SURVIVAL ANALYSIS VIA DENSITY ESTIMATION

Anonymous authors

000

001 002 003

004

005 006 007

008 009

010

011

012

013

014

015

016

017

018

019

021

023

Paper under double-blind review

ABSTRACT

This paper introduces an algorithm that reinterprets survival analysis through the lens of density estimation, addressing the challenge of censored inputs inherent to survival data. Recognizing that many survival analysis methodologies are extensions of foundational density estimation models, our approach leverages this intrinsic relationship. By conceptualizing survival analysis as a form of density estimation, our algorithm postprocesses the density estimation outputs to derive survival functions. This framework allows for the application of any density estimation model to effectively estimate survival functions, thereby broadening the toolkit available for survival analysis and enhancing the flexibility and applicability of existing density estimation techniques in this domain. The proposed algorithm not only bridges the methodological gap between density estimation and survival analysis but also offers a versatile and robust approach for handling censored survival data.

1 INTRODUCTION

025 Multiclass classification is one of the fundamental tasks in machine learning. The objective of this 026 task is to predict the target label $y \in \mathcal{Y}$ for a feature vector $x \in \mathcal{X}$ given a finite set of samples 027 $(x,y) \stackrel{\text{i.i.d.}}{\sim} (X,Y)$, where \mathcal{X} and \mathcal{Y} denote the space of feature vectors and the finite set of target 028 labels, respectively, and X and Y are random variables corresponding to \mathcal{X} and \mathcal{Y} , respectively. 029 Density estimation, or more precisely conditional density estimation, is a variant of multiclass classification where the task is to estimate the probability Pr(Y = y|x) for all $y \in \mathcal{Y}$ given $x \in \mathcal{X}$. 031 Owing to the numerous applications of density estimation, most multiclass classification libraries 032 are equipped to solve this problem. Examples include the random forest models provided in the 033 sklearn package, the gradient boosting models in the lightqbm package, and modern neural 034 network models such as ImageNet (Krizhevsky et al., 2012).

035 Survival analysis, alternatively referred to as time-to-event analysis, is a subfield of statistical studies with extensive applications across various domains such as healthcare, finance, and social sciences 037 (see, e.g., (Wang et al., 2019; Wiegrebe et al., 2024) for survey papers on survival analysis). Sur-038 vival analysis with K competing risks on discrete times can be formulated as a variant of density 039 estimation. The task can be represented as estimating the probability $Pr(T_k = t|x)$ for all $k \in$ 040 $[K] = \{1, 2, \dots, K\}, t \in \mathcal{T}, \text{ and } x \in \mathcal{X}, \text{ given a finite set of samples } (x, t, \delta) \stackrel{\text{i.i.d.}}{\sim} (X, T, \Delta). \text{ Here,}$ 041 $\mathcal{T} = \{1, 2, \dots, |\mathcal{T}|\}$ represents the set of discrete times of size $|\mathcal{T}|$, each T_k for $k \in [K]$ is a random 042 variable over the support \mathcal{T} , $T = \min_k \{T_1, T_2, \dots, T_K\}$, and $\Delta = \arg\min_k \{T_1, T_2, \dots, T_K\}$. 043 The task of survival analysis, namely estimating an individual survival function, corresponds to 044 estimating $\Pr(T_k = t | x)$.

045 Due to the similarity between density estimation and survival analysis, many methodologies devel-046 oped for density estimation have been extended to survival analysis, particularly for scenarios with 047 K = 2 under the conditional independence assumption (i.e., $T_1 \perp \perp T_2 | X$). For example, the random 048 forests model for density estimation has been extended to random survival forests (Ishwaran et al., 2008) for survival analysis, and modern neural network models for density estimation have been extended to the DeepHit model (Lee et al., 2018) for survival analysis. Regarding loss functions and 051 evaluation metrics, strictly proper scoring rules (Gneiting & Raftery, 2007) for density estimation have been adapted for survival analysis in (Rindt et al., 2022; Yanagisawa, 2023). For calibration 052 metrics, the expected calibration error for density estimation has been extended to D-calibration in (Haider et al., 2020) for survival analysis.

064

065 066

067 068 069

Figure 1: Two-step algorithm for survival analysis with K competing risks: it first estimates $\hat{r}_{b,k|x}$ with an density estimation model and then postprocesses it to obtain the output $\hat{F}_k(t|x)$.

070 Though numerous extensions of density estimation methodologies for survival analysis exist, these 071 extensions face several limitations. First, these adaptations are tailored to specific methodologies 072 on a case-by-case basis. Hence, when a novel density estimation method arises, a new customized 073 extension must be developed specifically for it. Second, most survival analysis models rely on 074 the conditional independence assumption (or even stronger assumptions such as the proportional hazard assumption (Cox, 1972)), which might not hold in various real-world applications. This 075 underscores the need for survival models that operate under weaker assumptions. Third, Tsiatis 076 (1975) demonstrates that the survival function cannot be identified without assumptions regarding 077 the dependencies between the random variables T_1, T_2, \ldots, T_k (see Sec. E). 078

⁰⁷⁹ In this paper, we address these limitations and explore the following research questions:

Q1: Can we construct a model-agnostic extension from density estimation to survival analysis? Yes, we introduce a two-step algorithm for survival analysis that can be integrated with any density estimation model. The first step of this algorithm employs a density estimation model to estimate the joint distribution of the dependent variables. The second step post-processes the results to derive the survival function, as illustrated in Fig. 1. Furthermore, we demonstrate that if the density estimation can achieve an arbitrarily small error ϵ (as the number of data points increases), our algorithm can estimate survival functions with a small error for K = 2 under several plausible assumptions (see Sec. 4).

088 Q2: Can we accommodate an assumption weaker than the conditional independence assump-089 tion? Yes, our two-step algorithm can handle dependent variables if prior knowledge of the de-090 pendency in the form of a copula is available (see Sec. 2 for an explanation of copulas). Numer-091 ous copula-based models for survival analysis manage dependent variables (e.g., (Emura & Chen, 092 2018)), but these models often incorporate additional assumptions beyond the copula. For instance, 093 the copula-based model proposed in (Gharari et al., 2023) leverages the proportional hazard assumption and is restricted to K = 2. Our two-step algorithm, however, relies solely on the copula 094 information to manage dependent variables. 095

Q3: Can we estimate the upper and lower bounds of the survival function without prior knowl-edge of the dependency between random variables? Yes, a by-product of our two-step algorithm is the ability to estimate the upper and lower bounds of the survival function, accounting for the uncertainty stemming from the lack of knowledge about the copula. This ensures that the two-step algorithm's output for any given copula falls within the estimated upper and lower bounds.

It is important to note that in the context of average survival function estimation (i.e., not the individual survival function), questions Q1–Q3 have already been affirmatively addressed. The Kaplan-Meier estimator (1958), a popular method for estimating the average survival function under the conditional independence assumption, has been extended as the copula-graphic estimator (Zheng & Klein, 1995; Carrière, 1995), which operates under the same assumption as ours that a copula is provided as prior knowledge. The algorithms used in this estimator resemble those in our two-step algorithm. Additionally, our upper and lower bound estimates of the individual survival functions are akin to the average survival function bounds described in (Peterson, 1976).

Lastly, concerning loss functions and evaluation metrics, we introduce a strictly proper scoring rule, Copula-NLL, for copula-based survival analysis. While several proper scoring rules exist for survival analysis with K = 2 (Rindt et al., 2022; Yanagisawa, 2023), they are valid only under the conditional independence assumption. Our Copula-NLL is applicable for any $K \ge 2$ and any copula.

114 2 PRELIMINARIES

113

116 In this paper, we consider a dataset for survival analysis with K competing risks, represented as 117 $\mathcal{D} = \{(x^{(i)}, t^{(i)}, \delta^{(i)})\}_{i=1}^N$ of size N. Here, each $x^{(i)} \in \mathcal{X}$ denotes a feature vector, $t^{(i)} \in \mathcal{T}$ is the 118 observed time, and $\delta^{(i)} \in [K] = \{1, 2, \dots, K\}$ is the index of the observed risk. It is important 119 to note that in survival analysis, the individual realization times $t_1^{(i)}, t_2^{(i)}, \ldots, t_K^{(i)}$ sampled from the random variables T_1, T_2, \ldots, T_K are unobservable. Instead, we can observe only their minimum 120 121 value $t^{(i)}$ and the index of the observed risk $\delta^{(i)}$. In this study, we assume that the time horizon is discretized using the boundaries $\{\zeta_b\}_{b=0}^B$ such that $0 = \zeta_0 < \zeta_1 < \cdots < \zeta_B$, where ζ_B is a sufficiently large number, and we assume that each observed time $t^{(i)}$ satisfies $0 \le t^{(i)} < \zeta_B$. 122 123 124 These assumptions are commonly adopted in numerous survival models (e.g., (Lee et al., 2018; 125 Yanagisawa, 2023; Hickey et al., 2024)). For simplicity, the notation generally excludes *i*, and an 126 observation $(x^{(i)}, t^{(i)}, \delta^{(i)})$ is typically denoted as (x, t, δ) . 127

The primary task of survival analysis in this study is formulated to estimate the marginal distribution $F_k(\zeta_b|x)$ for each $k \in [K]$, $\zeta_b \in \{\zeta_1, \zeta_2, \dots, \zeta_{B-1}\}$, and $x \in \mathcal{X}$. We assume that $F_k(\zeta_0|x) = 0$ and $F_k(\zeta_B|x) = 1$ for all $k \in [K]$ and $x \in \mathcal{X}$. While survival analysis is often designed to estimate the survival function, defined as $S_k(t|x) = 1 - F_k(t|x)$, this study aims to estimate the cumulative distribution function (CDF) $F_k(t|x)$ of T_k unless stated otherwise. Additionally, this study also considers the estimation of the average CDF $F_k(t)$ of $F_k(t|x)$ over $x \sim \mathcal{X}$ and the average survival function $S_k(t) = 1 - F_k(t)$.

Censored Joint Distribution (CJD) Representation. The observation (x, t, δ) becomes more intuitive when visualized in K-dimensional space. For example, in the case where K = 2, each observation can be depicted as a line segment in a two-dimensional plane, as illustrated in Figure 2(a). In this figure, an observation $(x^{(1)}, 20, 1)$ is represented as a vertical line segment. This observation indicates that Event 1 is observed at time $t_1 = 20$, and it is only known that $t_2 \ge t_1$. Similarly, another observation $(x^{(2)}, 35, 2)$ is depicted as a horizontal line segment.

Given that the time horizon is discretized, the *K*-dimensional space is partitioned by defining the set $R_{b,k}$ of realizations $(t, \delta) \sim (T, \Delta)$ as follows:

$$R_{b,k} = \{(t,\delta) : \zeta_b \le t < \zeta_{b+1}, \delta = k\}.$$

Refer to Figure 2(b) for an illustration. In this study, this partitioned region is referred to as the Censored Joint Distribution (CJD) representation.

Copula and Survival Copula. In probability theory and statistics, a mathematical construct known as a *copula* is defined as a multivariate cumulative distribution function wherein each variable's marginal probability distribution is uniformly distributed over the interval [0, 1]. The primary utility of copulas is to delineate the interdependencies among random variables.

Formally, a copula, according to Nelsen (2006), is a K-dimensional function $C : [0,1]^K \rightarrow [0,1]$ that satisfies the following conditions: (i) $C(u_1, u_2, \ldots, u_{k-1}, 0, u_{k+1}, \ldots, u_K) = 0$, (ii) $C(1, \ldots, 1, u, 1, \ldots, 1) = u$ for every $u \in [0, 1]$, and (iii) given $u, v \in [0, 1]^K$ such that $u_k < v_k$ is valid for all $k \in [K]$, the following condition is satisfied:

$$\sum_{l \in \{0,1\}^K} (-1)^{l_1 + l_2 + \dots + l_K} C(u_1^{l_1} v_1^{1 - l_1}, u_2^{l_2} v_2^{1 - l_2}, \dots, u_K^{l_K} v_K^{1 - l_K}) \ge 0.$$

156 157 158

144

147

151

159 A notable instance of a copula is the *independence copula*, which is expressed as:

100

$$C_{\text{ind}}(u_1, u_2, \dots, u_K) = \prod_{k=1}^K u_k.$$
 (1)

Figure 2: Censored Joint Distribution (CJD) Representation: (a) Two observations are illustrated as vertical and horizontal line segments in the CJD representation. (b) The CJD space is divided into subregions $R_{b,k}$ for density estimation. (c) A rectangular region is illustrated within the CJD space.

Another illustration of a bivariate copula is the *Frank copula* with a non-zero parameter θ :

$$C_{\text{Frank}}(u_1, u_2) = \frac{1}{\theta} \log \left(1 + \frac{(e^{-\theta u_1} - 1)(e^{-\theta u_2} - 1)}{e^{-\theta} - 1} \right).$$
(2)

Copulas are instrumental in calculating joint probabilities. For instance, the joint probability $Pr(\zeta_1 < T_1 \le \zeta_4, T_2 \le \zeta_3)$ depicted in Fig. 2(c) can be computed using a copula as follows:

$$\Pr(\zeta_1 \le T_1 < \zeta_4, T_2 < \zeta_3) = C(F_1(\zeta_4), F_2(\zeta_3)) - C(F_1(\zeta_1), F_2(\zeta_3)),$$

186 where $F_k(t) = \Pr(T_k \le t)$.

A significant characteristic of the copula is that the joint distribution $Pr(T_1 \le t_1, T_2 \le t_2, \dots, T_K \le t_K)$ can be uniquely represented using the copula, as per Sklar's theorem.

Theorem 1. (Sklar's Theorem [1959]). There exists a copula C such that for all t_1, t_2, \ldots, t_K ,

$$\Pr(T_1 \le t_1, T_2 \le t_2, \dots, T_K \le t_K) = C(F_1(t_1), F_2(t_2), \dots, F_K(t_K))$$

If the marginal distribution F_k is continuous for all k, then C is unique.

In the context of survival analysis, a *survival copula* \overline{C} is also frequently used. This copula satisfies the following equation:

$$\Pr(T_1 > t_1, T_2 > t_2, \dots, T_K > t_K) = \overline{C}(1 - F_1(t_1), 1 - F_2(t_2), \dots, 1 - F_K(t_K)).$$

It is well-established that any survival copula \overline{C} can be represented using its corresponding copula C (see, e.g., (Georges et al., 2001)). For instance, when K = 2, the survival copula \overline{C} can be represented as:

$$C(u_1, u_2) = u_1 + u_2 - 1 + C(1 - u_1, 1 - u_2)$$

Additionally, it is important to note that if $C = C_{ind}$, then $\overline{C} = C_{ind}$.

3 TWO-STEP ALGORITHM

We propose a two-step algorithm for survival analysis with K competing risks. The first step estimates $\hat{r}_{b,k|x}$, which approximates the ground truth $r_{b,k|x} = \Pr((t, \delta) \in R_{b,k}|x)$. In the second step, the marginal distribution $\hat{F}_k(\zeta_b|x)$ is computed from the estimation $\hat{r}_{b,k|x}$, assuming that we have prior knowledge regarding the dependencies among the random variables T_1, T_2, \ldots, T_K in the form of a copula C. Note that survival models based on the conditional independence assumption are equivalent to using the independence copula (as defined in (1)) for the copula C.

212

214

172 173

174

175

176 177

178 179

181

183

185

187

188

189

190 191 192

193

196 197

199

200 201

202 203 204

205

213 3.1 Step 1: Censored Joint Distribution Estimation

215 We present two approaches to estimate $\hat{r}_{b,k|x}$. One approach is based on density estimation, and the other on distribution regression.

Density Estimation. The most straightforward approach is to directly use a density estimation 217 model to estimate $r_{b,k|x}$. Various density estimation models are applicable, including random 218 forests, gradient boosting, and neural network models. Recent advancements in density estimation 219 techniques can be found in (Dheur & Taieb, 2023; Filho et al., 2023).

Distribution Regression. Another approach is to utilize distribution regression models. Examples
 of such models include:

- Models based on monotone neural networks (Chilinski & Silva, 2020)
- Models based on random forests (Schlosser et al., 2019; Hothorn & Zeileis, 2021; Ćevid et al., 2022)
- NGBoost (Duan et al., 2020), which is based on gradient boosting.

These models can estimate $V_k(\zeta|x)$, the conditional k-th cumulative incidence function (CIF), defined as follows:

$$V_k(\zeta|x) = \Pr(T \le \zeta, \Delta = k|x).$$
(3)

Using the estimated $V_k(\zeta|x)$, $\hat{r}_{b,k|x}$ can be estimated as:

$$\hat{r}_{b,k|x} = \hat{V}_k(\zeta_b|x) - \hat{V}_k(\zeta_{b-1}|x).$$
(4)

One significant advantage of this approach is that, if we wish to adjust the hyperparameter B, there is no need to retrain the predictive model; we only need to recompute Eq. (4).

3.2 STEP 2: COMPUTATION OF MARGINAL DISTRIBUTION

The second step of our algorithm computes $\hat{F}_k(\zeta_b|x)$ using the estimates $\hat{r}_{b,k|x}$ obtained in the first step and a given copula C. For simplicity, we consider the case for K = 2 in this section, with generalization for K > 2 detailed in Appendix C.

Let $\mathbf{r}_{b|x} \in [0, 1]^K$ denote the length-*K* vector whose *k*-th entry is $r_{b,k|x}$, and let $\mathbf{F}_{b|x} \in \mathbb{R}^K$ denote the length-*K* vector whose *k*-th entry is $F_k(\zeta_b|x)$.

