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ABSTRACT

Understanding the training dynamics of neural networks has gained much interest
in the scientific community. The dynamics of training over-parameterized models
is characterized by the lazy regime in which networks exhibit near-linear behavior
and minimal parameter changes. In addition, it has been argued that the Jaco-
bian of large neural models has a low-rank structure. In this paper, we focus
on the opportunities laid out by the combination of low-rankness and laziness of
large neural models. Specifically, we provide a scalable way to measure the ex-
tent of laziness, evaluated via the rate of change of the model Jacobian, as well
as a scalable method to verify low-rankness of the model Jacobian without stor-
ing the entire Jacobian. Taking advantages of both laziness and low-rankness, we
design a scalable training algorithm for over-parameterized models that performs
backpropagation-free gradient descend training. In particular, this algorithm is of
lower computation and storage requirements in cases of massive parameter shar-
ing, as is the case of many state-of-the-art neural architectures. Empirical results
confirm the scalability and effectiveness of our approach, opening new pathways
for exploring novel learning strategies in neural networks.

1 INTRODUCTION

Understanding the training dynamics of neural networks is essential for uncovering how they operate
and learn. The empirical success of neural networks has far outpaced the theoretical understanding
of their underlying mechanisms, yet ongoing research aims to identify the factors that enable effec-
tive learning. Recent studies have identified two distinct training regimes: lazy and active, as well
as mixtures of the two. Each regime offers unique insights into how networks learn and adapt, with
factors such as network width, initialization, and training duration playing key roles in shaping a
model’s behavior (Chizat et al., 2019; Lee et al., 2019; Tu et al., 2024).

The lazy regime, in particular, has gained attention due to its simplified, linear dynamics, where
networks rely on a fixed, nearly constant kernel during training. This contrasts with the active
regime, where the network significantly updates its internal representations and adapts features over
time. Understanding when a network operates in the lazy regime offers valuable insights into how
models can achieve learning with minimal parameter updates, while the active regime involves more
flexible, feature-adapting behavior that may enhance learning capacity.

Although the lazy regime is theoretically appealing due to its linear dynamics and minimal parameter
changes, its practical application is constrained by the requirement for extremely wide networks.
These large networks widths result in computational and storage challenges, particularly due to the
Jacobian matrix, whose dimensions scale with both the number of samples n and the network width
m. While the near-constancy of the Jacobian suggests that storing it could eliminate the need for
recomputation during each step of backpropagation, this approach becomes impractical in large-
scale settings without leveraging the matrix’s low-rank structure. The high dimensionality of the
Jacobian makes direct storage infeasible unless we can effectively compress it, which would require
exploiting inherent low-rank properties. If we can leverage the low-rank nature of the Jacobian in
wide networks, it would enable scalable algorithms that preserve the benefits of linear dynamics
while significantly reducing computational overhead. To the best of our knowledge, the potential for
integrating low-rank structures within the lazy regime has not yet been explored. Such a combination
could unlock of more efficient training methods.
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To address this challenge, we propose a novel framework that connects the low-rank structure of
the Jacobian with the lazy regime of neural networks. Our approach tackles the computational
inefficiencies of traditional methods by introducing efficient techniques for estimating the rank of
the Jacobian using a carefully selected reference set, and validating the laziness of a network by
calculating the rate of change of the Jacobian. Instead of storing and processing the full Jacobian
matrix, which is often infeasible for large networks, we exploit the low-rank property to significantly
reduce dimensionality. Specifically, we select a small reference set R of important weights and
compute only the sub-matrix of the Jacobian corresponding to this subset. By focusing on the most
significant eigenvectors of this sub-matrix, we approximate the full Jacobian’s rank without the need
for costly storage or computation.

Building on these insights, we introduce a backpropagation-free learning algorithm grounded in
Neural Tangent Kernel (NTK) theory. This novel algorithm simplifies training by exploiting both
the low-rank structure and the lazy regime, enabling robust learning dynamics with reduced compu-
tational overhead. Our method is particularly well-suited for large parameter-sharing networks, such
as convolutional neural networks (CNNs) and transformers, as it scales efficiently while maintaining
performance.

