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ABSTRACT

Despite the potential benefits of data augmentation for mitigating the data insuffi-
ciency, traditional augmentation methods primarily rely on the prior intra-domain
knowledge. On the other hand, advanced generative adversarial networks (GANs)
generate cross-domain samples with limited variety, particularly in small-scale
datasets. In light of these challenges, we propose that accurately controlling the
variation degrees of generated samples can reshape the decision boundary in the
hyperplane space for the downstream classifications. To achieve this, we develop
a novel hyperplane distances GAN (HyperDisGAN) that effectively controls the
locations of generated cross-domain and intra-domain samples. The locations are
respectively defined using the vertical distances of the cross-domain target sam-
ples to the optimal hyperplane and the horizontal distances of the intra-domain
target samples to the source samples, which are determined by Hinge Loss and
Pythagorean Theorem. Experimental results show that the proposed HyperDis-
GAN consistently yields significant improvements in terms of the accuracy (ACC)
and the area under the receiver operating characteristic curve (AUC) on two small-
scale natural and two medical datasets, in the hyperplane spaces of eleven down-
stream classification architectures. Our codes are available in the anonymous link:
https://anonymous.4open.science/r/HyperDisGAN-ICLR2024.

1 INTRODUCTION

Deep neural networks achieve excellent performance in the computer vision fields (Alzubaidi et al.,
2021), such as image classification (Krizhevsky et al., 2012), object detection (Redmon et al., 2016),
image segmentation (Ronneberger et al., 2015) and image registration (Balakrishnan et al., 2019).
In all these fields, a large-scale dataset containing sufficient supervisory information is crucial for
effectively training of neural networks. However, in many realistic scenarios, neural networks can
only be trained on the small-scale datasets, resulting in overfitting on the training set and poor gen-
eralization on the testing set. Although regularization techniques, such as parameter norm penalties,
dropout (Srivastava et al., 2014), batch normalization (Ioffe & Szegedy, 2015), layer normaliza-
tion (Ba et al., 2016) and group normalization (Wu & He, 2018), have been developed to prevent
overfitting, data augmentation is another way addressing the training samples insufficiency.

Traditional augmentation method transforms the training samples by exploring prior intra-domain
knowledge (Krizhevsky et al., 2012; Ciresan et al., 2011), including random cropping, rotations,
etc. However, these methods are designed based on the specific scene, and the transformed samples
have limited contributions to reshaping the decision boundaries for downstream classification tasks.
Generative adversarial network (GAN) (Goodfellow et al., 2014) aims to generate the cross-domain
samples having the same distribution with the target domain’s samples. However, due to the issue of
mode collapsing in GANs (Saxena & Cao, 2022), the generated samples’ quality become uncertain
and their variety is inferior to that of the real samples. Additionally, there is uncertainty regarding
the domain labels of generated cross-domain samples. Briefly, the generated samples using above
two main methods cannot guarantee their usefulness for the downstream classification tasks.

Previous augmentation methods blindly augmenting the training samples and make limited con-
tributions to describing the decision boundary. This naturally raises a question, as illustrated in
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Figure 1: The illustration of data augmentation under two settings: (a) Not controlling the varia-
tion degrees. The intra-domain generated samples rely on the prior knowledge and make limited
contributions to the decision boundary; The cross-domain generated samples degenerate to be intra-
domain due to model collapse and have uncertain domain labels. (b) Controlling the variation de-
grees. All the generated samples are capable of reshaping the decision boundary in the hyper-space.

Figure 1: If the variation degrees of generated samples are controlled, will a more accurate decision
boundary be formed in the hyper-space for downstream classifications? To answer this question, we
conduct a comprehensive study on the hyperplane distance GAN (HyperDisGAN) controlling the
locations of the generated samples adapting to the various hyperplane spaces of eleven classifica-
tion architectures. Firstly, an auxiliary pre-trained classifier constructs a hyperplane space implying
location information (including vertical distance and horizontal distance) by Hinge Loss (Rosasco
et al., 2004). Secondly, the vertical distances from the cross-domain target samples to the optimal
hyperplane and the horizontal distances from the intra-domain target samples to the source samples
are taken as the controllable location parameters. Finally, a more precise hyperplane is constructed
using the generated samples with controllable variations.

