Under review as a conference paper at ICLR 2025

SURVIVAL ANALYSIS VIA DENSITY ESTIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper introduces an algorithm that reinterprets survival analysis through the
lens of density estimation, addressing the challenge of censored inputs inherent
to survival data. Recognizing that many survival analysis methodologies are ex-
tensions of foundational density estimation models, our approach leverages this
intrinsic relationship. By conceptualizing survival analysis as a form of density
estimation, our algorithm postprocesses the density estimation outputs to derive
survival functions. This framework allows for the application of any density es-
timation model to effectively estimate survival functions, thereby broadening the
toolkit available for survival analysis and enhancing the flexibility and applica-
bility of existing density estimation techniques in this domain. The proposed
algorithm not only bridges the methodological gap between density estimation
and survival analysis but also offers a versatile and robust approach for handling
censored survival data.

1 INTRODUCTION

Multiclass classification is one of the fundamental tasks in machine learning. The objective of this
task is to predict the target label y € ) for a feature vector x € X given a finite set of samples
(z,y) e (X,Y), where X and ) denote the space of feature vectors and the finite set of target
labels, respectively, and X and Y are random variables corresponding to X' and ), respectively.
Density estimation, or more precisely conditional density estimation, is a variant of multiclass clas-
sification where the task is to estimate the probability Pr(Y = y|z) for ally € ) given z € X.
Owing to the numerous applications of density estimation, most multiclass classification libraries
are equipped to solve this problem. Examples include the random forest models provided in the
sklearn package, the gradient boosting models in the 1ightgbm package, and modern neural
network models such as ImageNet (Krizhevsky et al., [2012).

Survival analysis, alternatively referred to as time-to-event analysis, is a subfield of statistical studies
with extensive applications across various domains such as healthcare, finance, and social sciences
(see, e.g., (Wang et al., |2019; Wiegrebe et al., |2024) for survey papers on survival analysis). Sur-
vival analysis with K competing risks on discrete times can be formulated as a variant of density
estimation. The task can be represented as estimating the probability Pr(7T}, = t|z) for all k €
[K]={1,2,...,K},t € T,and z € X, given a finite set of samples (z, ¢, J) - (X,T,A). Here,
T ={1,2,...,|T|} represents the set of discrete times of size | 7|, each T}, for k € [K] is arandom
variable over the support 7, T = ming{71,T5,..., Tk}, and A = argming{T1,Ts,..., Tk }.
The task of survival analysis, namely estimating an individual survival function, corresponds to
estimating Pr(7}, = t|x).

Due to the similarity between density estimation and survival analysis, many methodologies devel-
oped for density estimation have been extended to survival analysis, particularly for scenarios with
K = 2 under the conditional independence assumption (i.e., 77 1L T5|X). For example, the random
forests model for density estimation has been extended to random survival forests (Ishwaran et al.,
2008) for survival analysis, and modern neural network models for density estimation have been
extended to the DeepHit model (Lee et al.||[2018)) for survival analysis. Regarding loss functions and
evaluation metrics, strictly proper scoring rules (Gneiting & Raftery, [2007) for density estimation
have been adapted for survival analysis in (Rindt et al.| 2022} Yanagisawa, [2023)). For calibration
metrics, the expected calibration error for density estimation has been extended to D-calibration
in (Haider et al., |2020) for survival analysis.
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Figure 1: Two-step algorithm for survival analysis with K competing risks: it first estimates 7 x|
with an density estimation model and then postprocesses it to obtain the output FJ (t|z).

Though numerous extensions of density estimation methodologies for survival analysis exist, these
extensions face several limitations. First, these adaptations are tailored to specific methodologies
on a case-by-case basis. Hence, when a novel density estimation method arises, a new customized
extension must be developed specifically for it. Second, most survival analysis models rely on
the conditional independence assumption (or even stronger assumptions such as the proportional
hazard assumption (Coxl (1972)), which might not hold in various real-world applications. This
underscores the need for survival models that operate under weaker assumptions. Third, [Tsiatis
(1975) demonstrates that the survival function cannot be identified without assumptions regarding
the dependencies between the random variables 71,75, . . ., Tj, (see Sec. [E).

In this paper, we address these limitations and explore the following research questions:

Q1: Can we construct a model-agnostic extension from density estimation to survival analysis?
Yes, we introduce a two-step algorithm for survival analysis that can be integrated with any density
estimation model. The first step of this algorithm employs a density estimation model to estimate the
joint distribution of the dependent variables. The second step post-processes the results to derive the
survival function, as illustrated in Fig. E} Furthermore, we demonstrate that if the density estimation
can achieve an arbitrarily small error € (as the number of data points increases), our algorithm can
estimate survival functions with a small error for K = 2 under several plausible assumptions (see

Sec.[).

Q2: Can we accommodate an assumption weaker than the conditional independence assump-
tion? Yes, our two-step algorithm can handle dependent variables if prior knowledge of the de-
pendency in the form of a copula is available (see Sec. |2| for an explanation of copulas). Numer-
ous copula-based models for survival analysis manage dependent variables (e.g., (Emura & Chen,
2018))), but these models often incorporate additional assumptions beyond the copula. For instance,
the copula-based model proposed in (Gharari et al., [2023)) leverages the proportional hazard as-
sumption and is restricted to K = 2. Our two-step algorithm, however, relies solely on the copula
information to manage dependent variables.

Q3: Can we estimate the upper and lower bounds of the survival function without prior knowl-
edge of the dependency between random variables? Yes, a by-product of our two-step algorithm
is the ability to estimate the upper and lower bounds of the survival function, accounting for the
uncertainty stemming from the lack of knowledge about the copula. This ensures that the two-step
algorithm’s output for any given copula falls within the estimated upper and lower bounds.

It is important to note that in the context of average survival function estimation (i.e., not the indi-
vidual survival function), questions Q1-Q3 have already been affirmatively addressed. The Kaplan-
Meier estimator (1958), a popular method for estimating the average survival function under the
conditional independence assumption, has been extended as the copula-graphic estimator (Zheng &
Klein, [1995; |(Carrierel |1995), which operates under the same assumption as ours that a copula is
provided as prior knowledge. The algorithms used in this estimator resemble those in our two-step
algorithm. Additionally, our upper and lower bound estimates of the individual survival functions
are akin to the average survival function bounds described in (Petersonl [1976).
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Lastly, concerning loss functions and evaluation metrics, we introduce a strictly proper scoring
rule, Copula-NLL, for copula-based survival analysis. While several proper scoring rules exist for
survival analysis with K = 2 (Rindt et al., 2022} |Yanagisawa, [2023), they are valid only under
the conditional independence assumption. Our Copula-NLL is applicable for any KX > 2 and any
copula.

2 PRELIMINARIES

In this paper, we consider a dataset for survival analysis with K competing risks, represented as
D = {(x@, @) §D)}IN | of size N. Here, each () € X denotes a feature vector, t() € T is the
observed time, and 6(9 € [K] = {1,2,..., K} is the index of the observed risk. It is important
to note that in survival analysis, the individual realization times tgi), téi), . ,tg? sampled from the
random variables 74,75, ..., Tk are unobservable. Instead, we can observe only their minimum
value +() and the index of the observed risk 69, In this study, we assume that the time horizon
is discretized using the boundaries {¢,}2_, such that 0 = (0 < (; < --- < (p, where (g is
a sufficiently large number, and we assume that each observed time t(@) satisfies 0 < t® < (B.
These assumptions are commonly adopted in numerous survival models (e.g., (Lee et al., 2018;
Yanagisawa, 2023} Hickey et al., 2024))). For simplicity, the notation generally excludes 7, and an
observation (z(*), () §()) is typically denoted as (z, ¢, d).

The primary task of survival analysis in this study is formulated to estimate the marginal distribution
Fi(¢|z) for each k € [K], ¢ € {¢1,C2,...,C(B-1}, and x € X. We assume that F},({o|z) = 0
and Fy,((g|xz) = 1 forall k € [K] and = € X. While survival analysis is often designed to estimate
the survival function, defined as Sy (t|z) = 1 — Fj(t|z), this study aims to estimate the cumulative
distribution function (CDF) Fy(t|z) of T} unless stated otherwise. Additionally, this study also
considers the estimation of the average CDF Fj,(t) of F(t|z) over  ~ X and the average survival
function S (t) = 1 — F(¢).

Censored Joint Distribution (CJD) Representation. The observation (z, ¢, ) becomes more in-
tuitive when visualized in K -dimensional space. For example, in the case where K = 2, each
observation can be depicted as a line segment in a two-dimensional plane, as illustrated in Fig-
ure a). In this figure, an observation (x(l), 20, 1) is represented as a vertical line segment. This
observation indicates that Event 1 is observed at time ¢; = 20, and it is only known that t5 > ;.
Similarly, another observation (z(?), 35, 2) is depicted as a horizontal line segment.

Given that the time horizon is discretized, the K -dimensional space is partitioned by defining the set
Ry, 1, of realizations (¢,0) ~ (T', A) as follows:

Rpr ={(t,0): ¢ <t <(pt1,0 =k}
Refer to Figure 2(b) for an illustration. In this study, this partitioned region is referred to as the
Censored Joint Distribution (CJD) representation.

Copula and Survival Copula. In probability theory and statistics, a mathematical construct
known as a copula is defined as a multivariate cumulative distribution function wherein each vari-
able’s marginal probability distribution is uniformly distributed over the interval [0, 1]. The primary
utility of copulas is to delineate the interdependencies among random variables.

