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Abstract

The ability to form complex plans based on raw visual input is a litmus test for
current capabilities of artificial intelligence, as it requires a seamless combination
of visual processing and abstract algorithmic execution, two traditionally separate
areas of computer science. A recent surge of interest in this field brought advances
that yield good performance in tasks ranging from arcade games to continuous
control; these methods however do not come without significant issues, such as
limited generalization capabilities and difficulties when dealing with combina-
torially hard planning instances. Our contribution is two-fold: (i) we present a
method that learns to represent its environment as a latent graph and leverages state
reidentification to reduce the complexity of finding a good policy from exponential
to linear (ii) we introduce a set of lightweight environments with an underlying
discrete combinatorial structure in which planning is challenging even for humans.
Moreover, we show that our methods achieves strong empirical generalization to
variations in the environment, even across highly disadvantaged regimes, such as
“one-shot” planning, or in an offline RL paradigm which only provides low-quality
trajectories.
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Figure 1: Planning from Pixels with Graph Search. Our method leverages learned latent dynamics
to efficiently build and search a graph representation of the environment. Resulting policies show
unrivaled performance across a distribution of hard combinatorial tasks.
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1 Introduction

Decision problems with an underlying combinatorial structure pose a significant challenge for
a learning agent, as they require both the ability to infer the true low-dimensional state of the
environment and the application of abstract reasoning to master it. A traditional approach for
common logic games, given that a simulator or a model of the game are available, consists in applying
a graph search algorithm to the state diagram, effectively simulating several trajectories to find the
optimal one. As long as the state space of the game grows at a polynomial rate with respect to the
planning horizon, the solver is able to efficiently find the optimal solution to the problem. Of course,
when this is not the case, heuristics can be introduced at the expense of optimality of solutions.

Learned world models [17, 18] can learn to map complex observations to a lower-dimensional latent
space and retrieve an approximate simulator of an environment. However, while the continuous
structure of the latent space is suitable for training reinforcement learning agents [12, 19] or applying
heuristic search algorithms [38], it also prevents a straightforward application of simpler graph search
techniques that rely on identifying and marking visited states.

Our work follows naturally from the following insight: a simple graph search might be sufficient
for solving visually complex environments, as long as a world model is trained to realize a suitable
structure in the latent space. Moreover, the complexity of the search can be reduced from exponential
to linear by reidentifying visited latent states.

The method we propose is located at the intersection between classical planning, representation
learning and model-based reinforcement learning. It relies on a novel low-dimensional world model
trained through a combination of opposing losses without reconstructing observations. We show
how learned latent representations allow a dynamics model to be trained to high accuracy, and how
the dynamics model can then be used to reconstruct a latent graph representing environment states
as vertices and transitions as edges. The resulting latent space structure enables powerful graph
search algorithms to be deployed for planning with minimal modifications, solving challenging
combinatorial environments from pixels. We name our method PPGS as it Plans from Pixels through
Graph Search.

We design PPGS to be capable of generalizing to unseen variations of the environment, or equivalently
across a distribution of levels [13]. This is in contrast with traditional benchmarks [7], which require
the agent to be trained and tested on the same fixed environment.

We can describe the main contributions of this paper as follows: first, we introduce a suite of
environments that highlights a weakness of modern reinforcement learning approaches, second,
we introduce a simple but principled world model architecture that can accurately learn the latent
dynamics of a complex system from high dimensional observations; third, we show how a planning
module can simultaneously estimate the latent graph for previously unseen environments and deploy
a breadth first search in the latent space to retrieve a competitive policy; fourth, we show how
combining our insights leads to unrivaled performance and generalization on a challenging class of
environments.

2 Method

For the purpose of this paper, each environment can be modeled as a family of fully-observable
deterministic goal-conditioned Markov Decision Processes with discrete actions, that is the 6-tuples
{(S,A, T,G,R, γ)i}1...n where Si is the state set, Ai is the action set, Ti is a transition function
Ti : Si × Ai → Si, Gi is the goal set and Ri is a reward function Ri : Si ×Gi → R and γi is the
discount factor. We remark that each environment can also be modeled as a BlockMDP [14] in which
the context space X corresponds to the state set Si we introduced.