In summary, our contributions are threefold: (1) we introduce a reliable method for estimating the
Jacobian’s rank, (2) we provide a concrete approach to determining network laziness. (3) These
innovations allow us to construct a backpropagation-free learning algorithm that leverages the sta-
bility and efficiency of low-rank structures in the lazy regime, opening new pathways for scalable
and efficient machine learning models.

Figure 1: Overview of the Backpropagation-Free Training Algorithm Using Lazy and Low-
Rank Validation. The process begins by validating whether the network exhibits lazy training
behavior and a low-rank Jacobian structure through relative change calculations and eigenvalue
analysis. The algorithm leverages a precomputed Jacobian sub-matrix, constructed using a refer-
ence set of weights. These computations are done during the preprocessing phase, followed by
training without traditional backpropagation. Instead, the weight updates are performed using the
approximated low-rank Jacobian, significantly reducing computational complexity while preserving
training efficiency in large models.
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1.1 NOTATIONS

Let D =
{(
x(1), y(1)

)
, . . . ,

(
x(n), y(n)

)}
be a dataset consisting of n pairs of inputs and outputs,

where for all i, x(i) ∈ Rdx and y(i) ∈ Rdy . We consider a neural network model f with output
f(w;x) ∈ Rdy , having m total parameters, which we collectively denote as w. With a slight abuse
of notation, we use subscripts to indicate vector entries or time indices, depending on the context,
and superscripts to indicate specific data instances. Let ℓ(y, f(w;x)) be a loss function associated
with an individual input-output pair (x, y) obtained using parameters w, and define the loss over a
subset S ⊆ D of the entire dataset as the average of the individual losses, i.e.,

ℓ(w;S) =
1

|S|
∑

(x(i),y(i))∈S

ℓ
(
(y(i), f

(
w;x(i)

))
. (1)

We denote the model’s Jacobian at time t by Jt, i.e., [Jt]i,j,k = ∂
∂wt,k

fj

∣∣∣
wt,x(i)

,where fj is the

j-th entry of the model output, wt are the parameters at time t, and wt,k is the k-th parameter. In
addition, we denote the gradient of the loss with respect to the model output at time t by at, i.e.,
[at]i,j =

∂
∂fj

ℓ
∣∣∣
wt,(x(i),y(i))

.

The Neural Tangent Kernel (NTK) at time t = 0 is denoted:

KNTK(i, j) = ⟨[J0]i,:,:, [J0]j,:,:⟩, (2)

2 PREVIOUS WORK

Neural Tangent Kernel. The remarkable empirical success of deep neural networks has driven
extensive research to understand their underlying mechanisms. The neural tangent kernel (NTK),
introduced in (Jacot et al., 2018), marks a key milestone, as it facilitates the use of well-developed
theoretical tools of kernels. Broadly, the NTK is defined as the inner product of the gradients
of a network’s output of f(w;x) with respect to its trainable parameters w: K(x, z)(w) :=
∇wf(w;x)

T∇wf(w; z), for fixed inputs x, z ∈ Rdx .

In the infinite width limit for certain architectures, the NTK remains constant during training, leading
to linear dynamics, often referred to as ”lazy training” (Chizat et al., 2019; Lee et al., 2019), where
minimal parameter changes keep the network near its linearization. Then the NTK at time t = 0 is
denoted KNTK(i, j) = ⟨[J0]i,:,:, [J0]j,:,:⟩, as declared in section 1.1. This constancy of the NTK
allows for provable optimization guarantees. Specifically, studies have shown that gradient descent
converges to a global minimum at a linear rate in the NTK regime, even for over-parameterized
networks (Du et al., 2018; 2019; Arora et al., 2019). More recently, it has been demonstrated that
such over-parameterized neural networks achieve optimal classification power (Radhakrishnan et al.,
2022) and exhibit robustness to noise (Belkin et al., 2019). Our work aims to develop a practical
algorithm derived from NTK theory that maintains the equivalent mathematical guarantees provided
by these theoretical analyses.

Disentangling Different Training Regime. Further studies have explored the conditions under
which networks exhibit linear or nonlinear dynamics during training, influenced by network width
and initialization. Wide networks are found to evolve into two distinct regimes: the ”lazy training”
regime with near-linear dynamics and minimal NTK change or the ”active/feature training” regime
where the NTK evolves in time and learns features.

