hierarchy and 398

organization 399

The query distribution make sures we have a bal- 400

anced coverage across different difficulty levels 401

and content types, providing a robust benchmark 402

for evaluating RAG system performance improve- 403

ments through enhanced chunking quality. Upon 404

open-source release, this dataset will enable the 405

research community to conduct comprehensive, re- 406

producible evaluations of RAG systems, document 407

understanding models, and related technologies. 408

5.3 Evaluation Metrics 409

We employ a comprehensive evaluation framework 410

that assesses both component-level and end-to-end 411

system performance: 412

RAG Performance Metrics: We evaluate the 413

complete RAG pipeline using accuracy as the pri- 414

mary metric, where GPT-4.1-mini serves as an auto- 415

mated judge (Zheng et al., 2023) to validate answer 416
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correctness. This lightweight evaluation approach417

is suitable for this task while maintaining reliability418

and efficiency in assessment. We have added the419

prompt used for RAG validation in Appendix A.2.420

Chunk Quality Analysis: We conduct manual421

qualitative analysis of generated chunks to assess422

semantic coherence, structural preservation, and in-423

formation completeness. This includes evaluating424

the retention of table structures, cross-page rela-425

tionships, and hierarchical document organization426

compared to traditional chunking methods.427

The evaluation framework ensures comprehen-428

sive assessment of both the technical improvements429

in chunking quality and the practical impact on430

downstream RAG performance across diverse doc-431

ument types and query complexities.432

6 Results and Discussion433

6.1 Chunk Quality Analysis434

Manual inspection of chunks generated by our435

vision-guided approach reveals significant improve-436

ments in semantic coherence and structural preser-437

vation compared to traditional text-only methods.438

Our approach successfully maintains table integrity439

across page boundaries, preserves procedural in-440

struction sequences, and retains hierarchical docu-441

ment organization that is often lost in conventional442

chunking approaches.443

Key qualitative improvements observed include:444

(1) Complete preservation of multi-page tables with445

proper header repetition, (2) Intact cross-reference446

systems linking footnotes to relevant table cells,447

(3) Maintained procedural sequences in regulatory448

compliance sections, and (4) Proper handling of449

nested organizational structures in complex docu-450

ments. Selected examples of superior chunk quality451

are provided in Appendix for detailed comparison.452

6.2 RAG System Performance453

Evaluation of the complete RAG pipeline demon-454

strates substantial improvements when using our455

vision-guided chunks compared to traditional ap-456

proaches. Table 1 presents the accuracy results457

across our curated document dataset.458

The improvement in accuracy demonstrates the459

benefits of better document parsing on downstream460

RAG performance. Beyond quantitative improve-461

ments, our vision-guided chunking method signifi-462

cantly enhances chunk observability - the ability to463

understand, trace, and validate the content within464

each chunk - and overall system explainability.465

This improved observability stems from our hierar- 466

chical heading structure and context preservation 467

mechanisms, which provide clear semantic bound- 468

aries and maintain document relationships that are 469

often lost in traditional chunking approaches. 470

Notably, our analysis reveals a substantial differ- 471

ence in chunking granularity between approaches. 472

Traditional vanilla parsing generated significantly 473

fewer chunks due to its rigid text-extraction limi- 474

tations and fixed-size constraints. In contrast, our 475

vision-guided approach produced approximately 476

5 times more chunks, demonstrating the language 477

model’s intelligence in creating more systematic 478

and contextually appropriate segmentation. This 479

increased granularity enables more precise retrieval 480

by allowing the system to identify and extract spe- 481

cific, relevant information rather than retrieving 482

large, heterogeneous text blocks that may contain 483

both relevant and irrelevant content. 484

The improved performance is attributed to our 485

approach’s ability to maintain semantic coherence 486

across page boundaries, preserve critical struc- 487

tural information, and generate contextually rich 488

chunks that enable more accurate retrieval and re- 489

sponse generation.GPT-4.1-mini’s evaluation con- 490

firms that responses generated using our vision- 491

guided chunks are more accurate, complete, and 492

structurally coherent compared to those produced 493

by vanilla RAG systems. 494

7 Limitations 495

While our multimodal chunking approach demon- 496

strates significant improvements over traditional 497

methods, several challenges remain that require 498

further investigation. The most prominent limita- 499

tion occurs when processing extremely complex 500

tables that span 8-9 pages or more, where maintain- 501

ing consistent column alignment and semantic rela- 502

tionships across such extensive structures becomes 503

increasingly difficult for current LMMs to handle 504

reliably. Additionally, highly complex figures such 505

as intricate flowcharts, multi-layered technical dia- 506

grams, and dense statistical charts with embedded 507

sub-elements present ongoing challenges for ac- 508

curate extraction and description, as these visual 509

elements often contain nuanced information that 510

requires domain-specific understanding beyond cur- 511

rent multimodal capabilities. Furthermore, the com- 512

putational cost and processing time increase sub- 513

stantially with document complexity and batch size, 514

potentially limiting real-time applications, while 515
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the approach’s effectiveness remains dependent on516