Our main contribution is three-fold: (1) A pre-trained hyperplane space based on hinge loss pro-
viding the location information of the real samples. (2) A novel HyperDisGAN controlling the
locations of generated samples in the vertical and horizontal direction. (3) An effective data aug-
mentation manner enabling reshaping the hyperplanes for various classifiers’ architectures.

2 RELATED WORK

Two-domain Image Transformation. Recent works have achieved success in two-domain trans-
formation. For instance, Pix2pix (Isola et al., 2017) learns the general image transformations in a
supervised setting via L1+cGAN loss. However, it requires aligned image pairs due to the pixel-
level reconstruction constraints. To alleviate the requirement of paired image supervision, unpaired
two-domain transformation networks have been proposed. UNIT (Liu et al., 2017) is a coupled
VAE-GAN algorithm based on a shared-latent space assumption. CycleGAN (Zhu et al., 2017) and
DiscoGAN (Kim et al., 2017) enforce bidirectional transformations by utilizing a cycle consistency
loss. In this study, the proposed HyperDisGAN enables not only the unpaired cross-domain image
transformation but also the unpaired intra-domain transformation. The baseline CycleGAN enabling
unpaired cross-domain transformation is presented in Appendix A.

GAN-based Augmentation Schemes. Recently, GAN (Goodfellow et al., 2014) and its varia-
tions have been employed as the augmentation tools for the image classification. For instance,
DCGAN (Radford et al., 2016) generates high-quality CT images for each liver lesion class (Frid-
Adar et al., 2018). In this augmentation scheme, the generated inner-domain samples cannot well
describe the decision boundary. Auxiliary classifiers have been combined with GANs to create soft
labels for generated cross-domain data (Shi et al., 2018; Haque, 2021). They alleviate the generated
samples’ authenticity by setting weights for them. However, soft labels are not precise to benefit the
downstream classification tasks, and finding appropriate classification weights for unreliable data is
difficult. Other schemes generate cross-domain data via CycleGAN (Chen et al., 2020; Cap et al.,
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2022; Bargshady et al., 2022). Unfortunately, the generated samples close to the distribution of the
source domain are given the target-domain labels. Unlike the above schemes, the proposed Hy-
perDisGAN enforces the generated samples being close to the target samples in hyperplane space,
which contributes to reshaping the hyperplane.

Image Generation Combining Classifiers. Starting with cGAN (Mirza & Osindero, 2014), aux-
iliary information such as class labels has been integrated with GANs to generate samples of a given
specific type. SGAN (Odena, 2016) combines an auxiliary classifier with a discriminator to im-
prove the generation performance. Several studies introduce an auxiliary classifier to reconstruct
the auxiliary information from the generated samples, such as ACGAN (Odena et al., 2017) and
VACGAN (Bazrafkan & Corcoran, 2018). Later, this idea is expanded to cross-domain image trans-
formation by reconstructing target domain labels, such as conditional CycleGANs (Lu et al., 2018;
Horita et al., 2018) and StarGAN (Choi et al., 2018). The auxiliary information like class labels re-
constructed in these methods cannot reflect the variation degrees of generated samples, whereas the
proposed HyperDisGAN explores the location of generated samples to control the variation degrees.

3 PROPOSED METHOD

3.1 FORMULATION

Our goal is to learn cross-domain mapping functions between X , and Y and intra-domain map-
ping functions inside X and Y respectively, given training samples {xi}Ni=1 where xi ∈ X , and
{yj}Mj=1 where yj ∈ Y . We denote the data distribution x ∼ PX(x) and y ∼ PY (y), hyper-
plane vertical distance dvx ∈ VX and dvy ∈ VY and hyperplane horizontal distance dhx ∈ HX and
dhy ∈ HY . As illustrated in Figure 2, our model includes four mappings GX2Y : {X,VY } → Y ,
GY 2X : {Y, VX} → X , GX2X : {X,HX} → X and GY 2Y : {Y,HY } → Y , where the gener-
ators generates images conditioned on both source image and target images’ hyperplane distances.
In addition, we introduce four adversarial discriminators DX2Y , DY 2X , DX2X and DY 2Y , where
DX2Y aims to discriminate between real images {y} and generated images

{
GX2Y (x, d

v
y)
}

; in the
same way, DY 2X aims to discriminate between {x} and {GY 2X(y, dvx)}. DX2X aims to discrim-
inate between real images {x} and

{
GX2X(x, dhx)

}
; in the same way, DY 2Y aims to discriminate

between {y} and
{
GY 2Y (y, d

h
y)
}

.