Recent research has refined this dichotomy, emphasizing the interplay of network width, depth, ini-
tialization, and the learning task, offering frameworks to analyze complex neural network dynamics
across various architectures and conditions. Particularly, (Tu et al., 2024) offers a fine-grained analy-
sis of linear neural networks, showing that different parts of a network can operate in distinct regimes
simultaneously, suggesting a ”mixed” dynamics regime.

(Geiger et al., 2020) empirically demonstrates the transition between the NTK and mean-field
regimes, is governed by a scaling parameter of the last layer that varies with the square root of
network width. (Liu et al., 2020) offers a novel viewpoint on the ”transition to linearity,” associating

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

it with the scaling of the Hessian norm as network width increases. They challenge the traditional
”lazy training” explanation, highlighting that constancy may not hold even when individual parame-
ters change only slightly. Their analysis reveals that constancy of the Neural Tangent Kernel (NTK)
is instead tied to structural attributes of the network, such as output layer linearity, and that the Hes-
sian norm scales as 1√

width
. Our empirical results are consistent with their theoretical findings, as we

observe similar scaling behavior of the Hessian norm in our experiments. We extend their analysis
by introducing a scalable, empirical method utilizing the Lanczos algorithm and finite differencing
to compute Hessian-vector products. This allows us to quantitatively measure the degree of laziness
across various settings, enhancing our method’s applicability to large-scale models.

Low-Rank Structure in Lazy Regime. (Oymak et al., 2019) empirically demonstrates that over-
parameterized neural networks exhibit a Jacobian with low-rank properties, characterized by a few
large singular values and many smaller ones. This low-rank structure defines a low-dimensional
”information space,” where learning occurs rapidly since the majority of the label vector resides
in this space. Conversely, label noise tends to project onto the ”nuisance space,” corresponding to
smaller singular values, hindering optimization and generalization. While Oymak’s method provides
a solid framework for understanding the generalization capabilities of over-parameterized networks,
its scalability can be limited due to the computational overhead of singular value decomposition
(SVD) for large networks. Our method addresses this issue by offering a scalable approach that
does not require storing the full Jacobian.

In a similar vein, recent works have leveraged low-rank structures to enhance neural network ef-
ficiency and reduce redundancy. For example, LoRA (Low-Rank Adaptation), introduced by (Hu
et al., 2021), decomposes weight updates during fine-tuning into low-rank matrices, significantly
reducing the number of trainable parameters without sacrificing performance. Inspired by LoRA,
(Hao et al., 2024) suggested that gradients can also be compressed into a low-rank subspace, and
proposed using random projections to compress the gradients, further improving memory efficiency
during training.

Recent studies have demonstrated that learning primarily occurs within a significantly low-
dimensional parameter subspace (Gur-Ari et al., 2018; Larsen et al., 2022), promoting a special
type of learning known as subspace learning, where model weights are optimized within this low-
rank subspace. This finding supports the growing body of work suggesting that gradient matrices
are naturally low-rank during training (Zhao et al., 2022; Cosson et al., 2023; Yang et al., 2023).
The low-rank property of gradients has been effectively applied to reduce communication costs in
distributed training (Wang et al., 2018; Vogels et al., 2020), as well as to lower memory footprints
during the training of large models (Gooneratne et al., 2020; Huang et al., 2023; Modoranu et al.,
2023).

Building on the ideas of gradient low-rank projection, GaLore (Zhao et al., 2024) introduces a gen-
eralized framework for memory-efficient training by dynamically adjusting the rank of gradient
representations, reducing memory overhead in optimizing large language models while preserv-
ing full-parameter learning dynamics. A key contribution of GaLore is the theoretical proof that
the gradient matrix becomes low-rank during training in reversible networks, which supports the
method’s efficiency. However, GaLore’s primary limitation is its reliance on reversible networks,
which induce the low-rank gradient structure by design. In contrast, our method does not impose
this architectural constraint. Instead, we leverage both the constancy and the low-rank structure
of the Jacobian during training in the lazy regime to eliminate redundant representations. This
allows us to develop a more versatile and robust framework for low-rank approximation, applica-
ble across a wider range of architectures, optimizing both computational efficiency and stability in
backpropagation-free training.