Formally, a copula, according to Nelsen| (2006), is a K-dimensional function C' : [0,1]% —
[0,1] that satisfies the following conditions: (i) C(uy,us, ..., ug—1,0,Uk11,...,ux) = 0, (ii)
C(1,...,1,u,1,...,1) = u for every u € [0, 1], and (iii) given u, v € [0, 1]¥ such that uy < vy, is
valid for all k& € [K], the following condition is satisfied:
Z (—1)l1+12+'“+lKC(ui%}%fll ulgzvéflz ulfgv}(_“{) > 0.
le{0,1} ¥

A notable instance of a copula is the independence copula, which is expressed as:

K
Cind(UhUQ,«..,UK): Huk' (1)
k=1
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Figure 2: Censored Joint Distribution (CJD) Representation: (a) Two observations are illustrated as
vertical and horizontal line segments in the CJD representation. (b) The CJD space is divided into
subregions R, i, for density estimation. (c) A rectangular region is illustrated within the CJD space.

Another illustration of a bivariate copula is the Frank copula with a non-zero parameter 6:

1 efa’ul _ 1 6*61142 _ 1
OFrank(ulaUQ) = 5 log <1 + ( 6—9)(_ 1 )) ’

2

Copulas are instrumental in calculating joint probabilities. For instance, the joint probability
Pr(¢1 < Ty < (4, T> < (3) depicted in Fig. 2fc) can be computed using a copula as follows:

Pr(¢i <Th < (i, Tz < (3) = C(F1(G), F2(G3)) — C(F1(C1), F2(G3)),
where F(t) = Pr(Ty < t).
A significant characteristic of the copula is that the joint distribution Pr(T} < t1,T5 < to,..., T <
t i ) can be uniquely represented using the copula, as per Sklar’s theorem.
Theorem 1. (Sklar’s Theorem [1959]). There exists a copula C such that for all t1,to, ... tk,

PI‘(Tl S tl,TQ S tQ, e 7T‘K S tK) = C(Fl(tl),FQ(tQ), e ,FK(tK))

If the marginal distribution Fy, is continuous for all k, then C'is unique.

In the context of survival analysis, a survival copula C is also frequently used. This copula satisfies
the following equation:

Pr(Ty > t1, T2 > ta, ..., Tk > tx) = C(1 = Fi(t1),1 — Fa(t2),...,1 — Fr(tk))

It is well-established that any survival copula C' can be represented using its corresponding copula
C (see, e.g., (Georges et al., 2001)). For instance, when K = 2, the survival copula C' can be
represented as:

C’(ul,ug) = Uy + ug — 1 + C(]. — Ul,l — UQ)
Additionally, it is important to note that if C' = Cj,q, then C = Cipg.

3 TWwWO-STEP ALGORITHM

We propose a two-step algorithm for survival analysis with K competing risks. The first step es-
timates 7, 1|,, which approximates the ground truth 7y, = Pr((t,0) € Rpx|z). In the second

step, the marginal distribution Fk(Cb\x) is computed from the estimation 7 |, assuming that we
have prior knowledge regarding the dependencies among the random variables 11,15, . . ., Tk in the
form of a copula C. Note that survival models based on the conditional independence assumption
are equivalent to using the independence copula (as defined in (I))) for the copula C.

3.1 STEP 1: CENSORED JOINT DISTRIBUTION ESTIMATION

We present two approaches to estimate 7y, j|,. One approach is based on density estimation, and the
other on distribution regression.
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Density Estimation. The most straightforward approach is to directly use a density estimation
model to estimate 7y, |, Various density estimation models are applicable, including random
forests, gradient boosting, and neural network models. Recent advancements in density estimation
techniques can be found in (Dheur & Taiebl 2023} [Filho et al., 2023)).

Distribution Regression. Another approach is to utilize distribution regression models. Examples
of such models include:

¢ Models based on monotone neural networks (Chilinski & Silval, [2020)

¢ Models based on random forests (Schlosser et al., [2019; |Hothorn & Zeileis) 20215, Cevid
et al.,[2022)

* NGBoost (Duan et al.,2020), which is based on gradient boosting.

These models can estimate Vj((|x), the conditional k-th cumulative incidence function (CIF), de-
fined as follows:

Vi(Clz) = Pr(T < ¢, A = k|z). 3)
Using the estimated Vj,(¢|z), Ts,k| Can be estimated as:
P ke = Vi(Gole) = Vi(Go1l)- “)

One significant advantage of this approach is that, if we wish to adjust the hyperparameter B, there
is no need to retrain the predictive model; we only need to recompute Eq. @).

3.2 STEP 2: COMPUTATION OF MARGINAL DISTRIBUTION

The second step of our algorithm computes Fk(Cb|x) using the estimates 7y, 1|, obtained in the first
step and a given copula C. For simplicity, we consider the case for K = 2 in this section, with
generalization for K > 2 detailed in Appendix[C|

Letry), € [0, 1]K denote the length- K vector whose k-th entry is 7y 1|, and let Fy |, € RX denote
the length-K vector whose k-th entry is Fj(Cp|x).

We aim to represent ry, as a function of F,_y ., |, and the copula C'. By the definition of 7y |,
we have the following representations:

T = Pr(Q—1 <T1 < G, Th < Tol2) = iy ple — W1 4{1,2} bla - 5
Ty oje = Pr(Qp—1 < To < G, To < Thlx) = qayple — W2 41,2} blx - (6)
where
qqiyple = Pr(Gp-1 <T1 < G, Qo1 < Tal2), (7N
Q23 bz = Pr(G1 < T2 < G, Qo1 < Th|z), ®)
qq1,236je = Pr(G—1 <T1 < G, G—1 < Tz < Gpl), )

and wy,w, > 0 are weight parameters such that wq + wy = 1. See Fig. 3] for the illustration of
equation equation Unless otherwise stated, we assume that w; = we = 1/2. Note that, if we
use a sufficiently large B, the correction term E] should be a small value, and therefore the choices
of the weight parameters w; and wy should have little effect in these equations. Then we represent
equation [7}-equation [9]by using F (¢o—1|z), Fi ((p|2), Fa(Co—1]x), F2(Cy|2), and the copula C:

gy e = F1(Glo) — Fi(G-1lz) — C(F1(Glz), F2(Co-1]7)) + C(F1(Cp-1]), F2(Go-1]T))
= C(F1(Gl), 1) = C(Fi(G-1]2), 1) — C(F1(G), F2(Co—1]2))

+ C(F1(Cp—1]2), Fa(Cp—1]7)), (10)
qiaypje = C(1, Fo(Glz)) — C(1, Fo(Gp—1]7)) — C(F1(Co-1l2), F2(Cb|7))
+ C(F1(Co-1]2), F2(Co—1]2)), (11
q1,2p.0lz = C(F1(G|2), F2(Glz)) — C(F1(G|x), F2(G-1]2)) — C(F1(G-1l2), F2(Cp|2))
+ C(F1(Go-1]2), F2(Gp-1]2))- (12)
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Combining equation equation we can represent 1y, 1|, and 1 9|, using F1 (Gp—1]x), F1(Gplz),
F5(¢p—1]|x), F2((p|x), and the copula C. This implies the existence of a function g, ¢ such that:

tyle = 96,0 (Foja| Fo—1j2)- 13)

Having established equatio we can obtain Fy, for all b by solving this equation, as outlined in
Steps 4-7 of Algorithm e leverage the initial condition Fg|, = O for all x, where O is the K-

dimensional vector of zeros. At the initial step for b = 1, we can obtain F 1|z by solving equation
since this equation provides K equality constraints and the unknown value is the length- K vector
Fy), (see Sec. for more details). By repeating this procedure for b = 2,3,..., B — 1, we can

obtain ]?‘b‘w for all b.

Note that the second step of our algorithm is similar to the algorithm based on a bisection root-
finding algorithm in (Zheng & Klein, [1995), but their algorithm is valid only for K = 2 and its
extension for K > 2 is unknown. In contrast, our algorithm is extendable for K > 2 as shown in

Appendix [C]

Remarks. In our implementation, we employed a simpler algorithm instead of solving for
each b. Specifically, we estimate Fy|,, by minimizing the following objective function:

B-1

Z (g96,c (Fpjz|Foe) — Fpja)”

b=1
for all b simultaneously.

We also note that as B — oo, another approach introduced in (Carriere, [1995)) can be employed

to estimate f‘b|m. This method is discussed further in Sec. and we conducted an experimental
comparison between this alternative algorithm and our proposed algorithm in Sec.[H]

4 THEORETICAL ANALYSIS

In this section, we theoretically verify that the two-step algorithm outputs solutions with sufficiently
small errors. We consider the case K = 2 for simplicity, and we assume (;, = %C B. As discussed
in the preceding section, various models can be implemented to estimate the CIF in the first step of
our algorithm. Therefore, we evaluate errors affected by step 2, solving (I3), under the assumption
that the models employed in the first step accurately approximate the true probabilities such that

[Po 6 — o] < € (14)

holds for all b = 1,...,B and k = 1, 2. Note that while how small a value we can take as ¢ in
(T4) depends on the choice of the model in step 1, we can apply the results exhibited in this section.
We provide examples of achieving (T4) in Appendix [B] To formally state our theoretical results, we
introduce the following assumption:
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Assumption 1. We assume the following conditions:

(1) (True probability is not biased.) There exists a global constant cy > 0 such that for every
b= 1, .. .,B and k = 1, 2, Fk(<b|$) — Fk((b_1|x) = Pr(Cb—l < Tk < Cb) < %) holds.