3.2 HINGE LOSS AND HYPERPLANE DISTANCES

We pre-train an auxiliary classifier by Hinge Loss (Rosasco et al., 2004) to obtain an optimal hy-
perplane dividing the two classes samples. In the hyperplane space, the generated cross-domain
samples not crossing over the opposite domain’s minimized margin boundary need to be penalized,
and the generated intra-domain samples crossing over the inside domain’s minimized margin bound-
ary also need to be penalized. Given a linear binary classifier C(z) = wT z + b which is trained on
a training set {zi, ci}Ni=1, zi ∈ RD, ci ∈ {−1,+1}, the hinge loss can be expressed as follows:

Lhinge(ci, C(zi)) =
1

N

N∑
n=1

max[0, 1− ci(w
T zi + b))]. (1)

The vertical distances are considering as the controllable parameters to develop the generators GX2Y

and GY 2X enabling cross-domain transformation between domain X and domain Y . To measure the
vertical distances from target samples to the optimal hyperplane, we introduce an auxiliary classifier
Caux(z) = wT

auxz + baux which is pre-trained via Equation 1. Specifically, given a random sample
x ∈ X and a random target sample y ∈ Y , the vertical distances |dv(x)| and |dv(y)| from the
samples to the optimal hyperplane (wT

auxz + baux = 0) are defined as follows, respectively:

|dv(x)| = |Caux(x)| = |wT
auxx+ baux| ∈ VX , (2)

|dv(y)| = |Caux(y)| = |wT
auxy + baux| ∈ VY . (3)

The horizontal distances are considering as the controllable parameters to develop the generators
GX2X and GY 2Y enabling intra-domain transformation in domain X and domain Y , respectively.
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Figure 2: Overview of HyperDisGAN: HyperVerDisGAN controls the vertical distance for gen-
erated samples whereas HyperHorDisGAN controls the horizontal distance for generated samples.
The target samples’ distances are taken as the controllable parameters in the forward path. The Caux

reconstructs the distances from the generated samples. The source samples’ distances are are taken
as controllable parameters to reconstruct the source samples in the backward path.

To measure the horizontal distances from the source samples to target samples in each intra-domain,
we firstly obtain the coordinate distances from the source samples to target samples. The coordinates
are represented by the vectors extracted before the last fully connection layer of the pre-trained auxil-
iary classifier Caux. Specifically, given a random source sample x1 ∈ X and a random target sample
x2 ∈ X with extracted vector [coorx1

1 , coorx1
2 , · · · , coorx1

m ] and vector [coorx2
1 , coorx2

2 , · · · , coorx2
m ]

respectively, the coordinate distance dcoor(x1, x2) between them is as follows:

dcoor(x1, x2) = dvector(Caux(x1), Caux(x2)) =

√√√√ m∑
i=1

(coorx1
i − coorx2

i )2, (4)

Similarly, the coordinate distance between random source y1 and random target y2 is as follows:

dcoor(y1, y2) = dvector(Caux(y1), Caux(y2)) =

√√√√ m∑
i=1

(coory1

i − coory2

i )2, (5)

We secondly obtain the differences of their vertical distances for the source samples and the target
samples. Finally, the horizontal distances of the source samples and the target samples are calculated
by Pythagorean Theorem. Given random samples x1, x2 ∈ X , and random samples y1, y2 ∈ Y ,
their horizontal distances dh(x1, x2) and dh(y1, y2) are as follows, respectively:

dh(x1, x2) =
√
dcoor(x1, x2)2 − (|dv(x1)| − |dv(x2)|)2 ∈ HX , (6)

dh(y1, y2) =
√
dcoor(y1, y2)2 − (|dv(y1)| − |dv(y2)|)2 ∈ HY . (7)

