
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ALGORITHMIC PHASES OF IN-CONTEXT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

In-Context Learning (ICL) has significantly expanded the general-purpose nature
of large language models, allowing them to adapt to novel tasks using merely
the inputted context. This has motivated a series of papers that analyze tractable
synthetic domains and postulate precise mechanisms that may underlie ICL. How-
ever, the use of relatively distinct setups that often lack a sequence modeling na-
ture to them makes it unclear how general the reported insights from such studies
are. Motivated by this, we propose a synthetic sequence modeling task that in-
volves learning to simulate a finite mixture of Markov chains. As we show, mod-
els trained on this task reproduce most well-known results on ICL, hence offering
a unified setting for studying the concept. Building on this setup, we demonstrate
we can explain a model’s behavior by decomposing it into four broad algorithms
that combine a fuzzy retrieval vs. inference approach with either unigram or bi-
gram statistics of the context. These algorithms engage in a competitive dynamics
to dominate model behavior, with the precise experimental conditions dictating
which algorithm ends up superseding others: e.g., we find merely varying con-
text size or amount of training yields (at times sharp) transitions between which
algorithm dictates the model behavior, revealing a mechanism that explains the
transient nature of ICL. In this sense, we argue ICL is best thought of as a mixture
of different algorithms, each with its own peculiarities, instead of a monolithic
capability. This also implies that making general claims about ICL that hold uni-
versally across all settings may be infeasible.

1 INTRODUCTION

In-Context Learning (ICL)—the ability to perform novel tasks by merely using the inputted
context—has substantially expanded the general-purpose nature of large language models
(LLMs) (Brown et al., 2020; Wei et al., 2022), allowing them to solve a broader spectrum of prob-
lems than they may have been initially trained for (Gemini Team, 2023; Qin et al., 2023; Huang
et al., 2022; Bai et al., 2022). To better understand the mechanisms underlying ICL, a series of
papers have designed toy, synthetic domains that are amenable to rapid experimentation and can
offer precise hypotheses into how this capability operates. This line of work has established a rich
phenomenology, demonstrating, e.g., the importance of specialized attention heads (aka induction
heads) (Olsson et al., 2022; Edelman et al., 2024; Singh et al., 2024), change in ICL abilities as
a function of data diversity (Raventós et al., 2023; Lu et al., 2024; Kirsch et al., 2022), the non-
monotonic trend in test performance as context is increased (Min et al., 2022; Lin & Lee, 2024), and
the ICL’s transient nature with training time (Singh et al., 2023; Anand et al., 2024).

Despite the substantial progress highlighted above, we note a unified account of ICL is still lack-
ing. This can be partially attributed to the fact that prior work often focuses on rather disparate
setups to develop its findings—e.g., linear regression (Garg et al., 2023; Von Oswald et al., 2023;
Akyürek et al., 2023; Bai et al., 2024), classification (Chan et al., 2022a;b; Reddy, 2023; Singh et al.,
2023; 2024), and probabilistic automata (Akyürek et al., 2024; Edelman et al., 2024; Bigelow et al.,
2023)—leaving it unclear precisely which ICL phenomena are universal, important, and worth in-
vestigating to develop a unified theory. To address this issue, we argue a novel experimental setup
is needed that is rich enough to capture most (if not all) known phenomenology of ICL, but is also
simple enough to be amenable to modeling, hence offering fertile ground for a unifying account. We
aim to fill this gap in the current paper.

This work. We propose a novel sequence modeling task that involves learning to simulate a finite
mixture of Markov chains. We train Transformers on this task via a standard autoregressive loss

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Algorithmic phase diagram for a finite Markov mixtures task: A unified framework
for ICL phenomenology. We propose to study ICL phenomena through a minimal model system,
training Transformers on synthetic sequence data generated by a finite mixture of Markov chains.
Despite its simplicity, this setup captures most (if not all) known phenomenology of ICL, providing
a unified system amenable for mechanistic study. We identify four distinct, interpretable algorith-
mic solutions and characterize the transitions between these algorithmic phases as functions of data
diversity, optimization steps, and context size. This view of algorithmic phase diagram reveals how
rich ICL phenomenology emerges from competing algorithmic strategies promoted or suppressed
during optimization. Our framework unifies an array of known phenomena: a) Data diversity thresh-
old (Raventós et al., 2023); b) Emergence of induction heads (Edelman et al., 2024); c) Transient
nature (Singh et al., 2023); d) Task retrieval and task learning phases (Min et al., 2022); e) Early as-
cent of risk (Xie et al., 2021); and f) Bounded efficacy (Lin & Lee, 2024). See App. C for a concise
summary of these findings and propositions.

under different amounts of compute budget (training iterations and model size) and data diversity
(number of Markov chains in the mixture), while evaluating them with different amounts of context
seen at inference. Systematically varying these factors, we show our proposed task turns out to
be extremely rich, reproducing most known phenomenology of ICL and hence offering a unified
setting for studying the concept. Building on this, we start to deconstruct how a model trained on
our task performs ICL, finding that there exist (at least) four broad algorithms that can explain the
model’s behavior. These algorithms combine a fuzzy retrieval vs. inference approach with either
unigram or bigram statistics of the context, and, as we show, engage in a competitive dynamics
with each other to dictate model behavior. Interestingly, we find the precise experimental conditions
(e.g., amount of training and context-size) decide which algorithm wins the competition, hence
yielding several phases in the model’s ability to perform ICL: varying experimental conditions elicits
different algorithmic behaviors (at times rather abruptly), making it difficult for understanding of
ICL derived in one configuration to help predict model behavior in another one. This picture also
helps us better understand several existing phenomena of ICL, e.g., why it can be transient in nature,
hence enabling a step towards a unified account. Our contributions follow.

• A finite Markov mixtures task captures ICL’s phenomenology. We introduce a synthetic se-
quence modeling task wherein a model is trained to simulate a finite mixture of Markov chains
(Sec. 2). As we show, models trained on this task reproduces most (if not all) known phenomenol-
ogy of ICL (see Fig. 1, 3), hence offering a unified, controlled setting for studying ICL.

• Systematic experiments identify different algorithmic phases of ICL. By varying the amount
of training steps, data diversity (number of chains), and context size in a systematic manner, we
find a model trained on our proposed task transitions between (predominantly) four phases of
algorithmic solutions that are characterized by use of unigram vs. bigram context statistics in a
fuzzy retrieval vs. inference manner (Fig. 4, 5). Furthermore, the scale of the model interacts with
the boundaries of these phases, e.g., by shifting the critical amount of data diversity needed for
transitioning between different algorithms (Fig. 8). These results indicate ICL is best regarded as

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 2: Data generation and evaluation protocol with finite Markov mixtures. (a) Data gen-
eration. We first sample a finite set Ttrain = {T1, T2, . . . , TN} of random transition matrices to
define our set of Markov chains. We then randomly select a chain from this set and sample a train-
ing sequence from it. We repeat this process at every step of training, sampling a fresh batch of
sequences from by randomly selecting a chain from our predefined set. (b) Model training. We
train a Transformer (Karpathy, 2022) on this sequence data with a standard autoregressive training
loss. (c) Evaluation. A novel sequence of states is sampled from the test transition matrix, T ∗, for
evaluation. Here, T ∗ is either (i) selected from the finite set Ttrain (for in-distribution tests), or (ii)
newly sampled (for OOD tests). We subsequently compute the KL divergence between the model’s
empirical transition matrix T̂ vs. ground truth transition matrix T ∗. See App. A.1 for details.

an umbrella term for a spectrum of algorithms, instead of a monolithic model capability, and any
identified phenomenology of ICL should not be deemed universal unless shown otherwise.

• A competition of algorithms picture underlies ICL’s phenomenology. To further develop a
precise understanding of our identified algorithmic phase diagram, we decompose our model’s
behavior at any given time into a linear interpolation of the four algorithms underlying the phase
diagram (Fig. 6). This interpolation turns out to be surprisingly accurate, achieving approxi-
mately zero KL with respect to the trained model’s next token probabilities, and thus suggests
that different algorithms compete with each other to dictate model behavior. We then show these
competitive dynamics can explain part of ICL’s phenomenology, e.g., offering an explanation
for the transient nature of ICL (Singh et al., 2023; Anand et al., 2024) and its non-monotonic
out-of-distribution performance curves (Kirsch et al., 2022) (Fig. 7).

2 PROBLEM SETUP: SIMULATING A FINITE MIXTURE OF MARKOV CHAINS

We begin by proposing a task that unifies (most) known phenomenology of ICL into a singular setup:
learning to simulate a finite mixture of Markov chains. This task captures the sequence modeling
nature of LLMs by applying a stochastic map to every token (similar to the probabilistic automata
setting of Akyürek et al. (2024)), while also offering a knob (number of chains) that helps assess the
impact of data diversity on ICL (similar to the linear regression setting of Raventós et al. (2023)).

Sequence modeling with finite mixture of Markov chains. As illustrated in Fig. 2, our proposed
task involves modeling of a predefined set of N Markov chains (N ∈ {22, 23, . . . , 211}). A chain
has a unique Transition matrix Tn ∈ Rk×k associated with it, where k denotes the number of states
(k = 10, unless noted otherwise). Each row of Tn is sampled from a Dirichlet distribution, with
T[i,j] denoting the (i, j)th element of the transition matrix, i.e., the probability of transition from
state i to state j. The overall set of transition matrices is denoted Ttrain = {T1, T2, . . . , TN−1, TN}.
The data-generating process (DGP) involves first randomly selecting a matrix Tn ∈ Ttrain following
a prior p ∈ RN , and then sampling a sequence of length l = 512 from the Markov chain defined
using Tn. Overall, we note the DGP is characterized by three key hyperparameters: (i) N : the
number of chains (a measure of data diversity in this work); (ii) k: the number of states; and (iii) l:
the sequence length. See App. A.1 for further experimental details.

Model Training. We train a 2-layer Transformer (Karpathy, 2022) on sequences sampled from the
above DGP via the standard, autoregressive sequence modeling objective (see App. A.2 for model
details and hyperparameters). The sampling process is repeated every step of training, i.e., the model
is unlikely to see the same sequence twice during training (a.k.a. online training).

Evaluation. Our evaluation process involves two scenarios: In-Distribution (ID) and Out-Of-
Distribution (OOD). For ID evaluations, we select a transition matrix T ∗ from the set Ttrain, i.e.,
the transition matrices used to sample sequences for training; for OOD evaluations, we sample a

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 3: Finite Markov mixture setup captures rich phenomenology of in-context learning
(ICL). (a) KL divergence (OOD evaluation) as a function of training steps and data diversity (Num-
ber of Training Chains). (b) As the data diversity of the training data is increased (see ruby vertical
dashed line in panel (a)), we reproduce the data diversity threshold required for a ICL solution to
emerge (Raventós et al., 2023; Kirsch et al., 2022). (c) At high task-diversity regime with N = 27

(see green horizontal dashed line in panel (a)), we reproduce non-monotonic performance dynamics
in a sequence modeling setup. This phenomenon was previously reported as “transient nature of
ICL” in Singh et al. (2023). See App. F.1 for more plots from these experiments.

novel transition matrix T ∗, using again the Dirichlet prior over the row elements1. Unless mentioned
otherwise, evaluations use OOD chains. We next define a Markov chain using T ∗ and sample a se-
quence of length leval to feed as input to the trained model; unless mentioned otherwise, leval = 400.
The model then computes a probability distribution over possible next tokens given this sequence as
context. Repeating this process, we can collect pairs of last tokens from the in-context sequence and
the model’s predicted next token probabilities. This allows us to construct an empirical transition
matrix, T̂ , that denotes the model’s inferred bigram statistics based on the provided context and
the prior knowledge it may have internalized during training (e.g., Ttrain). To assess how accurate
this predicted transition matrix is, we calculate the expected KL divergence between T̂ and T ∗ by
marginalizing over the stationary state distribution of T ∗ (denoted π∗). In particular, we have

〈
KL(T̂∥T ∗)

〉
=

〈∑
i

π∗
[i]

k∑
j=1

T̂[i,j] log
T̂[i,j]

T ∗
[i,j]

〉
. (1)

2.1 REPRODUCING ICL’S PHENOMENOLOGY

We next demonstrate our proposed task reproduces several known results on ICL, yielding fertile
ground for developing a unified account of this capability. While in the main paper we present only
a few salient phenomena that are of interest to our discussion later, we refer the reader to Fig. 1 and
App. C for a more comprehensive list of captured phenomenology.

Transition via Data Diversity. In Fig. 3 (a), we present a heatmap of the KL divergence between
the model’s predicted transition matrix (T̂) and an OOD chain’s transition matrix (T ∗) as a function
of training steps (x-axis) and the number of Markov chains used to generate the training dataset
(y-axis) (See App. F.1 for ID evaluation). Similar to Raventós et al. (2023), who argue the model
transitions from a “Bayesian averaging” approach to an “in-context learning” one as the amount
of data diversity is increased, we find that given sufficient training steps, there is a sudden drop in
KL on OOD evaluations: when diversity is low, we find the model performs well on ID chains but
poorly on OOD chains; meanwhile, when diversity is high, we find the model performs well on
OOD chains as well. This phenomenon is explicitly shown in Fig. 3 (b), where we show the KL of
ID and OOD chains at 839 steps of training for different data diversity. As data diversity increases,
the ID KL slightly increases since the task gets relatively more complex. The OOD KL drops slowly
with data diversity until N = 26, where we see an abrupt decrease and for n > 26 there is nearly no
gap between the ID and OOD performance.

Transient nature of ICL. We first highlight that, given enough data diversity (n > 26), there is
always an emergence of induction heads once a critical number of training steps is reached (see
Fig. 1 (b)), similar to Edelman et al. (2024)). Fig. 3 (c) shows KL as a function of training steps at
a high data diversity (N = 27). Again, we observe the emergence of the induction head dropping

1We use the Dirichlet prior to define OOD Markov chains primarily for consistency with the training prior.
We do note that our preliminary experiments show that there are certain phases of training configuration wherein
the model generalizes to essentially arbitrary prior distributions (see App. G and Fig. 37).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 4: Proposed algorithmic solutions for the finite Markov mixture task. (a) Unigram based
Retrieval (Uni-Ret): Given a context, Uni-Ret computes a histogram of token frequencies,
then selects a transition matrix from Ttrain which produces the closest histogram. It subsequently
generates the next token from the selected transition matrix. (b) Bigram based Retrieval (Bi-Ret):
Similar to Uni-Ret, but uses observed transitions, i.e., bigrams, to select the matrix. The resulting
likelihood is much sharper, making this solution optimal for the training set. (c) Unigram Inference
(Uni-Inf): This solution infers a histogram from the given context and draws subsequent tokens
from this histogram directly. (d) Bigram Inference (Bi-Inf): This solution infers the transition
matrix from the given context and draws subsequent tokens from this transition matrix directly. This
approach achieves optimal OOD generalization. The + and − indicate the performance expected on
ID chains and OOD chains, where a + indicates better performance.

both the KL of ID and OOD chains at ∼ 6× 102 steps. Strikingly, after this drop, the KL divergence
begins to increase again, but only for OOD chains. As we show later, this behavior corresponds
to the transient nature of ICL proposed by Singh et al. (2023): the model transitions back from
using an algorithm that performs well OOD to one that performs well solely ID; the latter relies on
memorized information that is akin to what the authors call an “in-weights” solution in their work.