We aim to represent $\mathbf{r}_{b|x}$ as a function of $\mathbf{F}_{b-1|x}$, $\mathbf{F}_{b|x}$, and the copula *C*. By the definition of $r_{b,k|x}$, we have the following representations:

$$r_{b,1|x} = \Pr(\zeta_{b-1} < T_1 \le \zeta_b, T_1 \le T_2|x) = q_{\{1\},b|x} - w_1 q_{\{1,2\},b|x},$$
(5)

$$r_{b,2|x} = \Pr(\zeta_{b-1} < T_2 \le \zeta_b, T_2 \le T_1|x) = q_{\{2\},b|x} - w_2 q_{\{1,2\},b|x},$$
(6)

where

$$q_{\{1\},b|x} = \Pr(\zeta_{b-1} < T_1 \le \zeta_b, \zeta_{b-1} < T_2|x), \tag{7}$$

$$q_{\{2\},b|x} = \Pr(\zeta_{b-1} < T_2 \le \zeta_b, \zeta_{b-1} < T_1|x),$$
(8)

$$q_{\{1,2\},b|x} = \Pr(\zeta_{b-1} < T_1 \le \zeta_b, \zeta_{b-1} < T_2 \le \zeta_b|x), \tag{9}$$

and $w_1, w_2 \ge 0$ are weight parameters such that $w_1 + w_2 = 1$. See Fig. 3 for the illustration of equation 7-equation 8. Unless otherwise stated, we assume that $w_1 = w_2 = 1/2$. Note that, if we use a sufficiently large B, the correction term 9 should be a small value, and therefore the choices of the weight parameters w_1 and w_2 should have little effect in these equations. Then we represent equation 7-equation 9 by using $F_1(\zeta_{b-1}|x)$, $F_1(\zeta_b|x)$, $F_2(\zeta_{b-1}|x)$, $F_2(\zeta_b|x)$, and the copula C:

$$q_{\{1\},b|x} = F_1(\zeta_b|x) - F_1(\zeta_{b-1}|x) - C(F_1(\zeta_b|x), F_2(\zeta_{b-1}|x)) + C(F_1(\zeta_{b-1}|x), F_2(\zeta_{b-1}|x))$$

= $C(F_1(\zeta_b|x), 1) - C(F_1(\zeta_{b-1}|x), 1) - C(F_1(\zeta_b), F_2(\zeta_{b-1}|x)))$
+ $C(F_1(\zeta_{b-1}|x), F_2(\zeta_{b-1}|x)),$ (10)

$$q_{\{2\},b|x} = C(1, F_2(\zeta_b|x)) - C(1, F_2(\zeta_{b-1}|x)) - C(F_1(\zeta_{b-1}|x), F_2(\zeta_b|x))$$

267
$$+ C(F_1(\zeta_{b-1}|x), F_2(\zeta_{b-1}|x)),$$
(11)
268
$$q_{\{1,2\},b|x} = C(F_1(\zeta_b|x), F_2(\zeta_b|x)) - C(F_1(\zeta_b|x), F_2(\zeta_{b-1}|x)) - C(F_1(\zeta_{b-1}|x), F_2(\zeta_b|x))$$

$$+ C(F_1(\zeta_{b-1}|x), F_2(\zeta_{b-1}|x)).$$
(12)

Combining equation 5-equation 12, we can represent $r_{b,1|x}$ and $r_{b,2|x}$ using $F_1(\zeta_{b-1}|x)$, $F_1(\zeta_b|x)$, $F_2(\zeta_{b-1}|x)$, $F_2(\zeta_b|x)$, and the copula C. This implies the existence of a function $g_{b,C}$ such that:

$$\mathbf{r}_{b|x} = g_{b,C}(\mathbf{F}_{b|x}|\mathbf{F}_{b-1|x}). \tag{13}$$

Having established equation 13, we can obtain $\mathbf{F}_{b|x}$ for all *b* by solving this equation, as outlined in Steps 4-7 of Algorithm 1. We leverage the initial condition $\mathbf{F}_{0|x} = \mathbf{0}$ for all *x*, where **0** is the *K*dimensional vector of zeros. At the initial step for b = 1, we can obtain $\hat{\mathbf{F}}_{1|x}$ by solving equation 13, since this equation provides *K* equality constraints and the unknown value is the length-*K* vector $\mathbf{F}_{b|x}$ (see Sec. C.2 for more details). By repeating this procedure for $b = 2, 3, \ldots, B - 1$, we can obtain $\hat{\mathbf{F}}_{b|x}$ for all *b*.

Note that the second step of our algorithm is similar to the algorithm based on a bisection rootfinding algorithm in (Zheng & Klein, 1995), but their algorithm is valid only for K = 2 and its extension for K > 2 is unknown. In contrast, our algorithm is extendable for K > 2 as shown in Appendix C.

Remarks. In our implementation, we employed a simpler algorithm instead of solving (13) for each *b*. Specifically, we estimate $\hat{\mathbf{F}}_{b|x}$ by minimizing the following objective function:

$$\sum_{b=1}^{B-1} (g_{b,C}(\mathbf{F}_{b|x}|\mathbf{F}_{b|x}) - \hat{\mathbf{r}}_{b|x})^2$$

for all b simultaneously.

We also note that as $B \to \infty$, another approach introduced in (Carrière, 1995) can be employed to estimate $\hat{\mathbf{F}}_{b|x}$. This method is discussed further in Sec. C.3 and we conducted an experimental comparison between this alternative algorithm and our proposed algorithm in Sec. H.

310 311 312

313

319 320

300

301

302 303 304

305 306

308 309

285

286

287

288

4 THEORETICAL ANALYSIS

In this section, we theoretically verify that the two-step algorithm outputs solutions with sufficiently small errors. We consider the case K = 2 for simplicity, and we assume $\zeta_b = \frac{b}{B}\zeta_B$. As discussed in the preceding section, various models can be implemented to estimate the CIF in the first step of our algorithm. Therefore, we evaluate errors affected by step 2, solving (13), under the assumption that the models employed in the first step accurately approximate the true probabilities such that

$$\hat{r}_{b,k} - r_{b,k}| \le \epsilon \tag{14}$$

holds for all b = 1, ..., B and k = 1, 2. Note that while how small a value we can take as ϵ in (14) depends on the choice of the model in step 1, we can apply the results exhibited in this section. We provide examples of achieving (14) in Appendix B. To formally state our theoretical results, we introduce the following assumption: Assumption 1. We assume the following conditions:

(1) (True probability is not biased.) There exists a global constant $c_0 > 0$ such that for every b = 1,..., B and k = 1, 2, $F_k(\zeta_b|x) - F_k(\zeta_{b-1}|x) = \Pr(\zeta_{b-1} < T_k \le \zeta_b) \le \frac{c_0}{B}$ holds.

(2) (Copula.) We assume that the copula C is of class C^2 and satisfies

336

337

338 339

$$\ell := \inf_{(u,v) \in [0,1]^2} \frac{\partial^2}{\partial u \partial v} C(u,v) > 0,$$

$$L \coloneqq \sup_{(u,v) \in [0,1]^2} \max \left\{ \frac{\partial^2}{\partial u^2} C(u,v), \frac{\partial^2}{\partial u \partial v} C(u,v), \frac{\partial^2}{\partial v^2} C(u,v) \right\} < +\infty.$$

(3) (All t_k are equally observed.) There exist constants $c_1 > 0$ depend on ℓ , L, and $\tau > 0$ such that the following condition holds: Let $\delta_0 > 0$ be a constant determined by ℓ and L^1 and $b_0 := \max_b \left\{ b \mid \forall k, F_k(\zeta_b | x) \leq 1 - \frac{\delta_0}{\tau \log B} \right\}$. Then, $\min_k F_k(\zeta_{b_0} | x) \geq 1 - \frac{c_1}{\log B}$.

We make some remarks on the assumption. The first condition is required to bound the error by the 340 choice of w_1 and w_2 ; if the probability concentrates on a squared region partitioned by suboptimal 341 w_1 and w_2 , significant errors are inevitable. This condition is satisfied if F_k is Lipschitz-continuous 342 with $c_0\zeta_B$ serving as the Lipschitz constant. The second condition manages the sensitivity of the 343 estimation relative to the true distribution and noise. For example, if $\frac{\partial^2 C}{\partial u \partial v} \ll 1$, indicating that C exhibits minimal variation as u and v change, substantial adjustments to the estimation are necessary 344 345 to accommodate for noise and achieve (13). This condition is typically met for the independence copula C(u, v) = uv with any $\ell < 1$ and L > 1. The third condition appears to be technical. As will 347 be demonstrated in subsequent analyses, errors between \hat{F}_k and F_k can only be effectively bounded 348 for $b \leq b_0$. As b approaches B, and consequently $r_{b,k}$ diminishes, the impact of ϵ intensifies. 349 Condition (3) excludes scenarios where a part of t_k s is concentrated in the region $b > b_0$. In other 350 words, all t_k s are equally observed in the region $b \leq b_0$. 351

Let $W_1(\cdot, \cdot)$ be the Wasserstein distance². Then, we provide the statement about the W_1 distance between between the estimated and true probabilities. We consider the extension of $\hat{F}_k(\zeta_b|x)$ to a CDF on $[0, \zeta_B]$ by $\hat{F}_k(t|x) \coloneqq \hat{F}_k(\zeta_b|x)$, where $\zeta_b \le t < \zeta_{b+1}$.

Theorem 2. Suppose that Assumption 1 holds. Then, there exists a constant $c_{\epsilon} > 0$ depending c_0 , ℓ and L such that if $\epsilon \leq \frac{c_{\epsilon}}{B}$, the following inequality holds:

 $W_1(\hat{\mu}_{k|x}, \mu_{k|x}) \lesssim \zeta_B \left(B^{1+\tau} \epsilon + c_1 \cdot \frac{B - b_0}{B \log B} \right),$

(15)

360

where $\hat{\mu}_{k|x}$ and $\mu_{k|x}$ are probability measures whose CDFs are given by $\hat{F}_k(\cdot|x)$ and $F_k(\cdot|x)$, respectively.

³⁶⁴ Due to the space limitation, the proof is deferred to Appendix D. Suppose that the condition $\epsilon = o(B^{1+\tau})$ holds. Then, we obtain an upper bound as $W_1(\hat{\mu}_{k|x}, \mu_{k|x}) = \zeta_B \cdot o(1)$. Thus, we can ensure that as $B \to +\infty$ and the sample size increases as we can take sufficiently small ϵ , the output of step 2 converges to the ground truth distribution in terms of the W_1 distance.

We provide some comments on Theorem 2. We can observe a trade-off in (15) based on the choice of *B*: while the second term decreases as *B* increases, $B^{1+\tau}$ and ϵ in the first term should increase. Consequently, an optimal choice of *B* should be considered under appropriate assumptions that determine ϵ and b_0 , such as the model utilized in step 1 and the properties of $\mathbf{F}_{\cdot|x}$. It is also significant to examine that the derived bound achieves a statistical min-max lower bound exhibited in (Niles-Weed & Berthet, 2022; Bilodeau et al., 2023), for example. We reserve these considerations for future research endeavors.

375 376

377

¹See Section D for its formal definition.

 $^{{}^{2}}W_{1}(\mu,\nu) := \inf_{\pi \in \Pi(\mu,\nu)} \int_{\mathbb{R}^{2}} |x-y| d\pi(x,y)$, where $\Pi(\mu,\nu)$ denotes the set of all couplings of two probability measures μ and ν on \mathbb{R} .

Figure 4: Illustration of the upper and lower bounds estimation. Here, region $R_{b,k}$ is divided into grids, with denser color indicating a higher probability that a data point is contained in the corresponding region. The lower bound estimation is achieved by assigning the probability mass $\hat{r}_{b,k}$ to the last time slot within region $R_{b,k}$ and then calculating the column-wise sum. Conversely, the upper bound estimation is obtained by assigning the probability mass $\hat{r}_{b,k}$ to the earliest time slot within region $R_{b,k}$ and calculating the column-wise sum.

397

399

390

391

392

394

5 **UPPER AND LOWER BOUNDS ESTIMATION**

400 While our two-step algorithm assumes prior knowledge of the copula C, Tsiatis (1975) demonstrates 401 that further weakening this assumption renders it impossible to identify $F_k(t|x)$. For additional 402 details, see our discussion in Sec. E.

403 Given this constraint, we explore the concept of partial identifiability (Kline & Tamer, 2023) in sur-404 vival analysis. Specifically, we derive the upper and lower bounds of $F_k(t|x)$ under the assumption 405 that the true copula C is unknown. By definition, the upper and lower bounds of $F_k(\zeta_b|x)$ can be 406 computed as follows:

407 408 409

410 411

412

413

$$\Pr\left((x,t,\delta) \in \bigcup_{b' \le b} R_{b',k|x}\right) \le F_k(\zeta_b|x) \le \Pr\left((x,t,\delta) \in \bigcup_{b' \le b,k' \in [K]} R_{b',k'|x}\right)$$

$$\Leftrightarrow \qquad \sum_{b' \le b} r_{b',k|x} \le F_k(\zeta_b|x) \le \sum_{b' \le b,k' \in [K]} r_{b',k'|x}. \tag{16}$$

Note that these inequalities are derived without utilizing the parameters w_1 and w_2 in our two-step 414 algorithm. 415

416 Given (16), we can compute the upper and lower bounds using $\hat{r}_{b,k|x}$, as demonstrated in Figure 4. 417 As illustrated, the upper and lower bound estimation, as well as our two-step algorithm to estimate 418 $F_k(\zeta_b|x)$, can be interpreted as redistributing the probability mass in the CJD representation into fine-grained grid cells. 419

420 It is important to note that our upper and lower bounds differ from the *confidence interval*, which 421 quantifies the epistemic uncertainty inherent to the prediction model (Bengs et al., 2022). Our 422 bounds quantify uncertainty due to the lack of prior knowledge about the true copula C. As dis-423 cussed in Sec. F, these two bounds can be combined to quantify both uncertainties.

424 In Sec. F, we present alternative upper and lower bounds using $V_k(\zeta | x)$ (as defined in (3)). These 425 bounds can be considered variants of the bounds given for the average survival function in (Peterson, 426 1976).

427 428

STRICTLY PROPER SCORING RULE 6

429 430

In this section, we demonstrate the existence of a strictly proper scoring rule when the ground 431 truth (survival) copula is known. While the existence of such a scoring rule for K = 2 under the 432 conditional independence assumption is shown in (Rindt et al., 2022), no strictly proper scoring rule
has been established under our weaker assumption.

Definition 1. (Proper and strictly proper scoring rules.) A scoring rule S for estimation $\hat{F}_k(t|x)$ of $F_k(t|x)$ is *proper* if the following inequality holds:

$$\mathbb{E}[\mathcal{S}(\{\hat{F}_{k}(t|x)\}_{k=1}^{K},(t,\delta))] \ge \mathbb{E}[\mathcal{S}(\{F_{k}(t|x)\}_{k=1}^{K},(t,\delta))].$$
(17)

A scoring rule is *strictly proper* if the equality in (17) holds if and only if $\hat{F}_k(t|x)$ is equal to $F_k(t|x)$ for all k and t.

To define our scoring rule, let

 $v_k($

435

436 437 438

439

440 441

442 443

448

449

450

455 456

457

483

$$t|x) = \frac{d}{dt} V_k(t|x) = -\frac{\partial}{\partial t_k} \overline{C}(1 - F_1(t_1|x), 1 - F_2(t_2|x), \dots, 1 - F_K(t_K|x)) \Big|_{t_1 = t_2 = \dots = t_K = t}.$$

Assumption 2. An estimate $\hat{v}_k(t|x)$ of $v_k(t|x)$ satisfies $D_{\text{KL}}(v_k(t|x)||\hat{v}_k(t|x)) < \infty$ for all k and t, where D_{KL} denotes the Kullback-Leibler (KL) divergence.

Theorem 3. (Strictly proper scoring rule.) If Assumption 2 holds, the following scoring rule S, termed Copula-NLL, is strictly proper:

$$\mathcal{S}(\{\hat{F}_{k}(t|x)\}_{k=1}^{K}, (t, \delta)) = -\mathbb{1}_{\delta=k} \log \hat{v}_{k}(t|x).$$

In Sec. G, we provide the proof of this theorem.

7 EXPERIMENTS

We conducted experimental evaluations to verify that our two-step algorithm delivers comparable
predictive performance to existing models for survival analysis. Additionally, we evaluated a neural
network model utilizing our strictly proper scoring rule, Copula-NLL. For this section, we used two
datasets: flchain (Kyle et al., 2006; Dispenzieri et al., 2012) and support2 (Knaus et al., 1995), both
obtained from the Python package SurvSet (Drysdale, 2022).

464 **Models.** We employed four models for the first step of our algorithm. In the models TS-Brier 465 and TS-Log, neural networks were used for density estimation with the Brier and Logarithmic scores (Gneiting & Raftery, 2007) as the loss functions, respectively. In the models TS-RF and 466 TS-DRF, we used the random forest (RF) model provided in the sklearn package and the dis-467 tribution regression forest (DRF) (Cevid et al., 2022), respectively. The prefix TS stands for the 468 Two-Step algorithm common to these models, each employing a different first-step model, but all 469 using the same algorithm for the second step as described in Algorithm 1. We set B = 100 for the 470 hyperparameter of the second step. 471

Additionally, we constructed a Copula-NLL model that used our strictly proper scoring rule presented in Sec. 6 as its loss function. This model utilized a min-max neural network (Igel, 2024) to
represent a CDF with a *monotone* neural network (Chilinski & Silva, 2020), though other monotone
neural networks such as those proposed in (Yanagisawa et al., 2022; Kim & Lee, 2024) could also be
used. The Copula-NLL model can be seen as incorporating prior knowledge of the ground truth copula into the DCSurvival model (Zhang et al., 2024), although the primary objective of DCSurvival
appears to be the identification of parameters within an Archimedean copula.