In particular, we deal with families of procedurally generated environments. We refer to each of the
n elements of a family as a level and omit the index i when dealing with a generic level. We assume
that state spaces and action spaces share the same dimensionality across all levels, that is |Si| = |Sj |
and |Ai| = |Aj | for all 0 ≤ i, j ≤ n.

In our work the reward simplifies to an indicator function for goal achievement R(s, g) = 1s=g with
G ⊆ S. Given a goal distribution p(g), the objective is that of finding a goal-conditioned policy πg
that maximizes the return
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Figure 2: Architecture of the world model. A convolutional encoder extracts latent state representa-
tions from observations, while a forward model and an inverse model reconstruct latent dynamics by
predicting state transitions and actions that cause them. The notation is introduced in Sec. 2.1

Jπ = E
g∼p(g)

[
E

τ∼p(τ |πg)

∑
t

γtR(st, g)

]
(1)

where τ ∼ p(τ |πg) is a trajectory (st, at)
T
t=1 sampled from the policy.

Our environments of interest should challenge both perceptive and reasoning capabilities of an agent.
In principle, they should be solvable through extensive search in hard combinatorial spaces. In order
to master them, an agent should therefore be able to (i) identify pairs of bisimilar states [43], (ii) keep
track of and reidentify states it has visited in the past and (iii) produce highly accurate predictions for
non-trivial time horizons. These factors contribute to making such environments very challenging for
existing methods. Our method is designed in light of these necessities; it has two integral parts, the
world model and the planner, which we now introduce.

2.1 World Model

The world model relies solely on three jointly trained function approximators: an encoder, a forward
model and an inverse model. Their overall orchestration is depicted in Fig. 2 and described in the
following.

2.1.1 Encoder

Mapping highly redundant observations from an environment to a low-dimensional state space Z
has several benefits [17, 18]. Ideally, the projection should extract the compressed “true state” of the
environment and ignore irrelevant visual cues, discarding all information that is useless for planning.
For this purpose, our method relies on an encoder hθ, that is a neural function approximator mapping
each observed state s ∈ S and a low-dimensional representation z ∈ Z (embedding). While there
are many suitable choices for the structure of the latent space Z, we choose to map observations to
points on an d-dimensional hypersphere taking inspiration from Liu et al. [29].

2.1.2 Forward Model

In order to plan ahead in the environment, it is crucial for an agent to estimate the transition function T .
In fact, if a mapping to a low-dimensional latent space Z is available, learning directly the projected
transition function TZ : Z × A → Z can be largely beneficial [17, 18]. The deterministic latent
transition function TZ can be learned by a neural function approximator fφ so that if T (st, at) = st+1,
then fφ(hθ(st), at) := fφ(zt, at) = hθ(st+1). We refer to this component as forward model.
Intuitively, it can be trained to retrieve the representation of the state of the MDP at time t+ 1 given
the representation of the state and the action taken at the previous time step t.

Due to the Markov property of the environment, an initial state embedding zt and the action sequence
(at, . . . , at+k) are sufficient to to predict the latent state at time t + k, as long as zt successfully
captures all relevant information from the observed state st. The amount of information to be
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embedded in zt and to be retained in autoregressive predictions is, however, in most cases, prohibitive.
Take for example the case of a simple maze: zt would have to encode not only the position of the
agent, but, as the predictive horizon increases, most of the structure of the maze.

Invariant Structure Recovery To allow the encoder to only focus on local information, we adopt
an hybrid forward model which can recover the invariant structures in the environment from previous
observations. The function that the forward model seeks to approximate can then include an additional
input: fφ(zt, at, sc) = zt+1, where sc ∈ S is a generic observation from the same environment and
level. Through this context input the forward model can retrieve information that is constant across
time steps (e.g. the location of walls in static mazes). In practice, we can use randomly sampled
observation from the same level during training and use the latest observation during evaluation.
This choice allows for more accurate and structure-aware predictions, as we show in the ablations in
Suppl. A.