(2) (Copula.) We assume that the copula C'is of class C? and satisfies

2
? -

—  inf
(u,v;2[0,1]2 auavc(“’”) >0,

02 o? 0?
L= (u,viggl]z max{auQC(u,v), mC(u, v), WC’(u,v)} < 400.

(3) (All ty, are equally observed.) There exist constants ¢; > 0 depend on ¢, L, and 7 > 0 such
that the following condition holds: Let 69 > 0 be a constant determined by { and L |'|and by =

mgmx{b | Vk, Fi.(Gplz) < 1— Tlg‘éB}. Then, mkin Fr(Cpyle) > 1 — 2.

We make some remarks on the assumption. The first condition is required to bound the error by the
choice of w; and wo; if the probability concentrates on a squared region partitioned by suboptimal
wj and we, significant errors are inevitable. This condition is satisfied if F}, is Lipschitz-continuous
with ¢o(p serving as the Lipschitz constant. The second condition manages the sensitivity of the

estimation relative to the true distribution and noise. For example, if 685—06; < 1, indicating that C
exhibits minimal variation as v and v change, substantial adjustments to the estimation are necessary
to accommodate for noise and achieve (I3). This condition is typically met for the independence
copula C'(u,v) = uv withany £ < 1 and L > 1. The third condition appears to be technical. As will
be demonstrated in subsequent analyses, errors between F}, and F, can only be effectively bounded
for b < by. As b approaches B, and consequently 7 ; diminishes, the impact of € intensifies.
Condition (3) excludes scenarios where a part of ¢s is concentrated in the region b > by. In other
words, all ;s are equally observed in the region b < bg.

Let Wy (-, -) be the Wasserstein distanc Then, we provide the statement about the W; distance
between between the estimated and true probabilities. We consider the extension of F}((p|x) to a
CDF on [07 CB] by Fk(t|x) = Fk(Cb|x)’ where (p <1t < (pt1-

Theorem 2. Suppose that Assumption[I|holds. Then, there exists a constant cc > 0 depending co, {
and L such that if e < %, the following inequality holds:

N - B-b
Wy (/f"k|:m,uk:\w) S¢s <Bl+ €+cy- Blogg>’ (15)

where [i,|, and py,, are probability measures whose CDFs are given by Ey(-|z) and Fy(-|x), re-
spectively.

Due to the space limitation, the proof is deferred to Appendix [D} Suppose that the condition € =
o(B*7) holds. Then, we obtain an upper bound as W (fz, fixjz) = (g - o(1). Thus, we can
ensure that as B — +o00 and the sample size increases as we can take sufficiently small ¢, the output
of step 2 converges to the ground truth distribution in terms of the W; distance.

We provide some comments on Theorem [2} We can observe a trade-off in (I3)) based on the choice
of B: while the second term decreases as B increases, B'T™ and ¢ in the first term should increase.
Consequently, an optimal choice of B should be considered under appropriate assumptions that
determine € and by, such as the model utilized in step 1 and the properties of F'. .. It is also significant
to examine that the derived bound achieves a statistical min-max lower bound exhibited in (Niles-
Weed & Berthet, [2022; Bilodeau et al., [2023)), for example. We reserve these considerations for
future research endeavors.

'See Section[D] for its formal definition.

Wilp,v) = %Ir}f )fR2 |x — y|dw(z,y), where II(u, ) denotes the set of all couplings of two proba-
mell(p,v

bility measures p and v on R.
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Figure 4: Illustration of the upper and lower bounds estimation. Here, region I?; ;. is divided into
grids, with denser color indicating a higher probability that a data point is contained in the corre-
sponding region. The lower bound estimation is achieved by assigning the probability mass 7 i,
to the last time slot within region R;, j and then calculating the column-wise sum. Conversely, the
upper bound estimation is obtained by assigning the probability mass 7 j to the earliest time slot
within region I}, ;, and calculating the column-wise sum.

5 UPPER AND LOWER BOUNDS ESTIMATION

While our two-step algorithm assumes prior knowledge of the copula C,|Tsiatis|(1975) demonstrates
that further weakening this assumption renders it impossible to identify Fj(¢|z). For additional
details, see our discussion in Sec. E

Given this constraint, we explore the concept of partial identifiability (Kline & Tamer} 2023)) in sur-
vival analysis. Specifically, we derive the upper and lower bounds of FJ,(¢|z) under the assumption
that the true copula C' is unknown. By definition, the upper and lower bounds of F}({|z) can be
computed as follows:

Pr((z,t.0) € | J Ryna | < Fu(Glr) <Pr|(zt,0) e |J  Rywpe

b’ <b b’ <b,k'€[K]
& S rae SF(Gl) <) Ty e (16)
b'<b b’ <b,k’€[K]

Note that these inequalities are derived without utilizing the parameters w; and ws in our two-step
algorithm.

Given (I6), we can compute the upper and lower bounds using 7, |, as demonstrated in Figure
As illustrated, the upper and lower bound estimation, as well as our two-step algorithm to estimate
Fy({p|x), can be interpreted as redistributing the probability mass in the CJD representation into
fine-grained grid cells.

It is important to note that our upper and lower bounds differ from the confidence interval, which
quantifies the epistemic uncertainty inherent to the prediction model (Bengs et al. [2022). Our
bounds quantify uncertainty due to the lack of prior knowledge about the true copula C. As dis-
cussed in Sec. [H, these two bounds can be combined to quantify both uncertainties.

In Sec. |E we present alternative upper and lower bounds using Vi ({|z) (as defined in (3)). These
bounds can be considered variants of the bounds given for the average survival function in (Peterson,
1976).

6 STRICTLY PROPER SCORING RULE

In this section, we demonstrate the existence of a strictly proper scoring rule when the ground
truth (survival) copula is known. While the existence of such a scoring rule for X' = 2 under the
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conditional independence assumption is shown in (Rindt et al.,[2022), no strictly proper scoring rule
has been established under our weaker assumption.

Definition 1. (Proper and strictly proper scoring rules.) A scoring rule S for estimation F} (¢|z) of
Fy(t|x) is proper if the following inequality holds:

EIS({Eu(tle)}ly, (t,6))] = ES{Fu(tz) } iy, (2, 6))]. (7)

A scoring rule is strictly proper if the equality in holds if and only if F} (t|z) is equal to F} (t|z)
for all k and ¢.

To define our scoring rule, let
weltle) = Vi (t]a)
k =5k
o —
= — 6ch(1 — Fi(t1|x),1 — Fy(to|x),...,1 — F(tk|z))

ti=to=---=tg=t

Assumption 2. An estimate 0y, (t|z) of vk (t|z) satisfies Dy, (v (t|z)||0k(t|z)) < oo for all k and
t, where Dx1, denotes the Kullback-Leibler (KL) divergence.

Theorem 3. (Strictly proper scoring rule.) If Assumption [2] holds, the following scoring rule S,
termed Copula-NLL, is strictly proper:

SUFr(tlz) ey, (t,8)) = —Ls—p log oy (t|z).

In Sec. |G|, we provide the proof of this theorem.

7 EXPERIMENTS

We conducted experimental evaluations to verify that our two-step algorithm delivers comparable
predictive performance to existing models for survival analysis. Additionally, we evaluated a neural
network model utilizing our strictly proper scoring rule, Copula-NLL. For this section, we used two
datasets: flchain (Kyle et al.|[2006; |Dispenzieri et al.,|2012) and support2 (Knaus et al., |19935)), both
obtained from the Python package SurvSet (Drysdalel 2022).

Models. We employed four models for the first step of our algorithm. In the models TS-Brier
and TS-Log, neural networks were used for density estimation with the Brier and Logarithmic
scores (Gneiting & Raftery, 2007) as the loss functions, respectively. In the models TS-RF and
TS-DRF, we used the random forest (RF) model provided in the sklearn package and the dis-
tribution regression forest (DRF) (Cevid et al.| 2022), respectively. The prefix TS stands for the
Two-Step algorithm common to these models, each employing a different first-step model, but all
using the same algorithm for the second step as described in Algorithm[I] We set B = 100 for the
hyperparameter of the second step.

Additionally, we constructed a Copula-NLL model that used our strictly proper scoring rule pre-
sented in Sec. E] as its loss function. This model utilized a min-max neural network (Igel, 2024) to
represent a CDF with a monotone neural network (Chilinski & Silval [2020)), though other monotone
neural networks such as those proposed in (Yanagisawa et al., [ 2022; |Kim & Lee, |[2024) could also be
used. The Copula-NLL model can be seen as incorporating prior knowledge of the ground truth cop-
ula into the DCSurvival model (Zhang et al.| [2024), although the primary objective of DCSurvival
appears to be the identification of parameters within an Archimedean copula.

For comparison, we also employed the random survival forest (RSF) (Ishwaran et al.,[2008)), a model
based on random forests, and the DeepHit model (Lee et al., 2018)), a neural network model. In the
DeepHit model, we set the parameter &« = 0 to make its loss function a proper scoring rule as
suggested by Yanagisawal (2023)).

Evaluation Metrics. We used three types of metrics to evaluate the estimate on the CJD represen-
tation 7%, |, and four types of metrics to evaluate the estimated distribution Fy (t|x) (see also Table

in Appendix [H).
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Figure 5: Performance comparison on the flchain and support2 datasets (lower is better).