3.3 HYPERDISGAN AND DOWNSTREAM CLASSIFICATION

Figure 2 illustrates the overall architecture of HyperDisGAN. Firstly, GX2Y transforms a source
sample x1 into GX2Y (x1,+dv(y)), and DX2Y distinguishes between this transformed sample
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Figure 3: Overview of the data augmentation manner. The cross-domain and intra-domain samples
which are generated by HyperVerDisGAN and HyperHorDisGAN respectively, are combined with
the real samples to jointly train the downstream binary classifier via hinge loss.

and a real sample y, and vice versa for y1, GY 2X and DY 2X . GX2X transforms the source
sample x1 into GX2X(x1,−dh(x1, x2)), and DX2X distinguishes between this transformed sam-
ple and a real sample x2, and vice versa for y1, GY 2Y and DY 2Y . Secondly, a pre-trained
auxiliary classifier Caux reconstructs the vertical distances +dv(y) and −dv(x) from the cross-
domain generated samples GX2Y (x1,+dv(y)) and GY 2X(y1,−dv(x)), respectively; and recon-
structs the horizontal distances −dh(x1, x2) and −dh(y1, y2) from the intra-domain generated
samples GX2X(x1,−dh(x1, x2)) and GY 2Y (y1,−dh(y1, y2)), respectively. Thirdly, GY 2X in-
versely transforms the GX2Y (x1,+dv(y)) into the reconstructed sample x̂1 using the vertical
distance −dv(x1), and vice versa for obtaining the reconstructed ŷ1. GX2X inversely trans-
forms the GX2X(x1,−dh(x1, x2)) into the reconstructed sample x̃1 using the horizontal distance
+dh(x1, x2), and vice versa for obtaining the reconstructed ỹ1. We describe the detailed architec-
tures used in our experiments in Appendix D.

The proposed HyperDisGAN contributes to the downstream classifier as an augmentation tool. As
shown in Figure 3, the downstream classifier C receives the real samples (i.e., realX and realY ),
cross-domain generated samples (i.e., fakeX2Y and fakeY 2X) and intra-domain generated sam-
ples (i.e., fakeX2X and fakeY 2Y ). The pre-trained classifier Caux makes HyperDisGAN capable
of controlling the locations of generated samples in vertical and horizontal directions. The cross-
domain generated samples are thought to easily crossing over the optimal hyperplane, whereas the
intra-domain generated samples are thought to fill their respective domain spaces. Therefore, the
class labels of generated samples are defined to be the same with that of the target samples. The
downstream classifier can be then optimized using hinge loss on the real and generated samples.
Appendix H show the classification loss curves for CycleGAN and HyperDisGAN, respectively.

3.4 OBJECTIVE FUNCTIONS OF HYPERDISGAN

Cross-domain and intra-domain generation are individual using two different objective functions.

To make the generated samples be indistinguishable from the real samples, we apply LSGAN loss
(Mao et al., 2017) to cross-domain bidirectional mappings including GX2Y : X → Y and GY 2X :
Y → X , and intra-domain bidirectional mappings including GX2X : X → X and GY 2Y : Y → Y .
The LSGAN losses for GX2Y and GX2X are expressed as follows, respectively:

LcrossGAN(GX2Y , DX2Y , X, Y ) = Ey∼PY
[(DX2Y (y)− 1)2]

+ Ex1∼PX
[DX2Y (GX2Y (x1,+dv(y)))

2],
(8)

LintraGAN(GX2X , DX2X , X) = Ex2∼PX
[(DX2X(x2)− 1)2]

+ Ex1∼PX
[DX2X(GX2X(x1,−dh(x1, x2)))

2].
(9)

and vice versa for the cross-domain mapping GY 2X and the intra-domain mapping GY 2Y .
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Figure 4: Qualitative results over Butterfly Mimics (KeithPinson, 2022) and Asian vs African Ele-
phants (Goumiri et al., 2023). The generated images by the HyperDisGAN are clearly more realistic
than that by the CycleGAN (Zhu et al., 2017). The location parameters for generating these images
are provided by the auxiliary classifier ConvNeXt (Liu et al., 2022).