Given a trajectory (st, at)
T
t=1, the forward model can be trained to minimize some distance

measure between state embeddings (zt+1)1...T−1 = (hθ(st+1))1...T−1 and one-step predictions
(fφ(hθ(st), at, sc))1...T−1. In practice, we choose to minimize a Monte Carlo estimate of the ex-
pected Euclidean distance over a finite time horizon, a set of trajectories and a set of levels. When
training on a distribution of levels p(l), we extract K trajectories of length H from each level with a
uniform random policy π and we minimize

LFW = E
l∼p(l)

[
1

H − 1

H−1∑
h=1

E
ah∼π

[
‖fφ(zlh, ah, slc)− zlh+1‖22

]]
(2)

where the superscript indicates the level from which the embeddings are extracted.

2.1.3 Inverse Model and Collapse Prevention

Unfortunately, the loss landscape of Equation 2 presents a trivial minimum in case the encoder
collapses all embeddings to a single point in the latent space. As embeddings of any pair of states
could not be distinguished in this case, this is not a desirable solution. We remark that this is a
known problem in metric learning and image retrieval [8], for which solutions ranging from siamese
networks [9] to using a triplet loss [22] have been proposed.

The context of latent world models offers a natural solution that isn’t available in the general
embedding problem, which consists in additionally training a probabilistic inverse model pω(at |
zt, zt+1) such that if TZ(zt, at) = zt+1, then pω(at | zt, zt+1) > pω(ak | zt, zt+1)∀ak 6= at ∈ A.
The inverse model, parameterized by ω, can be trained to predict the action at that causes the latent
transition between two embeddings zt, zt+1 by minimizing multi-class cross entropy.

LCE = E
l∼p(l)

[
1

H − 1

H−1∑
h=1

E
ah∼π

[
− log pω(ah | zlh, zlh+1)

]]
. (3)

Intuitively, LCE increases as embeddings collapse, since it becomes harder for the inverse model to
recover the actions responsible for latent transitions. For this reason, it mitigates unwanted local
minima. Moreover, it is empirically observed to enforce a regular structure in the latent space that
eases the training procedure, as argued in Sec. A of the Appendix. We note that this loss plays a
similar role to the reconstruction loss in Hafner et al. [18]. However, LCE does not force the encoder
network to embed information that helps with reconstructing irrelevant parts of the observation,
unlike training methods relying on image reconstruction [11, 17–20].

While LCE is sufficient for preventing collapse of the latent space, a discrete structure needs to be
recovered in order to deploy graph search in the latent space. In particular, it is still necessary to define
a criterion to reidentify nodes during the search procedure, or to establish whether two embeddings
(directly encoded from observations or imagined) represent the same true low-dimensional state.

A straightforward way to enforce this is by introducing a margin ε, representing a desirable minimum
distance between embeddings of non-bisimilar states [43]. A third and final loss term can then be
introduced to encourage margins in the latent space:

Lmargin = E
l∼p(l)

[
1

H − 1

H−1∑
h=1

max
(
0, 1−

‖zlh+1 − zlh‖22
ε2

)]
. (4)
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Figure 3: Overview of latent-space planning. One-shot planning is possible by (i) embedding the
current observation and goal to the latent space and (ii) iteratively growing a latent graph until a
vertex is reidentified with the goal.

We then propose to reidentify two embeddings as representing the same true state if their Euclidean
distance is less than ε

2 .

Adopting a latent margin effectively constrains the number of margin-separated states that can be
represented on an hyperspherical latent space. However, this quantity is lower-bounded by the kissing
number [41], that is the number of non-overlapping unit-spheres that can be tightly packed around
one d dimensional sphere. The kissing number grows exponentially with the dimensionality d. Thus,
the capacity of our d-dimensional unit sphere latent space (d = 16 in our case with margin ε = 0.1)
is not overly restricted.