Backpropagation-free Methods Backpropagation is undoubtedly the main approach to train neu-
ral networks, yet it is often considered biologically implausible. Consequently, numerous alterna-
tives have been proposed from a biologically inspired perspective (Lillicrap et al., 2016; Liao et al.,
2016; Moskovitz et al., 2018; Nøkland, 2016; Kohan et al., 2018; Balduzzi et al., 2015; Choro-
manska et al., 2019). Other approaches avoid backpropagation by allowing training of all layers in
parallel via an information bottleneck criterion (Ma et al., 2020), or by using random weight updates
that are approximately orthogonal to the gradient (Baydin et al., 2022; Silver et al., 2021).
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Closer to our work is Boopathy & Fiete (2022), which leverages NTK theory, relying on the fact
that biological neural networks are wide and shallow, compared to artificial neural networks. They
showed that under the NTK regime, there is an alignment between the correlation of the activations
and the dynamic of the weight changes, and propose simplified training algorithms utilizing this
alignment, that are theoretically equivalent to gradient descent under the NTK regime.

From an algebraic perspective, (Radhakrishnan et al., 2024) introduces the Deep Neural Feature
Ansatz, focusing on feature learning mechanisms in deep networks within the active regime. Em-
phasizing network structure over parameter updates, this backpropagation-free approach enhances
interpretability and efficiency, bridging classical kernel methods and modern neural networks. Our
work also comes from an algebraic perspective but operates in the lazy regime.

Our work stands out in its novelty by being the first to leverage both NTK theory and the low-
rank structure of the Jacobian in large neural networks. This dual focus enables us to provide a
mathematically grounded and computationally efficient backpropagation-free training method that
operates within the lazy regime. Furthermore, unlike previous works, we extend beyond theoretical
contributions by offering practical tools to verify these key assumptions for specific models and
problems at any arbitrary model width. This makes our approach highly adaptable to a wide range
of real-world applications.

3 UNDERSTANDING NEURAL NETWORKS IN THE LAZY REGIME

In this section, we outline the key assumptions underlying our approach to understanding neural
networks in the lazy regime. We begin by proposing an algebraic perspective of laziness, focusing
on the low-rank structure of the Jacobian matrix. We then provide empirical methods to verify
both the laziness and low-rank assumptions, offering practical tools to assess these properties in
large-scale models. Finally, leveraging these assumptions, we present a computationally efficient
backpropagation-free training algorithm, which enables training neural networks using a reference
set, eliminating the need for traditional backpropagation while maintaining performance.

The main perspective of the proposed research begins with the standard weight update rule of neural
networks: wt+1 = wt − ∇wℓ(w;S)|wt

. Applying the chain rule, we have ∇wℓ = ∇wf(w;x)∇f ℓ,
which leads to

wt+1 = wt −
1

|S|
∑

(x(i),y(i))∈S

([Jt]i,:,:)
T
[at]i,:, (3)

where [Jt]i,:,: is the model’s Jacobian at x(i) of size dy × m, and [at]i,: is the loss gradient with
respect to the model output at

(
x(i), y(i)

)
of size dy × 1.

In the lazy regime, as indicated by NTK theory, the model can be approximated as linear in the
weights due to minimal changes in the weights during training. Specifically, we consider the first-
order Taylor expansion of the model around the initial parameters w0:

f(w;x) ≈ f(w0;x) + J(w − w0), (4)

where J = ∇wf(w;x)|w0
. This linear approximation implies that [Jt]i,:,: ≈ [J0]i,:,: remains nearly

constant over time. Therefore, the weight update in Equation equation 4 can be recast as

wt+1 = wt −
1

|S|
∑

(x(i),y(i))∈S

([J ]i,:,:)
T
[at]i,:, (5)

where the dependency of the Jacobian in t is removed. The weight update in equation 5 is presented
as a product of a time-varying term, [at]i,:, which requires differentiation with respect to the output
layer only, and a constant term [J ]i,:,:. This factorization is the cornerstone of our proposed research.