To control the generated samples’ locations to be close as the target samples, we design the vertical
distance loss and horizontal distance loss for cross-domain generation and intra-domain generation
respectively. We calculate the vertical distances and horizontal distances for the generated samples
according to Equations 2, 3 and 6, 7. The two types distance losses are formulated as follows:

LverDIS(GX2Y , GY 2X , Caux) = Ex1∼PX
[∥|dv(y)| − |dv(GX2Y (x1,+dv(y)))|∥22]

+ Ey1∼PY
[∥|dv(x)| − |dv(GY 2X(y1,−dv(x)))|∥22],

(10)

LhorDIS(GX2X ,GY 2Y , Caux)

= Ex1∼PX
[∥dh(x1, x2)− dh(x1, GX2X(x1,−dh(x1, x2)))∥22]

+ Ey1∼PY
[∥dh(y1, y2)− dh(y1, GY 2Y (y1,−dh(y1, y2)))∥22].

(11)

For enforcing samples not to lose the original information after transforming twice, we develop
the cycle-consistency loss LcrossCYC for cross-domain generation, and the cycle-consistency loss
LintraCYC for intra-domain generation:

LcrossCYC(GX2Y , GY 2X) = Ex1∼PX
[||x1 −GY 2X(GX2Y (x1,+dv(y)),−dv(x1))||1]

+ Ey1∼PY
[||y1 −GX2Y (GY 2X(y1,−dv(x)),+dv(y1))||1],

(12)

LintraCYC(GX2X ,GY 2Y )

= Ex1∼PX
[||x1 −GX2X(GX2X(x1,−dh(x1, x2)),+dh(x1, x2))||1]

+ Ey1∼PY
[||y1 −GY 2Y (GY 2Y (y1,−dh(y1, y2)),+dh(y1, y2))||1].

(13)

Finally, the objective functions of HyperDisGAN for cross-domain generation and intra-domain
generation are formulated as follows, respectively:

LHyperVerDisGAN(GX2Y , GY 2X , Caux, DX2Y , DY 2X)

= LcrossGAN(GX2Y , DX2Y , X, Y ) + LcrossGAN(GY 2X , DY 2X , Y,X)

+ λverDISLverDIS(GX2Y , GY 2X , Caux)

+ λcrossCYCLcrossCYC(GX2Y , GY 2X),

(14)

LHyperHorDisGAN(GX2X , GY 2Y , Caux, DX2X , DY 2Y )

= LintraGAN(GX2X , DX2X , X, Y ) + LintraGAN(GY 2Y , DY 2Y , Y,X)

+ λhorDISLhorDIS(GX2Y , GY 2X , Caux)

+ λintraCYCLintraCYC(GX2X , GY 2Y ).

(15)

where λverDIS, λcrossCYC, λhorDIS, λintraCYC > 0 are some hyper-parameters balancing the losses.
See Appendix B for detailed hyper-parameters settings for our experiments.
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Figure 5: Qualitative results over mixed Breast Ultrasound (Al-Dhabyani et al., 2020; Yap et al.,
2018) and COVID-CT (Zhao et al., 2020). The generated images by the HyperDisGAN is clearly
more realistic than that by the CycleGAN (Zhu et al., 2017). The location parameters for generating
these images are provided by the auxiliary classifier ConvNeXt (Liu et al., 2022).

Datasets Methods Metrics AlexNet VGG13 VGG16 GoogleNet ResNet18 ResNet34 DenseNet121 MnasNet1 0 MobileNet V3 EfficientNet V1 ConvNeXt

Butterfly
Mimics

(Monarch
vs

Viceroy)

Original
ACC 0.817±0.009 0.913±0.014 0.899±0.014 0.889±0.055 0.857±0.048 0.802±0.050 0.857±0.000 0.921±0.014 0.833±0.041 0.928±0.024 0.928±0.024

AUC 0.921±0.023 0.959±0.004 0.955±0.007 0.945±0.011 0.941±0.018 0.923±0.020 0.927±0.034 0.940±0.005 0.927±0.025 0.958±0.015 0.943±0.012

Traditional
Augment (TA)

ACC 0.857±0.024 0.905±0.000 0.929±0.000 0.881±0.000 0.857±0.041 0.841±0.036 0.897±0.014 0.897±0.027 0.865±0.014 0.937±0.014 0.929±0.000