The world model can be trained jointly and end-to-end by simply minimizing a combination of the
three loss functions:

L = αLFW + βLCE + Lmargin. (5)

To summarize, the three components are respectively encouraging accurate dynamics predictions,
regularizing latent representations and enforcing a discrete structure for state reidentification.

2.2 Planning Regimes

A deterministic environment can be represented as a directed graph G whose vertices V represent
states s ∈ S and whose edges E encode state transitions. An edge from a vertex representing a state
s ∈ S to a vertex representing a state s′ ∈ S is present if and only if T (s, a) = s′ for some action
a ∈ A, where T is the state transition function of the environment. This edge can then be labelled
by action a. Our planning module relies on reconstructing the latent graph, which is a projection of
graph G to the latent state Z.
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Figure 4: Number of leaf vertices when
planning in ProcgenMaze, averaged over
100 levels, with 90% confidence inter-
vals.

In this section we describe how a latent graph can be build
from the predictions of the world model and efficiently
searched to recover a plan, as illustrated in Fig. 3. This
method can be used as a one-shot planner, which only
needs access to a visual goal and the initial observation
from a level. When iterated and augmented with online
error correction, this procedure results in a powerful ap-
proach, which we refer to as full planner, or simply as
PPGS.

One-shot Planner Breadth First Search (BFS) is a
graph search algorithm that relies on a LIFO queue and on
marking visited states to find an optimal path O(V + E)
steps. Its simplicity makes it an ideal candidate for solving
combinatorial games by exploring their latent graph. If
the number of reachable states in the environment grows
polynomially, the size of the graph to search will increase
at a modest rate and the method can be applied efficiently.
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We propose to execute a BFS-like algorithm on the latent graph, which is recovered by autoregressively
simulating all transitions from visited states. As depicted in Fig. 3, at each step, the new set of
leaves L is retrieved by feeding the leaves from the previous iteration through the forward model
fφ. The efficiency of the search process can be improved as shown in Fig. 4, by exploiting the
margin ε enforced by equation 4 to reidentify states and identify loops in the latent graph. We now
provide a simplified description of the planning method in Algorithm 1, while details can be found in
Suppl. C.2.

Algorithm 1 Simplified one-shot PPGS
Input: Initial observed state s1, visual goal g, model parameters θ, φ

1: z1, zg = hθ(s1), hθ(g) . project to latent space Z
2: L, V = {z1} . sets of leaves and visited vertices
3: for TMAX steps do
4: L = {fφ(z, a, s1) : ∃z ∈ L, a ∈ A} . grow graph
5: if z∗ ∈ L can be reidentified with zg then
6: return action sequence from z1 to z∗
7: end if
8: L = L \ V . reidentify and discard visited vertices (details in Suppl. C.2)
9: V = V ∪ L . update visited vertices

10: end for

Full Planner The one-shot variant of PPGS largely relies on highly accurate autoregressive
predictions, which a learned model cannot usually guarantee. We mitigate this issue by adopting
a model predictive control-like approach [15]. PPGS recovers an initial guess on the best policy
(ai)1,...,n simply by applying one-shot PPGS as described in the previous paragraph and in Algorithm
2. It then applies the policy step by step and projects new observations to the latent space. When
new observations do not match with the latent trajectory, the policy is recomputed by applying
one-shot PPGS from the latest observation. This happens when the autoregressive prediction of the
current embedding (conditioned on the action sequence since the last planning iteration) can not
be reidentified with the embedding of the current observation. Moreover, the algorithm stores all
observed latent transitions in a lookup table and, when replanning, it only trusts the forward model
on previously unseen observation/action pairs. A detailed description can be found in Suppl. C.2.