3.1 ALGEBRAIC PERSPECTIVE OF LAZINESS: THE ASSUMPTION OF LOW-RANK JACOBIAN

The assumption that, in large models, the model Jabocian J has a low-rank structure Oymak et al.
(2019) gives rise to the following idea. For each output unit j, we view [J ]:,j,k as an n-dimensional
representation of the k’th weight, obtained by the gradient of the model output w.r.t this weight for
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every train instance. We postulate that this is a redundant representation, as we expect that gradients
in neighboring data points will not differ significantly from each other. To exploit this assumption,
we propose to reduce the dimension from n to some low, fixed dimension r ≪ n using the princi-
pal directions, i.e., the leading eigenvectors, of the n × n covariance matrix of the model weights,
[J̃ ]:,j,:[J̃ ]

T
:,j,:, where :̃ corresponds to row-centering. Computing these principal directions directly

is infeasible because n is large, and therefore, the covariance matrix is too large to store and decom-
pose. Instead, we propose a remedy that takes advantage of the low-rank assumption. Specifically,
the low-rank assumption implies that the model behavior is governed by a small number of weights
(e.g., see Frankle & Carbin (2018)). Therefore, we argue that the covariance can be approximated us-
ing a small reference set R of a fixed size r of important weights, i.e., [J̃ ]:,j,:[J̃ ]T:,j,: ≈ [J̃ ]:,j,R[J̃ ]T:,j,R
and consider only the sub-matrix [J ]:,j,R, of size n × r. Next, we utilize the following elementary
property from linear algebra.

Proposition 3.1. Let A ∈ Rn×r be a matrix and n > r. If ϕ ∈ Rn is an eigenvector of the matrix
AAT ∈ Rn×n with an eigenvalue λ ̸= 0, then Rr ∋ ψ := ATϕ√

λ
is an eigenvector of ATA ∈ Rr×r

with the same eigenvalue λ.

This property implies that the eigenvectors of the n × n covariance matrix [J̃ ]:,j,R[J̃ ]T:,j,R can be
found using eigendecomposition of the r × r matrix [J̃ ]T:,j,R[J̃ ]:,j,R, which is much smaller subject
to selecting a small reference set, i.e., r ≪ n. This way we store the r leading eigenvectors of
dimension n and the r-dimensional reduced representation of the m weights. This idea will be
further developed into an efficient training algorithm in Section 3.3.

3.2 EMPIRICAL VERIFICATION OF THE LAZINESS AND LOW-RANK ASSUMPTIONS.

The proposed framework relies on two mathematical assumptions regarding the Jacobian: (i) “lazi-
ness”: the Jacobian remains nearly constant throughout training, and (ii) the Jacobian is low-rank.
We now present methods to quantitatively measure the extent to which these assumptions are satis-
fied in a given setting consisting of a model and training data.

Laziness. Following Chizat et al. (2019), we quantify the ”laziness” of a neural network by mea-
suring the rate of change of the Jacobian matrix. Specifically, we calculate the ratio ∥∇2

wf∥
∥∇wf∥2 , where

f = fj(:, x) represents the output corresponding to a single output unit j and data point x at a time,
and the norms are operator norms.

To compute the numerator ∥∇2
wf∥, we utilize the Lanczos algorithm Lanczos (1950), an improved

version of the power iteration method. The Lanczos algorithm is particularly advantageous because
it efficiently finds the eigenvalue of the Hessian with the largest magnitude without requiring the
explicit storage of the Hessian matrix itself. This is crucial for large neural networks where the
Hessian is too large to store in memory. Instead, the algorithm rather only performs the Hessian-
vector products, which we approximate using finite differences as follows:

∇2
wfv ≈ ∇wf(w + ϵv)−∇wf(w − ϵv)

2ϵ
,

where v is a vector, and ϵ is a small scalar for finite differencing. This approximation introduces
an error of O(ϵ2) which is generally acceptable for most practical applications. By employing this
method, we can efficiently estimate the largest eigenvalue of the Hessian operator without needing
to explicitly compute the full Hessian, making it scalable even for very large models. We compute
this value for multiple data points x and output units j to obtain an average estimate of the Hessian
norm across the network.

For the denominator, we leverage a result from Proposition 3.1 which implies that we can compute
the square root of the largest eigenvalue of the r× r matrix [J̃ ]T:,j,R[J̃ ]:,j,R, where [J̃ ] represents the
Jacobian of the network. This computation is relatively straightforward and does not pose scalability
issues. The results obtained using this method are shown in figure 3.