For the CJD representation, we employed the Brier and Logarithmic scores (Gneiting & Raftery,
2007). Given that certain models yield only the marginal distribution F}(¢|z), the CJD represen-

tation 1, was estimated using the marginal distribution Fk (t|z) and the independence copula Cipqg
(defined in (I)). Additionally, the sum of the Kolmogorov-Smirnov calibration error was used as a
calibration metric on the CID representation. This metric, used in (Gupta et al., 202T)), is based on
the Kolmogorov-Smirnov test (Kolmogorovl, [1933} [Smirnov} [T939) and is defined as follows:

K 1 N 1 N
2 2% | 2 etz ok = 7 2 Batase - el

i=1
where fj(z;) denotes the probability of being x; classified in class k.

For the estimated marginal distribution Fk(t|x), we used a simplified variant of the censored log-
arithmic score (Yanagisawa, 2023) as the evaluation metric. Additionally, D-calibration

2020) and KM-calibration (Yanagisawal,[2023)) were employed as calibration metrics. Finally,
we used our strictly proper scoring rule, Copula-NLL, as an evaluation metric.

Results. Figure [5 presents the results for the fichain and support2 datasets. These results indi-
cate that no single model consistently outperforms all others across different metrics. Our models
generally exhibited competitive or superior predictive performance compared to RSF and DeepHit
models.

The TS-DRF, TS-RF, TS-Log, and TS-Brier models’ values on the CID-Brier, CJD-Logarithmic,
and CJD-KS metrics reflect the prediction performances of the density estimation methods used in
the first step of the two-step algorithm. This suggests that no single prediction model uniformly
outperforms the others, even in terms of density estimation. Given that each prediction model has its
own inductive bias, the “best model” is contingent on the dataset and the specific evaluation metric.
We defer the problem of model selection to existing works (e.g., (Arlot & Celisse| 2010} [Arlot &/

2016)).

Additional evaluation results using several other datasets are included in Appendix [H]

10
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A ON APPLICATIONS OF PROPOSED METHODS

Survival analysis is a crucial tool in various fields such as medicine, engineering, and social sciences,
where the time until an event of interest occurs is studied. The applicability of our proposed methods
can be classified into three distinct types based on the nature of the dependency between the event
time and the censoring time.

* (Conditional Independence.) The first class of applications encompasses scenarios where
the conditional independence assumption between the event time and the censoring time
is valid or highly likely to hold. This situation typically arises in cases of administrative
censoring, where data points are censored solely due to the limited window of observation
times. For instance, in clinical trials, patients might be censored at the end of the study pe-
riod regardless of whether the event of interest has occurred. In such cases, the conditional
independence assumption simplifies the analysis, allowing the use of survival models based
on the conditional independence assumption including our two-step algorithm.

* (Verifiable Dependency.) The second class of applications includes scenarios where there
is a dependency between the event time and the censoring time, but this dependency can
be verified, albeit at a significant cost, for a small subset of data points. An example of this
situation is found in medical studies where the primary event of interest is patient mortality,
and censoring occurs when patients are discharged from the hospital. In such cases, it
might be feasible to investigate the true event time for a small fraction of patients, thereby
assessing the dependency between the event and censoring times. For these applications,
our two-step algorithm can be adapted by estimating the copula C' for the subset of data
points where the dependency has been verified. This estimated copula can then be used
to model the dependency in the entire dataset, allowing for more accurate estimation of
individual survival functions.

* (Unverifiable Dependency.) The third class of applications involves situations where the
dependency between the event time and the censoring time cannot be determined, even
with extensive resources. In such scenarios, identifying the individual survival function
is inherently challenging due to the unknown nature of the dependency. Without precise
knowledge of the dependency, it is prudent to consider a range of potential dependencies.
For example, if we have some confidence that the dependency can be represented by a
Frank copula with parameters —5 < 6 < 5, we can estimate the survival functions using
the Frank copula with § = —5 and 6 = 5. These estimates provide the upper and lower
bounds of the true survival function. Additionally, our method for estimating the upper and
lower bounds offers a robust approach to account for the uncertainty in the dependency
structure.

B EXAMPLES OF BOUNDS ON STEP 1 ERROR

In this section, we present an example that satisfies (I4). As mentioned in Sections [3] and ] any
estimation method for the probability distribution can be employed, and theoretical results pertaining
to those models can be leveraged to guarantee (I4). Among the various methods, we introduce
results derived from the Distributional Random Forest (DRF) (Cevid et al., [2022) and histogram
type estimators (Sart, [2017).

B.1 DISTRIBUTIONAL RANDOM FOREST

DRF constructs random forests designed to estimate the conditional distribution of multivariate re-
sponses. It achieves this by splitting the data using a distributional metric, specifically the maximal
mean discrepancy (MMD), with the goal of maximizing the differences in distributions between
child nodes. DRF then estimates targets, such as the CIF in this study, by employing a weight func-
tion that reflects how frequently the training data points end up in the same leaf as the test point
across different trees.

Cevid et al.|(2022) imposes the following assumptions:

14



Under review as a conference paper at ICLR 2025

(P1) (Data Sampling.) Instead of the traditional bootstrap sampling with replacement, com-
monly used in forest-based methods, a subsampling approach is employed. For each tree,
a random subset of size s,, is selected from n training data points. It is assumed that s,
approaches infinity as n increases, with the rate specified below.

(P2) (Honesty.) The data used to construct each tree is split into two parts: one part is used for
determining the splits, and the other is used for populating the leaves and thus for estimating
the response.

(P3) (a-Regularity.) Each split leaves at least a fraction 0 < « < 0.2 of the available training
sample on each side. Additionally, trees are grown until each leaf contains between x and
2k — 1 observations, where x € N is a fixed tuning parameter.

(P4) (Symmetry.) The (randomized) output of a tree does not depend on the ordering of the
training samples.

(P5) (Random-Split.) At every split point, the probability that the split occurs along the feature
X is bounded below by 7 /p, for some 7 > O and forall j =1,...,p

Note that each of these conditions can be verified by inspecting the constructed forest. The following
proposition is direct consequence from Corollary 5 of |Cevid et al.| (2022).
Proposition 1. Under the assumptions (P1)-(P5), it holds that

. D
Tbklz — Thk|z
for any b and k as the sample size goes to inﬁm'tyﬂ

The proposition above ensures the probabilistic convergence of the estimation. Specifically, for
arbitrary values of € > 0 and § > 0, there exists a sample size threshold n. s > 0 such that if the
sample size exceeds n. s, then holds with a probability of at least 1 — 4.

B.2 HISTOGRAM TYPE ESTIMATORS

Sart (2017) proposes histogram type conditional density estimators on X’ x ) by
1K xzayz)
(y‘l‘) - 8 x y Z L 1K(xay),
" S s W)

where m is a partition of X X )/, p is a reference measure of the conditional density, and ¢, is the
Dirac measure at z € X. In the context of survival analysis, we can choose ) = [0, 1]% equipped
with the Lebesgue measure ;1 and m as a set of regions defined by ((p—1 < tr < 6,0 = k) for
be [B],k € [K].

Let v be a measure defined on X’ and

h(f,9)=/xw(\/f(w y) —Vg(z,y) y) (z) du(y)

be the Hellinger distance. Then, [Sart|(2017) provides the following result:
Proposition 2 (Proposition 2.6 of Sart (2017)). Let s be a true conditional density. We define

Vi = { Z CLKlK,VK Em,ax > 0}

Kem
Then, there exists global constants Cy, Cy > 0 such that for any £ > 0,

Pr [hz(s, 5) < 1€an h%(s,v) + Cl@ + sz} >1—e ™.

See |Sart| (2017) for specific examples of deriving the term invf h?(s,v) under the conditions on
VEVim

s and X. The bound on the Hellinger distance implies the bound on the total variation distance
TV(f,9) = [yl f(@,y) — g(z,y)| dv(z) du(y) as

TV(f,9) < h(f.9)

which follows from the inequality between the L;-norm and the Lo-norm. Thus, by utilizing Propo-
sition 2] we obtain (T4) by taking e as the total variation distance between 7 and r.

32, denotes the probability convergence.
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C STEP 2 OF PROPOSED ALGORITHM

C.1 GENERALIZATION FOR COMPETING RISKS

We generalize the second step of our two-step algorithm presented in Sec. [3]for K > 2.
For a subset I C [K], let
Qupje = {(t1,t2, ... 1K) : Awer(Go1 < tr < G) and Aprgr (G—1 < ta)}.

We can compute the probability gy, = Pr((ti,t2,...,tx) € Qrp|z) by using the inclusion-
exclusion principle:

K
qrb|z = Z(_l)Kij Z C(Iv Ja b);
=0 IICIKL|I1=)
where ¢(I,J,b) = C(p1.3.6.1, PLI b2, - - - » PLIb ) and

1 ifkeJ\T,
PLI bk = Fk(Cb|x) ifkedn I,
Fi(Go-alz) ifk¢J.

By generalizing Eq. (7)—() using gy 5|, We can represent 74, j, as

K
Toklz = 9{k},ble — z:(—l)Z Z WH * ¢H,b|z
i=2 H:keHC[K],|H|=i

Correction term

where wyg is a weight parameter and we assume that wg = 1/|H].

Since ¢y 3|, are functions of Fy|,, F,_1|,, and the copula C', we can obtain the simultaneous equa-
tions:

ry = go.c(Fo|Fp_1).
Hence we can estimate ]?‘b‘z by using Algorithm

C.2 SOLVING SIMULTANEOUS EQUATIONS

In this section, we demonstrate how equation can be solved using Algorithm[2} This algorithm
capitalizes on the following property:

Property 1. Assuming that bellfv is fixed:

(1) The k-th element of the length-K vector gb,c(ﬁ‘b|x|]§‘b71|$) is monotonically increasing
with respect to the k-th element of 1:"b|r.