the underlying LMM’s vision capabilities, which517

may vary across different model architectures and518

continue to evolve rapidly.519

8 Conclusion520

We present a novel multimodal approach to doc-521

ument chunking that significantly improves upon522

traditional text-only methods for RAG systems. By523

leveraging Large Multimodal Models with batch524

processing and context preservation, our method525

successfully handles complex document structures,526

multi-page content, and visual elements while527

maintaining semantic coherence and structural in-528

tegrity. The approach demonstrates the potential of529

multimodal AI in enhancing fundamental compo-530

nents of RAG systems, moving beyond simple text531

extraction to comprehensive document understand-532

ing. The systematic evaluation across diverse docu-533

ment types validates the generalizability and robust-534

ness of the method. As multimodal models con-535

tinue to improve and become more cost-effective,536

we expect this methodology to become increasingly537

practical for production RAG applications. Our538

work opens new avenues for document understand-539

ing in information retrieval systems and provides a540

foundation for future research in multimodal RAG541

architectures. We encourage researchers to build542

upon our open-source framework, explore domain-543

specific applications, and further advance the inte-544

gration of visual understanding in document pro-545

cessing systems.546
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A Appendix656

A.1 Complete Chunking Prompt657

Multimodal Document Chunking Prompt658

Extract text from the provided PDF and segment it into659
contextual chunks for knowledge retrieval while following660
these comprehensive requirements:661

EXTRACTION PHASE662
Process the PDF page by page, make sure you go through663

each page, don’t skip any page, extracting all content while:664

1. Read all data content carefully and understand the struc-665
ture of the document.666

2. Infer logical headings and topics based on the content667
itself.668

3. Always generate a 3-level heading structure for every669
chunk:670

• First-level heading = Document or product title671
• Second-level heading = the major section inside672

the document673
• Third-level heading = the specific subtopic within674

that section675

• Important: if heading is missing, inherit from the 676
parent heading level. Use your best judgment to 677
logically assign headings based on the content and 678
fully—never paraphrase or shorten. The headings 679
hierarchy should always follow this pattern: Main 680
Title > Section Title > Chunk Title for headings. 681

4. SKIP TABLE OF CONTENTS AND INDEXES: Do 682
not create chunks from tables of contents or indexes. 683

5. Do not include page headers, footers and page numbers 684
in the chunks. 685

6. Do not create or extract chunks from LAST CHUNKS. 686
Use it only as guidance for heading inference. All 687
chunks must originate directly from the image. 688

7. DO NOT alter, paraphrase, shorten, or skip any content. 689
All text, formatting, and elements must remain exactly 690
as in the original Image and present in the output. 691

CRITICAL: STEP/LIST CHUNKING RULES 692
HIGHEST PRIORITY 693
KEEP ALL RELATED CONTENT TOGETHER - This is 694

the highest priority rule: 695

• NEVER EVER split numbered steps, instructions, 696
or procedures across different chunks 697

• ALL steps in a set of instructions MUST stay to- 698
gether in the same chunk 699

• ALL items in a numbered or bulleted list MUST stay 700
together in one chunk 701

• If a list or set of steps spans multiple images, they MUST 702
still be kept in a single chunk 703

• If a list or steps continue from a previous batch, merge 704
and create a combined chunk 705

• Consider related steps or instructions as one inseparable 706
unit of content 707

• Steps that are part of the same procedure/process 708
must ALWAYS be kept together 709

• Even if a set of steps is very long, do NOT split them 710
- they must remain in a single chunk 711

• Prioritize keeping steps together over any other 712
chunking considerations 713

1. Avoid chunks under 3 lines; merge them with adjacent 714
content and heading. 715

2. Exclude menus, cookie notices, privacy policies, and 716
terms sections. 717

3. For all heading levels (first, second, and third), ensure 718
complete preservation of details: 719

• First-level heading: Include full document title, 720
all location details, and audience roles if any. 721

• Second-level heading: Capture complete section 722
names with any qualifying details or descriptions 723

• Third-level heading: Retain all subtopic specifics 724
including numbers, dates, and descriptive text 725