3 Environments

In order to benchmark both perception and abstract reasoning, we empirically show the feasibility
of our method on three challenging procedurally generated environments. These include the Maze
environment from the procgen suite [13], as well as DigitJump and IceSlider, two combinatorially
hard environments which stress the reasoning capabilities of a learning agent, or even of an human
player. In the context of our work, the term “combinatorial hardness” is used loosely. We refer to an
environment as "combinatorially hard" if only very few of the exponentially many trajectories actually
lead to the goal, while deviating from them often results in failure (e.g. DigitJump or IceSlider).
Hence, some “intelligent” search algorithm is required. In this way, the process of retrieving a
successful policy resembles that of a graph-traversing algorithm. The last two environments are made
available in a public repository [1], where they can also be tested interactively. More details on their
implementation are included in Suppl. D.

ProcGenMaze The ProcgenMaze environment consists of a family of procedurally generated 2D
mazes. The agent starts in the bottom left corner of the grid and needs to reach a position marked by a
piece of cheese. For each level, an unique shortest solution exists, and its length is usually distributed
roughly between 1 and 40 steps. This environment presents significant intra-level variability, with
different sizes, textures, and maze structures. While retrieving the optimal solution in this environment
is already a non-trivial task, its dynamics are uniform and actions only cause local changes in the
observations. Moreover, ProcgenMaze is a forgiving environment in which errors can always be
recovered from. In the real world, many operations are irreversible, for instance, cutting/breaking
objects, gluing parts, mixing liquids, etc. Environments containing remote controls, for example,
show non-local effects. We use these insights to choose the additional environments.
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ProcgenMaze DigitJump IceSlider

Figure 5: Environments. Initial observations and one-shot PPGS’s solution (arrows) of a random
level of each of the three environments. ProcgenMaze is from [13]. DigitJump and IceSlider are
proposed by us and can be accessed at [1].

IceSlider IceSlider is in principle similar to ProcgenMaze, since it also consists of procedurally
generated mazes. However, each action propels the agent in a direction until an obstacle (a rock or
the borders of the environments) is met. We generate solvable but unforgiving levels that feature
irreversible transitions, that, once taken, prevent the agent from ever reaching the goal.

DigitJump DigitJump features a distribution of randomly generated levels which consist of a 2D
8x8 grid of handwritten digits from 1 to 6. The agent needs to go from the top left corner to the
bottom right corner. The 4 directional actions are available, but each of them causes the agent to
move in that directions by the number of steps expressed by the digit on the starting cell. Therefore, a
single action can easily transport the player across the board. This makes navigating the environment
very challenging, despite the reduced cardinality of the state space. Moreover, the game presents
many cells in which the agent can get irreversibly stuck.

4 Related Work

World Models and Reinforcement Learning The idea of learning to model an environment has
been widely explored in recent years. Work by Oh et al. [32] and Chiappa et al. [11] has argued
that modern machine learning architectures are capable of learning to model the dynamics of a
generic environment reasonably well for non-trivial time horizons. The seminal work by Ha and
Schmidhuber [17] built upon this by learning a world model in a low-dimensional latent space
instead of conditioning predictions on observations. They achieved this by training a VAE on
reconstructing observations and a recurrent network for sampling latent trajectories conditioned on
an action sequence. Moreover, they showed how sample efficiency could be addressed by recovering
a simple controller acting directly on latent representations through an evolutionary approach.

This initial idea was iteratively improved along two main directions. On one hand, some subsequent
works focused on learning objectives and suggested to jointly train encoding and dynamics compo-
nents. Hafner et al. [18] introduced a multi-step variational inference objective to encourage latent
representations to be predictive of the future and propagate information through both deterministic
and stochastic paths. On the other hand, authors proposed to learn to act in the latent space by
using zero-order methods [18] such as CEM [36] or policy gradient techniques [19, 20]. These
improvements gradually led to strong model-based RL agents capable of achieving very competitive
performance in continuous control tasks [19] and on the Atari Learning Environment [7, 10, 20].

Relying on image reconstruction can however lead to vulnerability to visual noise: to overcome this
limitation Okada and Taniguchi [33] and Zhang et al. [43] forgo the decoder network, while the latter
proposes to rely on the notion of bisimilarity to learn meaningful representations. Similarly, Gelada
et al. [16] only learn to predict rewards and action-conditional state distributions, but only study this
task as an additional loss to model-free reinforcement learning methods. Another relevant approach
is that of [44], who propose to learn a discrete graph representation of the environment, but their final
goal is that of recovering a series of subgoals for model-free RL.