3 ALGORITHMIC PHASES IN FINITE MIXTURE OF MARKOV CHAINS

Having ascertained the value of our proposed task by reproducing known phenomenology, we now
aim to take a step towards developing a unified account of ICL. To this end, we must better un-
derstand how a model trained on our task performs ICL. As we show, we can identify four broad
algorithms that explain the trained model’s behavior (i.e., its next token predictions) for differ-
ent subsets of experimental configurations. We call these subsets algorithmic phases: continuous
ranges of experimental configurations where the trained model’s behavior is explainable by a prede-
fined algorithm. While we offer preliminary mechanistic evidence for these algorithms in App. E,
we do not claim the model is precisely implementing them in its components; instead, we claim
the model and our identified algorithms are in an equivalence class, such that they both produce the
same predictions for any given input, even if their precise implementations may differ.

3.1 ALGORITHMS TO SIMULATE FINITE MIXTURE OF MARKOV CHAINS

Broadly, the axes that help characterize the algorithms (see Fig. 4) are (i) what statistics of the in-
putted context are used by the model (unigram vs. bigram), and (ii) whether the approach involves a
fuzzy retrieval of the most relevant Markov chains seen during training to make the next-token pre-
diction (akin to a Bayesian averaging operation where the prior is defined over Ttrain, i.e., chains seen
during training), versus an inference of the Markov chain parameters based solely on the sequence
seen in context (akin to a Bayesian averaging operation where the prior is the Dirichlet distribution,
i.e., the distribution from which chains are sampled)2. A retrieval approach will generally achieve
better performance on ID evaluations; however, its performance on OOD evaluations will be worse,
especially with increased context length (see App. D for a detailed discussion). Below, we use πn

to denote the stationary distribution of a chain Tn and δ is the Kronecker delta.

2We note we primarily use distinct names for the two approaches for clarity, but both approaches are in fact
Bayesian inference protocols with priors that depend vs. not on Ttrain. See App. B.1 for further discussion.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Retrieval Approach. Similar to task-retrieval notions of ICL (Min et al., 2022), we define “re-
trieval” algorithms as the accumulation of some relevant statistics of the input sequence to compute
a likelihood function that depends on the Markov chains underlying our training data, i.e., Ttrain.
Specifically, the algorithm utilizing unigram statistics of the input, which we call Uni-Ret (Uni-
grams based Retrieval), uses the following likelihood function.

Unigram Likelihood: LU (Tn|x1:t) = Πt
j=1πn[xj]. (2)

where x1:t is the sequence of all states 1 to t. Meanwhile, the algorithm utilizing bigram statistics of
the input, which we call Bi-Ret (Bigrams based Retrieval), uses the following likelihood function.

Bigram Likelihood: LB(Tn|x1:t) = Πt
j=1Tn[xj−1,xj]. (3)

Given the likelihood functions above, the posterior predictive distribution to predict how likely a
given next state is can be computed as follows.

Retrieval approach: p(xt|x1:t−1) ∝
∑
n

pn L(Tn|x1:t−1) Tn[xt−1,xt]. (4)

Inference Approaches. Similar to “task-learning” notions of ICL (Raventós et al., 2023; Lu et al.,
2024), we define “inference” algorithms as the computation of relevant statistics from the inputted
sequence to infer a probability distribution over the next feasible states. The precise Markov chains
seen during training play no role in this computation (unlike the retrieval approaches discussed
above). Consequently, these algorithms exhibit no performance disparity between ID and OOD
evaluations, as they do not incorporate any information from the training dataset. Formally, one
uses either the frequency of token occurrences, i.e., the unigram distribution, or the frequency of
pairwise token occurrences, i.e., the bigram distribution, to define a transition matrix that encodes
the predicted next-token probabilities. We call the former solution Uni-Inf and the latter Bi-Inf,
denoting their transition matrices TU and TB respectively.

Uni-Inf: TU
[i,j](xt) =

∑t
k=1 δxk,j

t
; (5)

Bi-Inf: TB
[i,j](x1:t) =

1 +
∑t−1

k=1 δxk,iδxk+1,j

k +
∑t−1

k=1 δxk,i

. (6)

3.2 ISOLATING ALGORITHMIC PHASES

We now demonstrate the four algorithms proposed above delineate models trained on our task into
broad algorithmic phases based on the train / test configuration. To this end, we define the following
two evaluations protocols that assess whether the model utilizes bigram statistics and whether it
follows a retrieval approach, i.e., relies on the chains seen during training.

Assessing Bigram Utilization. We quantify a model’s reliance on bigram statistics of the sequence
shown in context by exploiting a key difference between our proposed solutions: unigram-based
methods depend solely on steady-state distributions (π∗), while bigram-based methods consider
state transitions (T ∗). Thus, to distinguish between these approaches, we can simply shuffle the
positions of all tokens in the input sequence. This perturbation preserves the stationary distribution,
but disrupts any order-sensitive information, e.g., information about bigram transitions. We can then
measure change in KL between the empirical transition matrix inferred from the model’s predicted
next-token distributions and the ground truth matrix used for sampling the sequence: a large change
would suggest the model relies on the bigram statistics to perform the task, while a small change
would indicate a unigram-based approach is at play. See App. A.3.3 for implementation details.

Proximity to a Retrieval Approach. Assessing how much a model relies on the Markov chains
seen during training, e.g., by internalizing their transition matrices (see also App. E.1), helps distin-
guish between solutions that solely leverage context statistics (Bi-Inf and Uni-Inf) and those
that do not (Bi-Ret and Uni-Ret). Motivated by this, we first sample a new set of transition
matrices, denoted Trandom, with the same number of matrices as the train set, Ttrain. We then define a
chain using a transition matrix T ∗ that does not belong to either Ttrain or Trandom. Using a sequence
sampled from this chain, we compute the empirical transition matrix T̂ based on model’s next token

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 5: Algorithmic phases. (a) Bigram Utilization: We shuffle the order of all states in a
sequence and measure the KL (Eq. 9) before and after the perturbation to quantify the bigram uti-
lization of a model. The shuffling should only affect bigram algorithms, as it preserves unigram
statistics. (b) Proximity to Retrieval: A model is labeled “closer” to a retrieval approach when
its next-token probabilities are closer to matrices seen in the training set. We evaluate this by sam-
pling an unseen set of transition matrices, and measuring if the model’s next-token probabilities
have a lower KL w.r.t. transition matrices seen in training or if it is similar to the freshly sampled
set (Eq. 11). (c) Algorithmic Phases: The product of bigram utilization and proximity to retrieval
scores delineates four distinct algorithmic phases. (d) Validating phases: KL between model’s and
predefined algorithms’ next-token probabilities confirms the validity of this phase diagram.

predictions and then check whether this matrix is closer (in terms of KL) to the set Ttrain or to the
set Trandom. If the model does not have a preference for the seen transition matrices, i.e., it is not
utilizing a retrieval approach, then T̂ should be (approximately) equally close to the two sets; else,
it should be closer to Ttrain. See App. A.3.3 for further discussion and implementation details.

Results. See Fig. 5. We find the evaluation protocols defined above clearly delineate experimen-
tal configurations into regions where the solution is (i) unigram-dependent vs. bigram-dependent,
and (ii) closer to retrieval vs. inference (Figs. 5 (a,b)). These results divide Fig. 3 into four distinct
phases, each in accordance with the four algorithms proposed in Sec. 3.1: Uni-Ret, Bi-Ret,
Uni-Inf, and Bi-Inf (see Fig. 5 (c)). Specifically, with enough training steps and a broad range
of data-diversity, we find bigram dependence starts to emerge. Meanwhile, if the data-diversity is
large (small), the model is closer to an inference (retrieval) approach. Medium data-diversity how-
ever sees an interesting learning dynamic, wherein the model starts off with a retrieval approach,
transitions to an inference approach with enough training, but then slowly rolls back to a retrieval
approach! We confirm the validity of these phases by comparing KL between the model and the
predefined algorithms’ next-token probabilities (Fig. 5 (d)). We also perform several other experi-
ments to corroborate these findings, such as providing preliminary mechanistic evidence for these
algorithms, e.g., we reconstruct transition matrices from Ttrain via MLP neurons in retrieval phases!
(see App. E), and reporting additional metrics and attention analysis in App. F.

Overall, we conclude there are (at least) four algorithmic phases in the dynamics of learning to
simulate finite mixture of Markov chains: a model uses (predominantly) one of the four algorithms
identified above to perform our task, with the experimental configuration dictating which precise
algorithm is finally used. Next, we will use these identified algorithmic solutions to better under-
stand various phenomena associated with ICL. We will especially focus on investigating the non-
monotonic nature of OOD generalization dynamics, i.e., the transient nature of ICL.

4 LINEAR INTERPOLATION OF ALGORITHMS: A COMPETITION PICTURE OF
NON-MONOTONIC GENERALIZATION DYNAMICS IN ICL

In Sec. 3, we identified four algorithms that decompose the learning dynamics of a model trained
on finite mixture of Markov chains into broad algorithmic phases. We now show these algorithms
consistently compete with each other to dictate a trained model’s behavior (Sec. 4.1), partially driv-
ing ICL’s phenomenology. Specifically, we analyze the non-montonic generalization dynamics of
ICL in Sec. 4.2 (e.g., its transient nature), and how model design (e.g., width, tokenization) affects
algorithmic phases in Sec. 4.3.

4.1 LINEAR INTERPOLATION OF ALGORITHMS (LIA)

To begin, we first show that a simple linear interpolation of the four algorithms described in Sec. 3
captures a trained model’s behavior, i.e., its next-token predictions, extremely well. Formally, let A

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 6: Linear Interpolation of Algorithms (LIA) (a) Algorithmic Phases extracted by LIA. We
color each location by combining individual colors for each algorithm weighted by their weights
wa. (b) LIA weights across checkpoints extracted using ID data for N = 26. KL of the empirical
transition matrix fit by LIA from the ground truth matrix is shown as a black dotted line. The model
KL is shown as a black solid line. Each algorithm’s KL is shown in horizontal dotted lines. The
evolution of the weights assigned to each algorithm is shown in the lower plot. (c) LIA weights
across checkpoints for N = 27. This model was trained with learned positional embeddings. See
App. F.2 Fig. 36 for the phase diagram. LIA reveals transitions of mechanisms which are seemingly
hidden due to the smooth evolution of the ID KL divergence (top panel).

denote the set of our four algorithms [Uni-Ret, Bi-Ret, Uni-Inf, Bi-Inf], then the Linear
Interpolation of these Algorithms (LIA) is identified by solving the following problem.

LIA: argmin
wa,a∈A

Ex1:t

[
pmodel(x1:t)−

∑
a∈A

wa ∗ pa(x1:t)

]2
, where

∑
a∈A

wa = 1 & wa ≥ 0. (7)

Here, pmodel and pa respectively denote the next-token predictions of the model and individual algo-
rithms from set A, given the sequence x1:t as input; meanwhile, wa denotes the weight associated
with algorithm a ∈ A in the interpolation. We optimize the interpolation weights by minimizing
Eq. 7 over multiple ID sequences x1:t, i.e., sequences sampled from Markov chains that constitute
Ttrain (see App. A.3.4 for further details). Fits are almost perfect for all settings (see App. H, Fig. 38).

Results. See Fig. 6. We run the LIA analysis for different amounts of training steps and data
diversity, hence analyzing the dynamics of how the algorithms that define phases of our trained
models evolve to dictate its behavior. Crucially, this fine-grained analysis helps us better understand
the model at different phases’ boundaries, where we find algorithms may possibly co-occur.

• Fig. 6 (a) shows that LIA qualitatively finds the same dominant algorithm in each phase as ones
illustrated in Fig. 5, where we used the bigram utilization and retrieval proximity tests.

• Fig. 6 (b) shows LIA applied across checkpoints for N = 26, a moderately high data diversity
setting. Per panel (a), this setting is the first to not have a particularly dominant Uni-Ret phase.
We see herein an intriguing dynamic occurs as the model undergoes training: since the bigram so-
lution’s KL divergence is lower, the model transitions from Uni-Inf to Bi-Inf as it undergoes
training. However, after 103 steps, we start to witness transience: the model slowly cross-overs
to utilizing the Bi-Ret solution, which performs than Bi-Inf on ID (i.e., train) sequences.

• Fig. 6 (c) finally shows that depending on experimental conditions, the order in which different
algorithms come to dominate the model can be different. For N = 27 and when using learned
positional embeddings (please see App. F.2 for further details), we show that both Bi-Inf and
Bi-Ret are delayed to long after Uni-Ret is used as a solution by the model. We emphasize
that the evolution of the ID KL, which is essentially the training loss, is smooth; however, LIA
detects interesting underlying dynamics that indicate a persistent competition between different
algorithms to supersede one another.

4.2 PREDICTING OOD PERFORMANCE WITH MECHANISTIC DECOMPOSITION

Our results above show that LIA is a useful tool to probe how a model transitions between different
algorithms to converge on a solution for the task. Next, we discuss how these transitions shape
the evolution of OOD performance, explaining the transient nature of ICL (Singh et al., 2023). We
again use LIA on the ID sequences for this analysis—we emphasize that these experiments amount

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 7: Algorithmic phase transitions drive non-monotonic OOD performance. Note that
each algorithm’s KL in colored dotted lines has changed from Fig. 6 because of the distribution
change. (a) Predicting out-of-distribution (OOD) performance corresponding to Fig. 6 (b) using
LIA weights. By applying the LIA weights fit on ID data, we predict the model’s OOD performance,
explaining the transient nature of ICL. (b) Predicting out-of-distribution (OOD) performance corre-
sponding to Fig. 6 (c) using LIA weights. By applying the LIA weights fit on ID data, we predict
the model’s OOD performance, explaining non monotonic OOD performance and sudden changes.

to predicting OOD performance of a model by merely using the ID data. See App. A.3.4 for further
explanation, and App. F for more experiments in this vein.

Results. Fig. 7 shows that the weights extracted via LIA can predict the evolution of OOD perfor-
mance during training. Fig. 7 (a, b) correspond to the models in Fig. 6 (b) and (c), but this time we
are plotting OOD performance (unlike before, when we analyzed the ID performance).