(2) The k'(# k)-th element of the length-K vector gb,C(Fb|z|Fb_1|m) is monotonically de-
creasing with respect to the k’-th element of f‘b‘w.

First, we demonstrate that the following inequality always holds during the execution of Algo-
rithm 2

to10 > .0 (Fojal Fr1)0)- (18)
At line 1 of Algorithm ]?‘b‘w is initialized with ]?‘b_l‘w. Hence, by the definition in Eq. (T3), we
have gb7c(ﬁb‘z|f‘b,1|m) = 0, which means that inequality holds. At line 4 of this algorithm,

we can increase the k-th element of ]?‘b‘x to satisfy 'y, = gb’c(]?‘b Jc|]?‘b_1|gc) due to Property 1),
and this increment does not violate inequality due to Property [1(2).

Since each element in the length-K vector Fy, does not decrease during the execution of this
algorithm, we can find the solution to equation by repeating the while-loop (lines 2—6) until the

convergence of Fy;.
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Algorithm 2 Algorithm to solve simultaneous equations

Input: Equation t,, = gbyc(Fb‘$|]§‘b_1‘z).
QOutput: Solution ]?‘b‘z.
1: Initialize Fy, = Fy 1,
2: while f‘bu is not converged do
3 forke{l,2,...,K}do
4 Increase the k-th element of f‘b‘w so that the k-th equation of ), = gb,c(ﬁ‘bu |1A7‘b_1‘w) is

satisfied (while other &’-th element (k # k') of I'A“b‘z is fixed)
end for
end while
return Fy,

AR

C.3 ALTERNATIVE ALGORITHM FOR STEP 2

In the second step of our two-step algorithm, 7y, 1|, can be represented as %Vk (t) when B — <.
Therefore, the second step of our two-step algorithm can be seen as solving this partial differential
equation:

d 0 —
*Vk(ﬂl‘) = — 70(1 — Fl(tlll‘), 1-— Fg(t2|l‘), “eay 1-— FK(tK|$)) 5
dt atk ti=to=---=t =t
0 —
= — 5 CSi(tile). Sa(talo). ... Skt o) 7
k ti=to=--=tr=t
_ GC(U17U2,...,UK) isk(tkm) , (19)
Quy, u1=>51(t),u2=82(t),...,uxk =Sk (t) dt tp=t

where C is the survival copula corresponding to C.
In the context of estimating the average survival function Sy (t) = 1 — Fj(¢), Equation (T9) can be
simplified by marginalizing over x ~ X as

d 8€(u1,uz,...7u;{)
—Vi(t) = —
(t) D

—Sk(t) (20)

dt

u1:S1(t)ﬂJ,Q:SQ(t),...,UK:SK(t) trp=t
Assuming that we have an estimation Vj,(t) of V;(t), Carriere| (1995) shows that we can obtain

estimation S, (t) for all k by solving Eq. (Z0). To solve this equation, his algorithm uses these
approximations:

ug ~ (Sk () + Sk(Cpr1))/2 21

%Sk(f) . ~ (Sk(Cor1) — Sk (G))/ (Cor1 — Cb) (22)

SV (h(Gr1) = V(@) (61— G) @3
t=qp

for all k.

It is easy to extend this algorithm to solve Eq. by using the variants of Eq. (1)), (22)), and
conditional on z. Therefore, we conducted numerical experiments to compare this algorithm with
our two-step algorithm in Sec. [H]

D PROOFS

This section provides proofs that remain in Section[d] In this section, for notational simplicity, we
abbreviate the conditional variable x. For example, we denote F}((p) instead of Fy((plx). We

17
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assume w; = wy = 3 just for simplicity. We can extend our analysis to arbitrary w1, wa € (0,1).
Moreover, we assume that step 2 exactly solves (T3), i.e., F}, exactly satisfies the equation (T3).

First, we evaluate the error between the outputs of step 2 and the true probability.

Proposition 3 (Estimation error when solving (13)). Suppose that Assumptlonholds Let Fb‘ be
the output of Algorithm[I]} Then, for everyb =1, ..., B and k = 1,2, there exists a constant ¢ > 0
depending cg, £ and L such that under the condlnon e < %, for suﬁ?ctently large B and every b

satisfying kniax} F. (&) < 1 — 0 with a positive constant § satzsfyzng ?fg;B < dwitht € (0,3),
€{1,2

. 16L52 coN\2] /(1 B 8coL\ "M
|F(G) — Fr(Gp)] < {H 7 (+L~B”-(€+400L>(1 Bw) . (24)

Proof. Let us denote A j, == Fk((b) — F3.(¢p). Instead of (24), we aim to obtain a tighter bound

|Ap x| < {e-l- 1655 2( +L.CBO)2} . [<2+4£L> (1— 8;2?) " 4ch . (25)
We give its proof by induction on b. For the case b = 1, we have
C(F1(¢1),1) = Fr1 +wi - C(F(G), Fo(Gr))
and
C(F1(C1),1) = i1 +wiy - C(F1(G), F2 ()
with wy ; € [0, 1]. By taking the difference of the both sides, we obtain
C(Fi(¢1),1) = C(Fi(G), 1) 26)

=11 — i+ w - C(F(G), Fa(G)) — wiy - C(FL(G), Fa(Gr).
First, we evaluate the term C'(F}(¢y), F2((1)). Rearranging terms gives

C(F1(C1), 1) — wy - C(F1(Cr), Fa(Cr))
—7‘11—7"114-0( 1(¢1), 1) —wi 1 - C(F1(C1), F2(C1))
§6+C(F1(<1)ﬂ )

Co
< +Zi
=€ B’

where the first inequality follows from 7y ; — 11 < e by (I4) and w7 ; - C(F1(¢1), F2(C1)) > 0,
and the last inequality is derived from F1(¢1) < % by Assumption (1) and

Fi(¢1) p1 92
C(F1(¢1), / 8u8 Clu,v)dvdu < L - Fi(() <
0

<L

Since C'(F1(¢1), F2(¢1)) < C(F1(¢1),1), we obtain

C(F1(C1),1) —wy - C(F1(C1), 1) < C(Fi(Gr), 1) —wi - C(F1(G), Fa(G)) < e+ L+ —.

oq\g

By using 1 —w; = %, we obtain
A c
C(Fi(¢),1) < 2(€+L~ EO)
Moreover, we have

Fi(¢1)
C(F(C), / / Sud —C(u,v) dvdu > CFy ((),
N————

>4

18
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and hence,
~ 2 Co
F(G) < 7( L. f).
1(¢1) < J\etl-5
The similar argument gives
ey < 2(e+ L)
2(01) = f € B .

By combining these bounds, we obtain

Fi(¢) pFa(G) 52
C(F1(C1), Fa(C)) / / dun ") C(u,v) dvdu

S

< LR < 5 (e+ D 2) e

Thus we get the bound on the term C'(F ((1), Fo(¢1)).

Moreover, we have

Fi(G) pFe(G) g2
C(Fl(C1)aF2(C1)):/ / 5ub C(u,v) dvdu
0 0 gu

<L

<L F(Q)F(G) <L (%)2, (28)

where we use Assumption [I}(1) for the last inequality.

Then, by taking the absolute value of the both sides of @), we have
C(F1(@), 1) = C(F(G). )|
= ’m — 111 +wy - C(FL(G), Fa(Cr)) — wiy - C(F1(41)7F2(C1))’
< [ = il + [wr - O (), () = wi - CFR (G, B2(6)|

< e+ max{ C(F1 (), Fo(C1), C(FR (G, Fa(G)) }

§6—|—max{ 7~ (e—|—L §>2,L- (2)2}

4L 2
<e -
+(er2g)
where we use the triangle inequality for the first inequality, 0 < wy, wj ; < 1 for the second one, and
(@7). @8) for the third one. Since |[C(F1(G1),1) = C(Fi(G1), D] = ¢[F1(G) = Fa(G)| = A al,

we obtain
1 4L 1 16L6~2 o\ 2
<z <z - .2
|A1’1|_£|:6+£2(+L B)]—£[6+ 72 (e—i—L B)]’

where the last term coincides to the right hand side of 23) with b = 1.
We can obtain the bound for k = 2 by utilizing the same argument. Thus we get (25) for b = 1.
Assume that (23)) holds for b = ¥/, i.e.,

16L5~2 o2 1 B 8oL\ Yt B
(Aol < [€+ (2 3) } [<£+4COL>( BZ(S) deoL
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holds for k£ = 1, 2. We consider the case b = b’ + 1. This bound gives that by taking e < % with a
[ 16L& 2
|Ap | < 6+7(6+L-

sufficiently small c.,
L B\ (,_ 8l —b
/2 4coL BeS

) 1
| \7
[ 16L62 w\2] (1 B 8coL\ "
< b L-22Y.(:= 1—
<o+ —p—(+1 %) (£+4COL>( B&S)
) 1
7

< les 16L5—2 (e—l—L co 2] n B ox 8coL
= 12 B/ | acoL ) TP\ 05
[ flogB co\ 2 1 B
<ler E8Z2 (e )| (24 2B 29
S| e (EJF B) } (z +460L> 29)
1
S Bl (30)

where we use 1 — z < e~ % in the third inequality and the definition of § in the fourth inequality.
This and Fj,((y) < 1 — 6 gives Fyy((y) < 1 — £ for sufficiently large B.