For comparison, we also employed the random survival forest (RSF) (Ishwaran et al., 2008), a model based on random forests, and the DeepHit model (Lee et al., 2018), a neural network model. In the DeepHit model, we set the parameter $\alpha = 0$ to make its loss function a proper scoring rule as suggested by Yanagisawa (2023).

Evaluation Metrics. We used three types of metrics to evaluate the estimate on the CJD representation $\hat{r}_{b,k|x}$ and four types of metrics to evaluate the estimated distribution $\hat{F}_k(t|x)$ (see also Table 1 in Appendix H).

Figure 5: Performance comparison on the flchain and support2 datasets (lower is better).

For the CJD representation, we employed the Brier and Logarithmic scores (Gneiting & Raftery, 2007). Given that certain models yield only the marginal distribution $\hat{F}_k(t|x)$, the CJD representation $\hat{\mathbf{r}}_b$ was estimated using the marginal distribution $\hat{F}_k(t|x)$ and the independence copula C_{ind} (defined in (1)). Additionally, the sum of the Kolmogorov-Smirnov calibration error was used as a calibration metric on the CJD representation. This metric, used in (Gupta et al., 2021), is based on the Kolmogorov-Smirnov test (Kolmogorov, 1933; Smirnov, 1939) and is defined as follows:

$$\sum_{k=1}^{K} \max_{0 \le \sigma \le 1} \left| \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}_{f_k(x_i) \le \sigma} \cdot \mathbb{1}_{y_i=k} - \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}_{f_k(x_i) \le \sigma} \cdot f_k(x_i) \right|,$$

where $f_k(x_i)$ denotes the probability of being x_i classified in class k.

For the estimated marginal distribution $\hat{F}_k(t|x)$, we used a simplified variant of the censored logarithmic score (Yanagisawa, 2023) as the evaluation metric. Additionally, D-calibration (Haider et al., 2020) and KM-calibration (Yanagisawa, 2023) were employed as calibration metrics. Finally, we used our strictly proper scoring rule, Copula-NLL, as an evaluation metric.

Results. Figure 5 presents the results for the flchain and support2 datasets. These results indicate that no single model consistently outperforms all others across different metrics. Our models generally exhibited competitive or superior predictive performance compared to RSF and DeepHit models.

The TS-DRF, TS-RF, TS-Log, and TS-Brier models' values on the CJD-Brier, CJD-Logarithmic, and CJD-KS metrics reflect the prediction performances of the density estimation methods used in the first step of the two-step algorithm. This suggests that no single prediction model uniformly outperforms the others, even in terms of density estimation. Given that each prediction model has its own inductive bias, the "best model" is contingent on the dataset and the specific evaluation metric. We defer the problem of model selection to existing works (e.g., (Arlot & Celisse, 2010; Arlot & Lerasle, 2016)).

Additional evaluation results using several other datasets are included in Appendix H.

540 REFERENCES

546

552

562

563

- 542 Sylvain Arlot and Alain Celisse. A survey of cross-validation procedures for model selection. *Statis-* 543 *tics Surveys*, 4:40–79, 2010.
- Sylvain Arlot and Matthieu Lerasle. Choice of V for V-fold cross-validation in least-squares density estimation. *Journal of Machine Learning Research*, 17(208):1–50, 2016.
- 547 Viktor Bengs, Eyke Hüllermeier, and Willem Waegeman. Pitfalls of epistemic uncertainty quantification through loss minimisation. In *Advances in Neural Information Processing Systems*, pp. 29205–29216, 2022.
- Blair Bilodeau, Dylan J Foster, and Daniel M Roy. Minimax rates for conditional density estimation
 via empirical entropy. *The Annals of Statistics*, 51(2):762–790, 2023.
- Jacques F. Carrière. Removing cancer when it is correlated with other causes of death. *Biometrical Journal*, 37(3):339–350, 1995.
- Domagoj Ćevid, Loris Michel, Jeffrey Näf, Peter Bühlmann, and Nicolai Meinshausen. Distribu tional random forests: Heterogeneity adjustment and multivariate distributional regression. *Jour- nal of Machine Learning Research*, 23(333):1–79, 2022.
- Pawel Chilinski and Ricardo Silva. Neural likelihoods via cumulative distribution functions. In *Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence (UAI)*, pp. 420–429.
 PMLR, 2020.
 - D. R. Cox. Regression models and life-tables. *Journal of the Royal Statistical Society. Series B* (*Methodological*), 34(2):187–220, 1972.
- ⁵⁶⁴ Claudia Czado and Ingrid Van Keilegom. Dependent censoring based on parametric copulas.
 Biometrika, 110(3):721–738, 2022.
- Dominic Danks and Christopher Yau. Derivative-based neural modelling of cumulative distribution
 functions for survival analysis. In *Proceedings of The 25th International Conference on Artificial Intelligence and Statistics*, pp. 7240–7256, 2022.
- 570 Negera Wakgari Deresa and Ingrid Van Keilegom. Copula based Cox proportional hazards models
 571 for dependent censoring. *Journal of the American Statistical Association*, 119(546):1044–1054, 2024.
- Victor Dheur and Souhaib Ben Taieb. A large-scale study of probabilistic calibration in neural network regression. In *Proceedings of the 40th International Conference on Machine Learning*, ICML'23, 2023.
- Angela Dispenzieri, Jerry A. Katzmann, Robert A. Kyle, Dirk R. Larson, Terry M. Therneau,
 Colin L. Colby, Raynell J. Clark, Graham P. Mead, Shaji Kumar, L. Joseph Melton, III, and
 S. Vincent Rajkumar. Use of nonclonal serum immunoglobulin free light chains to predict overall
 survival in the general population. *Mayo Clinic Proceedings*, 87(6):517–523, 2012.
- Erik Drysdale. SurvSet: An open-source time-to-event dataset repository. Technical report, arXiv:2203.03094, 2022.
- Tony Duan, Avati Anand, Daisy Yi Ding, Khanh K. Thai, Sanjay Basu, Andrew Ng, and Alejandro Schuler. NGBoost: Natural gradient boosting for probabilistic prediction. In *Proceedings of the 37th International Conference on Machine Learning*, pp. 2690–2700, 2020.
- Takeshi Emura and Yi-Hau Chen. Analysis of Survival Data with Dependent Censoring: Copula-Based Approaches. Springer, 2018.
- Telmo Silva Filho, Hao Song, Miquel Perello-Nieto, Raul Santos-Rodriguez, Meelis Kull, and Peter
 Flach. Classifier calibration: a survey on how to assess and improve predicted class probabilities. *Machine Learning*, 112:3211–3260, 2023.
- Jason P. Fine and Robert J. Gray. A proportional hazards model for the subdistribution of a competing risk. *Journal of the American Statistical Association*, 94(446):496–509, 1999.

594 595 596	Pierre Georges, Arnaud-Guilhem Lamy, Emeric Nicolas, Guillaume Quibel, and Thierry Roncalli. Multivariate survival modelling: A unified approach with copulas. Technical report, SSRN, 2001.						
597 598 599	Ali Hossein Foomani Gharari, Michael Cooper, Russell Greiner, and Rahul G Krishnan. Copula- based deep survival models for dependent censoring. In <i>Proceedings of the Thirty-Ninth Confer-</i> <i>ence on Uncertainty in Artificial Intelligence</i> , pp. 669–680, 2023.						
600 601	Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction, and estimation. <i>Journal of the American Statistical Association</i> , 102(477):359–378, 2007.						
602 603 604	M. Greenwood. A report on the natural duration of cancer. In <i>Reports on Public Health and Subjects. Ministry of Health.</i> London: H.M.S.O., 1926.						
605 606	Kartik Gupta, Amir Rahimi, Thalaiyasingam Ajanthan, Thomas Mensink, Cristian Sminchisescu and Richard Hartley. Calibration of neural networks using splines. In <i>ICLR 2021</i> , 2021.						
607 608 609	Humza Haider, Bret Hoehn, Sarah Davis, and Russell Greiner. Effective ways to build and evaluate individual survival distributions. <i>J. Mach. Learn. Res.</i> , 21(1), 2020.						
610 611	James J. Heckman and Bo E. Honoré. The identifiability of the competing risks model. <i>Biometrika</i> , 76(2):325–330, 1989.						
612 613 614 615	Jimmy Hickey, Ricardo Henao, Daniel Wojdyla, Michael Pencina, and Matthew Engelhard. Adap- tive discretization for event prediction (ADEPT). In <i>Proceedings of The 27th International Con-</i> <i>ference on Artificial Intelligence and Statistics</i> , pp. 1351–1359, 2024.						
616 617	Torsten Hothorn and Achim Zeileis. Predictive distribution modeling using transformation forests. <i>Journal of Computational and Graphical Statistics</i> , 30(4):1181–1196, 2021.						
618 619 620	Christian Igel. Smooth min-max monotonic networks. In <i>Proceedings of the 41st International Conference on Machine Learning</i> , 2024.						
621 622	Hemant Ishwaran, Udaya B. Kogalur, Eugene H. Blackstone, and Michael S. Lauer. Random survival forests. <i>The Annals of Applied Statistics</i> , 2(3):841 – 860, 2008.						
623 624 625	Vincent Jeanselme, Chang Ho Yoon, Brian Tom, and Jessica Barrett. Neural Fine-Gray: Monotonic neural networks for competing risks. In <i>Proceedings of the Conference on Health, Inference, and Learning</i> , pp. 379–392, 2023.						
626 627 628	William B. Kannel and Daniel L. McGee. Diabetes and cardiovascular disease: the Framingham study. <i>JAMA</i> , 241(19):2035–2038, 1979.						
629 630	E. L. Kaplan and Paul Meier. Nonparametric estimation from incomplete observations. <i>Journal of the American Statistical Association</i> , 53(282):457–481, 1958.						
631 632 633	Hyunho Kim and Jong-Seok Lee. Scalable monotonic neural networks. In <i>The Twelfth International Conference on Learning Representations</i> , 2024.						
634 635	D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In <i>Proceedings of ICLR</i> 2015, 2015.						
636 637 638	Brendan Kline and Elie Tamer. Recent developments in partial identification. <i>Annual Review of Economics</i> , 15:125–150, 2023.						
639 640 641 642 643	William A. Knaus, Frank E. Harrell, Joanne Lynn, Lee Goldman, Russell S. Phillips, Alfred F. Con- nors, Neal V. Dawson, William J. Fulkerson, Robert M. Califf, Norman Desbiens, Peter Layde, Robert K. Oye, Paul E. Bellamy, Rosemarie B. Hakim, and Douglas P. Wagner. The SUPPORT prognostic model: Objective estimates of survival for seriously ill hospitalized adults. <i>Annals of</i> <i>Internal Medicine</i> , 122(3):191–203, 1995.						
644 645	A. Kolmogorov. Sulla determinazione empírica di uma legge di distribuzione, 1933.						
646 647	Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classification with deep con- volutional neural networks. In <i>Advances in Neural Information Processing Systems</i> , volume 25. Curran Associates, Inc., 2012.						

640

687

688

040	Robert A. Kyle, Terry M. Therneau, S. Vincent Rajkumar, Dirk R. Larson, Matthew F. Plevak,
649	Janice R. Offord, Angela Dispenzieri, Jerry A. Katzmann, and L. Joseph Melton. Prevalence of
650	monoclonal gammopathy of undetermined significance. New England Journal of Medicine, 354
651	(13):1362–1369, 2006.

- Changhee Lee, William Zame, Jinsung Yoon, and Mihaela van der Schaar. DeepHit: A deep learning approach to survival analysis with competing risks. *Proceedings of the AAAI Conference on Artificial Intelligence*, 32(1), 2018.
- Chirag Nagpal, Xinyu Li, and Artur Dubrawski. Deep survival machines: Fully parametric survival regression and representation learning for censored data with competing risks. *IEEE Journal of Biomedical and Health Informatics*, 25(8):3163–3175, 2021.
- 659 Roger B. Nelsen. An Introduction to Copulas. Springer New York, NY, 2006.
- Jonathan Niles-Weed and Quentin Berthet. Minimax estimation of smooth densities in Wasserstein distance. *The Annals of Statistics*, 50(3):1519–1540, 2022.
- Arthur V. Peterson. Bounds for a joint distribution function with fixed sub-distribution functions:
 Application to competing risks. *Proceedings of the National Academy of Sciences*, 73(1):11–13, 1976.
- David Rindt, Robert Hu, David Steinsaltz, and Dino Sejdinovic. Survival regression with proper scoring rules and monotonic neural networks. In *Proceedings of The 25th International Conference on Artificial Intelligence and Statistics*, pp. 1190–1205, 2022.
- Mathieu Sart. Estimating the conditional density by histogram type estimators and model selection.
 ESAIM: Probability and Statistics, 21:34–55, 2017.
- Lisa Schlosser, Torsten Hothorn, Reto Stauffer, and Achim Zeileis. Distributional regression forests for probabilistic precipitation forecasting in complex terrain. *The Annals of Applied Statistics*, 13 (3):1564–1589, 2019.
- Maik Schwarz, Geurt Jongbloed, and Ingrid Van Keilegom. On the identifiability of copulas in
 bivariate competing risks models. *Canadian Journal of Statistics*, 41(2):291–303, 2013.
- A. Sklar. Fonctions de répartition à n dimensions et leurs marges. *Publications de l'Institut Statistique de l'Université de Paris*, 8:229–231, 1959.
- Nikolai Smirnov. On the estimation of the discrepancy between empirical curves of distribution for two independent samples, 1939.
- Terry M. Therneau and Patricia M. Grambsch. *Modeling Survival Data: Extending the Cox Model*.
 Springer Science & Business Media, 2000.
- Anastasios Tsiatis. A nonidentifiability aspect of the problem of competing risks. *Proc. Natl. Acad. Sci. USA*, 1975.
 - S. S. Vallender. Calculation of the Wasserstein distance between probability distributions on the line. *Theory of Probability & Its Applications*, 18(4):784–786, 1974.
- Ping Wang, Yan Li, and Chandan K. Reddy. Machine learning for survival analysis: A survey. ACM
 Comput. Surv., 51(6), 2019.
- Simon Wiegrebe, Philipp Kopper, Raphael Sonabend, Bernd Bischl, and Andreas Bender. Deep learning for survival analysis: A review. *Artificial Intelligence Review*, 57, 2024.
- ⁶⁹⁴ Hiroki Yanagisawa. Proper scoring rules for survival analysis. In *ICML 2023*, 2023.
- Hiroki Yanagisawa, Kohei Miyaguchi, and Takayuki Katsuki. Hierarchical lattice layer for partially
 monotone neural networks. In *Advances in Neural Information Processing Systems*, pp. 11092–
 11103, 2022.
- Weijia Zhang, Chun Kai Ling, and Xuanhui Zhang. Deep copula-based survival analysis for dependent censoring with identifiability guarantees. In *AAAI 2024*, 2024.
- 701 Ming Zheng and John P. Klein. Estimates of marginal survival for dependent competing risks based on an assumed copula. *Biometrika*, 82(1):127–138, 1995.

702 **ON APPLICATIONS OF PROPOSED METHODS** А 703

Survival analysis is a crucial tool in various fields such as medicine, engineering, and social sciences, where the time until an event of interest occurs is studied. The applicability of our proposed methods can be classified into three distinct types based on the nature of the dependency between the event time and the censoring time.

- (Conditional Independence.) The first class of applications encompasses scenarios where the conditional independence assumption between the event time and the censoring time is valid or highly likely to hold. This situation typically arises in cases of administrative censoring, where data points are censored solely due to the limited window of observation times. For instance, in clinical trials, patients might be censored at the end of the study period regardless of whether the event of interest has occurred. In such cases, the conditional independence assumption simplifies the analysis, allowing the use of survival models based on the conditional independence assumption including our two-step algorithm.
- 717 • (Verifiable Dependency.) The second class of applications includes scenarios where there is a dependency between the event time and the censoring time, but this dependency can 718 be verified, albeit at a significant cost, for a small subset of data points. An example of this 719 situation is found in medical studies where the primary event of interest is patient mortality, 720 and censoring occurs when patients are discharged from the hospital. In such cases, it 721 might be feasible to investigate the true event time for a small fraction of patients, thereby 722 assessing the dependency between the event and censoring times. For these applications, 723 our two-step algorithm can be adapted by estimating the copula C for the subset of data 724 points where the dependency has been verified. This estimated copula can then be used 725 to model the dependency in the entire dataset, allowing for more accurate estimation of 726 individual survival functions. 727
- (Unverifiable Dependency.) The third class of applications involves situations where the 728 dependency between the event time and the censoring time cannot be determined, even with extensive resources. In such scenarios, identifying the individual survival function 730 is inherently challenging due to the unknown nature of the dependency. Without precise knowledge of the dependency, it is prudent to consider a range of potential dependencies. For example, if we have some confidence that the dependency can be represented by a Frank copula with parameters $-5 \le \theta \le 5$, we can estimate the survival functions using the Frank copula with $\theta = -5$ and $\theta = 5$. These estimates provide the upper and lower bounds of the true survival function. Additionally, our method for estimating the upper and lower bounds offers a robust approach to account for the uncertainty in the dependency structure.
- 737 738 739 740

741

742

743

744

745

729

731

732

733

734

735

704

705

706

708 709

710

711

712

713

714

715

716

EXAMPLES OF BOUNDS ON STEP 1 ERROR В

In this section, we present an example that satisfies (14). As mentioned in Sections 3 and 4, any estimation method for the probability distribution can be employed, and theoretical results pertaining to those models can be leveraged to guarantee (14). Among the various methods, we introduce results derived from the Distributional Random Forest (DRF) (Cevid et al., 2022) and histogram type estimators (Sart, 2017).