• Fig. 7 (a) shows that as the model undergoes training, the Bi-Inf solution, which generalizes
extremely well OOD, suddenly comes to dictate the model behavior. This solution is akin to
what prior work calls “task-learning” ICL, since the algorithm is entirely reliant on input context.
However, as we have seen in Fig. 6 (b), the Bi-Ret solution slowly takes over because of its
superior performance on ID sequences. This causes the OOD performance to degrade since the
Bi-Ret solution does not generalize well to OOD sequences, as seen in Sec. 3.1. We argue this
dynamic underlies the broader ICL phenomenon demonstrated by Singh et al. (2023), who claim
ICL can be transient in nature. Specifically, LIA demonstrates that an algorithm that heavily relies
on internalized knowledge of the train distribution (i.e., a retrieval solution) consistently competes
with the better OOD-generalizing algorithm. Since the former will ultimately achieve a better loss
on ID data, it slowly but steadily will supersede the better generalizing solution, manifesting as
the transient nature of ICL. See also App. C.2.1 for a further detailed analysis and discussion.
We also show in App. E that we can reconstruct transition matrices from MLP neurons after the
model returns to the Bi-Ret phase, but not in the Bi-Inf phase.

• Fig. 7 (b) shows that the emergence of Bi-Inf, which only changes the ID performance slightly,
affects the OOD performance more drastically. This demonstrates that certain changes in OOD
performances can be predicted by carefully decomposing the model’s strategy to performing a
task. This result also complements the results in (a), demonstrating that both ascents and descents
in OOD performance can be explained with algorithmic transitions on the training set.

Overall, the results above show that training dynamics of sequence modeling tasks can be thought
as a competition of algorithms on the training set; the generalization performance of the model is a
reflection of the current combination of algorithms used.

4.3 MODEL ANALYSIS USING ALGORITHMIC PHASE DIAGRAMS

The core finding of Sec. 4.2 is that algorithmic transitions characterize model behavior under differ-
ent experimental configurations. An extremely crucial component of this configuration is the precise
set of design decisions made to define the model we are training. For example, as shown in prior
work (Kirsch et al., 2022), scaling the width of the model can impact its ICL abilities. Building on
this, we now analyze the effects of model design choices on ICL, specifically evaluating the effects
of model size, data complexity, and tokenization. See App. F for more experiments.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 8: Mechanistic Phase Diagrams Explain the effects model size, data complexity, and
tokenization. (a) Phase diagram for a wider model with an embedding dimension of 256. Here, we
find that the data diversity required to observe Bi-Inf is increased to 210. (b) A decreased state
space (k = 2, decrease data complexity) enhances the retrieval solutions and causes Bi-Inf to
almost never appear. (c) Encoding the transitions into the tokens removes the Uni-Ret solution by
making it the more complex and higher train loss solution compared to Bi-Ret.

Results. See Fig. 8, which yields the following observations.

• Fig. 8 (a) shows the phase diagram when using a model with an embedding dimension of 256,
which is 4 times bigger than our baseline experiments. We observe that the data diversity required
to observe Bi-Inf is increased 16-fold. Since there is no a priori reason to believe the wider
model cannot implement the Bi-Inf solution, our conclusion is that Uni-Ret and Bi-Ret
solutions are relatively faster to appear in a bigger model, impeding Bi-Inf’s ability to succeed
in the overall competition. This finding is intuitive as a bigger model will have more parameters
to internalize the training set transition matrices.

• Fig. 8 (b) shows the case where the state space of the DGP is set to k = 2, reducing the complexity
of the data (note that this is independent of the data diversity; see App. D for a discussion). In this
case, we find that the model can easily internalize the transition matrices needed for the Bi-Ret
solution—even N = 211 chains do not allow the Bi-Inf solution to win the competition.

• Fig. 8 (c) shows the effect of expanding the token space to allow each token to represent the last
state and transition (See App. A.2 for details). This experiment is motivated to understand the
effect of a design choice (tokenization) to downstream effects. This tokenization allows the model
to be able to count transitions without a formation of a complex attention head (see App. I for a
discussion and App. A.3 for attention head visualizations), which we suspect is one of the reasons
Bi-Ret is slower to learn than Uni-Ret. As expected, we find the Uni-Ret phase disappears
in this case, since Bi-Ret is both superior on the training set and (now) the simpler solution.

Overall, our results shows that the downstream effect of design choices can be well understood at
the algorithm level. Please see App. F for additional perturbations, including positional embeddings,
model depth, and number of attention heads.

5 CONCLUSION

In this study, we introduced finite Markov mixtures as a model system of ICL which reproduces a
myriad of phenomena discovered in recent studies of ICL, hence offering a unified setting for study-
ing the concept. This setup also allowed us to write down four algorithmic solutions, each with their
peculiarities, and identify their existence in a trained model. We then decomposed trained models
into a combination of these solutions, revealing a competition dynamics between the algorithms
to dictate model behavior. These competition dynamics result in an algorithmic phase diagram of
in-context learning spanning data diversity and optimization, and can be interpreted as the model
finding the best algorithm on the training data, leading to both sudden and slow transitions towards
better solutions. These transitions of algorithms can offer insights into ICL’s phenomenology, e.g.,
offering a mechanism that leads to the transient nature of ICL (Singh et al., 2023). More broadly,
we claim our findings challenge the traditional “more is better” view of scaling laws by showing
that ICL emerges from competing algorithmic behaviors rather than a single mechanism. This in-
sight suggests a fresh perspective on how we should approach model development: instead of solely
focusing on reducing the loss through scaling, can we promote desired algorithms over competing
alternatives that may achieve lower training loss but generalize poorly? Through careful design of
data composition, model architecture, and training duration, we can potentially guide models toward
implementing more robust and generalizable algorithms.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? investigations with linear models, 2023. URL https://
arxiv.org/abs/2211.15661.

Ekin Akyürek, Bailin Wang, Yoon Kim, and Jacob Andreas. In-context language learning: Archi-
tectures and algorithms, 2024. URL https://arxiv.org/abs/2401.12973.

Suraj Anand, Michael A Lepori, Jack Merullo, and Ellie Pavlick. Dual process learning: Con-
trolling use of in-context vs. in-weights strategies with weight forgetting. arXiv preprint
arXiv:2406.00053, 2024.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection. Advances in neural information
processing systems, 36, 2024.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harm-
lessness from ai feedback. arXiv preprint arXiv:2212.08073, 2022.

Eric J Bigelow, Ekdeep Singh Lubana, Robert P Dick, Hidenori Tanaka, and Tomer D Ullman.
In-context learning dynamics with random binary sequences. arXiv preprint arXiv:2310.17639,
2023.

Blake Bordelon, Alexander Atanasov, and Cengiz Pehlevan. A dynamical model of neural scaling
laws, 2024. URL https://arxiv.org/abs/2402.01092.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Stephanie Chan, Adam Santoro, Andrew Lampinen, Jane Wang, Aaditya Singh, Pierre Richemond,
James McClelland, and Felix Hill. Data distributional properties drive emergent in-context learn-
ing in transformers. Advances in Neural Information Processing Systems, 35:18878–18891,
2022a.

Stephanie CY Chan, Ishita Dasgupta, Junkyung Kim, Dharshan Kumaran, Andrew K Lampinen, and
Felix Hill. Transformers generalize differently from information stored in context vs in weights.
arXiv preprint arXiv:2210.05675, 2022b.

Benjamin L. Edelman, Ezra Edelman, Surbhi Goel, Eran Malach, and Nikolaos Tsilivis. The evo-
lution of statistical induction heads: In-context learning markov chains, 2024. URL https:
//arxiv.org/abs/2402.11004.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,
Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and
Chris Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread,
2021. https://transformer-circuits.pub/2021/framework/index.html.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy models of superposi-
tion. arXiv preprint arXiv:2209.10652, 2022.

Shivam Garg, Dimitris Tsipras, Percy Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes, 2023. URL https://arxiv.org/abs/
2208.01066.

Gemini Team. Gemini: a family of highly capable multimodal models. arXiv preprint
arXiv:2312.11805, 2023.

11

https://arxiv.org/abs/2211.15661
https://arxiv.org/abs/2211.15661
https://arxiv.org/abs/2401.12973
https://arxiv.org/abs/2402.01092
https://arxiv.org/abs/2402.11004
https://arxiv.org/abs/2402.11004
https://arxiv.org/abs/2208.01066
https://arxiv.org/abs/2208.01066

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories, 2021. URL https://arxiv.org/abs/2012.14913.

Akhilesh Gotmare, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. A closer look at
deep learning heuristics: Learning rate restarts, warmup and distillation, 2018. URL https:
//arxiv.org/abs/1810.13243.

Dean S. Hazineh, Zechen Zhang, and Jeffery Chiu. Linear latent world models in simple transform-
ers: A case study on othello-gpt, 2023. URL https://arxiv.org/abs/2310.07582.

Tom Henighan, Shan Carter, Tristan Hume, Nelson Elhage, Robert Lasenby, Stanislav Fort,
Nicholas Schiefer, and Christopher Olah. Superposition, memorization, and double descent.
Transformer Circuits Thread, 6:24, 2023.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Jesse Hoogland, George Wang, Matthew Farrugia-Roberts, Liam Carroll, Susan Wei, and Daniel
Murfet. The developmental landscape of in-context learning, 2024. URL https://arxiv.
org/abs/2402.02364.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied reasoning through
planning with language models. arXiv preprint arXiv:2207.05608, 2022.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Andrej Karpathy. nanogpt. https://github.com/karpathy/nanoGPT, 2022.

Louis Kirsch, James Harrison, Jascha Sohl-Dickstein, and Luke Metz. General-purpose in-context
learning by meta-learning transformers. arXiv preprint arXiv:2212.04458, 2022.

Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of mathe-
matical statistics, 22(1):79–86, 1951.

Kenneth Li, Aspen K Hopkins, David Bau, Fernanda Viégas, Hanspeter Pfister, and Martin Wat-
tenberg. Emergent world representations: Exploring a sequence model trained on a synthetic
task. In The Eleventh International Conference on Learning Representations, 2023a. URL
https://openreview.net/forum?id=DeG07_TcZvT.

Shuai Li, Zhao Song, Yu Xia, Tong Yu, and Tianyi Zhou. The closeness of in-context learning
and weight shifting for softmax regression, 2023b. URL https://arxiv.org/abs/2304.
13276.

Yingcong Li, M Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transformers as al-
gorithms: Generalization and implicit model selection in in-context learning. arXiv preprint
arXiv:2301.07067, 2023c.

Ziqian Lin and Kangwook Lee. Dual operating modes of in-context learning, 2024. URL https:
//arxiv.org/abs/2402.18819.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. arXiv preprint arXiv:1908.03265,
2019.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically ordered
prompts and where to find them: Overcoming few-shot prompt order sensitivity. arXiv preprint
arXiv:2104.08786, 2021.

12

https://arxiv.org/abs/2012.14913
https://arxiv.org/abs/1810.13243
https://arxiv.org/abs/1810.13243
https://arxiv.org/abs/2310.07582
https://arxiv.org/abs/2402.02364
https://arxiv.org/abs/2402.02364
https://github.com/karpathy/nanoGPT
https://openreview.net/forum?id=DeG07_TcZvT
https://arxiv.org/abs/2304.13276
https://arxiv.org/abs/2304.13276
https://arxiv.org/abs/2402.18819
https://arxiv.org/abs/2402.18819

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yue M Lu, Mary I Letey, Jacob A Zavatone-Veth, Anindita Maiti, and Cengiz Pehlevan. Asymptotic
theory of in-context learning by linear attention. arXiv preprint arXiv:2405.11751, 2024.

Arvind Mahankali, Tatsunori B. Hashimoto, and Tengyu Ma. One step of gradient descent is
provably the optimal in-context learner with one layer of linear self-attention, 2023. URL
https://arxiv.org/abs/2307.03576.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? arXiv
preprint arXiv:2202.12837, 2022.

Neel Nanda, Andrew Lee, and Martin Wattenberg. Emergent linear representations in world models
of self-supervised sequence models, 2023. URL https://arxiv.org/abs/2309.00941.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context learning and induction heads, 2022. URL https://arxiv.org/
abs/2209.11895.

OpenAI. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.

Jane Pan, Tianyu Gao, Howard Chen, and Danqi Chen. What in-context learning ”learns” in-context:
Disentangling task recognition and task learning, 2023. URL https://arxiv.org/abs/
2305.09731.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library, 2019.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789, 2023.

Allan Raventós, Mansheej Paul, Feng Chen, and Surya Ganguli. Pretraining task diversity and the
emergence of non-bayesian in-context learning for regression, 2023. URL https://arxiv.
org/abs/2306.15063.

Gautam Reddy. The mechanistic basis of data dependence and abrupt learning in an in-context
classification task, 2023. URL https://arxiv.org/abs/2312.03002.

Aaditya K. Singh, Stephanie C. Y. Chan, Ted Moskovitz, Erin Grant, Andrew M. Saxe, and Felix
Hill. The transient nature of emergent in-context learning in transformers, 2023. URL https:
//arxiv.org/abs/2311.08360.

Aaditya K. Singh, Ted Moskovitz, Felix Hill, Stephanie C. Y. Chan, and Andrew M. Saxe. What
needs to go right for an induction head? a mechanistic study of in-context learning circuits and
their formation, 2024. URL https://arxiv.org/abs/2404.07129.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding, 2023. URL https://arxiv.org/abs/
2104.09864.

William L. Tong and Cengiz Pehlevan. Mlps learn in-context on regression and classification tasks,
2024. URL https://arxiv.org/abs/2405.15618.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023.