Low-rank Jacobian. To verify the low-rank assumption from (Oymak et al., 2019), we present the
effective numerical rank of the r×r covariance matrix [J̃ ]T:,j,R[J̃ ]:,j,R, as a function of the reference
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set size r. According to proposition 3.1 this is also equivalent to the rank of [J̃ ]:,j,R[J̃ ]T:,j,R. The
effective numerical rank is determined by counting the eigenvalues of [J̃ ]T:,j,R[J̃ ]:,j,R that are greater
than the threshold rϵ : σ1, where r is the matrix dimension, σ1 is its largest eigenvalue and epsilon
the machine precision.

This approach allows us to avoid the impractical computations of the full rank of them×n Jacobian.
Instead, we leverage the fact that the largest r singular values correspond to the square root of the
eigenvalues of [J̃ ]T:,j,R[J̃ ]:,j,R.

By selecting a sufficiently large reference set of size R, greater than the allegedly Jacobian’s rank,
the rank of [J̃ ]T:,j,R[J̃ ]:,j,R. will reflect the true rank of the Jacobian. Specifically, [J̃ ]T:,j,R[J̃ ]:,j,R.

will have rank(J) non-zero eigenvalues out of R dimention.

When the Jacobian has a low-rank structure, the rank-to-model size ratio tends to approach zero as
the model size increases because the rank grows much more slowly than the number of parameters.
Conversely, for models without a low-rank Jacobian, this ratio remains relatively high, indicating
that a significant portion of the model’s parameters contribute to the rank. The results supporting
this method are shown in figure 2.

3.3 EFFICIENT BACKPROPAGATION FREE ALGORITHM LEVERAGES THE ASSUMPTIONS

Our goal is to develop an efficient and theoretically sound backpropagation-free training algorithm
that exploits the laziness and low-rank assumptions of the Jacobian matrix.

Rationale of the Algorithm When the laziness assumption holds, the model’s Jacobian J remains
approximately constant during training. This allows us to precompute J once at initialization and
reuse it throughout the training process. However, for large-scale models— which is typically the
case since NTK theory requires wide networks— directly storing the full Jacobian of size n ×m,
where m is the number of parameters and n is the number of data points, is impractical due to the
O(nm) storage requirement.

To address this limitation, we exploit the low-rank structure of the Jacobian. Specifically, we ap-
proximate the Jacobian using a small reference set of weights and leverage principal component
analysis (PCA) to reduce its dimensionality. Importantly, this is done without storing the full Jaco-
bian, making our method scalable to models of any arbitrary width.

Backpropagation-Free Training Algorithm The algorithm comprises two phases as follows:

Algorithm 1 Train without backprop using a reference set
Require: An initialized neural network model f , a loss function ℓ

Pre-processing phase:
for each output unit j do

Select a small reference set R of weights of size r.
Compute [J ]:,j,R, as a n× r matrix, selecting the columns of [J ]:,j,: corresponding to R.
Center the rows of [J ]:,j,R.
Obtain the leading r eigenvectors VJ of [J̃ ]:,j,R[J̃ ]T:,j,R via eigendecomposition of

[J̃ ]T:,j,R[J̃ ]:,j,R
Store VJ , and the projection P := [J ]T:,j,RVJ of each weight onto VJ .

end for

No backprop phase:
for each training batch S do

Compute [at]i,: for each i s.t.
(
x(i), y(i)

)
∈ S.

Reconstruct the Jacobian [J ]S,j,: := PV T
J for S for each unit j

Update the network weight vector via equation equation 5.
end for
return trained model
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Justification of the Approximation The approximation relies on the low-rank structure of the
Jacobian, which we have empirically validated. By capturing the most significant directions of vari-
ation in the Jacobian through PCA, we ensure that the essential information for training is preserved.

Specifically, the true gradient of the loss with respect to the weights at time t , denoted as gtrue is
given by:

gtrue := Jat

Let J̃ = UΣV T be the singular value decomposition of the centered constant Jacobaian J̃ . Since V
is a unitary matrix, gtrue can also be written as

gtrue = J̃V V Tat

Now, leveraging the low rank assumption we validated, instead of using the eigenvectors V of J̃ J̃T ,
we use the eigenvectors VJ of [J̃ ]:,j,R[J̃ ]T:,j,R. The gradient is then approximated using

gapprox := J̃VJV
T
J at

The approximation is thus accurate whenever the projections of at onto VJ and onto V are similar.
We can think of this as a partition of the columns space of U to two subspaces: the column space of
UJ (the “information subspace”) and the orthogonal complement subspace (the “noise subspace”).