746 747 748

B.1 DISTRIBUTIONAL RANDOM FOREST

749 DRF constructs random forests designed to estimate the conditional distribution of multivariate re-750 sponses. It achieves this by splitting the data using a distributional metric, specifically the maximal 751 mean discrepancy (MMD), with the goal of maximizing the differences in distributions between 752 child nodes. DRF then estimates targets, such as the CIF in this study, by employing a weight func-753 tion that reflects how frequently the training data points end up in the same leaf as the test point 754 across different trees. 755

Ćevid et al. (2022) imposes the following assumptions:

758

761

762

763

764

765

766

767

768

769

770

773

774

780 781

782

784 785

792 793

794

803

804

805 806

808

809

- 756 (P1) (Data Sampling.) Instead of the traditional bootstrap sampling with replacement, commonly used in forest-based methods, a subsampling approach is employed. For each tree, a random subset of size s_n is selected from n training data points. It is assumed that s_n 759 approaches infinity as n increases, with the rate specified below. 760
 - (P2) (Honesty.) The data used to construct each tree is split into two parts: one part is used for determining the splits, and the other is used for populating the leaves and thus for estimating the response.
 - (P3) (α -Regularity.) Each split leaves at least a fraction $0 < \alpha < 0.2$ of the available training sample on each side. Additionally, trees are grown until each leaf contains between κ and $2\kappa - 1$ observations, where $\kappa \in \mathbb{N}$ is a fixed tuning parameter.
 - (P4) (Symmetry.) The (randomized) output of a tree does not depend on the ordering of the training samples.
 - (P5) (Random-Split.) At every split point, the probability that the split occurs along the feature X_i is bounded below by π/p , for some $\pi > 0$ and for all $j = 1, \ldots, p$.

Note that each of these conditions can be verified by inspecting the constructed forest. The following 771 proposition is direct consequence from Corollary 5 of Cevid et al. (2022). 772

ŕ

Proposition 1. Under the assumptions (P1)-(P5), it holds that

$$\hat{r}_{b,k|x} \xrightarrow{p} r_{b,k|x}$$

775 for any b and k as the sample size goes to infinity³. 776

777 The proposition above ensures the probabilistic convergence of the estimation. Specifically, for 778 arbitrary values of $\epsilon > 0$ and $\delta > 0$, there exists a sample size threshold $n_{\epsilon,\delta} > 0$ such that if the 779 sample size exceeds $n_{\epsilon,\delta}$, then (14) holds with a probability of at least $1 - \delta$.

B.2 HISTOGRAM TYPE ESTIMATORS

Sart (2017) proposes histogram type conditional density estimators on $\mathcal{X} \times \mathcal{Y}$ by 783

$$\widehat{\Pr}(y|x) \coloneqq \widehat{s}(x,y) = \sum_{K \in \mathcal{M}} \frac{\sum_{i=1}^{n} \mathbb{1}_{K}(x_{i},y_{i})}{\sum_{i=1}^{n} (\delta_{x_{i}} \otimes \mu)(K)} \mathbb{1}_{K}(x,y)$$

786 where m is a partition of $\mathcal{X} \times \mathcal{Y}$, μ is a reference measure of the conditional density, and δ_x is the 787 Dirac measure at $x \in \mathcal{X}$. In the context of survival analysis, we can choose $\mathcal{Y} = [0, 1]^K$ equipped 788 with the Lebesgue measure μ and m as a set of regions defined by $(\zeta_{b-1} \leq t_k < \delta_b, \delta = k)$ for 789 $b \in [B], k \in [K].$ 790

Let ν be a measure defined on \mathcal{X} and 791

$$h(f,g) = \int_{\mathcal{X} \times \mathcal{Y}} \left(\sqrt{f(x,y)} - \sqrt{g(x,y)} \right)^2 \mathrm{d}\nu(x) \, \mathrm{d}\mu(y)$$

be the Hellinger distance. Then, Sart (2017) provides the following result:

Proposition 2 (Proposition 2.6 of Sart (2017)). Let *s* be a true conditional density. We define

$$V_m := \left\{ \sum_{K \in m} a_K \mathbb{1}_K, \forall K \in m, a_K \ge 0 \right\}.$$

Then, there exists global constants C_1 , $C_2 > 0$ such that for any $\xi > 0$,

$$\Pr\left[h^2(s,\hat{s}) \le \inf_{v \in V_m} h^2(s,v) + C_1 \frac{|m|}{n} + C_2 \xi\right] \ge 1 - e^{-n\xi}$$

See Sart (2017) for specific examples of deriving the term $\inf_{v \in V_m} h^2(s, v)$ under the conditions on s and \mathcal{X} . The bound on the Hellinger distance implies the bound on the total variation distance $\operatorname{TV}(f,g) = \int_{\mathcal{X}\times\mathcal{Y}} |f(x,y) - g(x,y)| \,\mathrm{d}\nu(x) \,\mathrm{d}\mu(y)$ as

$$\Gamma \mathcal{V}(f,g) \le h(f,g),$$

which follows from the inequality between the L_1 -norm and the L_2 -norm. Thus, by utilizing Proposition 2, we obtain (14) by taking ϵ as the total variation distance between \hat{r} and r.

 $^{{}^{3} \}xrightarrow{p}$ denotes the probability convergence.

STEP 2 OF PROPOSED ALGORITHM С

C.1 GENERALIZATION FOR COMPETING RISKS

We generalize the second step of our two-step algorithm presented in Sec. 3 for K > 2.

For a subset $\mathbf{I} \subseteq [K]$, let

$$Q_{\mathbf{I},b|x} = \{ (t_1, t_2, \dots, t_K) : \wedge_{k' \in \mathbf{I}} (\zeta_{b-1} < t_{k'} \le \zeta_b) \text{ and } \wedge_{k' \notin \mathbf{I}} (\zeta_{b-1} \le t_{k'}) \}.$$

We can compute the probability $q_{\mathbf{I},b|x} = \Pr((t_1, t_2, \dots, t_K) \in Q_{\mathbf{I},b|x})$ by using the inclusionexclusion principle:

$$q_{\mathbf{I},b|x} = \sum_{j=0}^{K} (-1)^{K-j} \sum_{\mathbf{J}:\mathbf{J}\subseteq[K],|\mathbf{J}|=j} c(\mathbf{I},\mathbf{J},b),$$

where $c(\mathbf{I}, \mathbf{J}, b) = C(p_{\mathbf{I}, \mathbf{J}, b, 1}, p_{\mathbf{I}, \mathbf{J}, b, 2}, \dots, p_{\mathbf{I}, \mathbf{J}, b, K})$ and

$$p_{\mathbf{I},\mathbf{J},b,k} = \begin{cases} 1 & \text{if } k \in \mathbf{J} \setminus \mathbf{I}, \\ F_k(\zeta_b | x) & \text{if } k \in \mathbf{J} \cap \mathbf{I}, \\ F_k(\zeta_{b-1} | x) & \text{if } k \notin \mathbf{J}. \end{cases}$$

By generalizing Eq. (7)–(9) using $q_{\mathbf{I},b|x}$, we can represent $r_{b,k}$ as

$$r_{b,k|x} = q_{\{k\},b|x} - \underbrace{\sum_{i=2}^{K} (-1)^{i} \sum_{\mathbf{H}: k \in \mathbf{H} \subseteq [K], |\mathbf{H}| = i} w_{\mathbf{H}} \cdot q_{\mathbf{H},b|x}}_{\text{Correction term}},$$

where $w_{\mathbf{H}}$ is a weight parameter and we assume that $w_{\mathbf{H}} = 1/|\mathbf{H}|$.

Since $q_{\mathbf{I},b|x}$ are functions of $\mathbf{F}_{b|x}$, $\mathbf{F}_{b-1|x}$, and the copula C, we can obtain the simultaneous equations:

$$\mathbf{r}_b = g_{b,C}(\mathbf{F}_b | \mathbf{F}_{b-1})$$

Hence we can estimate $\mathbf{F}_{b|x}$ by using Algorithm 1.

C.2 SOLVING SIMULTANEOUS EQUATIONS

In this section, we demonstrate how equation (13) can be solved using Algorithm 2. This algorithm capitalizes on the following property:

Property 1. Assuming that $\mathbf{F}_{b-1|x}$ is fixed:

- (1) The k-th element of the length-K vector $g_{b,C}(\mathbf{F}_{b|x}|\mathbf{F}_{b-1|x})$ is monotonically increasing with respect to the k-th element of $\hat{\mathbf{F}}_{b|x}$.
- (2) The $k' \neq k$ -th element of the length-K vector $g_{b,C}(\hat{\mathbf{F}}_{b|x}|\hat{\mathbf{F}}_{b-1|x})$ is monotonically decreasing with respect to the k'-th element of $\mathbf{F}_{b|x}$.

First, we demonstrate that the following inequality always holds during the execution of Algorithm 2:

$$\hat{\mathbf{r}}_{b|x} \ge g_{b,C}(\hat{\mathbf{F}}_{b|x}|\hat{\mathbf{F}}_{b-1|x}).$$
(18)

At line 1 of Algorithm 2, $\mathbf{F}_{b|x}$ is initialized with $\mathbf{F}_{b-1|x}$. Hence, by the definition in Eq. (13), we have $g_{b,C}(\mathbf{F}_{b|x}|\mathbf{F}_{b-1|x}) = \mathbf{0}$, which means that inequality (18) holds. At line 4 of this algorithm, we can increase the k-th element of $\mathbf{F}_{b|x}$ to satisfy $\hat{\mathbf{r}}_{b|x} = g_{b,C}(\mathbf{F}_{b|x}|\mathbf{F}_{b-1|x})$ due to Property 1(1), and this increment does not violate inequality (18) due to Property 1(2).

Since each element in the length-K vector $\hat{\mathbf{F}}_{b|x}$ does not decrease during the execution of this algorithm, we can find the solution to equation (13) by repeating the while-loop (lines 2–6) until the convergence of $\hat{\mathbf{F}}_{b|x}$.

865	Algorithm 2 Algorithm to solve simultaneous equations
866 867	Input: Equation $\hat{\mathbf{r}}_{b x} = g_{b,C}(\mathbf{F}_{b x} \hat{\mathbf{F}}_{b-1 x}).$
868	Output: Solution $\hat{\mathbf{F}}_{b x}$.
869	1: Initialize $\hat{\mathbf{F}}_{b x} = \hat{\mathbf{F}}_{b-1 x}$
870	2: while $\hat{\mathbf{F}}_{b x}$ is not converged do
871	3: for $k \in \{1, 2,, K\}$ do
872	4: Increase the <i>k</i> -th element of $\hat{\mathbf{F}}_{b x}$ so that the <i>k</i> -th equation of $\hat{\mathbf{r}}_{b x} = g_{b,C}(\hat{\mathbf{F}}_{b x} \hat{\mathbf{F}}_{b-1 x})$ is
873	satisfied (while other k'-th element ($k \neq k'$) of $\hat{\mathbf{F}}_{b x}$ is fixed)
874	5: end for
875	6: end while
877	7: return $\mathbf{F}_{b x}$

C.3 ALTERNATIVE ALGORITHM FOR STEP 2

In the second step of our two-step algorithm, $r_{b,k|x}$ can be represented as $\frac{d}{dt}V_k(t)$ when $B \to \infty$. Therefore, the second step of our two-step algorithm can be seen as solving this partial differential equation:

$$\frac{d}{dt}V_{k}(t|x) = -\frac{\partial}{\partial t_{k}}\overline{C}(1 - F_{1}(t_{1}|x), 1 - F_{2}(t_{2}|x), \dots, 1 - F_{K}(t_{K}|x))\Big|_{t_{1}=t_{2}=\dots=t_{K}=t},$$

$$= -\frac{\partial}{\partial t_{k}}\overline{C}(S_{1}(t_{1}|x), S_{2}(t_{2}|x), \dots, S_{K}(t_{K}|x))\Big|_{t_{1}=t_{2}=\dots=t_{K}=t},$$

$$= -\frac{\partial\overline{C}(u_{1}, u_{2}, \dots, u_{K})}{\partial u_{k}}\Big|_{u_{1}=S_{1}(t), u_{2}=S_{2}(t), \dots, u_{K}=S_{K}(t)}\frac{d}{dt}S_{k}(t_{k}|x)\Big|_{t_{k}=t},$$
(19)

where \overline{C} is the survival copula corresponding to C.

In the context of estimating the average survival function $S_k(t) = 1 - F_k(t)$, Equation (19) can be simplified by marginalizing over $x \sim X$ as

$$\frac{d}{dt}V_{k}(t) = -\frac{\partial \overline{C}(u_{1}, u_{2}, \dots, u_{K})}{\partial u_{k}}\bigg|_{u_{1}=S_{1}(t), u_{2}=S_{2}(t), \dots, u_{K}=S_{K}(t)}\frac{d}{dt}S_{k}(t_{k})\bigg|_{t_{k}=t}.$$
 (20)

Assuming that we have an estimation $\hat{V}_k(t)$ of $V_k(t)$, Carrière (1995) shows that we can obtain estimation $\hat{S}_k(t)$ for all k by solving Eq. (20). To solve this equation, his algorithm uses these approximations:

$$u_k \approx (S_k(\zeta_b) + S_k(\zeta_{b+1}))/2 \tag{21}$$

Т

$$\left. \frac{d}{dt} S_k(t) \right|_{t=\zeta_b} \approx \left(S_k(\zeta_{b+1}) - S_k(\zeta_b) \right) / (\zeta_{b+1} - \zeta_b) \tag{22}$$

$$\left. \frac{d}{dt} V_k(t) \right|_{t=\zeta_b} \approx \left(V_k(\zeta_{b+1}) - V_k(\zeta_b) \right) / (\zeta_{b+1} - \zeta_b) \tag{23}$$

for all k.

It is easy to extend this algorithm to solve Eq. (19) by using the variants of Eq. (21), (22), and (23) conditional on x. Therefore, we conducted numerical experiments to compare this algorithm with our two-step algorithm in Sec. H.

D PROOFS

This section provides proofs that remain in Section 4. In this section, for notational simplicity, we abbreviate the conditional variable x. For example, we denote $F_k(\zeta_b)$ instead of $F_k(\zeta_b|x)$. We assume $w_1 = w_2 = \frac{1}{2}$ just for simplicity. We can extend our analysis to arbitrary $w_1, w_2 \in (0, 1)$. Moreover, we assume that step 2 exactly solves (13), i.e., F_k exactly satisfies the equation (13).

First, we evaluate the error between the outputs of step 2 and the true probability.

Proposition 3 (Estimation error when solving (13)). Suppose that Assumption 1 holds. Let $\mathbf{F}_{b|x}$ be the output of Algorithm 1. Then, for every b = 1, ..., B and k = 1, 2, there exists a constant $c_{\epsilon}^{\circ} > 0$ depending c_0 , ℓ and L such that under the condition $\epsilon \leq \frac{c_{\epsilon}}{B}$, for sufficiently large B and every bsatisfying $\max_{k \in \{1,2\}} F_k(\zeta_b) \leq 1 - \delta$ with a positive constant δ satisfying $\frac{8c_0L}{\tau \ell \log B} \leq \delta$ with $\tau \in (0, \frac{1}{2})$,

$$\left|\hat{F}_{k}(\zeta_{b}) - F_{k}(\zeta_{b})\right| \leq \left[\epsilon + \frac{16L\delta^{-2}}{\ell^{2}}\left(\epsilon + L \cdot \frac{c_{0}}{B}\right)^{2}\right] \cdot \left(\frac{1}{\ell} + \frac{B}{4c_{0}L}\right) \left(1 - \frac{8c_{0}L}{B\ell\delta}\right)^{-b+1}.$$
 (24)

Proof. Let us denote $\Delta_{b,k} \coloneqq \hat{F}_k(\zeta_b) - F_k(\zeta_b)$. Instead of (24), we aim to obtain a tighter bound

$$|\Delta_{b,k}| \le \left[\epsilon + \frac{16L\delta^{-2}}{\ell^2} \left(\epsilon + L \cdot \frac{c_0}{B}\right)^2\right] \cdot \left[\left(\frac{1}{\ell} + \frac{B}{4c_0L}\right) \left(1 - \frac{8c_0L}{B\ell\delta}\right)^{-b+1} - \frac{B}{4c_0L}\right].$$
(25)

We give its proof by induction on b. For the case b = 1, we have

$$C(\hat{F}_1(\zeta_1), 1) = \hat{r}_{1,1} + w_1 \cdot C(\hat{F}_1(\zeta_1), \hat{F}_2(\zeta_1))$$

and

$$C(F_1(\zeta_1), 1) = r_{1,1} + w_{1,1}^* \cdot C(F_1(\zeta_1), F_2(\zeta_1))$$

with $w_{1,1}^* \in [0,1]$. By taking the difference of the both sides, we obtain

$$C(\hat{F}_{1}(\zeta_{1}), 1) - C(F_{1}(\zeta_{1}), 1)$$

= $\hat{r}_{1,1} - r_{1,1} + w_{1} \cdot C(\hat{F}_{1}(\zeta_{1}), \hat{F}_{2}(\zeta_{1})) - w_{1,1}^{*} \cdot C(F_{1}(\zeta_{1}), F_{2}(\zeta_{1})).$ (26)

First, we evaluate the term $C(\hat{F}_1(\zeta_1), \hat{F}_2(\zeta_1))$. Rearranging terms gives

$$C(\hat{F}_{1}(\zeta_{1}), 1) - w_{1} \cdot C(\hat{F}_{1}(\zeta_{1}), \hat{F}_{2}(\zeta_{1}))$$