We remind
To+1,1 = q{1},p0 — W1 §{1,2},b/ (31)
Th41,1 = Q1y,p — Wyri1.1 41,2}, (32)

Now, we consider integral representation of ¢1y,5r and g1 2) 1 as
dry = C(F1(Cy+41),1) — C(F1(Cw), 1) = C((Cy+1), Fa(Gr)) + C(F1(Cor), Fa(Cy))

_ / )t 2 C(u, v)dvdu (33)
By, JRae Oudv ’

dQ2yy = C(F1(Cys1), Fo(Ci1)) — CEL(Cor1)s Fo(Gy))
— C(F1(Gw), Fa(Cy41) + C(F1(Gy ), Fa(Gy))

ﬁl(cb/+1) F2(Cb’+1) 2
= / / C(u,v)dvdu.
Fi(Gyr) o) Oudv

The same expression holds for g1y, and gq1 2}, by replacing Fy and F, with Fy and Fb. By
taking the difference between (31) and (32), we obtain

Pora1,1 — Th41,1 = GQuy,p — Gquy,y — Wi Guoyy +Wig 412y (34)

Similar to the case b = 1, we first evaluate the term §gi 0y (note that ¢gioyp =
C(F1(¢1), F»(¢1))). By rearranging terms, we have

Gy — w1 Gqeyy = Por+1,1 — Th41,1 + qQuy e — Wi 41,23
<e+ gy

Fl((b'Jrl) 1 82
:e—|—/ / C(u,v) dvdu

Fi(Gy) IR Judv
<L
<e+ L (F1(Cr+1) — F1(G))(1 — F2(Gp))
<etL 2 (35)

B

where the first inequality follows from #4111 — ryy41,1 < € by @ and q1,2),p0 2 0, and the last
inequality, follows from Assumption[I}(1) and 1 — F> () < 1. Moreover, the left hand side is lower
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bounded by

Gy — w1 Gu2yy > (1 —wi)gy

1 Fl((b’+1) 1 52
= 7/A / —C(u,v) dvdu
2k, JhgQuov

>0

1 . R R
> = Fi(Gran) = Fa(G) ) (L= F2(G),
where we use 1 — w; = 3 and (33) for the equality. Combining this with (33)), we have

2 e+L~C—°). (36)

Fi(Gr41) — Fi(Gy) < m( B

This and the triangle inequality give

|Apy11] = ‘(Fl(Cb/H) - Fl(Cb')) + (Fl(Cb') - Fl(Cb')) + (F1(Gy) — F1(Cpr41))

Fy(Gy1) = PG| + L (Gr) = Fi(G)| + 11 (G) = PG|
2 Co €o
ARGy TE ) Tl g

<

N

which we will use in the latter of this proof.

The same bound as (36)) holds for k£ = 2, which gives

4 2
6+L~C—O) .

(0= 60 (Bt =400 < gy (05

Thus, we obtain

. Fl(Cb’+1) ﬁZ(Cb'Jrl) o2
q{1,2},v' :/ / C(u,v) dvdu 37)

ey e  Qudv
<L

< L (BuGran) = Fa(an) (Pal@n) = FalG)

AL o)
e

Moreover, we have

F1(Cpr41) F2(Cprq1) 82 C( )
q{1,2},b' |z =/ / u,v) dvdu (38)
R IR  Qudv

<L

<L (Fi(Gyry1) — F1(Gr ) (Fa(Cor 1) — Fo(Gyr))
Co 2
L (%)

where we use Assumption [I}(1) for the last inequality.

IN
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Then, by taking the absolute value of the both sides of (34), we have
ldgiy e — a1y 00|
= ]fb/+1,1 —Ty41,1 + W1 41,2} 0w — w§/+1,1 : Q{1,2},b’|a:|
< \fb'+1,1 - Tb'+1,1| + |w1 ’q{l,Q},b’\:}; - w§/+1,1 ’ Q{1,2},b'\x|
< e+ max{d 2} ples 41,200/ |

AL ) )
e A ) )

AL oon 2
§€+£%1—Fﬂ@0(yizxw)G+L'§)» (9)

where we use the triangle inequality for the first inequality, 0 < wy, wy, 1 S1 for the second one,
and (37) and (38) for the third one.

Then, we evaluate the left hand side. We have

ldgyy — aqyy

Fl(Ch’+1) 1 o2 F1(Gyrqq) p1 52
[ / C(u,v)dvdu — / / C(u,v)dvdu
Picy) i) Oudv (¢j) Quov

F1(Gyr) F>

and

Fi(Gyry1) p1 o? FI(Cb’+1) 1 52
/ / C(u,v)dvdu — / / C(u,v)dvdu
Fie) ) Oudv iy (¢y) Qudv

Fi(Cyr) F
Fl(gb’+1) a Fl(Cb’+1) a
:/ —C(u,l)du—/ —C(u,1)du
R Ou By Ou
/Fl(Cb’+1) 3 ( ( )) ﬁ‘l(Cb’+1) a ( “ ( ))
— C(u, F5(Cy dqu/ —C'(u, Fo(p))du
Ry Ou By Ou
Fl((b’+1) 8 Fl(Cb') a
2/ —C’(u,l)du—/ —C(u,1)du
Fi(Gyy) OU P, Ou

ﬁl(Cb’) 8 Fi(Gyr)
[ e R@)a [ S @)
Fl(Cb’+1) u Fl((b’+1) u

F1(Gy)

F1(Cpr41) F1(Gyr)
:/ ! ﬁC(u,l)du—/ 2C(u,l)du

Fl(Cb/+1) 0 N 1o}
+/ [%C(U,Fz@b')) - auC(U»FﬂQ”))}d“

PGy ) OU () Ou
Fl(Cb’+1) 8 F1(Gyr)

- / S, Fy(Gr))du + / 9 Cu, By(Gy))du (40)
Fl(Cb’+1) u Fl(Cb’) u

Fl(Cb’+1) a N a O
e[ et e - ot m@)]a

By the mean value theorem for integrals, there exist constants

Uy 1, Uy s € [mm{ﬁl(gb/),Fl(gb/)}max{ﬁl(gb,),Fl(gb/)H
and

Up/ 1,1, Ubr 41,2 € {min{ﬁl(cb/+1)vFl((b’+1)}amax{ﬁl(gb/+l)vFl(Cb’+1)}]
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such that

0 0
@0) = —Apy11 - %C(Ub/—i-l,la 1)+ Ab/,1au0(ub/,1, 1)

0 0
SAVIERE %C(Ub’+l,2’F2(Cb’+1)) TAVAERE %C(Ub/,Q,FQ(Cb’))

Fl(CbH—l) N
-/ [ 9 o, uer)) — 2O, Faey) | du.

F1(¢y) Ou ou
We denote
(D) =Apy1- 30(“1)’4—1 1, 1) = Ay 0 Cluy,1,1)
T Ou ’ " ou '
—Apgie %C(ub'+1,2,F2(Cb'+1)) + Aprgic %C(ub’,27F2(Cb’))z

Fl(Cb’+1) o “ 0
= [ | 5Ot ) - g PG an

We evaluate the each term. First, we have

0 0 0
@) = (Aps11 — Ab/,1)%0(ub/,1, 1)+ Apsia [%C(ubfﬂ,h 1) — %C(ub’,la 1)}

0
—(Apt11 — Ay 1) 7—C(up 2, Fo(Cy))

ou
—Apy1 |:8C(Ub’+1 2, F2(Cp41)) — éc(ub' 2, F2(Cb')):|
| Ou ' ou ’
= (Apq1,1 — Ap 1) |:BC(Ub’ 1, 1) — EC(UV 2 Fz(Cb'))]
' 7 Ou ’7 ou -

0 0
+ Apyia |:auc(ub’+1,la 1) — %C(Ub’,lv 1)}

0 0
+ Apyia L%C(UUH,Q, F>(Cp41)) — %C(Ub’,% F2(<b’))} .
Thus, we obtain

012 Q11 = Aura) | 5 Clunas 1) = 51 Clun s, Fa(@)|

0 0
- ‘Ab/ﬂ,l {auc(ub’-&-l,la 1) - %C(Ub’,la 1)} ‘

)

0 0
- ‘Ab'+1,1 |:auc(ub’+1,2>F2(<b’+1)) - %C(Ub',%Fz(ﬁb'))]

where we use the triangle inequality.