• Never truncate or abbreviate any heading content 726
at any level. 727

4. Multilingual Support (CRITICAL) 728
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• Multilingual content must be processed with the729
exact same rules as monolingual content.730

• Do not skip, paraphrase, or translate non-English731
content—all languages must be preserved and732
chunked.733

When working with tables:734

1. Format using proper table syntax (pipes | and hyphens735
-).736

2. Maintain table structure across images if a table spans737
multiple images.738

3. When a table continues from a previous chunk (indi-739
cated in LAST CHUNKS), strictly maintain the same740
column structure, width, and formatting as established741
in the previous chunk for consistency.742

4. VERY IMPORTANT: Create a separate chunk for743
EACH ROW of the table. Every table row chunk must744
include the table headers mentioned in the previous745
chunk or in the image followed by just that single row746
of data.747

5. For each table row chunk, repeat the full table headers748
to ensure context is maintained independently.749

6. If you find a row which is continuing from LAST750
CHUNKS, continue segmenting without including the751
content of the previous chunk.752

Flag for Content Continuation753
ADD A CONTINUES FLAG TO EACH CHUNK:754
For each chunk, you must add a CONTINUES flag:755

• [CONTINUES]True[/CONTINUES]: This chunk is a con-756
tinuation of the previous chunk OR is part of the same757
process, instruction set, or procedure.758

• [CONTINUES]False[/CONTINUES]: This chunk starts759
new content and is not a continuation.760

• [CONTINUES]Partial[/CONTINUES]: This chunk761
might be related to the previous chunk, but you are not762
sure.763

Output Requirements:764

1. Output a list of chunks where each chunk starts with a765
full 3-level heading and remove all empty or no finding766
chunks.767

2. Use this exact format:768

[CONTINUES]True|False|Partial[/CONTINUES]769
[HEAD]main_heading > section_heading >770
chunk_heading[/HEAD]chunk_content771

3. Separate chunks with proper formatting.772

A.2 Prompt for Evaluation773

Evaluation Prompt774
Instruction: Read the given Question, Search Results, and775

Answer. Evaluate whether the knowledge sources contain776
the necessary information to answer the query and assess the777
quality of the bot’s response.778

Provide your output in plain JSON format.779
Evaluation Criteria:780
is_answer_exist: Determine whether the provided knowl-781

edge sources contain information that can be used to answer782

the user query. Mark True if the knowledge includes content 783
that directly or inferentially answers the question. Mark False 784
if the knowledge does not contain the necessary information, 785
is unrelated, or insufficient to address the query. 786

response_quality: Assess how the LLM handled the query 787
based on the knowledge provided. Choose one of the follow- 788
ing labels: 789

- "correct" – The model answered the query accurately us- 790
ing relevant information from the knowledge. No unsupported 791
inferences or hallucinations. 792

- "hallucinate" – The model introduced information not 793
found in or not supported by the knowledge, or it incorrectly 794
assumed relevance from unrelated content. 795

- "abstain" – The model acknowledged it could not answer 796
due to lack of information, or refrained from answering based 797
on absence of relevant knowledge. 798

answer_ids: List the specific knowledge source indices or 799
document references used (or that should have been used) to 800
support the LLM’s answer. If the answer is not present in the 801
Search Results, return an empty List. 802

A.3 Chunk Quality Comparison Examples 803

To illustrate the superior quality and structure 804

preservation of our vision-guided chunking 805

approach, we present comparative examples of 806

chunks generated by traditional vanilla chunking 807

versus our multimodal method. 808

809
Vanilla Chunking Output: Heading: Section 36 810

Content: If our third-party service providers and business 811

partners do not satisfactorily fulfill their commitments and re- 812

sponsibilities, ourfinancial results could suffer.In the conduct 813

of our business, we rely on relationships with third parties, 814

including cloud data storage and other information technology 815

service providers, suppliers, distributors, contractors, joint ven- 816

ture partners and other external business partners, forcertain 817

services in support of key portions of our operations. These 818

third parties are subject to similar risks as we are relating to 819

cybersecurity, privacy violations, business interruption, and 820

systems and employee failures, and are subject to legal, regu- 821

latory and market risks of their own. Our third-party service 822

providers and business partners may not fulfill their respective 823

commitments and responsibilities in a timely manner and in 824

accordance with the agreed-upon terms or applicable laws. In 825

addition, while we have procedures in place for assessing risk 826

along with selecting, managing and monitoring our relation- 827

ships with third-party service providers and other business 828

partners, we do not have control over their business operations 829

or governance and compliance systems, practices and proce- 830

dures, which increases our financial, legal, reputational and 831

operational risk. If we are unable to effectively manage our 832

third-party relationships, or for any reason our third-party ser- 833

vice providers or business partners fail to satisfactorily fulfill 834

their commitments and responsibilities, our financial results 835

could suffer.If we are unable to renew collective bargaining 836

agreements on satisfactory terms, or if we or our bottling 837

partners experience strikes, work stoppages or labor unrest, 838
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our business could suffer. Many of our employees at our key839