13

https://arxiv.org/abs/2307.03576
https://arxiv.org/abs/2309.00941
https://arxiv.org/abs/2209.11895
https://arxiv.org/abs/2209.11895
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2305.09731
https://arxiv.org/abs/2305.09731
https://arxiv.org/abs/2306.15063
https://arxiv.org/abs/2306.15063
https://arxiv.org/abs/2312.03002
https://arxiv.org/abs/2311.08360
https://arxiv.org/abs/2311.08360
https://arxiv.org/abs/2404.07129
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2405.15618

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent. In International Conference on Machine Learning, pp. 35151–35174. PMLR, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny
Zhou. Chain of thought prompting elicits reasoning in large language models. arXiv preprint
arXiv:2201.11903, 2022.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. arXiv preprint arXiv:2111.02080, 2021.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

APPENDIX

CONTENTS

1 Introduction 1

2 Problem Setup: Simulating a Finite Mixture of Markov Chains 3

2.1 Reproducing ICL’s phenomenology . 4

3 Algorithmic Phases in finite Mixture of Markov chains 5

3.1 Algorithms to simulate finite mixture of Markov chains 5

3.2 Isolating Algorithmic Phases . 6

4 Linear Interpolation of Algorithms: A Competition Picture of Non-Monotonic Gener-
alization Dynamics in ICL 7

4.1 Linear Interpolation of Algorithms (LIA) . 7

4.2 Predicting OOD performance with mechanistic decomposition 8

4.3 Model Analysis Using Algorithmic Phase diagrams 9

5 Conclusion 10

A Experimental Details 17

A.1 Data Generating Process . 17

A.2 Training Details: Model & Optimization . 18

A.3 Evaluation Details . 19

A.3.1 KL Divergence . 19

A.3.2 Estimating Transition Matrices . 19

A.3.3 Bigram Utilization and Retrieval Proximity 19

A.3.4 Linear Interpolation of Algorithms . 20

A.4 Learning curves . 20

B More About Solutions 22

B.1 Inference Approaches are “Bayesian” with a relaxed prior 22

B.2 Unigram Posterior Solutions . 22

C Phenomenology of In-Context Learning: Summary of reproduced results and im-
proved understanding 23

C.1 List of phenomena we reproduce . 23

C.2 Improved understanding of ICL: Insights into Transience and effects of model scaling 24

C.2.1 Transient Nature of In-Context Learning 24

C.2.2 ICL and Model-Size Scaling . 24

C.2.3 Effects of Model-Size Scaling, Revisited 25

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

D High Dimensional Distances 27

E Mechanistic Analysis 28

E.1 Reconstructing Markov Chains from MLP Neurons in Retrieval Phases 28

E.2 Dynamics of Memorization . 30

E.2.1 Superposition of neurons with increase in data diversity 30

E.3 Attention Maps: Implementing Inference approaches 33

E.4 Attention Pattern Evolution Corroborates LIA . 36

E.4.1 Validating LIA: Attention heads in different phases 36

E.4.2 Validating LIA: Attention heads at phase boundaries 38

F Additional Results 40

F.1 Additional plots from the main experiments . 40

F.1.1 High Quality Version of Fig. 1 subplots 40

F.1.2 KL Divergence Heatmaps . 41

F.1.3 KL Divergence vs. {Steps, Diversity, Context} 42

F.1.4 KL divergence between the model and solutions 45

F.2 Architecture Changes . 46

G Generalization to chains from a different prior 47

H Further validation of LIA 48

H.1 Does LIA fit the model well? . 48

H.2 Robustness of LIA to arbitrary algorithms . 49

I Importance of sequence-space structure to study transformers 51

J Discussion and Future Directions 52

K Code Availability 52

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A EXPERIMENTAL DETAILS

A.1 DATA GENERATING PROCESS

The Data Generating Process (DGP) is defined by 3 crucial hyperparameters:

1. k: The number of states in the Markov chain, fixed to 10 unless mentioned otherwise.

2. l: The length of the sequence generated, fixed to 512 unless mentioned otherwise.

3. N : The number of training matrices, N ∈ {22, 23, . . . , 211} for the main experiments.

The set of Markov chains used for training is constructed by drawing N transition matrices. We
draw each row of each transition matrix from a Dirichlet distribution with parameter 1k. We index
individual transition matrices via a subscript, i.e., Tn and use square brackets to index the matrix
elements, e.g., T[i,j]. Thus, the next state probability is p(xt+1 = j|xt = i) = T[i,j]. The probability
of selecting a chain is also drawn from a Dirichlet distribution with parameter 1N . We denote this
prior as pn in equation Eq. 4, although its precise values did not yield any interesting effects in our
experiments. To generate data, we first choose a transition matrix from the prior probability pn,
define a Markov chain with that transition matrix, and then sample a sequence of length l.

Each transition matrix Tn naturally defines a single stationary distribution we denote as πn. We
draw the first state from this stationary distribution to initialize a sequence. By definition, this
distribution should remain the same when moving forward in the chain, i.e., it satisfies the relation
πn = Tnπn; we calculate the stationary distribution analytically from this relation. Please see the
function get stationary distribution in the code snippet below.

To make the dataset clear we attach a minimal PyTorch (Paszke et al., 2019) implementation. We
generated this code with the help of GPT4o (OpenAI, 2024). The code is for clarity only and is not
optimized for speed or compatibility.

1 import torch
2 from torch.utils.data import IterableDataset
3 import numpy as np
4

5 class MarkovChainDataset(IterableDataset):
6 def __init__(self, k, l, n, seed=None):
7 self.k = k # Number of states
8 self.l = l # Output sequence length
9 self.n = n # Number of transition matrices

10 self.seed = seed # Seed for reproducibility
11

12 if seed is not None:
13 np.random.seed(seed)
14 torch.manual_seed(seed)
15

16 # Generate n transition matrices, each with k states
17 self.transition_matrices = []
18 for _ in range(n):
19 matrix = np.array([np.random.dirichlet([1] * k) for _ in

range(k)])
20 self.transition_matrices.append(matrix)
21

22 # Prior distribution over transition matrices
23 self.prior = np.random.dirichlet([1] * n)
24

25 def get_stationary_distribution(self, matrix):
26 # Compute the stationary distribution of the transition matrix
27 eigvals, eigvecs = np.linalg.eig(matrix.T)
28 stationary = np.real(eigvecs[:, np.isclose(eigvals, 1)])
29 stationary = stationary[:, 0]
30 stationary /= stationary.sum()
31 return stationary
32

33 def sample_chain(self, transition_matrix):

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

34 # Sample the first state from the stationary distribution
35 stationary_distribution = self.get_stationary_distribution(

transition_matrix)
36 first_state = np.random.choice(self.k, p=stationary_distribution)
37

38 # Generate the sequence
39 sequence = [first_state]
40 for _ in range(1, self.l):
41 current_state = sequence[-1]
42 next_state = np.random.choice(self.k, p=transition_matrix[

current_state])
43 sequence.append(next_state)
44

45 return sequence
46

47 def __iter__(self):
48 while True:
49 # Choose a transition matrix based on the prior
50 matrix_index = np.random.choice(self.n, p=self.prior)
51 chosen_matrix = self.transition_matrices[matrix_index]
52

53 # Generate a sequence using the chosen transition matrix
54 sequence = self.sample_chain(chosen_matrix)
55 yield torch.tensor(sequence)
56

57 # Example usage:
58 # k = 3 (states), l = 10 (sequence length), n = 5 (transition matrices),

seed = 42
59 dataset = MarkovChainDataset(k=3, l=10, n=5, seed=42)
60 iterator = iter(dataset)
61

62 # Get a sample sequence
63 sample_sequence = next(iterator)
64 print(sample_sequence)#e.g. tensor([8, 8, 9, 5, 3, 4, 8, 8])

Listing 1: Markov Mixtures Data Generating Process

A.2 TRAINING DETAILS: MODEL & OPTIMIZATION

Model Architecture We train a Transformer model with softmax attention (Vaswani et al., 2023)
on sequence data generated by the DGP described above in Sec. A.1. We adapted code from
nanoGPT (Karpathy, 2022), and implemented Rotational Positional Embedding (RoPE) (Su et al.,
2023) instead of the default learning positional embedding, which significantly delayed the emer-
gence of Bi-Inf. Further discussion about these results are in App. F.2. All matrix weights are ini-
tialized as N (0, 0.02) except residual projections which are initialized as N (0, 0.02/

√
2 ∗Nlayer).

All biases are initialized as zero. The embedding layers for Sec. F.2 are initialized from N (0, 0.02).
We trained our models on NVIDIA A100 80 GB GPUs, running 5 experiments in parallel on the
same GPU, and hence yielding a wallclock time of 3.5 hours.

Tokenization We tokenize each state as a single token. Since we do not have task tokens or
separator tokens, the model is trained on k tokens. The only exception is the transition encoding
tokens experiments in in Sec. 4.3 and Fig. 8, where we include the last transition into all tokens.
In this case, we define k2 + k tokens where k2 tokens are used to represent all transitions while k
tokens are used only to indicate the first state, for which the last transition is not defined.

Optimization We trained the model above using sequences from the DGP in Sec. A.1 with an
autoregressive next-token prediction cross-entropy loss. We used the AdamW optimizer (Loshchilov
& Hutter, 2019) with learning rate 6 × 10−4. We kept the estimated FLOPs constant to 1 × 1016,
where we estimate the compute by 6DN (D denotes the number of tokens seen during training and
N denotes the number of model parameters). This compute estimate is not proportional to wall time,
especially since we operate with small models, but are kept for consistency when scaling the model

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

in order to normalize for faster optimization of bigger models (Kaplan et al., 2020; Hoffmann et al.,
2022; Bordelon et al., 2024). See App. C.2.3 for further details on scaling. Using a batch size of
128 resulted in a training of 107978 steps. Changing the batch size to 64 or 256 had no significant
changes to results to the best of our knowledge. We experimented with a learning rate warmup and
cooldown, sometimes pointed out to be crucial (Liu et al., 2019; Gotmare et al., 2018), but found no
significant difference.

A.3 EVALUATION DETAILS

A.3.1 KL DIVERGENCE

We compute the Kullback-Leibler divergence (Kullback & Leibler, 1951) between a model or a
method’s predicted probabilities and the GT probabilities from a transition matrix rows to quantify
performance. We draw an evaluation transition matrix T ∗ from either the training set or the Dirichlet
prior respectively to quantify the ID and OOD performance. Given sequences drawn from T ∗, we
estimate the transition matrix T̂ inferred by either a model checkpoint or one of the two retrieval
approaches proposed in Sec. 3.1 (which depend on the context). Given this T̂ , the average KL
divergence for a distribution of transition matrices T is then quantified by:〈

KL(T̂∥T ∗)
〉
T∗∈T

=

〈∑
i

π∗
[i]

k∑
j=1

T̂[i,j] log
T̂[i,j]

T ∗
[i,j]

〉
T∗∈T

. (8)

A.3.2 ESTIMATING TRANSITION MATRICES

To estimate a transition matrix, we need sequences which end with all states in the state space, so
that every row of the estimates transition matrix T can be filled. Thus, for each context length,
we generate k sequences which end with the states 1 to k. The exact way the estimated transition
matrices T̂ for the model and the methods are computed is as follows.

• T̂Model: We draw k sequences from T ∗ ending in states from 1 to k, controlling for the
desired context length leval (= 400, unless mentioned otherwise). Given a sequence ending
with a certain state, xt = i, we can evaluate the next state probability p(xt+1 = j|x1:t) by
a forward pass through the model and taking the softmax of the logits to obtain an estimate
of the matrix element T̂ [i, j] for all i simultaneously. We iterate this process for all last
states j ∈ [1, · · · k] to estimate the whole transition matrix.

• T̂Uni-Ret: We use the same procedure to draw evaluation sequences as above, and use Eq. 2
and Eq. 4 to estimate the next state probability.

• T̂Bi-Ret: We use the same procedure to draw evaluation sequences as above, and use Eq. 3
and Eq. 4 to estimate the next state probability.

• T̂Uni-Inf: We use equation Eq. 5 to estimate the transition matrix directly.

• T̂Bi-Inf: We use equation Eq. 6 to estimate the transition matrix directly.

We repeat this process nrep = 30 times for statistical power. For ID evaluations, we choose T ∗ from
the training set Ttrain using the task prior pn defined in App. A.1. For OOD evaluations, we draw
each row of T ∗ directly from the Dirichlet distribution as seen in App. A.1.

A.3.3 BIGRAM UTILIZATION AND RETRIEVAL PROXIMITY

We quantify Bigram Utilization and Retrieval Proximity using the following procedure:

Bigram Utilization We quantify Bigram Utilization as described in the main text: we shuffle the
context and measure the increase in KL. We normalize this value by the stationary KL divergence
given by simply predicting the stationary distribution over the whole training set.

Utilization = clip

(〈
KL(T̂ Shuffled

model ||T ∗)−KL(T̂model||T ∗)

KL(T ∗
Stationary||T ∗)

〉
, 0, 1

)
(9)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

where <> is an ensemble average over different samples of ID sequences, T̂ Shuffled
model is the model es-

timated transition matrix when we shuffle all states in the context randomly, and T ∗
Stationary describes

the transition matrix corresponding to the perfect stationary solution, i.e.,

T ∗
Stationary[i,j] = π∗

j . (10)

Proximity to a Retrieval Approach We quantify proximity to a retrieval approach by constructing
a set of transition matrices, denoted Trandom, with the same number of matrices as the training set. If
a model has no bias towards the training set, T̂model inferred from a sequence drawn from T ∗ (which
itself has no bias towards the training set) should be closer to Trandom with 50% chance, and thus
the expected value of the fraction in Eq. 11 should be unity, yielding null proximity. If the model
generates a sequence precisely from one of the training set matrices, the demoninator will vanish
yielding unity proximity.

Proximity = clip

(〈
1− minT∈Ttrain KL(T ||T̂model)

minT∈Trandom KL(T ||T̂model)

〉
, 0, 1

)
(11)

<> is an ensemble average over different samples of ID sequences.

A.3.4 LINEAR INTERPOLATION OF ALGORITHMS

Recalling the main text, we defined LIA as:

LIA: argmin
wa,a∈A

Ex1:t

[
pmodel(x1:t)−

∑
a∈A

wa ∗ pa(x1:t)

]2
, where

∑
a∈A

wa = 1 & wa ≥ 0. (12)

where we are interested in extracting wa from the model output probabilities and individual algo-
rithm’s probabilities. The positivity constraint exists so that methods can not destructively compen-
sate. We used the squared error in probability space instead of, e.g. KL divergence, since we found
similar results when the fit was successful, while avoiding numerical subtleties.

In practice, we used 300 independent chains to optimize for LIA and find the method weights. To
use the method weights for OOD prediction, we simply apply:

LIA prediction: ppred(x1:t) =
∑
a∈A

wa ∗ pa(x1:t) (13)

where x1:t is the context sequence.

A.4 LEARNING CURVES

Fig. 9 shows the learning curves (loss) and ID / OOD KL divergence through training. The data is
the same as in Fig. 3, but shown as a plot.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 9: Online Training loss, ID KL divergence and OOD KL divergence We show the loss
and the ID/OOD KL divergence. a) The next-token cross entropy loss averaged over the whole
sequence. At high data diversity, we find a sudden loss drop with the formation of an induction
head. After loss drops, sometimes we find a slower further decrease of the loss. We have shown
that this dynamics is behind the transient nature of ICL. b) In-Distribution KL divergence. The ID
KL divergence is monotonically decreasing as expected. This is a simple re-parametrization of the
loss. c) Out-of-Distribution KL divergence. The OOD KL divergence simply rises for low data
diversity (See Sec. D) while it suddenly drops for high data diversity. However, we find that this
drop can be transient, as discussed in Sec. 2.1 and explained in Sec. 4.2.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

B MORE ABOUT SOLUTIONS

B.1 INFERENCE APPROACHES ARE “BAYESIAN” WITH A RELAXED PRIOR

The inference approaches, i.e., Uni-Inf and Bi-Inf, can be interpreted as a Bayesian inference
operation with a relaxed hypothesis space. This relaxed hypothesis space is the infinite dimensional
space of all transition matrices drawn from a Dirichlet distribution. This relaxed prior is in fact
required to set up the Uni-Inf and Bi-Inf transition matrices, since without it some matrix
elements will be strictly zeros for small context length (specifically, for unobserved transitions).
This interpretation thus sets a prior distribution so that all transition matrix elements are non-zero
even if a transition is not observed. This can be seen by setting the second term of the numerator
to zero in Eq. 6. The solution is still Bayesian, but only has a “memory” of the distribution of
transition matrices and not the distribution of the sequences itself (i.e., the precise transition matrices
seen during training). However, we expect the context dependent part of Eq. 5 and Eq. 6 to very
quickly dominate the estimate of T as we increase the context, hence yielding a Frequentist solution.
Specifically, this can be seen in the distributional OOD example in Fig 37, where the context is drawn
from a distribution extremely far from the Dirichlet prior.