AUC 0.910±0.018 0.946±0.008 0.940±0.014 0.945±0.003 0.931±0.025 0.931±0.022 0.954±0.015 0.938±0.026 0.926±0.015 0.960±0.006 0.960±0.008

TA+ACGAN
ACC 0.857±0.041 0.921±0.014 0.921±0.014 0.881±0.000 0.865±0.028 0.770±0.027 0.897±0.013 0.921±0.013 0.778±0.027 0.913±0.027 0.929±0.000

AUC 0.924±0.018 0.964±0.003 0.959±0.015 0.941±0.017 0.942±0.026 0.901±0.043 0.966±0.009 0.936±0.004 0.891±0.034 0.955±0.016 0.953±0.012

TA+VACGAN
ACC 0.802±0.050 0.905±0.000 0.936±0.014 0.857±0.041 0.825±0.055 0.722±0.060 0.857±0.041 0.897±0.014 0.802±0.059 0.873±0.077 0.913±0.014

AUC 0.876±0.051 0.958±0.005 0.950±0.008 0.933±0.001 0.897±0.045 0.864±0.048 0.936±0.025 0.936±0.006 0.883±0.043 0.930±0.018 0.959±0.004

TA+CycleGAN
ACC 0.802±0.060 0.929±0.000 0.913±0.014 0.897±0.014 0.833±0.063 0.794±0.027 0.873±0.050 0.881±0.024 0.841±0.027 0.905±0.041 0.913±0.014

AUC 0.924±0.004 0.942±0.009 0.962±0.014 0.948±0.006 0.911±0.034 0.915±0.001 0.919±0.024 0.938±0.009 0.913±0.017 0.944±0.035 0.936±0.005

TA+HyperDisGAN
ACC 0.881±0.024 0.921±0.014 0.929±0.024 0.841±0.027 0.865±0.036 0.873±0.028 0.905±0.024 0.926±0.014 0.857±0.014 0.929±0.000 0.937±0.014
AUC 0.932±0.014 0.964±0.003 0.963±0.007 0.952±0.014 0.945±0.006 0.938±0.015 0.969±0.009 0.938±0.010 0.927±0.005 0.961±0.006 0.966±0.006

Asian
vs

African
Elephants

Original
ACC 0.750±0.017 0.842±0.025 0.832±0.059 0.797±0.051 0.802±0.003 0.727±0.018 0.748±0.023 0.863±0.006 0.848±0.038 0.885±0.013 0.900±0.017

AUC 0.845±0.028 0.916±0.010 0.897±0.050 0.873±0.032 0.859±0.014 0.806±0.040 0.850±0.036 0.933±0.007 0.920±0.009 0.921±0.005 0.948±0.031

Traditional
Augment (TA)

ACC 0.763±0.033 0.822±0.020 0.848±0.024 0.822±0.018 0.733±0.060 0.735±0.013 0.787±0.043 0.858±0.025 0.850±0.015 0.853±0.023 0.908±0.016

AUC 0.861±0.010 0.898±0.027 0.915±0.016 0.900±0.010 0.814±0.042 0.811±0.019 0.905±0.026 0.937±0.005 0.919±0.011 0.906±0.002 0.948±0.020

TA+ACGAN
ACC 0.788±0.072 0.803±0.026 0.742±0.059 0.838±0.038 0.733±0.015 0.660±0.022 0.792±0.055 0.838±0.038 0.805±0.015 0.868±0.019 0.883±0.003

AUC 0.860±0.061 0.897±0.028 0.828±0.078 0.922±0.027 0.828±0.007 0.706±0.052 0.862±0.046 0.933±0.009 0.873±0.019 0.934±0.009 0.938±0.000

TA+VACGAN
ACC 0.755±0.051 0.697±0.019 0.750±0.053 0.640±0.009 0.662±0.003 0.657±0.020 0.655±0.013 0.825±0.033 0.565±0.018 0.807±0.046 0.870±0.017

AUC 0.855±0.040 0.788±0.020 0.842±0.015 0.712±0.015 0.726±0.022 0.733±0.015 0.751±0.041 0.931±0.010 0.595±0.012 0.886±0.013 0.928±0.009