= $\hat{r}_{1,1} - r_{1,1} + C(F_{1}(\zeta_{1}), 1) - w_{1,1}^{*} \cdot C(F_{1}(\zeta_{1}), F_{2}(\zeta_{1}))$
 $\leq \epsilon + C(F_{1}(\zeta_{1}), 1)$
 $\leq \epsilon + L \cdot \frac{c_{0}}{B},$

where the first inequality follows from $\hat{r}_{1,1} - r_{1,1} \leq \epsilon$ by (14) and $w_{1,1}^* \cdot C(F_1(\zeta_1), F_2(\zeta_1)) \geq 0$, and the last inequality is derived from $F_1(\zeta_1) \leq \frac{c_0}{B}$ by Assumption 1-(1) and

$$C(F_1(\zeta_1), 1) = \int_0^{F_1(\zeta_1)} \int_0^1 \underbrace{\frac{\partial^2}{\partial u \partial v} C(u, v)}_{\leq L} \mathrm{d}v \mathrm{d}u \leq L \cdot F_1(\zeta_1) \leq L \cdot \frac{c_0}{B}.$$

Since $C(\hat{F}_1(\zeta_1), \hat{F}_2(\zeta_1)) \le C(\hat{F}_1(\zeta_1), 1)$, we obtain

$$C(\hat{F}_1(\zeta_1), 1) - w_1 \cdot C(\hat{F}_1(\zeta_1), 1) \le C(\hat{F}_1(\zeta_1), 1) - w_1 \cdot C(\hat{F}_1(\zeta_1), \hat{F}_2(\zeta_1)) \le \epsilon + L \cdot \frac{c_0}{B}.$$

By using $1 - w_1 = \frac{1}{2}$, we obtain

$$C(\hat{F}_1(\zeta_1), 1) \le 2\left(\epsilon + L \cdot \frac{c_0}{B}\right)$$

Moreover, we have

969
970
971
$$C(\hat{F}_1(\zeta_1), 1) = \int_0^{F_1(\zeta_1)} \int_0^1 \underbrace{\frac{\partial^2}{\partial u \partial v} C(u, v)}_{\geq \ell} \mathrm{d}v \mathrm{d}u \geq \ell \hat{F}_1(\zeta_1),$$
971

972 and hence,

$$\hat{F}_1(\zeta_1) \le \frac{2}{\ell} \left(\epsilon + L \cdot \frac{c_0}{B}\right)$$

The similar argument gives

$$\hat{F}_2(\zeta_1) \le \frac{2}{\ell} \left(\epsilon + L \cdot \frac{c_0}{B} \right)$$

By combining these bounds, we obtain

$$C(\hat{F}_{1}(\zeta_{1}), \hat{F}_{2}(\zeta_{1})) = \int_{0}^{\hat{F}_{1}(\zeta_{1})} \int_{0}^{\hat{F}_{2}(\zeta_{1})} \underbrace{\frac{\partial^{2}}{\partial u \partial v} C(u, v)}_{\leq L} dv du$$
$$\leq L \cdot \hat{F}_{1}(\zeta_{1}) \hat{F}_{2}(\zeta_{1}) \leq \frac{4L}{\ell^{2}} \left(\epsilon + L \cdot \frac{c_{0}}{B}\right)^{2}.$$
(27)

Thus we get the bound on the term $C(\hat{F}_1(\zeta_1), \hat{F}_2(\zeta_1))$.

Moreover, we have

$$C(F_1(\zeta_1), F_2(\zeta_1)) = \int_0^{F_1(\zeta_1)} \int_0^{F_2(\zeta_1)} \underbrace{\frac{\partial^2}{\partial u \partial v} C(u, v)}_{\leq L} \mathrm{d}v \mathrm{d}u$$
$$\leq L \cdot F_1(\zeta_1) F_2(\zeta_1) \leq L \cdot \left(\frac{c_0}{B}\right)^2, \tag{28}$$

where we use Assumption 1-(1) for the last inequality.

Then, by taking the absolute value of the both sides of (26), we have

$$\begin{split} & \left| C(\hat{F}_{1}(\zeta_{1}), 1) - C(F_{1}(\zeta_{1}), 1) \right| \\ &= \left| \hat{r}_{1,1} - r_{1,1} + w_{1} \cdot C(\hat{F}_{1}(\zeta_{1}), \hat{F}_{2}(\zeta_{1})) - w_{1,1}^{*} \cdot C(F_{1}(\zeta_{1}), F_{2}(\zeta_{1})) \right| \\ &\leq \left| \hat{r}_{1,1} - r_{1,1} \right| + \left| w_{1} \cdot C(\hat{F}_{1}(\zeta_{1}), \hat{F}_{2}(\zeta_{1})) - w_{1,1}^{*} \cdot C(F_{1}(\zeta_{1}), F_{2}(\zeta_{1})) \right| \\ &\leq \epsilon + \max \Big\{ C(\hat{F}_{1}(\zeta_{1}), \hat{F}_{2}(\zeta_{1})), C(F_{1}(\zeta_{1}), F_{2}(\zeta_{1})) \Big\} \\ &\leq \epsilon + \max \Big\{ \frac{4L}{\ell^{2}} \Big(\epsilon + L \cdot \frac{c_{0}}{B} \Big)^{2}, L \cdot \Big(\frac{c_{0}}{B} \Big)^{2} \Big\} \\ &\leq \epsilon + \frac{4L}{\ell^{2}} \Big(\epsilon + L \cdot \frac{c_{0}}{B} \Big)^{2}, \end{split}$$

where we use the triangle inequality for the first inequality, $0 \le w_1, w_{1,1}^* \le 1$ for the second one, and (27), (28) for the third one. Since $|C(\hat{F}_1(\zeta_1), 1) - C(F_1(\zeta_1), 1)| \ge \ell |\hat{F}_1(\zeta_1) - F_1(\zeta_1)| = \ell |\Delta_{1,1}|$, we obtain

$$|\Delta_{1,1}| \le \frac{1}{\ell} \left[\epsilon + \frac{4L}{\ell^2} \left(\epsilon + L \cdot \frac{c_0}{B} \right)^2 \right] \le \frac{1}{\ell} \left[\epsilon + \frac{16L\delta^{-2}}{\ell^2} \left(\epsilon + L \cdot \frac{c_0}{B} \right)^2 \right],$$

where the last term coincides to the right hand side of (25) with b = 1.

1021 We can obtain the bound for k = 2 by utilizing the same argument. Thus we get (25) for b = 1. 1022 Assume that (25) holds for b = b', i.e.,

 $|\Delta_{b',k}| \le \left[\epsilon + \frac{16L\delta^{-2}}{\ell^2} \left(\epsilon + L \cdot \frac{c_0}{B}\right)^2\right] \cdot \left[\left(\frac{1}{\ell} + \frac{B}{4c_0L}\right) \left(1 - \frac{8c_0L}{B\ell\delta}\right)^{-b'+1} - \frac{B}{4c_0L}\right]$

holds for k = 1, 2. We consider the case b = b' + 1. This bound gives that by taking $\epsilon \leq \frac{c_{\epsilon}}{B}$ with a sufficiently small c_{ϵ} , $|\Delta_{b',k}| \leq \left[\epsilon + \frac{16L\delta^{-2}}{\ell^2} \left(\epsilon + L \cdot \frac{c_0}{B}\right)^2\right] \cdot \left(\frac{1}{\ell} + \frac{B}{4c_0L}\right) \left(1 - \frac{8c_0L}{B\ell\delta}\right)^{-b'+1}$ $\leq \left[\epsilon + \frac{16L\delta^{-2}}{\ell^2} \left(\epsilon + L \cdot \frac{c_0}{B}\right)^2\right] \cdot \left(\frac{1}{\ell} + \frac{B}{4c_0L}\right) \left(1 - \frac{8c_0L}{B\ell\delta}\right)^{-B}$ $\leq \left[\epsilon + \frac{16L\delta^{-2}}{\ell^2} \left(\epsilon + L \cdot \frac{c_0}{B}\right)^2\right] \cdot \left(\frac{1}{\ell} + \frac{B}{4c_0L}\right) \exp\left(\frac{8c_0L}{B\ell\delta}\right)^{-B}$ $\leq \left[\epsilon + \frac{16L\delta^{-2}}{\ell^2} \left(\epsilon + L \cdot \frac{c_0}{B}\right)^2\right] \cdot \left(\frac{1}{\ell} + \frac{B}{4c_0L}\right) \exp\left(\frac{8c_0L}{\ell\delta}\right)$

$$= \begin{bmatrix} \ell^2 & B^{\gamma} \end{bmatrix} \begin{pmatrix} \ell & 4c_0L \end{pmatrix}^{-1} \begin{pmatrix} \ell\delta \end{pmatrix}$$
$$\leq \begin{bmatrix} \epsilon + \frac{\ell \log B}{2c_0^2} \left(\epsilon + L \cdot \frac{c_0}{B}\right)^2 \end{bmatrix} \cdot \left(\frac{1}{\ell} + \frac{B}{4c_0L}\right) B^{\tau}$$
(29)

$$\lesssim \frac{1}{B^{1-\tau}},\tag{30}$$

1042 where we use $1 - x \le e^{-x}$ in the third inequality and the definition of δ in the fourth inequality. 1043 This and $F_k(\zeta_{b'}) < 1 - \delta$ gives $\hat{F}_k(\zeta_{b'}) < 1 - \frac{\delta}{2}$ for sufficiently large B.

1044 We remind

$$\hat{r}_{b'+1,1} = \hat{q}_{\{1\},b'} - w_1 \cdot \hat{q}_{\{1,2\},b'},\tag{31}$$

$$r_{b'+1,1} = q_{\{1\},b'} - w^*_{b'+1,1} \cdot q_{\{1,2\},b'},\tag{32}$$

1049 Now, we consider integral representation of $\hat{q}_{\{1\},b'}$ and $\hat{q}_{\{1,2\},b'}$ as

$$\hat{q}_{\{1\},b'} = C(\hat{F}_{1}(\zeta_{b'+1}), 1) - C(\hat{F}_{1}(\zeta_{b'}), 1) - C((\zeta_{b'+1}), \hat{F}_{2}(\zeta_{b'})) + C(\hat{F}_{1}(\zeta_{b'}), \hat{F}_{2}(\zeta_{b'})) \\
= \int_{\hat{F}_{1}(\zeta_{b'})}^{\hat{F}_{1}(\zeta_{b'+1})} \int_{\hat{F}_{2}(\zeta_{b'})}^{1} \frac{\partial^{2}}{\partial u \partial v} C(u, v) dv du,$$

$$\hat{q}_{\{1,2\},b'} = C(\hat{F}_{1}(\zeta_{b'+1}), \hat{F}_{2}(\zeta_{b'+1})) - C(\hat{F}_{1}(\zeta_{b'+1}), \hat{F}_{2}(\zeta_{b'})) \\
- C(\hat{F}_{1}(\zeta_{b'}), \hat{F}_{2}(\zeta_{b'+1})) + C(\hat{F}_{1}(\zeta_{b'}), \hat{F}_{2}(\zeta_{b'})) \\
= \int_{\hat{F}_{1}(\zeta_{b'})}^{\hat{F}_{1}(\zeta_{b'+1})} \int_{\hat{F}_{2}(\zeta_{b'})}^{\hat{F}_{2}(\zeta_{b'+1})} \frac{\partial^{2}}{\partial u \partial v} C(u, v) dv du.$$
(33)

 The same expression holds for $q_{\{1\},b'}$ and $q_{\{1,2\},b'}$ by replacing \hat{F}_1 and \hat{F}_2 with F_1 and F_2 . By taking the difference between (31) and (32), we obtain

$$\hat{r}_{b'+1,1} - r_{b'+1,1} = \hat{q}_{\{1\},b'} - \hat{q}_{\{1\},b'} - w_1 \cdot \hat{q}_{\{1,2\},b'} + w_{1,1}^* \cdot q_{\{1,2\},b'}.$$
(34)

Similar to the case b = 1, we first evaluate the term $\hat{q}_{\{1,2\},b'}$ (note that $\hat{q}_{\{1,2\},b'} = C(\hat{F}_1(\zeta_1), \hat{F}_2(\zeta_1))$). By rearranging terms, we have

$$\hat{q}_{\{1\},b'} - w_1 \cdot \hat{q}_{\{1,2\},b'} = \hat{r}_{b'+1,1} - r_{b'+1,1} + q_{\{1\},b'} - w_{1,1}^* \cdot q_{\{1,2\},b'} \\
\leq \epsilon + q_{\{1\},b'} \\
= \epsilon + \int_{F_1(\zeta_{b'+1})}^{F_1(\zeta_{b'+1})} \int_{F_2(\zeta_b')}^1 \underbrace{\frac{\partial^2}{\partial u \partial v} C(u,v)}_{\leq L} dv du \\
\leq \epsilon + L \cdot (F_1(\zeta_{b'+1}) - F_1(\zeta_{b'}))(1 - F_2(\zeta_b')) \\
\leq \epsilon + L \cdot \frac{c_0}{B},$$
(35)

1079 where the first inequality follows from $\hat{r}_{b'+1,1} - r_{b'+1,1} \le \epsilon$ by (14) and $q_{\{1,2\},b'} \ge 0$, and the last inequality, follows from Assumption 1-(1) and $1 - F_2(\zeta_b) < 1$. Moreover, the left hand side is lower

1080 bounded by

where we use $1 - w_1 = \frac{1}{2}$ and (33) for the equality. Combining this with (35), we have

 $\hat{q}_{\{1\},b'} - w_1 \cdot \hat{q}_{\{1,2\},b'} \ge (1 - w_1)\hat{q}_{\{1\},b'}$

$$\hat{F}_1(\zeta_{b'+1}) - \hat{F}_1(\zeta_{b'}) \le \frac{2}{\ell(1 - \hat{F}_2(\zeta_{b'}))} \Big(\epsilon + L \cdot \frac{c_0}{B}\Big).$$
(36)

 $= \frac{1}{2} \int_{\hat{F}_1(\zeta_{b'+1})}^{\hat{F}_1(\zeta_{b'+1})} \int_{\hat{F}_2(\zeta_b')}^1 \underbrace{\frac{\partial^2}{\partial u \partial v} C(u,v)}_{\geq \ell} \mathrm{d}v \mathrm{d}u$ $\geq \frac{1}{2} \cdot \ell \Big(\hat{F}_1(\zeta_{b'+1}) - \hat{F}_1(\zeta_{b'}) \Big) (1 - \hat{F}_2(\zeta_{b'})),$

This and the triangle inequality give

$$\begin{aligned} |\Delta_{b'+1,1}| &= \left| \left(\hat{F}_1(\zeta_{b'+1}) - \hat{F}_1(\zeta_{b'}) \right) + \left(\hat{F}_1(\zeta_{b'}) - F_1(\zeta_{b'}) \right) + \left(F_1(\zeta_{b'}) - F_1(\zeta_{b'+1}) \right) \right| \\ &\leq \left| \hat{F}_1(\zeta_{b'+1}) - \hat{F}_1(\zeta_{b'}) \right| + \left| \hat{F}_1(\zeta_{b'}) - F_1(\zeta_{b'}) \right| + \left| F_1(\zeta_{b'}) - F_1(\zeta_{b'+1}) \right| \\ &\leq \frac{2}{\ell(1 - \hat{F}_2(\zeta_{b'}))} \left(\epsilon + L \cdot \frac{c_0}{B} \right) + \left| \Delta_{b',1} \right| + \frac{c_0}{B}, \end{aligned}$$

which we will use in the latter of this proof.

 $\hat{q}_{\{}$

1106 The same bound as (36) holds for k = 2, which gives

$$\left(\hat{F}_1(\zeta_{b'+1}) - \hat{F}_1(\zeta_{b'})\right) \left(\hat{F}_2(\zeta_{b'+1}) - \hat{F}_2(\zeta_{b'})\right) \le \frac{4}{\ell^2 \left(1 - \hat{F}_1(\zeta_{b'})\right) \left(1 - \hat{F}_2(\zeta_{b'})\right)} \left(\epsilon + L \cdot \frac{c_0}{B}\right)^2.$$

1113 Thus, we obtain

$$\int_{\hat{F}_{1}(\zeta_{b'})}^{\hat{F}_{1}(\zeta_{b'+1})} \int_{\hat{F}_{2}(\zeta_{b'})}^{\hat{F}_{2}(\zeta_{b'+1})} \underbrace{\frac{\partial^{2}}{\partial u \partial v} C(u,v)}_{\leq L} dv du$$

$$\leq L \cdot \left(\hat{F}_{1}(\zeta_{b'+1}) - \hat{F}_{1}(\zeta_{b'}) \right) \left(\hat{F}_{2}(\zeta_{b'+1}) - \hat{F}_{2}(\zeta_{b'}) \right)$$

$$< 4L \left(c + L^{-c_{0}} \right)^{2}$$

$$(37)$$

(38)

$$\leq \frac{4L}{\ell^2 \left(1 - \hat{F}_1(\zeta_{b'})\right) \left(1 - \hat{F}_2(\zeta_{b'})\right)} \left(\epsilon + L \cdot \frac{c_0}{B}\right)^2$$

 $\leq L \cdot \left(\frac{c_0}{B}\right)^2,$

1124 Moreover, we have

where we use Assumption 1-(1) for the last inequality.