B.2 UNIGRAM POSTERIOR SOLUTIONS

Other than the four algorithms discussed in the main text (see Sec. 3), we formalized two more
algorithms but found that they did not significantly contribute to the model explanation in the linear
combination of algorithms analysis. Thus we focused our analysis on the four solutions in the main
text. Nevertheless, we describe these two solutions and their properties here.

Unigram Posterior Retrieval. This algorithm is similar to Uni-Ret in Sec. 3.1, however it draws
the next token from the stationary distribution corresponding to the chosen training set chain. This
algorithm is expected to be less expressive than Uni-Ret, but we nevertheless observe a small
contribution from it (overlapping with Uni-Inf), especially at high N . This is expected as a
large number of N can easily span the full distribution of stationary distributions from a Dirichlet
distributed transition matrix.

Bigram Posterior Retrieval. This algorithm is similar to Bi-Ret in Sec. 3.1, however it draws the
next token from the stationary distribution corresponding to the chosen training set chain. Although
the likelihood is sharper than unigram posterior retrieval, exactly the way Bi-Ret’s likelihood
is sharper than Uni-Ret, this algorithm is again not expressive due to the nature of its output
distribution.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

C PHENOMENOLOGY OF IN-CONTEXT LEARNING: SUMMARY OF
REPRODUCED RESULTS AND IMPROVED UNDERSTANDING

C.1 LIST OF PHENOMENA WE REPRODUCE

We first provide a short summary of ICL phenomenology we reproduce in this work.

1. Emergence of Non-Bayesian ICL with data diversity: Prior work exploring linear regression
tasks shows that ICL performance drastically improves on OOD data with increase in data di-
versity Raventós et al. (2023); Kirsch et al. (2022); Lu et al. (2024). In specific, Raventós et al.
(2023) shows that there is a threshold needed for a “non-Bayesian” ICL to emerge. Here, we
reproduce this data diversity threshold in We reproduce this phenomena as seen in Fig. 1 (a),
Fig. 3 (a,c) and Fig. 27 (a). We show that this transition happens because of an “inference” ap-
proach (see Sec. 3.2) becoming better than the available “retrieval” approach at this data diversity,
echoing the results of Lu et al. (2024). Furthermore we show that in order to observe this tran-
sition we need a certain optimization threshold to be reached before a Bayesian circuit (Bi-Ret)
dominates. We also show that this threshold can further increase with more optimization – the
transpose effect of the transient nature of ICL.

2. Formation of induction heads and variants: Induction heads are a specialized attention head
that help infer next-token predictions in a context-conditioned manner Elhage et al. (2021); Ols-
son et al. (2022); Reddy (2023); Edelman et al. (2024); Akyürek et al. (2024). Often, there is
a sudden loss drop that correlates with induction head formation, and we find consistently find
this drop occurs in our results with training time: this drop, in fact, is the cause of sudden tran-
sition from unigram to bigram dependence in the model. We reproduce this phenomena as seen
in Fig. 1 (b), Fig. 3 (a,c) and Fig. 27 (b). Interestingly, we find that data-diversity has almost no
effect to the formation of this circuit. In App. J, we discuss that this transition is likely an “Opti-
mization Limited Emergence” as opposed to the Bi-Inf vs. Bi-Ret transition which is mostly data
limited.

3. Transient Nature of In-Context Learning: Recently researchers have found that ICL can be
transient during pre-training Singh et al. (2023); Anand et al. (2024). In this work we show that
this happens when a solution performing better on the training set emerges later in optimization,
likely due to its complexity. We reproduce this phenomena when there is enough data diversity
to allow Bi-Inf to emerge before Bi-Ret is implemented, largely between N = 25 and N = 210.
This is demonstrated in Fig. 1 (c), Fig. 27 (c). See also Fig. 10) for a direct comparison with
Singh et al. (2023).

4. Task Retrieval to Task Learning transition: Researchers have classified the operation of ICL
as either “task retrieval” or “task learning” (Min et al., 2022; Pan et al., 2023). To this end, such
papers explore effects of, e.g., shuffling next-token predictions in few-shot tasks and finding that
one can still achieve almost similar performance as the scenario when exemplars are matched
with the correct labels (Min et al., 2022; Lu et al., 2021). In our work, the unigram retrieval
approach to ICL captures this phenomenon: since shuffling the tokens does not affect stationary
distribution of a sequence, we can retrieve the relevant transition matrix regardless of the states
being matched to next-state transitions with the correct probabilities. In other words, in context
learning performance might not need correct labels if the circuitry to correctly use the question-
answer relation has not developed during training. We show that this happens in our setting
when the model is under-trained and thus the bigram circuit has not formed yet (see Fig. 5 a).

5. Early Ascent: Early ascent describes the phenomena where the error/risk on an ICL task initially
increases before decreasing. This phenomena is empirically observed in Xie et al. (2021) while
Lin & Lee (2024) suggests an explanation with the linear regression setting. In this work, we
show that this phenomena can be reproduced when training with an intermediate data diversity
N = 25 chains with sufficient optimization to enable Bi-Ret to dominate at small context length.
In these settings, the model uses a context length dependent superposition of Bi-Ret and Uni-Inf,
as seen in Fig. 1 (e), Fig. 27 (e).

6. Bounded Efficacy: Bounded efficacy of biased label ICL is observed empirically in Min et al.
(2022) and coined as a term in Lin & Lee (2024). In this work, we show that this happens when
the model’s algorithm is a superposition of a retrieval solution and an inference solution, as seen
in Fig. 1 (f), Fig. 27 (f). In this case, at short context length the model mostly uses Uni-Ret,

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

and thus retrieving the right task even though the context is shuffled (biased labels) while at long
context length it uses Bi-Inf, thus inferring a wrong transition matrix

C.2 IMPROVED UNDERSTANDING OF ICL: INSIGHTS INTO TRANSIENCE AND EFFECTS OF
MODEL SCALING

We highlight two specific insights on understanding ICL drawn from our experiments: the dynamics
of transience and the effects of model size scaling.

C.2.1 TRANSIENT NATURE OF IN-CONTEXT LEARNING

We reproduce the transient nature of ICL in Fig. 10, making a clear comparison to Singh et al.
(2023). Then, applying LIA (see Sec. 4.1), we find a precise dynamic that underlies transience: an
algorithm that performs better on the training set (and hence ID), but perhaps is more complex to
represent, slowly and steadily comes to dominate the algorithm that performs well OOD. This yields
severe performance degradation on OOD data and leads us to the conclusion: if the best solution on
the training set is one that does not generalize OOD, but is slowly learned due to learning signal
from the training loss, ICL can be transient. We also find an interesting memorization dynamic
underneath this result. Specifically, as we show in App. E, we can find neurons which are responsible
for encoding specific state transitions (i.e., they have low KL divergence with respect to transition
probabilities) in the Bi-Ret phase of learning in Fig. 10, but not in the Bi-Inf phase of learning!

Figure 10: Explaining the Transient Nature of In-Context Learning Our setup and LIA allows a
clear understanding of the transient nature of In-Context Learning. a,b) are panels from Singh et al.
(2023). a) shows that the training loss slowly decreases after a initial drop. b) shows that during
the slow drop of training loss the ICL accuracy decreases. c) We find the same phenomenology in
our experiments. The ID KL divergence, directly related to the model’s loss (see App. A.4), slowly
decreases after an initial drop. Our setup has two initial drops due to the formation of induction
heads. d) Just like b), we find a performance loss (KL increase) in the OOD evaluations during the
slow decrease of ID KL. We have a very clear explanation to this phenomena in the panels below.
The ID KL decreases as the Bi-Ret solution, optimal on the training set, slowly replaces Bi-Inf.
This change causes the OOD performance to degrade.

C.2.2 ICL AND MODEL-SIZE SCALING

Kirsch et al. (2022) analyzed Transformer models trained to meta-learn, i.e., to learn tasks in-context
(aka ICL). Therein, the authors run experiments by changing the model size and find that bigger
models can develop a “General Purpose ICL” solution. Here, we produce similar results, as shown in

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Fig. 11. However, on further investigation, we found evidence that our results are confounded by the
faster learning speed of bigger models (Kaplan et al., 2020; Hoffmann et al., 2022; Bordelon et al.,
2024). We thus properly normalized the training by FLOPs, as shown in the next subsection,
and found no model scale dependent emergence. We believe this finding also explains the results
by Kirsch et al. (2022), i.e., we claim their results are confounded by lack of FLOPs-normalization!

Figure 11: Effect of Model Scaling? We find results similar to Kirsch et al. (2022), where we
observe both a data diversity and model size threshold. a) Figure from Kirsch et al. (2022). b) OOD
KL depending on model scale, when training for 10000 steps. However, we believe that these results
are caused by keeping the number of steps constant and not FLOPs. See Sec. C.2.3.

C.2.3 EFFECTS OF MODEL-SIZE SCALING, REVISITED

As argued above in App. C.2.2, we found a model size threshold to ICL emergence. However, here
we refute our own findings (and hence those of Kirsch et al. (2022)). To this end, we study the
effects of model-size scaling at the algorithmic phase diagram level (see Sec. 3).

Effects of equi-FLOPs training while varying model size. First, we train models with equal
estimated FLOPs, calculated as 6DN (Hoffmann et al., 2022), where D is the number of to-
kens passed through the model and N is the number of parameters in the model. This results
in a much bigger wall-time for smaller models as they will run for vastly more steps. However,
we proceed with this normalization for an analogy to real systems where training is bottlenecked
by actual GPU compute unlike our smallest models. The resulting phase diagrams for widths of
{32, 48, 64, 96, 128, 192, 256} are shown in Fig. 12. Generally, we find that Bi-Inf, the gener-
alizing ICL solution, is in fact suppressed up to higher data diversity. This is well aligned with
the intuition that bigger models have more memorization capacity and thus develop a memorizing
solution more easily.

Effects of equi-FLOPs training while varying model size. Next, we construct a diagram spanning
data diversity and model width, and show it for different amount of FLOPs. This result is shown
in Fig. 13. We now see that the effect of model size threshold for Bi-Inf is entirely removed! In
fact, smaller models are more robust at developing the Bi-Inf solution given the same amount of
FLOPs. This highlights that normalizing for FLOPs and steps can yield very different qualitative
conclusions about the role of model scaling for ICL.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Figure 12: Algorithmic Phase diagrams depending on model width We show algorithmic phase
diagrams as we increase the model’s embedding dimension from 32 to 256. Larger models seem to
enhance the memorization solutions.

Figure 13: Algorithmic Phases spanning data diversity and model scale. We see the algorith-
mic phases of models depend on data diversity and their width. We find that smaller models form
Bi-Inf solution more efficiently, when properly normalizing for FLOPs.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

D HIGH DIMENSIONAL DISTANCES

At first glance, it could be confusing why a retrieval approach would perform worse with more
context on OOD chains. Both retrieval approaches discussed in the main paper (see Sec. 3) achieve a
lower KL on ID sequences when given more context, as they can determine the transition matrix with
higher precision, i.e., sharper likelihood. However, not only their performance on OOD sequences
is worse in general, the KL becomes higher with more context. This can be confusing, as even
for OOD sequences they are still choosing the “closest” transition matrix—a process that should
become precise with increasing context.

This counterintuitive result originates from properties of distances in higher dimensions. Fig. 14
compares the KL of a freshly drawn T ∗ to the distributional mean and the nearest neighbor from a
big set of draws, representing the training set. In 2 dimensions, as seen in Fig. 14 (a), it is clear that
the nearest neighbor will be closer to a novel draw compared to the distributional mean. However
in higher dimensions, it is increasingly the case that the distance to the distributional mean is closer
than the nearest neighbor. We quantify this in Fig. 14 (b,c,d) using 30 different seeds. For different
values of N , i.e., number of Markov chains in training data, we find consistently that as k increases,
the KL to the distributional mean increases much more moderately than the nearest neighbor KL.
This is the reason why a retrieval approach could perform worse with more context: as more context
is added, a retrieval approach chooses a transition matrix with a higher precision. However, as
seen from the tests in Fig. 14, choosing the nearest neighbor transition matrix is in fact worse than
averaging over all transition matrices seen in training uniformly.

Figure 14: High Dimensional Distances We show that the distance of a point to the nearest
neighbor within a set of points increases faster than the distance to the distributional mean as the
dimension increases. (a) Schematic of the distances. In 2 dimensions, it is much more intuitive to
think that the nearest neighbor of a set of points is closer than the distributional mean. (b, c, d)
However, we show that in higher dimensions the nearest neighbor distance increases quickly while
the distributional mean stays relatively constant. This relation is only mildly affected by changes in
the number of elements in the nearest neighbor pooling set (n).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

E MECHANISTIC ANALYSIS

In this section, we perform a preliminary mechanistic analysis to provide further evidence for the
claims from main paper. Specifically, we perform the following experiments.

• Reconstructing Markov Chains from MLP Neurons in Retrieval Phases. In Sec E.1, we
attempt to directly retrieve the transition matrices of Markov chains used during training by ana-
lyzing the MLP weights of the model, demonstrating successful retrieval in low diversity settings.

• Dynamics of Memorization. In Sec E.2, we quantify the extent to which individual neurons
memorize transition matrices by measuring the minimum KL divergence between neuron outputs
and in-distribution transitions across training, showing greater memorization in retrieval phases.

• Attention Maps: Aggregating Context Statistics. In Sec E.3, we further visualize attention
maps to infer the specific algorithms implemented by the model during different training phases.

• Attention Maps’ Evolution Corroborates LIA. In Sec E.4, we investigate the evolution of
attention maps throughout training, finding evidence for shifts in algorithms predicted by LIA.

E.1 RECONSTRUCTING MARKOV CHAINS FROM MLP NEURONS IN RETRIEVAL PHASES

In Sec. 3.2, we claim that for certain experiment configurations, the model relies on a fuzzy re-
trieval approach to perform the finite mixture of Markov chains task. Specifically, this corresponds
to the phases wherein the model is involved in the Uni-Ret and Bi-Ret algorithms. To pro-
vide further evidence towards these algorithms explaining model behavior in these phases, we try
to reconstruct the Markov chains seen during training (denoted Ttrain in the main paper) from its
internals—specifically, from the MLP neurons. This analysis builds on the approach for knowledge
localization by Geva et al. (2021).