Moreover, we can bound the terms in the above inequality by

0 0 w2
%C(Ub%l,h 1) - %C(Ub/,h 1)‘ = /u ’ WC’(U, 1) du| < L{up1,1 — uwpr 1)
b1 | S —
<L

¢
< L<|Ab/+1,1| + Eo)j
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and

0 0
‘&LC(UUHQ, Fy(Gpr41)) — %C(Ub’,% FQ(Cb'))‘

0 0
< %C(ub’+1,2>FQ(Cb’+1)) - auc(ub’Jrl,%FQ(Cb’))‘

0
+ ‘auC(Ub’+1,27F2(<b’)) -

0
%C(ub’,% FZ(Cb/))’

F2(Cpr41) o2 o Ut H2 o
= —_— / d —_— Fy(¢y))d
Lz(c 3 9v2 (Ub +1,27U) v+ / Ju2 (U, Q(Cb )) U
b —

W/ 41,1 N e
<L

<L
Co

co
<1.2 L(— Ay
< B+ B+| b'+1,1

2c
= L<|Ab’+1,1 + BO>,

where we use Assumption (1) for the first term and |up 2 — wupry1,2| < App11+ %J for the second
term. Moreover, we have

400 L2
<
- Bl

Fl((b/+1) By (Cyr) o? 2
|(ID)| = / / C(u,v) dvdu| < L—(e +L- %)|Ab/72 |Ay 2],

) IRy Qudv to
<L

where we use € < % in the last inequality.
Then, (39) gives

0
|Apry11 — Apra] - ‘auc(ub/,l, 1) — 8UC(Ub’,27F2(Cb’)>‘
2
<e+ A (e +L- %))
e(1- @) (1- B6)
4eo L2 3¢
BO&S |Ap 2| + L|Ap111] (|Ab’+1,1 + BO>

Moreover, by the triangle inequality, for a sufficiently large B satisfying L - % < %, we have

0 0
’auc(ub’,h 1) - auc(ub/,mf@@b/))’
0

0
> | nCluma ) = -Clua Far)| -

ou

0
> |5 C(ubgl, 1) — %C(Ul)’,% 1)’

1 62 Up! o 62
:/ WC’(ubI,g,v)dv —/u WC’(u,l))du

() bl e
N <L
> (1 — Fo(Cy)) — Llup 2 — up 1|

0
2 b
where the third inequality follows from F5(¢y) < 1 — ¢ and

co
>SU6—L- 2>
> 06— L 5 2

Co

2 = 1] < max{ F1(Go ), Fu(Gor) f = min{ F1(Go ), Fa(Gor) | = Bl < 3

by (30).
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Then, we have

|Apy11 — Ay 1]
2 AL 2 deoL? 3
<=+ - - e+L-2) + 2 Ab/2|+LAb/+u|(|Ab/ =
L e(1-R6)) (1- BG))
2 4L co\2  4coL?
S% €+ - - e—i—L-ES) BOZé |Ap 2] + |Ab/+1 1|<|Ab’+1 1|+ —
| e(1-R6) (1- Ba))

We consider two cases (i) Ay 41,1 < %5 and (i) Ay 11,1 > §. If (i) holds, we have

2 4L 2 4egL? 8coL
|Ap 1,1 — Apa] < 7 - - e+ L- C—O) + CO&S + 005

1 e(i-haw))(1-R6) B/ B Bt
By using the triangle inequality again, we obtain

2 4L Co 2 4CoL SCoL
Apsra] <|Apa|+ = ( L~—) A
[Bvrral <lBwal+ 75 e+ ctLl-g) T e Prel| t g

e(1-F(6) (1- (i)

Finally, by rearranging the above inequality and using the induction hypothesis, we have
8coLL 16L62 o\ 2 1 B seol\ "t B
1-— < 7( L- —) L= 1-— -
( B&S) {6 Tttt ¢ " deol Blo deol

2 4L 2
+ < |e+ 6+L~@)

G e(1-ae) (- Reo) B

16L62 o\ 2 1 B seoL\ "' B
< -/ L -2 - 1— _
= {H a1 p) } [(£+4COL)< Béé) 1oL

where we use Fj, < 1 — g for the last inequality, and hence,

16152 c\? |(1, B Sol\ "B
11| < — =y B R el L -
vt [oo M Y (e se) (- 5) -2

8coL\ ' 2 16152 o\ 2
*(13&5) ’&5[” (0 g)
_92 9 —(b'+1)+1
_ €+16L5 (e+L~C—O) . 1+ B 178001/ - B ’
2 B ¢ " 4eoL BUS deoL

which ensures (23)) for b = ' + 1 and k& = 1. Since the same argument holds for & = 2, we obtain
the conclusion for the case (i).

1— 8COL a
Be6

25




Under review as a conference paper at ICLR 2025

If (ii) holds, we have

|Apt11 — Ay 1]

2 4L co\2 AecgL? 8L
< 7 €+ . - (eJrL'ES) +307&5\Ab/,2| +%|Ab’+1,1|2'
(1= R (1- B)

? < B~2(1=7)  This and triangle inequality gives

~

Then, by using (30), we have |Ay 411

[Ap 11| < |Ap 1|

4L co\2  3colL? 8L
Tt - - (c+ L F) + g 1wl | + g5l 8wl
2(1-F@) (1- B(6)
8coL\ ' 2 16L 2 4egL?
<Ay + (1;%(5) 75 €+ - - <€+L'%) +;()7€5|Ab/,2|
2(1-F@)) (1- B(6)
with taking a sufficiently large B. This gives the conclusion for the case (ii). O

To obtain the bound with respect to W7, we utilize the following lemma:

Lemma 1 (Vallender| (1974)). Let p and v be cumulative distribution functions on R whose CDFs
are defined by F and G. Then,

“+o0
[ F(t) — G(B)|dt = Wa (s ).

Then, we move to the proof of Theorem@

Proof of Theorem[2] Set &y in Assumption (3) by g = SCEL. By using Lemma we obtain

+oo

Wi (Fy, Fy) = / Fr(t) - Fiu(t)|at

— 00

T
— /0 ’Fk(t) - Fk(t)‘dt

bo  rGo
-3
b—1

b=1

Fu(t) —Fk(t)‘dtJr/;B

(9] (ID)

Fy(t) — Fi(t)|dt, (41)

where by is defined by Assumption E]-(S). Then, we bound the each term.
We denote Ay j, == Fk((jb) — Fy(¢p) again. By using the bound (29), we have

log B
Al S (e + ;)Bm
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Then, the first term can be bounded by

) < Z/ max ‘Fk — Fr(G—1)]s
bo b o

< Z/ max{|Ab7k|, E}dt
b=1" -1

u(t) — Fi(G) Jat

For the second term, since 1 — Fj (G ) 2 log~! Bby Assumption(S), we have ’Fk (t) — Fr(t)| S
log™' B fort > (b, With sufficiently large B. This implies

‘s B—b
< [ log™ Bdt - 43
<>NAO% < Byl 3)
By substituting the bounds {@2)) and (3) into (@T)), we obtain the conclusion. O

E IMPOSSIBILITY THEOREM

A limitation of the two-step algorithm is its presupposition that the copula C' is predetermined.
Nevertheless, it has been established that the marginal distribution remains unidentifiable when this
assumption is removed, which is known as Tsiatis’s impossibility theorem [[1975].

Explanation of Tsiatis’s Impossibility Theorem. We briefly elucidate this impossibility theo-
rem. Assume the existence of a dataset D = {(x(,+(*) §())}N | derived from a joint probability
distribution P, represented as

Pr(ti < Tt <Ts,...,txk < Tk) = C(Fi(t1), Fa(ta), ..., Fr(tk))

for a copula C' that deviates from the independence copula Ci,q (i.e., C' # Cinq). Tsiatis’s impossi-
bility theorem suggests the existence of an alternative joint distribution Q, represented as

Pr(ty <Ti,t2 <T5,...,tx <Tj) = Cina(Gi(t1), G2(t2),...,Gk(tKx)),

where G(t;) is a CDF of a random variable T}, distinct from Tj,. However, the dataset Di,q =
{(2®, ¢ @)}V | derived from Q is indistinguishable from D. Consequently, no algorithm can
differentiate the marginal distributions F(t) and G (t) from the dataset D(= Dinq). This ambi-

guity does not arise if all realizations (¢, ta,...,tx) ~ (T1,Ts,...,Tk) can be observed, as per
Sklar’s theorem (Theorem [I)). Tsiatis’s impossibility theorem holds because only the minimum of
{t1,t2,...,tx } can be observed in survival analysis.

The two-step algorithm we propose aligns with Tsiatis’s impossibility theorem. The initial step’s
output 7, 3, remains consistent for both P and Q if the indistinguishable dataset D or Djyq is provided

as input. The subsequent step of our algorithm yields Fk(t) if the true copula C' is given as input,
while it produces Gy (¢) if the independence copula C},q is provided.
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Copula identifiability. Owing to Tsiatis’s impossibility theorem, it is necessary to make certain
assumptions to identify the marginal distribution. In this context, [Heckman & Honoré¢ (1989);
Deresa & Keilegom| (2024) examine copula identifiability under the proportional hazard assump-
tion. Furthermore, |Czado & Keilegom| (2022)); Zhang et al.| (2024) discuss the identifiability of
copulas for other restricted classes of marginal distributions Fj(¢|z). Under the stronger assump-
tion that the marginal distribution Fj(t|x) is completely known, [Schwarz et al.|(2013) discuss the
identifiability of Archimedean copulas and the unidentifiability of symmetric copulas.

F ADDITIONAL RESULTS ON UPPER AND LOWER BOUNDS

F.1 BOUNDS BASED ON THE CUMULATIVE INCIDENCE FUNCTION

We provide alternative bounds by utilizing Vi ({p|x) (as defined in (3)):
Pr(T < G, 6 = klz) < Fi(Glz) < Pr(T < Ga)
& Vii(Golz) < Fr(Golz) < Vil(Gola).
k

By averaging over x ~ X, we can derive the same upper and lower bounds as in (Peterson, |1976):

> vk(cblx>] : (44)
k

The empirical bounds of these upper and lower bounds in (@4) can be computed as:

E [Va(Glr)] < Fr(p) < E
z~X z~X

1
E [Ve(Gl2)] = + § Lir<¢, 50—k
z~X N . - .
() ,£() 6())eD

ZVR(Cer) ~ i Z ]]-t(i)gcb.
N

(2 1) §())eD

These values are equivalent to empirical CDFs. However, they may not correspond to the actual
bounds if the number of data points [V is insufficient. In such cases, the confidence intervals of these
empirical CDFs should also be computed using methods like Greenwood’s method [[1926].

F.2 EXAMPLES

We illustrate survival functions along with bounds for the fichain and support2 datasets in Fig. [6]
The two graphs on the left depict average survival functions, while the four graphs in the center and
right display individual survival functions.