 $\leq L \cdot (F_1(\zeta_{b'+1}) - F_1(\zeta_{b'}))(F_2(\zeta_{b'+1}) - F_2(\zeta_{b'}))$

 $q_{\{1,2\},b'|x} = \int_{F_1(\zeta_{b'})}^{F_1(\zeta_{b'+1})} \int_{F_2(\zeta_b')}^{F_2(\zeta_{b'+1})} \underbrace{\frac{\partial^2}{\partial u \partial v} C(u,v)}_{<L} \mathrm{d}v \mathrm{d}u$

Then, by taking the absolute value of the both sides of (34), we have

 $\left| \hat{q}_{\{1\},b'|x} - q_{\{1\},b'|x} \right|$ - $\left| \hat{\pi}_{\dots,\dots,n} - \pi_{\dots,n+1} + w_1 \cdot \hat{q}_{\{1,n\},b'|n} - w_{b'}^* \right|$

$$\begin{aligned} |q_{\{1\},b'|x} & q_{\{1\},b'|x|} \\ |1137 \\ |1138 \\ 1139 \end{aligned} = \begin{vmatrix} \hat{r}_{b'+1,1} - r_{b'+1,1} + w_1 \cdot \hat{q}_{\{1,2\},b'|x} - w_{b'+1,1}^* \cdot q_{\{1,2\},b'|x} \end{vmatrix} \\ \leq |\hat{r}_{b'+1,1} - r_{b'+1,1}| + |w_1 \cdot \hat{q}_{\{1,2\},b'|x} - w_{b'+1,1}^* \cdot q_{\{1,2\},b'|x} \end{vmatrix}$$

$$\leq \epsilon + \max\left\{\hat{q}_{\{1,2\},b'|x}, q_{\{1,2\},b'|x}\right\}$$
$$\leq \epsilon + \max\left\{\frac{4L}{e^2\left(1-\hat{E}\left(\zeta_{-}\right)\right)\left(1-\hat{E}\left(\zeta_{-}\right)\right)}\left(\epsilon + L \cdot \frac{c_0}{B}\right)^2, L \cdot \left(\frac{c_0}{B}\right)^2\right\}$$

$$\left(\ell^{2} \left(1 - F_{1}(\zeta_{b'}) \right) \left(1 - F_{2}(\zeta_{b'}) \right)^{\langle} \qquad B^{\prime} \qquad \langle B^{\prime} \rangle \right) \\
\leq \epsilon + \frac{4L}{\ell^{2} \left(1 - \hat{F}_{1}(\zeta_{b'}) \right) \left(1 - \hat{F}_{2}(\zeta_{b'}) \right)} \left(\epsilon + L \cdot \frac{c_{0}}{B} \right)^{2}, \tag{39}$$

where we use the triangle inequality for the first inequality, $0 \le w_1, w_{b'+1,1}^* \le 1$ for the second one, and (37) and (38) for the third one.

Then, we evaluate the left hand side. We have

$$\begin{aligned} \left| \hat{q}_{\{1\},b'} - q_{\{1\},b'} \right| \\ &= \left| \int_{\hat{F}_1(\zeta_{b'})}^{\hat{F}_1(\zeta_{b'+1})} \int_{\hat{F}_2(\zeta_b')}^1 \frac{\partial^2}{\partial u \partial v} C(u,v) \mathrm{d}v \mathrm{d}u - \int_{F_1(\zeta_{b'})}^{F_1(\zeta_{b'+1})} \int_{F_2(\zeta_b')}^1 \frac{\partial^2}{\partial u \partial v} C(u,v) \mathrm{d}v \mathrm{d}u \right| \end{aligned}$$

and

$$\begin{aligned} & \text{int} \\ & \text{int} \\ & \int_{F_{1}(\zeta_{b'})}^{F_{1}(\zeta_{b'+1})} \int_{F_{2}(\zeta_{b'})}^{1} \frac{\partial^{2}}{\partial u \partial v} C(u,v) dv du - \int_{\hat{F}_{1}(\zeta_{b'})}^{\hat{F}_{1}(\zeta_{b'+1})} \int_{\hat{F}_{2}(\zeta_{b'})}^{1} \frac{\partial^{2}}{\partial u \partial v} C(u,v) dv du \\ & = \int_{F_{1}(\zeta_{b'+1})}^{F_{1}(\zeta_{b'+1})} \frac{\partial}{\partial u} C(u,1) du - \int_{\hat{F}_{1}(\zeta_{b'})}^{\hat{F}_{1}(\zeta_{b'})} \frac{\partial}{\partial u} C(u,1) du \\ & - \int_{F_{1}(\zeta_{b'})}^{F_{1}(\zeta_{b'+1})} \frac{\partial}{\partial u} C(u,F_{2}(\zeta_{b'})) du + \int_{\hat{F}_{1}(\zeta_{b'})}^{\hat{F}_{1}(\zeta_{b'+1})} \frac{\partial}{\partial u} C(u,\hat{F}_{2}(\zeta_{b'})) du \\ & = \int_{\hat{F}_{1}(\zeta_{b'+1})}^{\hat{F}_{1}(\zeta_{b'+1})} \frac{\partial}{\partial u} C(u,1) du - \int_{\hat{F}_{1}(\zeta_{b'})}^{F_{1}(\zeta_{b'})} \frac{\partial}{\partial u} C(u,F_{2}(\zeta_{b'})) du \\ & = \int_{\hat{F}_{1}(\zeta_{b'+1})}^{\hat{F}_{1}(\zeta_{b'+1})} \frac{\partial}{\partial u} C(u,F_{2}(\zeta_{b'})) du + \int_{F_{1}(\zeta_{b'+1})}^{F_{1}(\zeta_{b'})} \frac{\partial}{\partial u} C(u,F_{2}(\zeta_{b'})) du \\ & + \int_{\hat{F}_{1}(\zeta_{b'+1})}^{\hat{F}_{1}(\zeta_{b'+1})} \left[\frac{\partial}{\partial u} C(u,\hat{F}_{2}(\zeta_{b'})) - \frac{\partial}{\partial u} C(u,F_{2}(\zeta_{b'})) \right] du \\ & = \int_{\hat{F}_{1}(\zeta_{b'+1})}^{F_{1}(\zeta_{b'+1})} \frac{\partial}{\partial u} C(u,1) du - \int_{\hat{F}_{1}(\zeta_{b'})}^{F_{1}(\zeta_{b'})} \frac{\partial}{\partial u} C(u,F_{2}(\zeta_{b'})) \right] du \\ & = \int_{\hat{F}_{1}(\zeta_{b'+1})}^{F_{1}(\zeta_{b'+1})} \frac{\partial}{\partial u} C(u,1) du - \int_{\hat{F}_{1}(\zeta_{b'})}^{F_{1}(\zeta_{b'})} \frac{\partial}{\partial u} C(u,F_{2}(\zeta_{b'})) du \\ & + \int_{\hat{F}_{1}(\zeta_{b'+1})}^{F_{1}(\zeta_{b'+1})} \frac{\partial}{\partial u} C(u,F_{2}(\zeta_{b'})) du + \int_{\hat{F}_{1}(\zeta_{b'})}^{F_{1}(\zeta_{b'})} \frac{\partial}{\partial u} C(u,F_{2}(\zeta_{b'})) du \\ & + \int_{\hat{F}_{1}(\zeta_{b'+1})}^{F_{1}(\zeta_{b'+1})} \frac{\partial}{\partial u} C(u,F_{2}(\zeta_{b'})) du + \int_{\hat{F}_{1}(\zeta_{b'})}^{F_{1}(\zeta_{b'})} \frac{\partial}{\partial u} C(u,F_{2}(\zeta_{b'})) du \\ & + \int_{\hat{F}_{1}(\zeta_{b'+1})}^{F_{1}(\zeta_{b'+1})} \left[\frac{\partial}{\partial u} C(u,\hat{F}_{2}(\zeta_{b'})) - \frac{\partial}{\partial u} C(u,F_{2}(\zeta_{b'})) \right] du. \end{aligned}$$

y

such that

$$(40) = -\Delta_{b'+1,1} \cdot \frac{\partial}{\partial u} C(u_{b'+1,1}, 1) + \Delta_{b',1} \frac{\partial}{\partial u} C(u_{b',1}, 1) + \Delta_{b'+1,1} \cdot \frac{\partial}{\partial u} C(u_{b'+1,2}, F_2(\zeta_{b'+1})) - \Delta_{b'+1,1} \cdot \frac{\partial}{\partial u} C(u_{b',2}, F_2(\zeta_{b'})) + \int_{\hat{F}_1(\zeta_{b'})}^{\hat{F}_1(\zeta_{b'+1})} \left[\frac{\partial}{\partial u} C(u, \hat{F}_2(\zeta_{b'})) - \frac{\partial}{\partial u} C(u, F_2(\zeta_{b'})) \right] du.$$

We denote

$$\begin{aligned} (\mathbf{I}) &= \Delta_{b'+1,1} \cdot \frac{\partial}{\partial u} C(u_{b'+1,1},1) - \Delta_{b',1} \frac{\partial}{\partial u} C(u_{b',1},1) \\ &- \Delta_{b'+1,1} \cdot \frac{\partial}{\partial u} C(u_{b'+1,2},F_2(\zeta_{b'+1})) + \Delta_{b'+1,1} \cdot \frac{\partial}{\partial u} C(u_{b',2},F_2(\zeta_{b'})), \\ (\mathbf{II}) &= \int_{\hat{F}_1(\zeta_{b'})}^{\hat{F}_1(\zeta_{b'+1})} \left[\frac{\partial}{\partial u} C(u,\hat{F}_2(\zeta_{b'})) - \frac{\partial}{\partial u} C(u,F_2(\zeta_{b'})) \right] \mathrm{d}u. \end{aligned}$$

We evaluate the each term. First, we have

$$(\mathbf{I}) = (\Delta_{b'+1,1} - \Delta_{b',1}) \frac{\partial}{\partial u} C(u_{b',1}, 1) + \Delta_{b'+1,1} \left[\frac{\partial}{\partial u} C(u_{b'+1,1}, 1) - \frac{\partial}{\partial u} C(u_{b',1}, 1) \right]$$

$$-\left(\Delta_{b'+1,1} - \Delta_{b',1}\right)\frac{\partial}{\partial u}C(u_{b',2}, F_2(\zeta_{b'}))$$

$$-\Delta_{b'+1,1} \left[\frac{\partial}{\partial u} C(u_{b'+1,2}, F_2(\zeta_{b'+1})) - \frac{\partial}{\partial u} C(u_{b',2}, F_2(\zeta_{b'})) \right]$$

$$= (\Delta_{b'+1,1} - \Delta_{b',1}) \left[\frac{\partial}{\partial u} C(u_{b',1},1) - \frac{\partial}{\partial u} C(u_{b',2},F_2(\zeta_{b'})) \right]$$
$$+ \Delta_{b'+1,1} \left[\frac{\partial}{\partial u} C(u_{b'+1,1},1) - \frac{\partial}{\partial u} C(u_{b',1},1) \right]$$
$$+ \Delta_{b'+1,1} \left[\frac{\partial}{\partial u} C(u_{b'+1,2},F_2(\zeta_{b'+1})) - \frac{\partial}{\partial u} C(u_{b',2},F_2(\zeta_{b'})) \right].$$

Thus, we obtain

$$|(\mathbf{I})| \ge \left| (\Delta_{b'+1,1} - \Delta_{b',1}) \left[\frac{\partial}{\partial u} C(u_{b',1}, 1) - \frac{\partial}{\partial u} C(u_{b',2}, F_2(\zeta_{b'})) \right] \right|$$
$$- \left| \Delta_{b'+1,1} \left[\frac{\partial}{\partial c} C(u_{b'+1,1}, 1) - \frac{\partial}{\partial c} C(u_{b',2}, 1) \right] \right|$$

$$= \left| \Delta_{b'+1,1} \left[\frac{\partial u}{\partial u} C(u_{b'+1,1},1) - \frac{\partial u}{\partial u} C(u_{b',1},1) \right] \right| \\ - \left| \Delta_{b'+1,1} \left[\frac{\partial u}{\partial u} C(u_{b'+1,2},F_2(\zeta_{b'+1})) - \frac{\partial u}{\partial u} C(u_{b',2},F_2(\zeta_{b'})) \right] \right|,$$

where we use the triangle inequality.

Moreover, we can bound the terms in the above inequality by

$$\left| \frac{\partial}{\partial u} C(u_{b'+1,1},1) - \frac{\partial}{\partial u} C(u_{b',1},1) \right| = \left| \int_{u_{b',1}}^{u_{b'+1,1}} \underbrace{\frac{\partial^2}{\partial u^2} C(u,1)}_{\leq L} \mathrm{d}u \right| \leq L(u_{b'+1,1} - u_{b',1})$$
$$\leq L\left(|\Delta_{b'+1,1}| + \frac{c_0}{B} \right),$$

1240
$$\leq L$$
 1241 $\leq L \left(|\Delta_{b'}| \right)$

and

 $\left| \frac{\partial}{\partial u} C(u_{b'+1,2}, F_2(\zeta_{b'+1})) - \frac{\partial}{\partial u} C(u_{b',2}, F_2(\zeta_{b'})) \right|$ $\swarrow \left| \frac{\partial}{\partial u} C(u_{b'+1,2}, F_2(\zeta_{b'+1})) - \frac{\partial}{\partial u} C(u_{b'+1,2}, F_2(\zeta_{b'})) \right|$

$$\leq \left| \frac{\partial}{\partial u} C(u_{b'+1,2}, F_2(\zeta_{b'+1})) - \frac{\partial}{\partial u} C(u_{b'+1,2}, F_2(\zeta_{b'})) + \left| \frac{\partial}{\partial u} C(u_{b'+1,2}, F_2(\zeta_{b'})) - \frac{\partial}{\partial u} C(u_{b',2}, F_2(\zeta_{b'})) - \frac{\partial}{\partial u} C(u_{b',2}, F_2(\zeta_{b'})) \right| \right|$$

$$= \left| \int_{F_2(\zeta_{b'+1})}^{F_2(\zeta_{b'+1})} \underbrace{\frac{\partial^2}{\partial v^2} C(u_{b'+1,2}, v)}_{\leq L} \mathrm{d}v \right| + \left| \int_{u_{b'+1,1}}^{u_{b',2}} \underbrace{\frac{\partial^2}{\partial u^2} C(u, F_2(\zeta_{b'}))}_{\leq L} \mathrm{d}u \right|$$
$$\leq L \cdot \frac{c_0}{B} + L \left(\frac{c_0}{B} + |\Delta_{b'+1,1}| \right)$$

 $=L\bigg(|\Delta_{b'+1,1}|+\frac{2c_0}{B}\bigg),$

where we use Assumption 1-(1) for the first term and $|u_{b',2} - u_{b'+1,2}| \le \Delta_{b'+1,1} + \frac{c_0}{B}$ for the second term. Moreover, we have

I.

$$\begin{aligned} &|(\mathrm{II})| = \left| \int_{\hat{F}_{1}(\zeta_{b'})}^{\hat{F}_{1}(\zeta_{b'+1})} \int_{F_{2}(\zeta_{b'})}^{\hat{F}_{2}(\zeta_{b'})} \underbrace{\frac{\partial^{2}}{\partial u \partial v} C(u,v)}_{\leq L} \mathrm{d}v \mathrm{d}u \right| \leq L \frac{2}{\ell \delta} \Big(\epsilon + L \cdot \frac{c_{0}}{B} \Big) |\Delta_{b',2}| \leq \frac{4c_{0}L^{2}}{B\ell \delta} |\Delta_{b',2}|, \end{aligned}$$

$$1265$$

$$1266$$

where we use $\epsilon \leq \frac{c_0}{B}$ in the last inequality.

Then, (39) gives

I

$$\left|\Delta_{b'+1,1} - \Delta_{b',1}\right| \cdot \left|\frac{\partial}{\partial u}C(u_{b',1},1) - \frac{\partial}{\partial u}C(u_{b',2},F_2(\zeta_{b'}))\right|$$

$$\leq \epsilon + \frac{4L}{\left(\epsilon + L \cdot \frac{c_0}{2}\right)^2}$$

$$\leq \epsilon + \frac{1}{\ell^2 \left(1 - \hat{F}_1(\zeta_{b'}) \right) \left(1 - \hat{F}_2(\zeta_{b'}) \right)} \left(\epsilon + L \cdot \frac{B}{B} \right)$$
$$+ \frac{4c_0 L^2}{B\ell\delta} |\Delta_{b',2}| + L |\Delta_{b'+1,1}| \left(|\Delta_{b'+1,1}| + \frac{3c_0}{B} \right)$$

Moreover, by the triangle inequality, for a sufficiently large B satisfying $L \cdot \frac{c_0}{B} \leq \frac{\ell \delta}{2}$, we have

 $\geq \left| \frac{\partial}{\partial u} C(u_{b',2},1) - \frac{\partial}{\partial u} C(u_{b',2},F_2(\zeta_{b'})) \right| - \left| \frac{\partial}{\partial u} C(u_{b',1},1) - \frac{\partial}{\partial u} C(u_{b',2},1) \right|$

$$= \left| \int_{F_2(\zeta_{b'})}^1 \frac{\partial^2}{\partial v^2} C(u_{b',2}, v) \, \mathrm{d}v \right| - \left| \int_{u_{b',1}}^{u_{b',2}} \frac{\partial^2}{\partial u^2} C(u, 1) \right| \, \mathrm{d}u \right|$$

where the third inequality follows from
$$F_2(\zeta_b) \leq 1 - \delta$$
 and

 $\geq \ell (1 - F_2(\zeta_{b'})) - L | u_{b',2} - u_{b',1}|$

 $\geq \ell\delta - L \cdot \frac{c_0}{R} \geq \frac{\ell\delta}{2},$

 $\left|\frac{\partial}{\partial u}C(u_{b',1},1)-\frac{\partial}{\partial u}C(u_{b',2},F_2(\zeta_{b'}))\right|$

$$|u_{b',2} - u_{b',1}| \le \max\left\{\hat{F}_1(\zeta_{b'}), F_1(\zeta_{b'})\right\} - \min\left\{\hat{F}_1(\zeta_{b'}), F_1(\zeta_{b'})\right\} = |\Delta_{b',k}| \le \frac{c_0}{B}$$

by (30).