manufacturing locations and bottling plants are covered by840

collective bargaining agreements.While we generally have841

been able to renegotiate collective bargaining agreements on842

satisfactory terms when they expire and regard our relations843

with employees and their representatives as generally satis-844

factory, negotiations may nevertheless be challenging, as the845

Company must have competitive cost structures in each mar-846

ket while meeting the compensation and benefits needs of847

our employees. If we are unable to renew collective bargain-848

ing agreements on satisfactory terms, our labor costs could849

increase, which could affect our profit margins. In addition,850

many of our bottling partners’ employees are represented by851

labor unions. Strikes, work stoppages or other forms of labor852

unrest at any of our major manufacturing facilities or at our853

bottling operations or our major bottlers’ plants could impair854

our ability to supply concentrates and syrups to our bottling855

partners or our bottlers’ ability to supply finished beverages856

to customers, which could reduce our net operating revenues857

and could expose us to customer claims. Furthermore, from858

time to time we and our bottling partners restructure manu-859

facturing and other operations to improve productivity, which860

may have negative impacts on employee morale and work861

performance, result in escalation of grievances and adversely862

affect the negotiation of collective bargaining agreements. If863

these labor relations are not effectively managed at the local864

level, they could escalate in the form of corporate campaigns865

supported by the labor organizations and could negatively af-866

fect our Company’s overall reputation and brand image, which867

in turn could have a negative impact on our products’ accep-868

tance by consumers. RISKS RELATED TO CONSUMER869

DEMAND FOR OUR PRODUCTS Obesity and other health-870

related concerns may reduce demand for some of our prod-871

ucts. There is growing concern among consumers, public872

health professionals and government agencies about the health873

problems associated with obesity. Increasing public concern874

about obesity; other health-related public concerns surround-875

ing consumption of sweetened beverages; potential new or876

increased taxes on sweetened beverages by government en-877

tities to reduce consumption or to raise revenue; additional878

governmental regulations concerning the advertising, market-879

ing, labeling, packaging or sale of our sweetened beverages;880

and negative publicity resulting from actual or threatened legal881

actions against us or other companies in our industry relating882

to the marketing, labeling or sale of sweetened beverages may883

reduce demand for, or increase the cost of, our sweetened884

beverages, which could adversely affect our profitability.885

Vision-Guided Chunking Output: Heading:886
ko-20221231 > Part I > ITEM 1A. RISKS RELATED TO887
CONSUMER DEMAND FOR OUR PRODUCTS888

Content: If we do not address evolving consumer product889

and shopping preferences, our business could suffer. Con-890

sumer product preferences have evolved and continue to 891

evolve as a result of, among other things, health, wellness and 892

nutrition considerations, including concerns regarding caloric 893

intake associated with sweetened beverages and the perceived 894

undesirability of artificial ingredients; concerns regarding the 895

perceived health effects of, or location of origin of, ingredi- 896

ents, raw materials or substances in our products or packaging, 897

including due to the results of third-party studies (whether 898

or not scientifically valid); shifting consumer demographics; 899

changes in consumer tastes and needs coupled with a rapid 900

expansion of beverage options and delivery methods; changes 901

in consumer lifestyles; concerns regarding the environmen- 902

tal, social and sustainability impact of ingredient sources and 903

the product manufacturing process; consumer emphasis on 904

transparency related to ingredients we use in our products and 905

collection and recyclability of, and amount of recycled content 906

contained in, our packaging containers and other materials; 907

concerns about the health and welfare of animals in our dairy 908

supply chain; and competitive product and pricing pressures. 909

In addition, in many of our markets, shopping patterns are 910

being affected by the digital evolution, with consumers rapidly 911

embracing shopping by way of mobile device applications, 912

e-commerce retailers and e-commerce websites or platforms. 913

If we fail to address changes in consumer product and shop- 914

ping preferences, do not successfully anticipate and prepare 915

for future changes in such preferences, or are ineffective or 916

slow in developing and implementing appropriate digital trans- 917

formation initiatives, our share of sales, revenue growth and 918

overall financial results could be negatively affected. 919
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