Model Setup. Based on our analysis in Sec. 4.1, we know that fully trained models with data di-
versities N = 22 and N = 26 should possess a mechanism that is behaviorally equivalent to the
Bi-Ret algorithm; meanwhile, for N = 211, the model should implement something akin to the
Bi-Inf solution. Ideally, this implies, we can reconstruct the Markov transition matrices used to
generate training sequences directly from the model weights in the retrieval phases, whereas for
inference-based phases we should yield less accurate (if any) reconstructions. Note the reconstruc-
tions may still be feasible in the inference-based phases since the model generally arrives at them
after going through a retrieval-based phase.

Approach. In the following, we use the term neuron to refer to an entry in the second fully con-
nected layer of an MLP of the second (i.e., last) Transformer block. For each neuron, we compute
its next-token distribution (called neuron output) by applying the final LayerNorm, multiplying by
the Unembedding matrix, and applying a Softmax. We then randomly sample a Markov chain seen
during training, and compare the rows of its transition matrix to neuron outputs. We then select the
neurons with the smallest KL divergence to form a row in the “reconstructed matrix”.

Results. We provide visualizations of the reconstructions in Fig. 15. Note that the Markov chains
are redefined for different experiments, and hence the transition matrices targeted for reconstruction
are different for different experimental settings. To assess the accuracy of the reconstruction more
quantitatively, we also report the average KL divergence between the reconstructed and the targeted
ground truth transition matrix, averaging over 100 randomly selected rows from different transition
matrices.3 We also report the average KL between the stationary distributions of a randomnly sam-
pled chain’s transition matrix and its reconstruction (see Table 1). To contextualize these quantitative
experiments, we report two baselines as well.

1. Random model’s ability to reconstruct a transition matrix: We take a randomly initialized model
and report the KL it achieves when trying to reconstruct a transition matrix.

2. Trained model’s ability to reconstruct an unseen transition matrix: We take a trained model,
sample an unseen transition matrix, and analyze whether we can reconstruct such an unseen

3Performing this analysis over all seen matrices can be prohibitively expensive, requiring analysis of as
many as 20480 transitions, and hence we focus on only 100 randomly-sampled transitions instead of all seen
matrices.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

matrix. Since a random model’s neurons are likely to be arbitrary in their weights, we believe
this baseline offers a more meaningful comparison.

Figure 15: Reconstructing Markov Chains from Neuron Weights. We show that transitions from
Markov chains seen in training (left column) can be directly reconstructed from neuron weights
(right column). As expected, results are especially good in low data diversity settings (top row).
Reconstructions in the medium data-diversity are structurally sound (more or less the same tran-
sitions have highest probability mass as ground truth), but the precise magnitudes are off (middle
row). Meanwhile, the reconstructions for high data-diversity are quite poor, barely capturing the
structure of the transition matrix and almost uniformly spread magnitudes (bottom row).

Table 1: Reconstruction similarities for ID and OOD transitions.
Category Avg KL Stationary KL
Random model 0.34 0.30
Seen chains
N = 22 0.09 0.09
N = 26 0.11 0.11
N = 211 0.17 0.17
Unseen chains
N = 22 0.17 0.16
N = 26 0.13 0.13
N = 211 0.18 0.22

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

E.2 DYNAMICS OF MEMORIZATION

In the previous section, we posthoc analyze trained models to assess signatures of memorization.
We now perform this analysis over time, hence yielding the dynamics of memorization.

Approach. To demonstrate that neurons store transition matrices as part of retrieval solutions, we
evaluate their outputs for both in-distribution and out-of-distribution transitions. Specifically, we
repeat the analysis from previous section across time: we randomly select 100 in-distribution state
transitions from the training data (sampling chains and transitions with replacement) and compute
the outputs of all neurons in the second MLP layer. For each transition, we identify the neuron with
the minimum KL divergence from the target transition distribution and record the average minimum
KL across all 100 transitions. This process is repeated at every training checkpoint.

Baseline. As a baseline, we apply the same procedure to 100 unseen transitions. Additionally, we
create a second baseline by sampling 256 random vectors (matching the number of neurons in the
MLP layer) from Dirichlet distributions with α = 1. For each of these random vectors, we compute
the minimum KL divergence with the 100 in-distribution transitions. This baseline assesses whether
the observed neuron behaviors reflect structured learning of training-specific distributions or merely
random mappings.

Results. As shown in Fig. 16, neurons closely align with the specific transitions observed during
training in lower data diversity settings. This is especially the case when the model enters the
Bi-Ret phase, where the KL from seen transitions starts to substantially diverge from that of
unseen transitions. This pattern partially shows up for medium data diversity N = 26, consistent
with LIA’s prediction that the model continues to perform bigram retrieval. However, for large data
diversity N = 211, the neurons show greater dissimilarity to the training transitions compared to
random transitions, suggesting that the model is no longer memorizing transitions in this regime.

E.2.1 SUPERPOSITION OF NEURONS WITH INCREASE IN DATA DIVERSITY

In Sec. 3, we claim models in high data diversity scenarios rely on inference-based algorithms.
Consequently, as data-diversity increases and the ability to rely on a retrieval approach goes down,
we hypothesize that predicting the correct next-token distribution likely requires a complex linear
combination of neuron outputs. If this were not the case, we would need to scale the number of
neurons in proportion with data diversity to witness a retrieval based solution. To circumvent this,
the model then likely represents transitions across several neurons—akin to the superposition effects
discussed by, e.g., Henighan et al. (2023); Elhage et al. (2022).

Results. To quantitatively investigate the hypothesis, we analyze neuron activity across different
data diversity regimes. As shown in Fig 17a, the distribution of neuron activity is sharply concen-
trated in lower data diversity regimes and is smoother as data diversity increases (with the most
active distribution observed at data diversity 211). This supports our hypothesis that representations
are distributed across neurons. In panel (b), we examine linear combinations of neuron outputs and
their similarity to the ground truth transition. Neurons are first sorted by their GeLU activations
on in-distribution samples. For the k-th linear combination, the top k neuron outputs are aggre-
gated, weighted by their respective GeLU activations, and summed to form a composite output. Our
findings reveal that as data diversity increases, more neurons are required to reconstruct the ground
truth transition. This suggests that higher data diversity leads the model to adopt more distributed
representations, providing more support for our hypothesis.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

(a)

(b)

(c)

KL
 D

iv
er

ge
nc

e

Al
go

rit
hm

 P
ro

ba
bi

lit
y

KL
 D

iv
er

ge
nc

e
KL

 D
iv

er
ge

nc
e

Al
go

rit
hm

 P
ro

ba
bi

lit
y

Al
go

rit
hm

 P
ro

ba
bi

lit
y

Training Step

Figure 16: Memorization as Training Progresses. Minimum KL of transitions from training and
neuron outputs, averaged across 100 randomly selected transitions. a) N = 22. b) N = 26. b)
N = 211. Lower data diversity settings display much greater degree of similarity with training
transitions than higher data diversity settings. Both data diversity 22 and 26 perform retrival

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

(b)(a)
Sorted Neuron Ranking # of Neurons in Linear Comb.

M
ea

n
G

eL
U

 A
ct

iv
at

io
n

M
ea

n
KL

 w
ith

 G
T

Tr
an

si
tio

n

Figure 17: Neural Activity Across Increasing Data Diversities. a) Sorted GeLU activations of
neurons, normalized by their maximum activation, are shown for increasing levels of data diversity.
In the Bi-Ret regime, significantly fewer neurons are active compared to the Bi-Inf regime.
b) Similarity of linear combinations of top neuron outputs to the ground truth transition. As data
diversity increases, a larger number of neurons are required to reconstruct the correct ground truth
transition.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

E.3 ATTENTION MAPS: IMPLEMENTING INFERENCE APPROACHES

We visualize attention maps to provide further evidence for our algorithmic solutions. Specifically,
we train a model with a single attention head to avoid the ambiguity of choosing the most relevant
attention head for model behavior or an algorithm being implemented over different heads. While
in this section we focus on only a single value of data-diversity (N = 26), in App. E.4, we will show
the effects of data-diversity as a function of number of iterations, contextualizing the results in light
of different algorithmic phases to provide evidence in support of the validity of LIA.

Analysis of first layer’s attention head. Fig. 18 shows the first layer attention matrix when a
context sequence is input to the model. This model is trained using N = 26 training chains, and the
dominant algorithm changes from Uni-Inf to Bi-Inf to Bi-Ret.

• Fig. 18 (a) shows that the attention map is uniform at model initialization.
• Fig. 18 (b) shows the attention pattern at step 189, corresponding to a Uni-Inf solution. Each

position attends to most tokens in the context, enabling a frequency count. This is consistent
with the hypothesis that the model is simply computing the unigram distribution.

• Fig. 18 (c) shows the attention pattern at step 855, corresponding to a Bi-Inf solution according
to our analysis in Sec. 3. Each position attends almost only to the previous token. This is a
characteristic of an induction head (Elhage et al., 2021; Olsson et al., 2022; Edelman et al.,
2024; Akyürek et al., 2024) for copying or gathering statistic from a context. This is consistent
with the hypothesis that the model is performing a statistical induction to enable computation of
the bigram statistics, as theoretically characterized by Edelman et al. (2024).

• Fig. 18 (d) shows the attention pattern at step 110133, corresponding to a Bi-Ret solution. Each
position now attends to the previous token and partially the current token. This is consistent with
the hypothesis that this head is forwarding transitions to upper layers of the model, where upper
layers are expected to count them.

Analysis of second layer’s attention head. Fig. 19 shows the second layer attention maps for the
same sequence input as in Fig. 18.

• Fig. 19 (a) shows the uniform attention at initialization.
• Fig. 19 (b) shows that the attention pattern for Uni-Inf is mostly uniform, again consistent

with the hypothesis that it computes a histogram. Note that it is unclear as of yet how much of
the histogram computation is delegated to layer 1 or 2.

• Fig. 19 (c) shows that the second layer attention pattern for the model performing Bi-Inf is
consistent with our hypothesis. We draw a red cross wherever the query state matches the previ-
ous state of the key state. These red crosses precisely overlap where the attention pattern peaks:
alongside the first layer head, this head combines to form the induction head as in Edelman et al.
(2024).

• Fig. 19 (d) Interestingly, the second layer attention again becomes uniform as the model drifts
from Bi-Inf to Bi-Ret. This is again consistent with the hypothesis that the first layer at-
tention presents transitions into the residual stream so that the second layer attention can count
these transitions.

By visualizing the attention patterns, we find that the observed patterns are consistent with how we
would expect the 2 layer transformer model to implement the solutions in Sec. 3.1. While these
results are strongly suggesting our algorithms are implemented, causality experiments (Nanda et al.,
2023; Li et al., 2023a; Hazineh et al., 2023) or attention patching could help confirm these results in
the future.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Figure 18: First layer attention maps from the N = 26 run. We visualize the first layer attention
maps from different points in the checkpoint. Each query is normalized by the maximal value present
in the row for visualization purposes. The title shows the number of training steps elapsed as well as
the dominant strategy at the checkpoint. a) The attention map at initialization. The attention pattern
is mostly uniform. b) The attention map during Uni-Inf. The attention map attends to most tokens
in the context. c) The attention map during Bi-Inf. The attention pattern clearly implements an
induction head, where the first layer attends to the previous token xt−1 and thus provides potential
to copy the current token xt given the same token as xt−1 appears. d) The attention map during
Bi-Ret. The attention pattern develops non-zero values for the diagonal entries. This suggests
that this head might be combining information from two subsequent tokens for it to be available for
the next layer to use. We trained a model with a single attention head to avoid the ambiguity of
choosing the most relevant attention head for model behavior or an algorithm being implemented
over different heads.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Figure 19: Second layer attention maps from the N = 26 run. We visualize the second layer
attention maps from different points in the checkpoint. Each query is normalized by the maximal
value present in the row for visualization purposes. The title shows the number of training steps
elapsed as well as the dominant strategy at the checkpoint. a) The attention map at initialization.
The attention pattern is mostly uniform. b) The attention map during Uni-Inf. The attention map
attends to most tokens in the context. c) The attention map during Bi-Inf. The red crosses are
locations where we find that the query state matches the previous state of the key state. We find
that the attention pattern clearly implements this logic. d) The attention map during Bi-Ret. The
attention pattern is again mostly uniform.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

E.4 ATTENTION PATTERN EVOLUTION CORROBORATES LIA

Our analysis of MLP neurons in App. E.1, E.2 helps provide mechanistic evidence in support of
retrieval-based approaches by demonstrating the memorization of Markov chains seen during train-
ing. Meanwhile, the analysis in App. E.3 demonstrates different attention head patterns that provide
evidence for unigram vs. bigram strategies, especially ones that finally aid an inference-based algo-
rithm. These analyses thus demonstrate the model possesses components necessary for implement-
ing four of our identified algorithms. We now contextualize these results by analyzing the evolution
of attention heads for different data-diversity values as the model makes its way through different
algorithmic phases, providing evidence for LIA’s validity. To this end, we first plot results at points
where the model is in different algorithmic phases, and then when the model is at the phase bound-
aries, where, if LIA is an accurate methodology, we would expect a simple linear interpolation of
attention maps from different phases would approximately match the actual attention head retrieved
from running a forward pass on the model.

E.4.1 VALIDATING LIA: ATTENTION HEADS IN DIFFERENT PHASES

Figs. 20, 21, and 22 show attention maps for different data diversities and different checkpoints—
specifically, checkpoints that correspond to particular phases in the learning dynamics. As we can
see, LIA effectively predicts algorithmic shifts in the model across training steps and data diversi-
ties. For N = 26, the model transitions from an induction head configuration to a bigram statistical
pattern, consistent with the prediction that it relies on an inference-based solution (Fig. 21). Simi-
larly, for N = 22, the model begins using bigram statistics only when in the bigram retrieval state
(Fig. 20). Finally, for N = 211, the model demonstrates induction behavior in the bigram inference
state, which was not evident earlier (Fig. 22).

(a)

(b)

(c)

Algorithm ProbabilitiesLayer 1 Layer 2

Training StepKey IndexKey Index

Q
ue

ry
 In

de
x

Q
ue

ry
 In

de
x

Q
ue

ry
 In

de
x

Figure 20: Attention Maps At Key Checkpoints Across Training For N = 22. a) Training
checkpoint with maximal likelihood of Uni-Inf according to LIA. b) Training checkpoint with
maximal likelihood of Uni-Ret according to LIA. c) Training checkpoint with maximal likelihood
of Bi-Ret according to LIA.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

(a)

(b)

(c)

Algorithm ProbabilitiesLayer 1 Layer 2

Training StepKey IndexKey Index

Q
ue

ry
 In

de
x

Q
ue

ry
 In

de
x

Q
ue

ry
 In

de
x

Figure 21: Attention Maps At Key Checkpoints Across Training For N = 26. a) Training
checkpoint with maximal likelihood of Uni-Inf according to LIA. b) Training checkpoint with
maximal likelihood of Bi-Inf according to LIA. c) Training checkpoint with maximal likelihood
of Bi-Ret according to LIA. A red × indicates the position after previous occurrences of the
current tokens during Bi-Inf.