Then, we have $|\Delta_{b'+1,1} - \Delta_{b',1}|$ $\leq \frac{2}{\ell\delta} \left| \epsilon + \frac{4L}{\ell^2 \left(1 - \hat{F}_1(\zeta_{b'}) \right) \left(1 - \hat{F}_2(\zeta_{b'}) \right)} \left(\epsilon + L \cdot \frac{c_0}{B} \right)^2 + \frac{4c_0 L^2}{B\ell\delta} |\Delta_{b',2}| + L |\Delta_{b'+1,1}| \left(|\Delta_{b'+1,1}| + \frac{3c_0}{B} \right) \right|$ $\leq \frac{2}{\ell\delta} \left[\epsilon + \frac{4L}{\ell^2 \left(1 - \hat{F}_1(\zeta_{b'}) \right) \left(1 - \hat{F}_2(\zeta_{b'}) \right)} \left(\epsilon + L \cdot \frac{c_0}{B} \right)^2 + \frac{4c_0 L^2}{B\ell\delta} |\Delta_{b',2}| \right] + \frac{2L}{\ell\delta} |\Delta_{b'+1,1}| \left(|\Delta_{b'+1,1}| + \frac{3c_0}{B} \right).$

We consider two cases (i) $\Delta_{b'+1,1} \leq \frac{c_0}{B}$ and (ii) $\Delta_{b'+1,1} > \frac{c_0}{B}$. If (i) holds, we have

$$\begin{aligned} &|\Delta_{b'+1,1} - \Delta_{b',1}| \le \frac{2}{\ell\delta} \left[\epsilon + \frac{4L}{\ell^2 \left(1 - \hat{F}_1(\zeta_{b'}) \right) \left(1 - \hat{F}_2(\zeta_{b'}) \right)} \left(\epsilon + L \cdot \frac{c_0}{B} \right)^2 + \frac{4c_0 L^2}{B\ell\delta} |\Delta_{b',2}| \right] + \frac{8c_0 L}{B\ell\delta} |\Delta_{b'+1,1}|. \end{aligned}$$

By using the triangle inequality again, we obtain

$$\begin{aligned} & |\Delta_{b'+1,1}| \le |\Delta_{b',1}| + \frac{2}{\ell\delta} \left[\epsilon + \frac{4L}{\ell^2 \left(1 - \hat{F}_1(\zeta_{b'}) \right) \left(1 - \hat{F}_2(\zeta_{b'}) \right)} \left(\epsilon + L \cdot \frac{c_0}{B} \right)^2 + \frac{4c_0 L^2}{B\ell\delta} |\Delta_{b',2}| \right] + \frac{8c_0 L}{B\ell\delta} |\Delta_{b'+1,1}|. \end{aligned}$$

$$\begin{aligned} & |\Delta_{b'+1,1}| \le |\Delta_{b',1}| + \frac{2}{\ell\delta} \left[\epsilon + \frac{4L}{\ell^2 \left(1 - \hat{F}_1(\zeta_{b'}) \right) \left(1 - \hat{F}_2(\zeta_{b'}) \right)} \left(\epsilon + L \cdot \frac{c_0}{B} \right)^2 + \frac{4c_0 L^2}{B\ell\delta} |\Delta_{b',2}| \right] + \frac{8c_0 L}{B\ell\delta} |\Delta_{b'+1,1}|. \end{aligned}$$

 $\leq \left[\epsilon + \frac{16L\delta^{-2}}{\ell^2} \left(\epsilon + L \cdot \frac{c_0}{B}\right)^2\right] \cdot \left[\left(\frac{1}{\ell} + \frac{B}{4c_0L}\right) \left(1 - \frac{8c_0L}{B\ell\delta}\right)^{-b'+1} - \frac{B}{4c_0L}\right]$

 $(b' \pm 1) \pm 1$

Finally, by rearranging the above inequality and using the induction hypothesis, we have

$$\begin{cases} 1323 \\ 1324 \\ 1325 \\ 1325 \\ 1325 \\ 1326 \\ 1326 \\ 1327 \\ 1328 \\ 1329$$

 $+\frac{2}{\ell\delta}\left[\epsilon+\frac{16L\delta^{-2}}{\ell^2}\left(\epsilon+L\cdot\frac{c_0}{B}\right)^2\right],$

where we use $F_k < 1 - \frac{\delta}{2}$ for the last inequality, and hence,

$$\begin{aligned} & |\Delta_{b'+1,1}| \le \left[\epsilon + \frac{16L\delta^{-2}}{\ell^2} \left(\epsilon + L \cdot \frac{c_0}{B}\right)^2\right] \cdot \left[\left(\frac{1}{\ell} + \frac{B}{4c_0L}\right) \left(1 - \frac{8c_0L}{B\ell\delta}\right)^{-b'+1} - \frac{B}{4c_0L}\right] \left(1 - \frac{8c_0L}{B\ell\delta}\right)^{-1} \\ & |\Delta_{b'+1,1}| \le \left[\epsilon + \frac{16L\delta^{-2}}{\ell^2} \left(\epsilon + L \cdot \frac{c_0}{B}\right)^2\right] \cdot \left[\left(\frac{1}{\ell} + \frac{B}{4c_0L}\right) \left(1 - \frac{8c_0L}{B\ell\delta}\right)^{-b'+1} - \frac{B}{4c_0L}\right] \left(1 - \frac{8c_0L}{B\ell\delta}\right)^{-1} \\ & |\Delta_{b'+1,1}| \le \left[\epsilon + \frac{16L\delta^{-2}}{\ell^2} \left(\epsilon + L \cdot \frac{c_0}{B}\right)^2\right] \cdot \left[\left(\frac{1}{\ell} + \frac{B}{4c_0L}\right) \left(1 - \frac{8c_0L}{B\ell\delta}\right)^{-b'+1} - \frac{B}{4c_0L}\right] \left(1 - \frac{8c_0L}{B\ell\delta}\right)^{-1} \\ & |\Delta_{b'+1,1}| \le \left[\epsilon + \frac{16L\delta^{-2}}{\ell^2} \left(\epsilon + L \cdot \frac{c_0}{B}\right)^2\right] \cdot \left[\left(\frac{1}{\ell} + \frac{B}{4c_0L}\right) \left(1 - \frac{8c_0L}{B\ell\delta}\right)^{-b'+1} - \frac{B}{4c_0L}\right] \left(1 - \frac{8c_0L}{B\ell\delta}\right)^{-1} \\ & |\Delta_{b'+1,1}| \le \left[\epsilon + \frac{16L\delta^{-2}}{\ell^2} \left(\epsilon + L \cdot \frac{c_0}{B}\right)^2\right] \cdot \left[\left(\frac{1}{\ell} + \frac{B}{4c_0L}\right) \left(1 - \frac{8c_0L}{B\ell\delta}\right)^{-b'+1} - \frac{B}{4c_0L}\right] \left(1 - \frac{8c_0L}{B\ell\delta}\right)^{-1} \\ & |\Delta_{b'+1,1}| \le \left[\epsilon + \frac{16L\delta^{-2}}{\ell^2} \left(\epsilon + L \cdot \frac{c_0}{B}\right)^2\right] \cdot \left[\left(\frac{1}{\ell} + \frac{B}{4c_0L}\right) \left(1 - \frac{8c_0L}{B\ell\delta}\right)^{-b'+1} - \frac{B}{4c_0L}\right] \left(1 - \frac{8c_0L}{B\ell\delta}\right)^{-1} \\ & |\Delta_{b'+1,1}| \le \left[\epsilon + \frac{16L\delta^{-2}}{\ell^2} \left(\epsilon + L \cdot \frac{c_0}{B}\right)^2\right] \cdot \left[\left(\frac{1}{\ell} + \frac{B}{4c_0L}\right) \left(1 - \frac{8c_0L}{B\ell\delta}\right)^{-1} + \frac{B}{4c_0L}\right] \right] \\ & |\Delta_{b'+1,1}| \le \left[\epsilon + \frac{16L\delta^{-2}}{\ell^2} \left(\epsilon + L \cdot \frac{c_0}{B}\right)^2\right] \cdot \left[\left(\frac{1}{\ell} + \frac{B}{4c_0L}\right) \left(1 - \frac{8c_0L}{B\ell\delta}\right)^{-1} + \frac{B}{4c_0L}\right] \\ & |\Delta_{b'+1,1}| \le \left[\epsilon + \frac{16L\delta^{-2}}{\ell^2} \left(\epsilon + L \cdot \frac{c_0}{B}\right)^2\right] \cdot \left[\left(\frac{1}{\ell} + \frac{B}{4c_0L}\right) \left(1 - \frac{8c_0L}{B\ell\delta}\right)^2\right] + \frac{B}{4c_0L}\right] \\ & |\Delta_{b'+1,1}| \le \left[\epsilon + \frac{16L\delta^{-2}}{\ell^2} \left(\epsilon + L \cdot \frac{c_0}{B}\right)^2\right] + \frac{B}{4c_0L}\right] \\ & |\Delta_{b'+1,1}| \le \left[\epsilon + \frac{16L\delta^{-2}}{\ell^2} \left(\epsilon + L \cdot \frac{C_0}{B}\right)^2\right] + \frac{B}{4c_0L}\right] \\ & |\Delta_{b'+1,1}| \le \left[\epsilon +$$

$$+\left(1-\frac{8c_0L}{B\ell\delta}\right)^{-1}\cdot\frac{2}{\ell\delta}\bigg[\epsilon+\frac{16L\delta^{-2}}{\ell^2}\Big(\epsilon+L\cdot\frac{c_0}{B}\Big)$$

1346
1347
$$= \left[\epsilon + \frac{16L\delta^{-2}}{\ell^2} \left(\epsilon + L \cdot \frac{c_0}{B}\right)^2\right] \cdot \left[\left(\frac{1}{\ell} + \frac{B}{4c_0L}\right) \left(1 - \frac{8c_0L}{B\ell\delta}\right)^{-(\ell+1)+1} - \frac{B}{4c_0L} \right],$$
1348

which ensures (25) for b = b' + 1 and k = 1. Since the same argument holds for k = 2, we obtain the conclusion for the case (i).

1350 If (ii) holds, we have

 $|\Delta_{b'+1,1} - \Delta_{b',1}|$

Then, by using (30), we have $|\Delta_{b'+1,1}|^2 \leq B^{-2(1-\tau)}$. This and triangle inequality gives

$$\begin{aligned} |\Delta_{b'+1,1}| &\leq |\Delta_{b',1}| \\ &+ \frac{2}{\ell\delta} \Bigg[\epsilon + \frac{4L}{\ell^2 \Big(1 - \hat{F}_1(\zeta_{b'}) \Big) \Big(1 - \hat{F}_2(\zeta_{b'}) \Big)} \Big(\epsilon + L \cdot \frac{c_0}{B} \Big)^2 + \frac{3c_0 L^2}{B\ell\delta} |\Delta_{b',2}| \Bigg] + \frac{8L}{\ell\delta} |\Delta_{b'+1,1}|^2 \\ &\leq |\Delta_{b',1}| + \Big(1 - \frac{8c_0 L}{B\ell\delta} \Big)^{-1} \frac{2}{\ell\delta} \Bigg[\epsilon + \frac{16L}{\ell^2 \Big(1 - \hat{F}_1(\zeta_{b'}) \Big) \Big(1 - \hat{F}_2(\zeta_{b'}) \Big)} \Big(\epsilon + L \cdot \frac{c_0}{B} \Big)^2 + \frac{4c_0 L^2}{B\ell\delta} |\Delta_{b',2}| \Bigg] \end{aligned}$$

 $\leq \frac{2}{\ell\delta} \left[\epsilon + \frac{4L}{\ell^2 \left(1 - \hat{F}_1(\zeta_{b'}) \right) \left(1 - \hat{F}_2(\zeta_{b'}) \right)} \left(\epsilon + L \cdot \frac{c_0}{B} \right)^2 + \frac{4c_0 L^2}{B\ell\delta} |\Delta_{b',2}| \right] + \frac{8L}{\ell\delta} |\Delta_{b'+1,1}|^2.$

with taking a sufficiently large B. This gives the conclusion for the case (ii).

¹³⁷⁴ To obtain the bound with respect to W_1 , we utilize the following lemma:

Lemma 1 (Vallender (1974)). Let μ and ν be cumulative distribution functions on \mathbb{R} whose CDFs are defined by F and G. Then,

$$\int_{-\infty}^{+\infty} |F(t) - G(t)| \mathrm{d}t = W_1(\mu, \nu)$$

1382
1383Then, we move to the proof of Theorem 2.

Proof of Theorem 2. Set δ_0 in Assumption 1-(3) by $\delta_0 := \frac{8c_0L}{\ell}$. By using Lemma 3, we obtain

$$W_{1}(\hat{F}_{k}, F_{k}) = \int_{-\infty}^{+\infty} \left| \hat{F}_{k}(t) - F_{k}(t) \right| dt$$

$$= \int_{0}^{T} \left| \hat{F}_{k}(t) - F_{k}(t) \right| dt$$

$$= \underbrace{\sum_{b=1}^{b_{0}} \int_{\zeta_{b-1}}^{\zeta_{b}} \left| \hat{F}_{k}(t) - F_{k}(t) \right| dt}_{(I)} + \underbrace{\int_{\zeta_{b_{0}}}^{\zeta_{B}} \left| \hat{F}_{k}(t) - F_{k}(t) \right| dt}_{(II)},$$
(41)

1399 where b_0 is defined by Assumption 1-(3). Then, we bound the each term. 1400 We denote $\Delta_{b,k} := \hat{F}_k(\zeta_b) - F_k(\zeta_b)$ again. By using the bound (29), we have 1401 $|\Delta_{b,k}| \lesssim \left(\epsilon + \frac{\log B}{B^2}\right) B^{1+\tau}$ 1404 Then, the first term can be bounded by

$$(\mathbf{I}) \leq \sum_{b=1}^{b_0} \int_{\zeta_{b-1}}^{\zeta_b} \max\left\{ \left| \hat{F}_k(t) - F_k(\zeta_{b-1}) \right|, \left| \hat{F}_k(t) - F_k(\zeta_b) \right| \right\} dt$$

$$\leq \sum_{b=1}^{b_0} \int_{\zeta_{b-1}}^{\zeta_b} \max\left\{ \left| \Delta_{b,k} \right|, \frac{c_0}{B} \right\} dt$$

$$\leq \sum_{b=1}^{b_0} \int_{\zeta_{b-1}}^{\zeta_b} \left(\left| \Delta_{b,k} \right| + \frac{c_0}{B} \right) dt$$

$$\lesssim \sum_{b=1}^{b_0} \left(\epsilon + \frac{\log B}{B^2} \right) B^{1+\tau} \cdot \frac{\zeta_B}{B}$$

$$\leq \sum_{b=1}^{B} \left(\epsilon + \frac{\log B}{B^2} \right) B^{1+\tau} \cdot \frac{\zeta_B}{B}$$

$$= \left(\epsilon + \frac{\log B}{B^2} \right) B^{1+\tau} \zeta_B.$$
(42)

For the second term, since $1 - F_k(\zeta_{b'_0}) \gtrsim \log^{-1} B$ by Assumption 1-(3), we have $|\hat{F}_k(t) - F_k(t)| \lesssim \log^{-1} B$ for $t \ge \zeta_{b_0}$ with sufficiently large B. This implies

(II)
$$\lesssim \int_{\zeta_{b_0}}^{\zeta_B} \log^{-1} B \mathrm{d}t \le \frac{B - b_0}{B \log B} \zeta_B.$$
 (43)

¹⁴³⁰ By substituting the bounds (42) and (43) into (41), we obtain the conclusion.

E IMPOSSIBILITY THEOREM

A limitation of the two-step algorithm is its presupposition that the copula C is predetermined. Nevertheless, it has been established that the marginal distribution remains unidentifiable when this assumption is removed, which is known as Tsiatis's impossibility theorem [1975].

Explanation of Tsiatis's Impossibility Theorem. We briefly elucidate this impossibility theorem. Assume the existence of a dataset $\mathcal{D} = \{(x^{(i)}, t^{(i)}, \delta^{(i)})\}_{i=1}^{N}$ derived from a joint probability distribution \mathbb{P} , represented as

$$\Pr(t_1 \le T_1, t_2 \le T_2, \dots, t_K \le T_K) = C(F_1(t_1), F_2(t_2), \dots, F_K(t_K))$$

for a copula C that deviates from the independence copula C_{ind} (i.e., $C \neq C_{\text{ind}}$). Tsiatis's impossibility theorem suggests the existence of an alternative joint distribution \mathbb{Q} , represented as

$$\Pr(t_1 \le T'_1, t_2 \le T'_2, \dots, t_K \le T'_K) = C_{\text{ind}}(G_1(t_1), G_2(t_2), \dots, G_K(t_K)),$$

where $G(t_k)$ is a CDF of a random variable T'_k , distinct from T_k . However, the dataset $\mathcal{D}_{ind} = \{(x^{(i)}, t^{(i)}, \delta^{(i)})\}_{i=1}^N$ derived from \mathbb{Q} is indistinguishable from \mathcal{D} . Consequently, no algorithm can differentiate the marginal distributions $F_k(t)$ and $G_k(t)$ from the dataset $\mathcal{D}(\approx \mathcal{D}_{ind})$. This ambiguity does not arise if all realizations $(t_1, t_2, \ldots, t_K) \sim (T_1, T_2, \ldots, T_K)$ can be observed, as per Sklar's theorem (Theorem 1). Tsiatis's impossibility theorem holds because only the minimum of $\{t_1, t_2, \ldots, t_K\}$ can be observed in survival analysis.