Complexity analysis. The storage and time complexity of Algorithm 1 are as follows. For each
output unit j, the eigenvectors matrix VJ is of size r × r and the projection matrix P is of size
m× r. Both can be computed by looping over the dataset of size n, one data point at a time. Hence,
Algorithm 1 requiresO(m+n) storage, considering dy and r as constants. For a constant minibatch
size, reconstructing the Jacobian and computing the weight update takeO(m) time, which is similar
to the complexity of standard backpropagation over fully connected layers.

Reduction of computation burden in LLMs, CNNs and RNNs While the running time analy-
sis of Algorithm 1 indicates a time complexity comparable to that of training multilayer perceptron
(MLP) networks, our method offers significant computational advantages in models with extensive
parameter sharing, such as transformers, convolutional neural networks (CNNs), and recurrent neu-
ral networks (RNNs). In these architectures, individual parameters are reused multiple times during
both the forward and backward passes. For instance, convolutional filters in CNNs are applied across
numerous spatial locations in an image, leading to computational costs proportional to the product
of the image’s width and height. Similarly, in transformers, attention mechanisms involve opera-
tions whose computational complexity scales quadratically with the sequence length, as attention
matrices are applied to each pair of elements in the sequence.

In standard backpropagation, the computational cost is influenced not only by the number of param-
eters but also by the number of times each parameter is applied during training, which is directly
related to the input size. This repeated application results in increased computational overhead, par-
ticularly in models handling large inputs or long sequences. For example, the computational com-
plexity per parameter in the attention layer of transformers is O(sequence length2), and in CNNs, it
scales with the number of pixels in the feature maps.

Our Algorithm 1 mitigates this issue by decoupling the computational cost from the input size. Since
the Jacobian is precomputed and the parameter updates do not require backpropagation through the
network layers, the number of times a parameter is reused does not impact the overall computational
complexity. Consequently, in models with significant parameter sharing, our method can substan-
tially reduce training time compared to standard backpropagation.

By eliminating the dependence on input size in the computational cost, our algorithm becomes espe-
cially advantageous for training large language models (LLMs), CNNs processing high-resolution
images, and RNNs dealing with long sequences. This efficiency gain makes our approach not only
theoretically appealing but also practically beneficial for large-scale machine learning tasks where
computational resources are a critical consideration.
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4 RESULTS

4.1 LOW RANK USING REFERENCE SET

In this experiment, we investigate the presence of a low-rank structure in the Jacobian by analyzing
the behavior of the rank-to-model size ratio as the reference set size increases. We compare two
networks: a small network with 36K parameters and a larger network with 170K parameters. As
discussed in Section 3.2, examining the rank-to-model size ratio effectively verifies the low-rank
structure. Our results, shown in Figure 2, reveal a clear distinction between the two models. The
small network exhibits a steadily increasing rank-to-model size ratio, reaching approximately 50%,
indicating that many parameters contribute to the rank and suggesting the absence of a low-rank
structure. In contrast, the larger network maintains a near-zero rank-to-model size ratio, confirming
its low-rank behavior as the model size dominates the rank growth. These findings suggest that in
models with a low-rank Jacobian, the rank-to-model size ratio remains small even as the reference set
size increases, allowing for efficient representation of the Jacobian with minimal computational cost.
Thus, the rank-to-model size ratio serves as a valuable metric for identifying low-rank structures and
optimizing network computations.

Figure 2: The Jacobian rank
model size ratio as a function of reference set size. The small network (36K

parameters) shows a higher ratio, indicating a lack of low-rank structure, while the large network
(170K parameters) maintains a near-zero ratio, confirming its low-rank behavior.

4.2 RELATIVE CHANGE IN THE JACOBIAN

In this experiment, we analyzed the relative change in the Jacobian by calculating the ratio between
the Hessian’s Operator Norm and the Jacobian’s Operator Norm, as we suggested in section 3.2.
The goal is to investigate how this relative change behaves as the width of the neural network in-
creases, and its effect on the model’s training dynamics.