(a)

(b)

Algorithm ProbabilitiesLayer 1 Layer 2

Training StepKey IndexKey Index

Q
ue

ry
 In

de
x

Q
ue

ry
 In

de
x

Figure 22: Attention Maps At Key Checkpoints Across Training For N = 211. a) Training
checkpoint with maximal likelihood of Uni-Inf according to LIA. b) Training checkpoint with
maximal likelihood of Bi-Inf according to LIA. A red × indicates the position after previous
occurrences of the current tokens during Bi-Inf.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

E.4.2 VALIDATING LIA: ATTENTION HEADS AT PHASE BOUNDARIES

We next want to explore the model’s mechanisms when LIA predicts the dominant algorithm is
changing. Figs. 23, 24, and 25 show that the attention patterns during these states appear to inter-
polate between those observed when LIA predicts each algorithm as the most likely. For instance,
during the transition from bigram inference to bigram retrieval, the attention pattern resembles an
interpolation of the two.

To validate this observation, we manually interpolate between the attention patterns of the last two
algorithms the model implements during training across data regimes. As shown in Fig 26,the
interpolated attention maps are highly correlated with the ground truth attention maps, supporting
the hypothesis that the model transitions between the algorithms at this point.

(a)

(b)

Algorithm ProbabilitiesLayer 1 Layer 2

Training StepKey IndexKey Index

Q
ue

ry
 In

de
x

Q
ue

ry
 In

de
x

Figure 23: Attention Maps At Predicted Transition Points For N = 22. a) First predicted
transition checkpoint according to LIA. b) Second predicted transition checkpoint according to LIA.

(a)

(b)

Algorithm ProbabilitiesLayer 1 Layer 2

Training StepKey IndexKey Index

Q
ue

ry
 In

de
x

Q
ue

ry
 In

de
x

Figure 24: Attention Maps At Predicted Transition Points For N = 26. a) First predicted
transition checkpoint according to LIA. b) Second predicted transition checkpoint according to LIA.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

(a)

Algorithm ProbabilitiesLayer 1 Layer 2

Training StepKey IndexKey Index

Q
ue

ry
 In

de
x

Figure 25: Attention Maps At Predicted Transition Points Across Training For N = 211.

(b)

(c)

(a)

Figure 26: Attention Interpolation. Manually interpolating between attention patterns correspond-
ing to different algorithms closely matches the attention patterns observed during training when
the model is predicted to be transitioning between these algorithms. This supports the hypothesis
that the model is implementing these two algorithms during training. (a) N = 22 (b) N = 26 (c)
N = 211

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

F ADDITIONAL RESULTS

F.1 ADDITIONAL PLOTS FROM THE MAIN EXPERIMENTS

In this section, we visualize our main experiments in a more detailed manner. Specifically, we first
show a high quality version of the subplots in Fig. 1. Next, we show 2D and 3D heatmaps of KL
divergence on OOD vs ID sequences. Third, we show different slices our of experiment to show
the evolution of the KL divergence as we change the optimization steps, data diversity, and context
length independently. Finally, we directly evaluate the KL divergence between the model and each
solution to verify our findings in Sec. 3.2 and Sec. 4.1.

F.1.1 HIGH QUALITY VERSION OF FIG. 1 SUBPLOTS

We reproduce the small subplots of Fig. 1 here in Fig. 27. The color of every subplot corresponds to
their algorithmic phases, except (d), where the color represents OOD KL divergence. Each plot has
other fixed axes annotated. These 6 subplots corresponds to the 6 phenomena discussed in App. C.1.

Figure 27: Subplots of Figure 1 We reproduce the subplots of Figure 1 here for visibility. a) Data
diversity threshold (Raventós et al., 2023); b) Emergence of induction heads (Edelman et al., 2024);
c) Transient nature (Singh et al., 2023); d) Task retrieval and task learning phases (Min et al., 2022);
e) Early ascent of risk (Xie et al., 2021); and f) Bounded efficacy (Lin & Lee, 2024).

Fig. 27 (a). We reproduce the data diversity threshold (Raventós et al., 2023), where a certain num-
ber of task (here 26) is required for the model to learn an optimally OOD-generalizing ICL solution
(Bi-Inf). Note that we selected the checkpoint with the best OOD performance throughout train-
ing.

Fig. 27 (b). We reproduce the emergence of induction heads (Edelman et al., 2024), where the model
transitions from Uni-Inf to Bi-Inf.

Fig. 27 (c). We reproduce the transient nature of ICL (Singh et al., 2023; Hoogland et al., 2024),
where an OOD-generalizing solution (Bi-Inf) is learned, but disappears with more training as a
retrieval solution (Bi-Ret) slowly replaces it.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Fig. 27 (d). We reproduce the findings on Task Retrieval vs Task Learning. Please see App. C.1 for
a detailed discussion.

Fig. 27 (e). We reproduce the Early Ascent phenomena where a small amount of exemplars harm
the ICL performance. This has been observed in Xie et al. (2021). Our explanation is from the
phase diagram. The model implements Bi-Ret for small context length and this causes a wrong
task retrieval, as explained in App. D. This lost performance is recovered as the model performs
Uni-Inf when more context is given.

Fig. 27 (f). We reproduce bounded efficacy shown in (Min et al., 2022; Lin & Lee, 2024). When we
shuffle labels, an analogy to the perturbation in Min et al. (2022), the OOD KL first decreases since
it finds roughly the right algorithm via Uni-Ret. However with more context the Bi-Inf strategy
kicks in, and as the model learns transitions from a wrong context, the KL does not improve (and in
fact slightly increases). This is similar to the explanation of bounded efficacy in Lin & Lee (2024).

F.1.2 KL DIVERGENCE HEATMAPS

In Fig. 28, we show a 3D plot of the KL divergence for ID sequences and OOD sequences. We find
that the ID KL always decreases with less data diversity (since the task is simpler), more context
(more information), and with more training. OOD KL divergence, on the other hand, shows non-
monotonicity in two axes: steps and context. Especially, with more optimization steps the OOD
KL divergence shows up-down non-monotonicity (24, similar to double descent), down-up non-
monotonicity (n = 26, transient ICL) and up-down-up non-monotonicity (n = 23, explained by 3
mechanisms).

Figure 28: 3D heatmap of ID/OOD KL divergence. (left) KL divergence on ID sequences. (right)
KL divergence on OOD sequences.

In Fig. 29 (a), we show the ID KL corresponding to Fig. 3. We find that the ID KL divergence drops
with the induction head formation for high data diversity, but drops earlier for lower data diversity.
We explain this by a Uni-Ret solution developing for small data diversity, as seen in Sec. 4.1.
Fig. 29 (b) is equivalent to Fig. 3 (a). Fig. 29 (c) shows the difference between the ID KL and the
OOD KL, clearly highlighting regions where the model follows a retrieval approach.

Fig. 30 illustrates the ID and OOD KL divergence depending on context size and optimization steps
for N = 24, a low data diversity. Fig. 30 (a) shows that the ID KL divergence always decreases
with more context and more training. Fig. 30 (b) shows that unlike the ID KL, the OOD KL has
an ascent and decent in both optimization steps and context size. As we increase the concext size
at step=26357, we find that the KL divergence first rises before falling. This is precisely the early
ascent phenomenon Xie et al. (2021). Fig. 30 (c) shows the difference between the ID KL and the
OOD KL, clearly highlighting regions where the model follows a retrieval approach.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

Figure 29: KL divergence depending on data diversity and optimization. a) ID KL divergence.
b) OOD KL divergence. c) Excess KL divergence on OOD sequences.

Figure 30: KL divergence depending on context size and optimization steps for N = 24. a) ID
KL divergence. b) OOD KL divergence. c) Excess KL divergence on OOD sequences.

Fig. 31 illustrates the ID and OOD KL divergence depending on context size and optimization steps
for N = 26, a medium data diversity. Fig. 31 (a) shows that the ID KL divergence again always
decreases with more context and more training. The only qualitative difference from Fig. 30 (a) is
that there is a much sharper evolution near step ∼ 6×102. Fig. 31 (b) shows that the OOD KL shares
this drop, but only to increase KL again as the training proceeds. This is exactly the transient nature
of ICL revisited. Fig. 31 (c) shows the difference between the ID KL and the OOD KL, highlighting
regions where the model follows a retrieval approach.

Figure 31: KL divergence depending on context size and optimization steps for N = 26. a) ID
KL divergence. b) OOD KL divergence. c) Excess KL divergence on OOD sequences.

F.1.3 KL DIVERGENCE VS. {STEPS, DIVERSITY, CONTEXT}

Recall that we showed model’s ID and OOD KL divergence vs. N at 839 steps of training in Sec. 2.1
(Fig. 3 (b)). This specific value was used as a representative setting as it clearly demonstrates the data
diversity threshold “inference” solutions to emerge. For completeness, we now show similar plots
for different number of training steps Fig. 32. Additionally, we plot the four different solutions’ ID
and OOD KL divergence as well. We can clearly observe the transition from Uni-Inf to Bi-Inf
for high N , while, at low N , the ID and OOD KL divergences split because of retrieval solutions.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

Figure 32: KL vs. N at fixed step. We show the effect of data diversity at fixed number of gradient
steps. We plot the model’s KL divergence with respect to ground truth for both ID and OOD chains
in black. We also plot the ID and OOD KL for each of the 4 solutions. Note that while the solutions’
expected KL divergence is, in theory, smooth, we estimate them numerically from Eq. 5 and Eq. 6
over 30 transition matrices, thus resulting in some noise. In each plot, the number of training steps
is fixed, as denoted in the title, and the KL divergence is averaged over a context size of 400 and
over 30 random transition matrices.

Recall also that we showed the model’s ID and OOD KL divergence for N = 27 in Sec. 2.1
(Fig. 3 (c)). This value was chosen as a representative setting since it clearly demonstrates the
transient nature of ICL. However, for completeness, we show similar plots for many different values
of in Fig. 33. Again, we plot the four different solutions’ ID and OOD KL divergence as well. We
can clearly see the emergence of Bi-Inf and the transient nature driven by Uni-Ret or Bi-Ret.
Notable phenomena we observe are as follows.

1. Panel (a): We observe a very robust Bi-Ret solution for N = 22, a very low data diversity.
2. Panel (c): We observe a highly non-monotonic OOD KL divergence for N = 25, a medium

data diversity.
3. Panels (d, e): We observe at high data diversity N = 26, 28 the transient nature of ICL.

Specifically, the model first finds the Bi-Inf solution and then moves to a retrieval solu-
tion which harms the OOD KL.

4. Panel (f): At a very high data diversity (N = 211), we observe that the Bi-Ret solution
does not show up (at least not noticeably) within the compute budget.

We show both the ID and OOD KL divergence of the model and different solutions at fixed N , step,
and across context length in Fig. 34. Each subplot is marked on the phase diagram. We find that,
as expected, the model’s KL divergence, both ID and OOD, follows that of the dominant solution in
each phase. Notably, the agreement with Bi-Inf is very strong.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

Figure 33: KL vs. Steps at fixed N . We show the effect of optimization at each fixed data diversity,
N . We plot the model’s KL divergence with respect to ground truth for both ID and OOD chains in
black. We also plot the ID and OOD KL for each of the 4 solutions in horizontal colored lines. In
each plot, the data diversity N is fixed, as denoted in the title, and the KL divergence is averaged
over a context size of 400 and over 30 random transition matrices.

Figure 34: KL vs. context size at fixed N and step. We show the effect of context size at fixed data
diversity N and gradient steps. We plot the model’s KL divergence with respect to ground truth for
both ID and OOD chains. We also plot the ID and OOD KL for each of the 4 solutions. As explained
in Fig. 32, the solution KLs have a noise contribution. In each plot, the data diversity N and the
number of training steps are fixed, as denoted in the title, and the KL divergence is averaged over 30
random transition matrices. In the left side of the figure, we show where in the phase diagram each
of these plots live in.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

F.1.4 KL DIVERGENCE BETWEEN THE MODEL AND SOLUTIONS

In Fig. 35, we show the KL divergence between the algorithmic solutions and the model es-
timated transition matrix. First, we find that KL

(
T̂Model||T̂Solution

)
quantified in Fig. 5 and

KL
(
T̂Solution||T̂Model

)
in Fig. 35 are very similar. As discussed in Sec. 3.2, we again find that all

four solutions indeed show a small KL divergence from the model exactly where we expect them
to from Fig. 5 (c). These findings further confirms our findings in Sec. 3.2 and Sec. 4.1 are indeed
accurate characterizations of the model’s behavior.

Figure 35: KL divergence between algorithmic solutions and the model. We quantify the KL
divergence of each algorithmic solution from the model estimate of the transition matrix, across
optimization steps and data diversity. We find nearly identical low KL regions as in Fig. 5 (d). The
axes are same as in Fig. 5.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

F.2 ARCHITECTURE CHANGES

Similarly to our analysis in Sec. 4.3, we analyze the effect of different architectural changes to the
algorithmic phase diagram. These results are shown in Fig. 36.

Figure 36: Algorithmic Phase diagrams for different architectures. Results with a Transformer
using a) learned positional embeddings; b) a single attention head; c) using 16 attention heads; d)
using an MLP fan-out ratio of 0.25; and e) using an MLP fan-out ratio of 16.

Fig. 36 (a) shows results when using a learned positional embedding. A learned positional embed-
ding significantly biases the learning dynamics towards the Uni-Ret algorithm. We suspect that
this is because the formation of a precise induction head for Bi-Ret (See App. E.3) is more difficult
with learned positional embeddings without passing through an intermediate Uni-Ret solution. As
a result, the observed data diversity threshold is increased from 26 to 28.

Fig. 36 (b,c) shows the phase diagram when using, respectively, a single head and 16 heads. We
originally expected that more heads would be able to support more solutions simultaneously and a
single head will yield sharper transitions. However this did not result in a significant phase diagram
change. We speculate that multiple algorithms can exist within one head by dividing up the residual
stream’s subspace (similar to the argument by Elhage et al. (2021); Olsson et al. (2022)). An inter-
esting future direction is to mechanistically analyze the checkpoints after the emergence of Bi-Inf
but where Bi-Ret dominated to find out if the Bi-Inf circuit still exists but is unused.