TA+CycleGAN
ACC 0.822±.031 0.862±0.018 0.828±0.034 0.852±0.021 0.708±0.033 0.695±0.058 0.735±0.022 0.863±0.006 0.833±0.003 0.767±0.012 0.918±0.006

AUC 0.896±0.010 0.918±0.019 0.896±0.014 0.924±0.013 0.775±0.018 0.743±0.060 0.790±0.022 0.940±0.003 0.919±0.008 0.843±0.013 0.966±0.006

TA+HyperDisGAN
ACC 0.830±0.019 0.838±0.014 0.867±0.009 0.865±0.008 0.815±0.032 0.748±0.032 0.832±0.005 0.848±0.014 0.837±0.021 0.886±0.032 0.925±0.006
AUC 0.898±0.005 0.920±0.001 0.925±0.008 0.924±0.001 0.886±0.010 0.838±0.028 0.917±0.018 0.944±0.007 0.921±0.005 0.927±0.015 0.969±0.004

Table 1: Comparisons with the state of the arts over Butterfly Mimics and Asian vs African Ele-
phants: Training with 90 (Monarch Butterfly), 67 (Viceroy Butterfly), 294 (Asian Elephant), and
296 (African Elephant) samples, the proposed augmentation manner (TA+HyperDisGAN) mostly
performs the best. We report ACC (↑) and AUC (↑) averaged over three runs.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTS ON BUTTERFLY MIMICS AND ELEPHANTS

Figure 4 qualitatively demonstrates that the HyperDisGAN outperforms the cross-domain transfor-
mation technique (i.e., CycleGAN) in data-limited generation, especially in terms of the generated
textures and shapes. The HyperDisGAN is prone to generate the black postmedian stripe across
hindwing for viceroy butterflies and eliminate it in the opposite generation direction. The HyperDis-
GAN generates asian elephants with light gray and african elephants with grayish brown. Moreover,
it clears two bumps in the top of the source asian elephant’s head. See Appendix E for the datasets
description for our experiments.

Table 1 compares the proposed augmentation manner with the state-of-the-art methods in data-
limited natural image classification over the Butterfly Mimics and Asian vs African Elephants. We
can see that our augmentation manner mostly performs the best in AUC score, demonstrating its
effectiveness of improving the downstream classifiers’ generalization. Specially, transfer learning
based on ImageNet Database (Deng et al., 2009) is used to pre-train the auxiliary classifiers in the
VACGAN and the HyperDisGAN. Each row (TA) also reflects the pre-trained auxiliary classifiers.
Ablation study of HyperDisGAN’s two major components is in Appendix C.
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Datasets Methods Metrics AlexNet VGG13 VGG16 GoogleNet ResNet18 ResNet34 DenseNet121 MnasNet1 0 MobileNet V3 EfficientNet V1 ConvNeXt

Breast
Ultrasound

(Benign
vs

Malignant)

Original
ACC 0.833±0.005 0.824±0.033 0.821±0.000 0.830±0.028 0.808±0.038 0.830±0.009 0.789±0.024 0.852±0.005 0.774±0.053 0.843±0.014 0.852±0.029

AUC 0.931±0.011 0.916±0.023 0.910±0.014 0.910±0.013 0.898±0.026 0.910±0.013 0.892±0.024 0.925±0.007 0.843±0.042 0.933±0.007 0.906±0.020

Traditional
Augment (TA)

ACC 0.805±0.027 0.833±0.005 0.763±0.025 0.811±0.052 0.802±0.025 0.815±0.038 0.802±0.028 0.824±0.045 0.780±0.063 0.865±0.011 0.862±0.005

AUC 0.897±0.008 0.925±0.013 0.907±0.002 0.887±0.048 0.912±0.019 0.900±0.015 0.891±0.028 0.920±0.011 0.851±0.060 0.915±0.012 0.935±0.005

TA+ACGAN
ACC 0.821±0.000 0.818±0.033 0.755±0.050 0.774±0.059 0.802±0.057 0.783±0.009 0.792±0.016 0.840±0.019 0.770±0.024 0.774±0.087 0.874±0.011