We conducted the experiment on a 2-layer linear network with increasing widths, ranging from 40K
to 400M parameters. Our results, presented in figure 3, illustrate a clear pattern: as the network
width increases, the relative change of the Jacobian decreases. Notably, when this relative change
falls below 1√

m
, the network enters the ”lazy regime,” where parameter updates become minimal

during training, effectively preventing the network from encountering saddle points. This behavior
enabled our algorithm to stabilize and train efficiently, ultimately leading to strong performance,
with the model achieving an accuracy of approximately 87% on the MNIST dataset. These findings
align with the theoretical results in (Liu et al., 2020), which suggest that networks with larger widths
exhibit near-constant tangent kernels due to the small Hessian norm. The graph in figure 3 illustrates
the observed trend between 40K and 1M parameters, while the extended experiment covering widths
up to 400M parameters is included in the appendix.
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Monitoring the relative change in the Jacobian can thus serve as a key indicator of the network’s
behavior during training. When the relative change is sufficiently small, it signifies that the network
is in the lazy regime, allowing for more predictable and controlled training dynamics. By leveraging
this observation, we can fine-tune network width and training strategies to optimize performance.

Figure 3: The relationship between the relative change in the Jacobian and the model width
(blue plot) and the corresponding accuracy (green plot) on the MNIST dataset. As the width of
the network increases, the relative change in the Jacobian decreases, indicating the network’s entry
into the ”lazy regime” where training stabilizes and parameters change minimally. This behavior
enables efficient training and results in higher accuracy, reaching approximately 87% on the MNIST
dataset.

5 CONCLUSIONS

We have introduced a novel approach that uniquely combines Neural Tangent Kernel (NTK) theory
with the low-rank structure of the Jacobian in large neural networks. This dual focus distinguishes
our work as the first to leverage these two aspects concurrently, enabling us to develop a mathemati-
cally grounded and computationally efficient backpropagation-free training method operating within
the lazy regime. Beyond theoretical advancements, we have provided practical tools for verifying
the key assumptions of laziness and low-rank Jacobian structures in specific models and problems,
regardless of model width. This comprehensive approach enhances the adaptability of our method,
making it applicable to a wide range of real-world applications.

By empirically verifying the laziness and low-rank assumptions, we open a new avenue for alter-
native training methods that circumvent the need for backpropagation. Our assumption verification
methods equip practitioners with practical tools to assess the suitability of our algorithm for their
specific models and datasets, ensuring its effectiveness across diverse settings.

The innovative impact of our work lies not only in the theoretical advancement but also in the poten-
tial for significant computational efficiency gains. In models with massive parameter-sharing—such
as convolutional neural networks and transformer architectures—our algorithm can potentially out-
perform standard backpropagation by significantly reducing computational overhead and training
time.

Future research will focus on extending our approach to these types of models, where parameter-
sharing is prevalent. By adapting our algorithm to exploit the structural properties of such networks,
we aim to achieve even greater efficiency improvements, making large-scale training more feasi-
ble and accessible. Additionally, exploring techniques to enhance the low-rank approximation and
optimize the selection of the reference set could further improve performance.

In conclusion, our work provides a promising alternative to traditional backpropagation. By uniting
NTK theory with the low-rank Jacobian structure and offering tools for assumption verification,
we contribute to both the theoretical understanding and practical advancement of efficient neural
network training methods. This opens the door for future exploration and application in models
where traditional training methods are computationally prohibitive.
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A APPENDIX

Figure 4: Extended Results for Relative Change in the Jacobian for Varying Neural Network Widths.
The graphs show the relative change in the Jacobian over the first 10 epochs for a wider range of
network widths, from 100 to 20,000, as a continuation of the main analysis presented in section 3.2.
The relative change is calculated as the ratio between the Hessian’s Operator Norm and the Jaco-
bian’s Operator Norm for each output. The dashed red line in each plot indicates the threshold 1√

m

(where m is the width), below which the network enters the ”lazy regime.” As observed, increasing
the network width leads to a decrease in the relative change of the Jacobian. This extended analysis,
including widths up to 400M parameters, further reinforces the findings that wider networks tend to
enter the lazy regime more quickly.
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