Fig. 36 (d,e) shows the phase diagram when changing the MLP fan-out ratio (from the default of 4)
to 0.25 or 16. Our prior hypothesis was that MLP layers carry memorization (Geva et al., 2021). This
experiment validated our findings. Reducing the MLP layers hidden dimension width significantly
suppressed Uni-Ret and Bi-Ret, resulting in Bi-Inf available with 25 chains only. On the
other hand, increasing the hidden dimension to 16 caused the run with N = 26 to never show
Bi-Inf, as the “memorizing” retrieval solutions are promoted.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

G GENERALIZATION TO CHAINS FROM A DIFFERENT PRIOR

In the main experiments, we generally drew the test matrix T ∗ from the same Dirichlet prior gener-
ating the training set. As discussed in App. A.1 and App. D, this evaluation is already OOD, since
the Dirichlet prior is only shared between the matrices and not the sequences themselves. However,
here we verify that our OOD-generalizing solutions can indeed go far out of their training distribu-
tions. In particular, we design a context which is highly unlikely to be drawn from a Dirichlet prior
and evaluate different model checkpoints.

Fig. 37 illustrates these results. We fed in a context consisting of a repeating pattern of 0, 1, 2 and
we generate a sequence from the model. We generate the sequence with zero temperature, i.e., select
the state with the highest predicted probability. We visualize the next token probability as a pixel
value intensities. For a model implementing mostly the Uni-Inf strategy, we find, as expected, a
stationary distribution not depending on the last token, and thus not evolving. However, when the
model is in the Bi-Inf phase, we find that the model can learn in-context to generate this totally
out-of-distribution chain. Finally, when the model is implementing mostly Bi-Ret, the model
implements a completely different chain, which is the training set chain having the most similar
transitions. The model now generates a different sequence. We find that the non-linear evolution of
accuracy is reproduced here again, as we see the next token accuracy to rise to 100% when Bi-Inf
is implemented only to fall back to 1/3 when Bi-Ret takes over.

Figure 37: Testing a model’s ability to generalize far out of the training distribution. We feed
a completely out of distribution sequence to the model that consists of repeats of 0, 1, 2. The left
side shows the sequence and the right side shows the output probabilities for different settings. We
generate tokens with temperature T=0.0, and continue to show next-token probabilities conditioned
on the generated tokens. (Top) We find that the model in the Uni-Inf dominant phase indeed
implements a unigram solution. (Middle) We find that the model in the Bi-Inf dominant phase
learns the transition pattern in the context successfully to generate an adequate sequence. The accu-
racy rises accordingly. (Bottom) As the pre-training phase is continued, the Bi-Inf solution gets
wiped out by the Bi-Ret solution as seen in Sec. 4.1. We find that the model now selects the best
Markov chain in the training data, and thus generates a different sequence, resulting in an accuracy
drop.

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

H FURTHER VALIDATION OF LIA

H.1 DOES LIA FIT THE MODEL WELL?

Fig. 6 and Fig. 7 showed that the linear interpolation of algorithms from Sec. 3 (i.e., LIA) achieves
similar performance as the trained model: the empirical transition matrix identified from either
systems yields similar ID KL, and in fact LIA predicts the trained model’s OOD performance fairly
accurately. Here, we show that in fact both the trained model and LIA produce similar predictions
by comparing them to each other.

Figure 38: Residual L2 of LIA fit. We show the residual probability space L2 (the argument of
argmin in Eq. 7) for the LIA fit shown in Fig. 6. Note the color-scale, which is much smaller than
the order of magnitude of probability vectors, which is unity.

Figure 39: KL divergence between the model and LIA fit. (Left) KL divergence between model
predictions and LIA across data diversity and optimization. (Right) KL divergence between LIA
and model predictions across data diversity and optimization.

L2 distance between model and LIA predictions. The L2 or Euclidean distance between the
trained model and LIA predictions defines the optimization problem used to define weights in LIA
(see the argument of argmin in Eq. 7). To demonstrate LIA identifies an interpolation of algo-
rithms that in fact does minimize this distance, we report the residual (i.e., excess error) from this
optimization problem. Results are shown in Fig. 38 across different settings of data diversity and
optimization. We clearly see that the residual is consistently low across all settings—specifically,
on the order of 10−3. Note that since the target of this optimization problem is a probability vector
(i.e., its elements sum to 1), this low order of an error clearly demonstrates LIA solves the problem
almost perfectly in most settings. Moreover, we note that the landscape of this residual error is quite
intriguing: the slightly high error (which is still very low in an absolute sense; around ∼ 0.005)
occurs at the phase boundaries! This suggest that the models very slightly deviate from a linear
combination during transitions, but the nonlinear effects are relatively ignorable.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

KL between model and LIA predictions. We also show the KL divergence of the model predic-
tions to the ones predicted by LIA (and vice-versa) in Fig. 39. While Fig. 6 is already suggestive that
LIA fits the model’s predictions accurately, these KL divergence plots give yet another quantitative
validation of the results alongside our L2 / Euclidean distance plots in Fig. 38. In particular, we
again find the KL is very low in regions we ascribed to precise phases in our analysis in Sec. 3;
meanwhile, the phase boundaries have some (very minimal) deviation from linearity.

H.2 ROBUSTNESS OF LIA TO ARBITRARY ALGORITHMS

Does LIA give rises to phases even when the solutions are arbitrary? In Sec. 4.1, we used
Linear Interpolation of Algorithms (LIA) to demonstrate that we can decompose the model’s next
token probability into a linear combination of the probability predicted from the four algorithms.
Here we conduct two simple experiments to assess the robustness of these findings. In Fig. 40 we
perform LIA for the same model used in Fig. 6 (a), but with 4 arbitrary solutions, described in the
figure caption. We do not see the algorithmic phases seen in Fig. 6 (a) and each solution’s weight
remains largely constant throughout model training.

Figure 40: Applying LIA with 4 arbitrary solutions LIA is optimized with 4 arbitrarily chosen
solutions (a) weight for the first solution, which outputs a next state probability using a frozen
transition matrix drawn from the Dirichlet prior. (b) weight for the second solution, which outputs
a next state probability using a frozen stationary distribution drawn from the Dirichlet distribution.
(c) weight for the third solution, which outputs a 0.2 probability for even states and 0.0 probability
for odd states. (d) weight for the fourth solution which outputs a 1.0 probability for state 0 and 0.0
otherwise.

Are the same algorithmic phases extracted from LIA when arbitrary solutions are mixed with
algorithmic solutions? In Fig. 41, we combine the 4 arbitrary solution with the 4 solutions de-
scribed in the main text. We find that the 4 algorithmic solutions indeed show high weight in the
same way as in Fig. 6 (a). The 4 arbitrary solutions get assigned a near zero weight everywhere.
These experiments in Fig. 40 and Fig. 41 confirms that LIA extract meaningful phases only when
the solutions are indeed relevant to the task and the model.

Figure 41: Applying LIA with the 4 algorithmic solutions and 4 arbitrary solutions (a) weight
for Uni-Ret. (b) weight for Bi-Ret. (c) weight for Uni-Inf. (d) weight for Bi-Inf. (e, f, g,
h) weights corresponding to, respectively, solutions (a, b, c, d) in Fig. 40.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

Are the 4 solutions a good basis to explain the trained model? We have also quantified whether
the four algorithmic solutions actually constructs a good basis to explain the model throughout
training. In Fig. 42, we compare the KL difference between the model and LIA when applying LIA
independently for all checkpoints given a data diversity versus when optimizing for a set of weights
for the whole run. We find that for most checkpoints tying the weights increase the KL fitting error.

Figure 42: Difference in KL fitting error when using tied weights for LIA. We show the heatmap
of KL difference between the model and LIA when tying the solution weights throughout model
training vs. when letting them independent. The error increases for most checkpoints across data
diversity.

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

I IMPORTANCE OF SEQUENCE-SPACE STRUCTURE TO STUDY
TRANSFORMERS

In this work, we focused on a sequence modeling task consisting of a mixture of Markov chains. We
argue that there are unique properties of sequence modeling which makes phenomena qualitatively
different. Sequence modeling tasks involve the integration of information embedded in individual
tokens and their positions. In order to compose this information, a sequence-space computational
structure should be learned. This is not the case for many synthetic tasks used to study transformers.

More specifically, many ICL studies focus on Linear regression (Garg et al., 2023; Akyürek et al.,
2023; Li et al., 2023c; Von Oswald et al., 2023; Mahankali et al., 2023; Raventós et al., 2023; Li
et al., 2023b; Lu et al., 2024; Lin & Lee, 2024), where exemplars are presented in pairs as (xi, yi).
Following (Garg et al., 2023), many works do not use a tokenized representation. Thus, the only
spatial computational structure needed to be implemented is a fixed template which recognizes pairs
of (xi, yi) from the context. Furthermore, a recent paper (Tong & Pehlevan, 2024) showed that multi
layer perceptrons (MLPs) can learn linear regression and classification tasks in-context, sometimes
competitively to transformers.

Motivated by a lack of language structure in synthetic studies of ICL, some recent studies have begun
analyzing transformers trained on probabilistic formal languages (Edelman et al., 2024; Akyürek
et al., 2024). In such a setting, Edelman et al. (2024) found statistical induction heads which is a
probabilistic variant of a copying induction head (Elhage et al., 2021; Olsson et al., 2022). Akyürek
et al. (2024) study in-context learning of deterministic finite automata (DFA), and find n-gram heads
which perform copying similarly to induction heads but based on n-grams. These studies showed
that studying ICL on formal languages helps develop rich training dynamics (Edelman et al., 2024)
and a complex relation to model architectures (Akyürek et al., 2024). It is also the case that, to
the best of our knowledge, there does not exist a study equivalent to Tong & Pehlevan (2024) for
linear regression but applied to formal languages. We suspect MLPs will struggle to learn formal
languages requiring a dynamic spatial computational structure.

The unigram solutions vs bigram solutions discussed in our work highlights that even the simplest
form of spatial computational structure, counting states vs. counting pairs (transitions), introducing a
new axis of analysis: the circuit complexity of solutions. In our work, the bigram solutions, Bi-Ret
and Bi-Inf, arguably need a more complex circuit structure. The attention maps visualized in
Fig. 18 and Fig. 19 support this argument, though there is substantial work to be done to confirm this
intuition (e.g., by properly defining circuit complexity). Nevertheless, well aligned to this intuition,
both bigram solutions always follow after a unigram solution in our experiments.

In Sec. 4.2 and Sec. 4.3, we demonstrated how a varying circuit complexity can result in significantly
different learning time for different algorithms. We have also demonstrated that different learning
speeds can cause an algorithm to be hidden or suppressed (Fig. 8 (a,c)). Additionally, we have
demonstrated that a change of tokenization, which does not change the task but only alters how
the task is presented to the model, can remove a solution from emerging by closing the circuit
complexity gap.

Overall, we believe that studying in-context learning with setups requiring non-trivial sequence-
space computation, e.g., formal languages, will be crucial to advance our understanding of ICL in
LLMs at scale.

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2025

J DISCUSSION AND FUTURE DIRECTIONS

Distributional Adaptation An interesting phenomenon observed in Sec. 4.1, Fig. 6 is that the
predicted OOD KL is always slightly higher (worse) than the model’s actual performance. This
signifies that our algorithmic decomposition does not explain the model’s behavior perfectly, and
the model is likely applying a combination of solutions slightly better fit for sequences it has not
observed. A possible future direction would be to understand how such behavior is possible. We
lay down a hypothesis: Bi-Ret emerges on top of the Bi-Inf solution, but there is a circuit
triggering this solution preferentially for ID sequences.

Parallel or Interacting Circuit Evolution? An interesting question raised by our analysis is
whether different algorithms can evolve in parallel or not. This question is especially motivated
by the extremely stable emergence of the Bi-Inf solution with respect to optimization steps. As
seen in Fig. 6, the Bi-Inf solution emerges very stably even for data diversity levels different by
25. One natural question is whether it could emerge with data diversity under 26, but is just not ob-
served due to Uni-Ret and Bi-Ret being found first. Another question with a slightly different
implication is whether the circuit supporting the solution did in fact already emerge, yet is not used.

Thus, an explicit and interesting future direction is to try to ablate the Bi-Ret solution (via careful
design, which we do not know yet) and see if Bi-Inf can be observed from data diversity level it
is not observed in the current experiment.

Optimization Limited Emergence vs Data Limited Emergence We find many algorithmic tran-
sitions in our study. The formation of an induction head (Fig. 1 (b)) and the rise of Bi-Ret
(Sec. 4.1) are two of them. Here, we argue that these transitions are different in nature. If one
carefully looks at Fig. 6, one can notice (as discussed in the paragraph above) that the emergence
of Bi-Inf is largely independent of data diversity. We thus suggest this emergence is only limited
by optimization. However, the emergence of Bi-Ret is limited by data diversity (usually limited
means that a higher data diversity is needed, however for Bi-Ret, a lower data diversity makes it
easier to emerge). We thus propose a classification of emergence of mechanisms into two classes:
one driven by the introduction of sufficient compute and another driven by a sufficient data diversity.

K CODE AVAILABILITY

All code used to run experiment and analysis will be released after the peer review process.

52

	Introduction
	Problem Setup: Simulating a Finite Mixture of Markov Chains
	Reproducing ICL's phenomenology

	Algorithmic Phases in finite Mixture of Markov chains
	Algorithms to simulate finite mixture of Markov chains
	Isolating Algorithmic Phases

	Linear Interpolation of Algorithms: A Competition Picture of Non-Monotonic Generalization Dynamics in ICL
	Linear Interpolation of Algorithms (LIA)
	Predicting OOD performance with mechanistic decomposition
	Model Analysis Using Algorithmic Phase diagrams

	Conclusion
	Experimental Details
	Data Generating Process
	Training Details: Model & Optimization
	Evaluation Details
	KL Divergence
	Estimating Transition Matrices
	Bigram Utilization and Retrieval Proximity
	Linear Interpolation of Algorithms

	Learning curves

	More About Solutions
	Inference Approaches are ``Bayesian" with a relaxed prior
	Unigram Posterior Solutions

	Phenomenology of In-Context Learning: Summary of reproduced results and improved understanding
	List of phenomena we reproduce
	Improved understanding of ICL: Insights into Transience and effects of model scaling
	Transient Nature of In-Context Learning
	ICL and Model-Size Scaling
	Effects of Model-Size Scaling, Revisited

	High Dimensional Distances
	Mechanistic Analysis
	Reconstructing Markov Chains from MLP Neurons in Retrieval Phases
	Dynamics of Memorization
	Superposition of neurons with increase in data diversity

	Attention Maps: Implementing Inference approaches
	Attention Pattern Evolution Corroborates LIA
	Validating LIA: Attention heads in different phases
	Validating LIA: Attention heads at phase boundaries

	Additional Results
	Additional plots from the main experiments
	High Quality Version of Fig. 1 subplots
	KL Divergence Heatmaps
	KL Divergence vs. {Steps, Diversity, Context}
	KL divergence between the model and solutions

	Architecture Changes

	Generalization to chains from a different prior
	Further validation of LIA
	Does LIA fit the model well?
	Robustness of LIA to arbitrary algorithms

	Importance of sequence-space structure to study transformers
	Discussion and Future Directions
	Code Availability