A strong example of how world models can be coupled with classical planners is given by MuZero
[38]. MuZero trains a recurrent world model to guide a Monte Carlo tree search by encouraging
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hidden states to be predictive of future states and a sparse reward signal. While we adopt a similar
framework, we focus on recovering a discrete structure in the latent space in order to reidentify states
and lower the complexity of the search procedure. Moreover, we do not rely on reward signals, but
only focus on learning the dynamics of the environment.

Neuro-algorithmic Planning In recent years, several other authors have explored the intersection
between representation learning and classical algorithms. This is the case, for instance, of Ichter and
Pavone [23], Kumar et al. [26], Kuo et al. [27] who rely on sequence models or VAEs to propose
trajectories for sampling-based planners. Within planning research, Yonetani et al. [42] introduce a
differentiable version of the A* search algorithm that can learn suitable representations from images
with supervision. The most relevant line of work to us is perhaps the one that attempts to learn
representations that are suitable as an input for classical solvers. Within this area, Asai and Fukunaga
[4], Asai and Muise [5] show how symbolic representations can be extracted from complex tasks
in an end-to-end fashion and directly fed into off-the-shelf solvers. More recently, Vlastelica et al.
[40] frames MDPs as shortest-path problems and trains a convolutional neural network to retrieve
the weights of a fixed graph structure. The extracted graph representation can be solved with a
combinatorial solver and trained end-to-end by leveraging the blackbox differentiation method [35].

Visual Goals A further direction of relevant research is that of planning to achieve multiple
goals [30]. While the most common approaches involve learning a goal-conditioned policy with
experience relabeling [3], the recently proposed GLAMOR [34] relies on learning inverse dynamics
and retrieves policies through a recurrent network. By doing so, it can achieve visual goals without
explicitly modeling a reward function, an approach that is sensibly closer to ours and can serve as
a relevant comparison. Another method that sharing a similar setting to ours is LEAP [31], which
also attempts to fuse reinforcement learning and planning; however, its approach is fundamentally
different and designed for dense rewards and continuous control. Similarly, SPTM [37] pursues a
similar direction, but requires exploratory traversals in the current environment, which would be
particularly hard to obtain due to procedural generation.

5 Experiments

The purpose of the experimental section is to empirically verify the following claims: (i) PPGS is
able to solve challenging environments with an underlying combinatorial structure and (ii) PPGS is
able to generalize to unseen variations of the environments, even when trained on few levels. We aim
to demonstrate that forming complex plans in these simple-looking environments is beyond the reach
of the best suited state-of-the-art methods. Our approach, on the other hand, achieves non-trivial
performance. With this in mind, we did not insist on perfect fairness of all comparisons, as the
different methods have different type of access to the data and the environment. However, the largest
disadvantage is arguably given to our own method.

While visual goals could be drawn from a distribution p(g), we evaluate a single goal for each test
level matching the environment solution (or the only state that would give a positive reward in a
sparse reinforcement working framework). This represents a very challenging task with respect to
common visual goal achievement benchmarks [34], while also allowing comparisons with reward-
based approaches such as PPO [39]. We mainly evaluate the success rate, which is computed as the
proportion of solved levels in a set of 100 unseen levels. A level is considered to be solved when the
agent achieves the visual goal (or receives a non-zero reward) within 256 steps.

Choice of Baselines Our method learns to achieve visual goals by planning with a world model
learned on a distribution of levels. To the best of our knowledge, no other method in the literature
shares these exact settings. For this reason, we select three diverse and strong baselines and we make
our best efforts for a fair comparison within our computational limits.