The two-step algorithm we propose aligns with Tsiatis's impossibility theorem. The initial step's output $\hat{r}_{b,k}$ remains consistent for both \mathbb{P} and \mathbb{Q} if the indistinguishable dataset \mathcal{D} or \mathcal{D}_{ind} is provided as input. The subsequent step of our algorithm yields $\hat{F}_k(t)$ if the true copula C is given as input, while it produces $\hat{G}_k(t)$ if the independence copula C_{ind} is provided. 1458 **Copula identifiability.** Owing to Tsiatis's impossibility theorem, it is necessary to make certain 1459 assumptions to identify the marginal distribution. In this context, Heckman & Honoré (1989); 1460 Deresa & Keilegom (2024) examine copula identifiability under the proportional hazard assump-1461 tion. Furthermore, Czado & Keilegom (2022); Zhang et al. (2024) discuss the identifiability of 1462 copulas for other restricted classes of marginal distributions $F_k(t|x)$. Under the stronger assumption that the marginal distribution $F_k(t|x)$ is completely known, Schwarz et al. (2013) discuss the 1463 identifiability of Archimedean copulas and the unidentifiability of symmetric copulas. 1464

1465 1466

1467 1468

1469

1471

F ADDITIONAL RESULTS ON UPPER AND LOWER BOUNDS

F.1 BOUNDS BASED ON THE CUMULATIVE INCIDENCE FUNCTION

1470 We provide alternative bounds by utilizing $V_k(\zeta_b|x)$ (as defined in (3)):

$$\Pr(T \le \zeta_b, \delta = k|x) \le F_k(\zeta_b|x) \le \Pr(T \le \zeta_b|x)$$

1472
1473
1474
$$= V_k(\zeta_b|x) \leq F_k(\zeta_b|x) \leq F_k(\zeta_b|x) \leq V_k(\zeta_b|x).$$

1475

1477 1478 1479

14 14

By averaging over $x \sim X$, we can derive the same upper and lower bounds as in (Peterson, 1976): 1476

$$\mathbb{E}_{x \sim X}[V_k(\zeta_b|x)] \le F_k(\zeta_b) \le \mathbb{E}_{x \sim X}\left[\sum_k V_k(\zeta_b|x)\right].$$
(44)

The empirical bounds of these upper and lower bounds in (44) can be computed as: 1480

1481
1482
1483
$$\mathbb{E}_{x \sim X}[V_k(\zeta_b | x)] \approx \frac{1}{N} \sum_{(x^{(i)}, t^{(i)}, \delta^{(i)}) \in \mathcal{D}} \mathbb{1}_{t^{(i)} \le \zeta_b, \delta^{(i)} = k}$$

1485
1486
$$\mathbb{E}_{x \sim X} \left[\sum_{k} V_k(\zeta_b | x) \right] \approx \frac{1}{N} \sum_{(x^{(i)}, t^{(i)}, \delta^{(i)}) \in \mathcal{D}} \mathbb{1}_{t^{(i)} \leq \zeta_b}.$$

1487 These values are equivalent to empirical CDFs. However, they may not correspond to the actual 1488 bounds if the number of data points N is insufficient. In such cases, the confidence intervals of these 1489 empirical CDFs should also be computed using methods like Greenwood's method [1926]. 1490

1491 F.2 EXAMPLES 1492

1493 We illustrate survival functions along with bounds for the flchain and support2 datasets in Fig. 6. The two graphs on the left depict average survival functions, while the four graphs in the center and 1494 right display individual survival functions. 1495

1496 For the average survival functions, we employed the Kaplan-Meier (KM) estimator (1958) and the 1497 copula-graphic (CG) estimator (Zheng & Klein, 1995) using the Frank copula (2) with parameters 1498 $\theta = -5$ and $\theta = 5$. Recall that the CG estimator is a generalization of the KM estimator. The 1499 shaded regions indicate the bounds enclosed by the upper and lower limits (Peterson, 1976).

1500 To estimate the individual survival functions in Fig. 6, we used the TS-RF model combined with the 1501 independence copula and the Frank copula with parameters $\theta = -5$ and $\theta = 5$. The shaded regions 1502 represent the bounds enclosed by the upper and lower limits given in Inequality 16.

1503 The figures displaying the average survival functions indicate that uncertainty due to the unknown 1504 copula increases as time progresses. However, survival probabilities for early times can be estimated 1505 with minimal uncertainty, even without prior knowledge of the copula. This observation also holds 1506 for individual survival functions. The degree of uncertainty varies by individual, and the right-hand 1507 figures demonstrate that for some individuals, survival functions can be well estimated.

1508 1509

G **PROOF OF STRICT PROPERNESS** 1510

1511

We prove Theorem 3.

Figure 6: Estimated survival functions with upper and lower bounds for datasets flchain and support2. The left graphs show average survival functions, while the graphs in the center and the right show arbitrary chosen individual survival functions.

Proof. We have

$$\begin{aligned} & = \sum_{k=1}^{K} F(\Delta = k|x) \int_{0}^{K} v_{k}(t|x) \Big|_{k=1}^{K}, (t, \delta) \Big| &= \sum_{k=1}^{K} \int_{0}^{\infty} \Pr(T = t, \Delta = k|x) (\log v_{k}(t|x) - \log \hat{v}_{k}(t|x)) dt \\ &= \sum_{k=1}^{K} \int_{0}^{\infty} \Pr(\Delta = k|x) \Pr(T = t|\Delta = k|x) (\log v_{k}(t|x) - \log \hat{v}_{k}(t|x)) dt \\ &= \sum_{k=1}^{K} \int_{0}^{\infty} \Pr(\Delta = k|x) \Pr(T = t|\Delta = k|x) (\log v_{k}(t|x) - \log \hat{v}_{k}(t|x)) dt \\ &= \sum_{k=1}^{K} \Pr(\Delta = k|x) \int_{0}^{\infty} v_{k}(t|x) (\log v_{k}(t|x) - \log \hat{v}_{k}(t|x)) dt \\ &= \sum_{k=1}^{K} \Pr(\Delta = k|x) \int_{0}^{\infty} v_{k}(t|x) (\log v_{k}(t|x) - \log \hat{v}_{k}(t|x)) dt \\ &= \sum_{k=1}^{K} \Pr(\Delta = k|x) D_{\mathrm{KL}} (v_{k}(t|x)) || \hat{v}_{k}(t|x)) \\ &= \sum_{k=1}^{K} \Pr(\Delta = k|x) D_{\mathrm{KL}} (v_{k}(t|x)) || \hat{v}_{k}(t|x)) \\ &= \sum_{k=1}^{K} \exp(\Delta = k|x) D_{\mathrm{KL}} (v_{k}(t|x)) || \hat{v}_{k}(t|x)) \\ &= \sum_{k=1}^{K} \exp(\Delta = k|x) D_{\mathrm{KL}} (v_{k}(t|x)) || \hat{v}_{k}(t|x)) \\ &= \sum_{k=1}^{K} \exp(\Delta = k|x) D_{\mathrm{KL}} (v_{k}(t|x)) || \hat{v}_{k}(t|x)) \\ &= \sum_{k=1}^{K} \exp(\Delta = k|x) D_{\mathrm{KL}} (v_{k}(t|x)) || \hat{v}_{k}(t|x)) \\ &= \sum_{k=1}^{K} \exp(\Delta = k|x) D_{\mathrm{KL}} (v_{k}(t|x)) || \hat{v}_{k}(t|x)) \\ &= \sum_{k=1}^{K} \exp(\Delta = k|x) D_{\mathrm{KL}} (v_{k}(t|x)) || \hat{v}_{k}(t|x)) \\ &= \sum_{k=1}^{K} \exp(\Delta = k|x) D_{\mathrm{KL}} (v_{k}(t|x)) || \hat{v}_{k}(t|x)) \\ &= \sum_{k=1}^{K} \exp(\Delta = k|x) D_{\mathrm{KL}} (v_{k}(t|x)) || \hat{v}_{k}(t|x)) \\ &= \sum_{k=1}^{K} \exp(\Delta = k|x) D_{\mathrm{KL}} (v_{k}(t|x)) || \hat{v}_{k}(t|x)) \\ &= \sum_{k=1}^{K} \exp(\Delta = k|x) D_{\mathrm{KL}} (v_{k}(t|x)) || \hat{v}_{k}(t|x)) \\ &= \sum_{k=1}^{K} \exp(\Delta = k|x) D_{\mathrm{KL}} (v_{k}(t|x)) || \hat{v}_{k}(t|x)) \\ &= \sum_{k=1}^{K} \exp(\Delta = k|x) D_{\mathrm{KL}} (v_{k}(t|x)) || \hat{v}_{k}(t|x)) \\ &= \sum_{k=1}^{K} \exp(\Delta = k|x) D_{\mathrm{KL}} (v_{k}(t|x)) || \hat{v}_{k}(t|x)) \\ &= \sum_{k=1}^{K} \exp(\Delta = k|x) D_{\mathrm{KL}} (v_{k}(t|x)) || \hat{v}_{k}(t|x)) \\ &= \sum_{k=1}^{K} \exp(\Delta = k|x) D_{\mathrm{KL}} (v_{k}(t|x)) || \hat{v}_{k}(t|x)) \\ &= \sum_{k=1}^{K} \exp(\Delta = k|x) D_{\mathrm{KL}} (v_{k}(t|x)) || \hat{v}_{k}(t|x)) \\ &= \sum_{k=1}^{K} \exp(\Delta = k|x) D_{\mathrm{KL}} (v_{k}(t|x)) \\ &= \sum_{k=1}^{K} \exp(\Delta = k|x) D_{\mathrm{K}} (v_{k}(t$$

Note that Assumption 2 ensures the existence of the KL divergence in the last equality. The last inequality holds if and only if $v_k(t|x) = \hat{v}_k(t|x)$ holds for all k and t, which is equivalent to that $F_k(t|x) = \hat{F}_k(t|x)$ holds for all k and t. Hence the scoring rule S is strictly proper.

Η ADDITIONAL EXPERIMENTS

The experimental procedures were conducted on a virtual machine possessing a single CPU devoid of any GPU, equipped with a memory of 64 GB, and operating on CentOS Stream 9. The software implementation was achieved using Python 3.11.6 and PyTorch 2.1.2.

Datasets. We used eight datasets, summarized in Table 2, where N denotes the number of data points, and the fourth and fifth columns indicate the numbers of categorical and numerical features in the feature vectors, respectively. The six datasets with K = 2 were obtained from the Python pack-age SurvSet (Drysdale, 2022). The Framingham (Kannel & McGee, 1979) and PBC (Therneau & Grambsch, 2000) datasets with K = 3 were used in (Jeanselme et al., 2023).

In our experiments, all datasets were randomly split into training (65%), validation (15%), and testing (20%) sets. The results reported in this section are the mean and standard deviation over five random splits. We divided the time horizon $[0, t_{max}]$ into B - 1 evenly spaced boundaries

Table 1: Evaluation Metrics							
Problem	Metric Name	Assumption	Metric Type				
Density estimation	CJD-Brier	-	Discriminatior				
-	CJD-Logarithmic	-	Discrimination				
	CJD-KS	-	Calibration				
Survival analysis	Copula-NLL	Copula	Discrimination				
	Cen-log	Independence	Discrimination				
	D-calibration	Independence	Calibration				
	KM-calibration	Independence	Calibration				

Table 2: Real datasets used in our experiments

Name	K	N	# categorical	# numuerical	censored	max. time
dataDIVAT1	2	5943	3	2	83.6%	6225
oldmort	2	6495	5	2	69.7%	20
Dialysis	2	6805	2	2	76.4%	44
flchain	2	7874	4	6	72.5%	5215
support2	2	9105	11	24	31.9%	2029
prostateSurvival	2	14294	3	0	94.4%	119
PBC	3	312	5	12	45.8%	15
Framingham	3	4434	10	9	56.2%	8767

and added an additional time slot to represent times greater than t_{max} , where t_{max} is the maximum observed time within the dataset. This setup means that we used B time slots $\{\zeta_b\}_{b=0}^B$ in total. We set B = 100 unless otherwise stated.

Models and Their Hyperparameters. We used a multi-layer perceptron (MLP) with three hidden layers as a neural network model. The dropout layer was employed with a dropout rate of 0.5, and the ReLU function was utilized as the activation layer. The softmax function served as the output layer. The neural network was trained for 500 epochs using the Adam optimizer (Kingma & Ba, 2015). For each dataset, we performed a hyperparameter search to determine the number of neurons in the hidden layers and the learning rate of the optimizer: the number of neurons was chosen from the set $\{4, 8, 16, 32, 64, 128, 256\}$, and the learning rate was chosen from the set $\{0.00001, 0.0001, 0.001, 0.01, 0.1, 1.0, 10.0\}$.

For tree-based models, a hyperparameter search was also performed: n_estimators was chosen from the integers between 100 and 1000, max_depth was chosen from the integers between 10 and 50, min_samples_split was chosen from the integers between 2 and 64, min_samples_leaf was chosen from the integers between 1 and 32, max_features was chosen from sqrt or log2, criterion was chosen from log_loss, gini, or entropy, splitting_rule was chosen from CART or FourierMMD, num_features was chosen from the integers between 1 and 100, sample_fraction was chosen from the numbers between 0.1 and 0.5, min_node_size was chosen from the integers between 1 and 10, and alpha was chosen from the numbers between 0.01 and 0.3.

1611

1579

1581

1585 1586 1587

Ablation Study on Hyperparameter *B*. We conducted an ablation study on the hyperparameter *B* in our two-step algorithm. This study aimed to evaluate the prediction performance using the **TS-DRF** model and the Cen-log metric. Specifically, we examined $w_1 \in \{0, 0.5, 1\}$ and $B \in \{20, 40, 60, 80, 100, 120\}$, where w_1 is the parameter for the primary event of interest. The graphs in Fig. 7 depict the results.

1617 In Fig. 7, the prediction performances are normalized relative to those with $w_1 = 0.5$ for each B. 1618 The results indicate that prediction performances varied significantly depending on the choice of 1619 the parameter w_1 on several datasets when B was small. However, these differences diminished for $B \ge 100$. Therefore, we set B = 100 in our experiments.

Figure 7: Ablation study on hyperparameter B (lower is better).

The prediction performance labeled 'middle' represents the relative performance of the algorithm presented in (Carrière, 1995) (see Sec. C.3 for details). The results demonstrate that this algorithm performed worse than our algorithm, especially for the datasets dataDIVAT1 and flchain, even when we use a large *B*.

In addition, to complement the results in Sec.7 for the flchain and support2 datasets, we conducted
experiments using the dataDIVAT1, Dialysis, oldmort, and prostateSurvival datasets. The outcomes
of these experiments are presented in Fig. 8. Consistent with the results from the flchain and support2
datasets, these findings also indicated that no single model consistently outperformed the others
across different metrics and datasets.

1649

1637 1638 1639

1650 **Prediction Performance with Frank Copula.** While the experiments in Sec.7 used the indepen-1651 dence copula, we conducted additional experiments using the Frank copula (2) with parameters 1652 $\theta = -5$ and $\theta = +5$. Figure 9 presents the results of these experiments. Note that, since the 1653 Cen-log, D-calibration, and KM-calibration metrics are valid only if the conditional independence assumption holds (i.e., the independence copula is used), we did not compute these metrics in the 1654 experiments. Note also that, since the CJD-Brier, CJD-Logarithmic, and CJD-KS are metrics for 1655 density estimation and they measure the prediction performances of the first step of our algorithm, 1656 the results were the same as Fig. 5. In other words, the copula C is irrelevant to compute these 1657 metrics. Therefore, we included only the results with the Copula-NLL metric in Fig. 9. 1658

Since we used only the Copula-NLL metric in Fig. 9, the Copula-NLL model seemed the best model in this problem setting. However, we should note that the Copula-NLL model did not show the best performance in Fig. 5 with the metrics on the CJD representation (i.e., CJD-Brier, CJD-Logarithmic, and CJD-KS). These results underscore the importance of using multiple evaluation metrics to compare prediction models. Reliance on a single metric could lead to the incorrect conclusion that the Copula-NLL model is the best. A comprehensive evaluation using various metrics provides a more balanced and accurate assessment of model performance.

1666

Prediction performance on competing risk models. We evaluated the prediction performance using the Framingham and PBC datasets with K = 3. As baseline methods, we compared our models with those utilized in Jeanselme et al. (2023). Specifically, we compared against: DeepHit (Lee et al., 2018), Deep Survival Machines (DSM) (Nagpal et al., 2021), DeSurv (Danks & Yau, 2022), and Neural Fine-Gray (NeuralFG) (Jeanselme et al., 2023), which is a neural network model extending the Fine-Gray model (Fine & Gray, 1999). For these models, we used the implementations available at https://github.com/Jeanselme/NeuralFineGray/ under MIT license, and performed hyperparameter searches based on the guidelines provided in the source code.

We compared our models with DeepHit, DSM, DeSurv, and NeuralFG models using the independence copula, and the results are displayed in Fig. 10. These results demonstrate that our two-step algorithm is competitive with these baseline models.

Figure 9: Copula-NLL metric performance on flchain and support2 datasets with Frank copula $\theta = -5$ and $\theta = 5$ (lower is better).

Figure 10: Prediction performance comparison on Framingham and PBC datasets with various metrics (lower is better).