For the average survival functions, we employed the Kaplan-Meier (KM) estimator (1958) and the
copula-graphic (CG) estimator (Zheng & Klein, [1995) using the Frank copula (2) with parameters
60 = —5 and § = 5. Recall that the CG estimator is a generalization of the KM estimator. The
shaded regions indicate the bounds enclosed by the upper and lower limits (Petersonl [1976).

To estimate the individual survival functions in Fig.[6] we used the TS-RF model combined with the
independence copula and the Frank copula with parameters § = —5 and 6 = 5. The shaded regions
represent the bounds enclosed by the upper and lower limits given in Inequality

The figures displaying the average survival functions indicate that uncertainty due to the unknown
copula increases as time progresses. However, survival probabilities for early times can be estimated
with minimal uncertainty, even without prior knowledge of the copula. This observation also holds
for individual survival functions. The degree of uncertainty varies by individual, and the right-hand
figures demonstrate that for some individuals, survival functions can be well estimated.

G PROOF OF STRICT PROPERNESS

We prove Theorem 3]
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Figure 6: Estimated survival functions with upper and lower bounds for datasets flchain and sup-
port2. The left graphs show average survival functions, while the graphs in the center and the right
show arbitrary chosen individual survival functions.

Proof. We have
EIS({Fi(t|2)} iy, (£,6))] = EIS({Fy(t]2)} s (2,6))]

K roo
= Z/ Pr(T =t,A = k|z)(log vk (t|z) — log O (t|x))dt
k=10

K 0o
Z/O Pr(A = kla)Pr(T = A = k|z)(log v(t|z) — log g (t]z))dt
k=1

I
T

-

-

(& =) [ " () log up (t]z) — log iy (t2))dt

K
=Y Pr(A = k|z) Dk (ve (t|2)|| 6 (t))

Note that Assumption [2] ensures the existence of the KL divergence in the last equality. The last
inequality holds if and only if vy (t|x) = vk (¢|x) holds for all k£ and ¢, which is equivalent to that

Fy(t|z) = Fj(t|z) holds for all k and ¢. Hence the scoring rule S is strictly proper. O

H ADDITIONAL EXPERIMENTS

The experimental procedures were conducted on a virtual machine possessing a single CPU devoid
of any GPU, equipped with a memory of 64 GB, and operating on CentOS Stream 9. The software
implementation was achieved using Python 3.11.6 and PyTorch 2.1.2.

Datasets. We used eight datasets, summarized in Table @ where N denotes the number of data
points, and the fourth and fifth columns indicate the numbers of categorical and numerical features in
the feature vectors, respectively. The six datasets with K = 2 were obtained from the Python pack-
age SurvSet (Drysdale, [2022). The Framingham (Kannel & McGee, [1979) and PBC (Therneau
& Grambschl, 2000) datasets with K = 3 were used in (Jeanselme et al., [2023)).

In our experiments, all datasets were randomly split into training (65%), validation (15%), and
testing (20%) sets. The results reported in this section are the mean and standard deviation over
five random splits. We divided the time horizon [0, tmax) into B — 1 evenly spaced boundaries

29



Under review as a conference paper at ICLR 2025

Table 1: Evaluation Metrics

Problem Metric Name Assumption Metric Type

Density estimation ~ CJD-Brier - Discrimination
CJD-Logarithmic - Discrimination
CJD-KS - Calibration

Survival analysis Copula-NLL Copula Discrimination
Cen-log Independence Discrimination
D-calibration Independence Calibration
KM-calibration Independence Calibration

Table 2: Real datasets used in our experiments

Name K N  #categorical #numuerical censored max. time
dataDIVAT1 2 5943 3 2 83.6% 6225
oldmort 2 6495 5 2 69.7% 20
Dialysis 2 6805 2 2 76.4% 44
fichain 2 7874 4 6 72.5% 5215
support2 2 9105 11 24 31.9% 2029
prostateSurvival 2 14294 3 0 94.4% 119
PBC 3 312 5 12 45.8% 15
Framingham 3 4434 10 9 56.2% 8767

and added an additional time slot to represent times greater than t,,,x, where ¢y, is the maximum
observed time within the dataset. This setup means that we used B time slots {(;}Z_ in total. We
set B = 100 unless otherwise stated.

Models and Their Hyperparameters. We used a multi-layer perceptron (MLP) with three hid-
den layers as a neural network model. The dropout layer was employed with a dropout rate of 0.5,
and the ReLU function was utilized as the activation layer. The softmax function served as the
output layer. The neural network was trained for 500 epochs using the Adam optimizer (Kingma
& Ba, 2015). For each dataset, we performed a hyperparameter search to determine the number
of neurons in the hidden layers and the learning rate of the optimizer: the number of neurons
was chosen from the set {4, 8,16, 32, 64,128,256}, and the learning rate was chosen from the set
{0.00001, 0.0001,0.001,0.01,0.1, 1.0, 10.0}.

For tree-based models, a hyperparameter search was also performed: n_estimators was chosen
from the integers between 100 and 1000, max_depth was chosen from the integers between 10 and
50, min_samples_split was chosen from the integers between 2 and 64, min_samples_leaf
was chosen from the integers between 1 and 32, max_features was chosen from sqrt or 1og2,
criterion was chosen from log_loss, gini, or entropy, splitting_rule was chosen
from CART or FourierMMD, num_features was chosen from the integers between 1 and 100,
sample_fraction was chosen from the numbers between 0.1 and 0.5, min_node_size was
chosen from the integers between 1 and 10, and alpha was chosen from the numbers between 0.01
and 0.3.

Ablation Study on Hyperparameter B. We conducted an ablation study on the hyperparameter
B in our two-step algorithm. This study aimed to evaluate the prediction performance using the
TS-DRF model and the Cen-log metric. Specifically, we examined w; € {0,0.5,1} and B €
{20, 40, 60, 80, 100, 120}, where w is the parameter for the primary event of interest. The graphs
in Fig.[7]depict the results.

In Fig.[/| the prediction performances are normalized relative to those with w; = 0.5 for each B.
The results indicate that prediction performances varied significantly depending on the choice of
the parameter w; on several datasets when B was small. However, these differences diminished for
B > 100. Therefore, we set B = 100 in our experiments.
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Figure 7: Ablation study on hyperparameter B (lower is better).

The prediction performance labeled ‘middle’ represents the relative performance of the algorithm
presented in (Carrierel [1995)) (see Sec. @] for details). The results demonstrate that this algorithm
performed worse than our algorithm, especially for the datasets dataDIVAT1 and flchain, even when
we use a large B.

In addition, to complement the results in Sec[7] for the fichain and support2 datasets, we conducted
experiments using the dataDIVAT1, Dialysis, oldmort, and prostateSurvival datasets. The outcomes
of these experiments are presented in Fig.|8| Consistent with the results from the flchain and support2
datasets, these findings also indicated that no single model consistently outperformed the others
across different metrics and datasets.

Prediction Performance with Frank Copula. While the experiments in Sec[7]used the indepen-
dence copula, we conducted additional experiments using the Frank copula with parameters
6 = —5and § = +5. Figure [9 presents the results of these experiments. Note that, since the
Cen-log, D-calibration, and KM-calibration metrics are valid only if the conditional independence
assumption holds (i.e., the independence copula is used), we did not compute these metrics in the
experiments. Note also that, since the CJD-Brier, CJD-Logarithmic, and CJD-KS are metrics for
density estimation and they measure the prediction performances of the first step of our algorithm,
the results were the same as Fig.[5} In other words, the copula C'is irrelevant to compute these
metrics. Therefore, we included only the results with the Copula-NLL metric in Fig.[9]

Since we used only the Copula-NLL metric in Fig.[9] the Copula-NLL model seemed the best model
in this problem setting. However, we should note that the Copula-NLL model did not show the best
performance in Fig. [5|with the metrics on the CJD representation (i.e., CJD-Brier, CJD-Logarithmic,
and CJD-KS). These results underscore the importance of using multiple evaluation metrics to com-
pare prediction models. Reliance on a single metric could lead to the incorrect conclusion that the
Copula-NLL model is the best. A comprehensive evaluation using various metrics provides a more
balanced and accurate assessment of model performance.

Prediction performance on competing risk models. We evaluated the prediction performance
using the Framingham and PBC datasets with i = 3. As baseline methods, we compared our mod-
els with those utilized in |Jeanselme et al.|(2023)). Specifically, we compared against: DeepHit (Lee
et al} |2018), Deep Survival Machines (DSM) (Nagpal et al.l 2021)), DeSurv (Danks & Yau, |2022),
and Neural Fine-Gray (NeuralFG) (Jeanselme et al., [2023), which is a neural network model ex-
tending the Fine-Gray model (Fine & Grayl, [1999). For these models, we used the implementations
available at https://github.com/Jeanselme/NeuralFineGray/ under MIT license,
and performed hyperparameter searches based on the guidelines provided in the source code.
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Figure 8: Prediction performance comparison on dataDIVAT1, Dialysis, oldmort, and prostateSur-
vival datasets with various metrics (lower is better).
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We compared our models with DeepHit, DSM, DeSurv, and NeuralFG models using the indepen-
dence copula, and the results are displayed in Fig. These results demonstrate that our two-step
algorithm is competitive with these baseline models.
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Figure 9: Copula-NLL metric performance on flchain and support2 datasets with Frank copula
f# = —5 and 6 = 5 (lower is better).
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Figure 10: Prediction performance comparison on Framingham and PBC datasets with various met-

rics (lower is better).
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