PPO [39] is a strong and scalable policy optimization method that has been applied in procedurally
generated environments [13]. While PPGS requires a visual goal to be given, PPO relies on a (sparse)
reward signal specializing on a unique goal per level. DreamerV2 [20] is a model-based RL approach
that also relies on a reward signal, while GLAMOR [34] is more aligned with PPGS as it is also
designed to reach visual goals in absence of a reward.

8



While we restrict PPGS to only access an offline dataset of low-quality random trajectories, all
baselines are allowed to collect data on policy for a much larger number of environment steps. More
considerations on these baselines and on the fairness of our comparison can be found in Suppl. B.
Furthermore, we also consider a non-learning naive search algorithm (GS ON IMAGES) thoroughly
described in C.3.

A comprehensive ablation study of PPGS can be found in Section A of the Appendix.

5.1 Comparison of Success Rates
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Figure 6: Success rates across the three envi-
ronments. One-shot planning is competitive
with the full method on shorter time horizons.

Our first claim is supported by Figure 6. PPGS out-
perform its baselines across the three environments.
The gap with baselines is smaller in ProcgenMaze, a
forgiving environment for which accurate plans are
not necessary. On the other hand, ProcgenMaze in-
volves long-horizon planning, which can be seen as
a limitation to one-shot PPGS. As the combinatorial
nature of the environment becomes more important,
the gap with all baselines increases drastically.

PPO performs fairly well with simple dynamics and
long-term planning, but struggles more when com-
binatorial reasoning is necessary. GLAMOR and
DreamerV2 struggle across the three environments,
as they likely fail to generalize across a distribution
of levels. The fact that GS ON IMAGES manages to
rival other baselines is a testament to the harshness
of the environments.

5.2 Analysis of Generalization

The inductive biases represented by the planning algorithm and our training procedure ensure good
generalization from a minimal number of training levels. In Fig. 7, we compare solution rates between
PPGS and PPO as the number of levels available for training increases. The same metric for larger
training level sets is additionally available in Table 3. Our method generally outperforms its baselines
across all environments. In ProcgenMaze, PPGS achieves better success rates than PPO after only
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Figure 7: Solution rates of PPGS and PPO as a function of the cardinality of the set of training levels.
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seeing two orders of magnitude less level, e.g. 10 levels instead of 1000. Note that PPGS uses
only 400k samples from a random policy whereas PPO uses 50M on-policy samples. Due to the
harshness of the remaining environments, PPO struggles to find a good policy and its solution rate
on unseen levels improves slowly as the number of training levels increases. In IceSlider, PPGS is
well above PPO for any size of the training set and a outperforms GS ON IMAGES when only having
access to 2 training levels. While having a comparable performance to PPO on small training sets
in DigitJump, our method severely outperforms it once approximately 200 levels are available. On
the other hand, PPO’s ability to generalize plateaus. These results show that PPGS quickly learns to
extract meaningful representations that generalize well to unseen scenarios.

6 Discussion

Limitations The main limitations of our method regard the assumptions that characterize the class
of environments we focus on, namely a slowly expanding state space and discrete actions. In general,
due to the complexity of the search algorithms, scaling to very large action sets becomes challenging.
Moreover, a single expansion of the search tree requires a forward pass of the dynamics network,
which takes a non-negligible amount of time. Finally, the world model is a fundamental component
and the accuracy of the forward model is vital to the planner. Training an accurate forward model
can be hard when dealing with exceedingly complex observations: very large grid sizes in the
environments are a significant obstacle. On the other hand, improvements in the world model would
directly benefit the whole pipeline.

Conclusion Hard search from pixels is largely unexplored and unsolved, yet fundamental for future
AI. In this paper we presented how powerful graph planners can be combined with learned perception
modules to solve challenging environment with a hidden combinatorial nature. In particular, our
training procedure and planning algorithm achieve this by (i) leveraging state reidentification to reduce
planning complexity and (ii) overcoming the limitation posed by information-dense observations
through an hybrid forward model. We validated our proposed method, PPGS, across three challenging
environments in which we found state-of-the-art methods to struggle. We believe that our results
represent a sensible argument in support of the integration of learning-based approaches and classical
solvers.
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