AUC 0.917±0.025 0.908±0.042 0.867±0.020 0.875±0.027 0.866±0.032 0.867±0.036 0.896±0.003 0.913±0.007 0.899±0.055 0.853±0.089 0.949±0.003

TA+VACGAN
ACC 0.805±0.005 0.814±0.029 0.774±0.049 0.758±0.044 0.638±0.005 0.767±0.093 0.641±0.086 0.830±0.028 0.808±0.020 0.704±0.080 0.868±0.016

AUC 0.920±0.003 0.899±0.008 0.885±0.017 0.854±0.014 0.749±0.021 0.847±0.046 0.813±0.063 0.932±0.014 0.883±0.018 0.840±0.022 0.939±0.010

TA+CycleGAN
ACC 0.805±0.005 0.865±0.014 0.821±0.025 0.811±0.028 0.814±0.005 0.805±0.014 0.774±0.041 0.833±0.014 0.805±0.022 0.849±0.016 0.874±0.005

AUC 0.894±0.015 0.929±0.004 0.922±0.018 0.914±0.009 0.894±0.011 0.889±0.019 0.867±0.013 0.911±0.017 0.901±0.021 0.919±0.011 0.946±0.006

TA+HyperDisGAN
ACC 0.859±0.019 0.862±0.005 0.830±0.011 0.852±0.014 0.811±0.000 0.821±0.028 0.837±0.014 0.886±0.014 0.876±0.061 0.878±0.014 0.887±0.009
AUC 0.931±0.001 0.946±0.007 0.929±0.010 0.919±0.005 0.916±0.008 0.920±0.003 0.922±0.016 0.934±0.007 0.933±0.013 0.940±0.010 0.953±0.009

COVID-CT
(Non-Covid

-19
vs

Covid-19)

Original
ACC 0.734±0.020 0.770±0.020 0.765±0.014 0.691±0.058 0.688±0.033 0.713±0.021 0.727±0.012 0.777±0.027 0.777±0.022 0.783±0.039 0.777±0.030

AUC 0.793±0.013 0.856±0.002 0.842±0.015 0.764±0.077 0.772±0.024 0.770±0.003 0.818±0.018 0.830±0.020 0.844±0.039 0.831±0.042 0.868±0.020

Traditional
Augment (TA)

ACC 0.724±0.037 0.793±0.013 0.736±0.032 0.755±0.040 0.714±0.037 0.695±0.013 0.757±0.010 0.803±0.031 0.762±0.010 0.754±0.063 0.793±0.010

AUC 0.789±0.017 0.859±0.006 0.833±0.024 0.818±0.037 0.796±0.041 0.750±0.016 0.816±0.012 0.835±0.008 0.820±0.015 0.837±0.036 0.876±0.004

TA+ACGAN
ACC 0.657±0.059 0.744±0.034 0.773±0.023 0.667±0.047 0.726±0.014 0.714±0.015 0.718±0.057 0.731±0.006 0.704±0.005 0.701±0.078 0.803±0.000

AUC 0.724±0.051 0.821±0.017 0.849±0.011 0.780±0.032 0.798±0.023 0.764±0.019 0.776±0.063 0.787±0.001 0.796±0.018 0.772±0.083 0.877±0.001

TA+VACGAN
ACC 0.673±0.017 0.744±0.043 0.698±0.069 0.696±0.038 0.637±0.024 0.619±0.088 0.652±0.029 0.750±0.003 0.723±0.037 0.654±0.010 0.780±0.017

AUC 0.775±0.025 0.813±0.039 0.813±0.074 0.780±0.034 0.714±0.024 0.708±0.053 0.741±0.044 0.818±0.006 0.803±0.030 0.738±0.036 0.849±0.003

TA+CycleGAN
ACC 0.709±0.027 0.773±0.032 0.757±0.033 0.765±0.006 0.726±0.049 0.732±0.032 0.742±0.037 0.771±0.006 0.759±0.026 0.745±0.019 0.775±0.022

AUC 0.784±0.010 0.851±0.018 0.830±0.034 0.856±0.011 0.815±0.034 0.791±0.025 0.805±0.032 0.835±0.002 0.817±0.033 0.819±0.016 0.838±0.012

TA+HyperDisGAN
ACC 0.765±0.010 0.782±0.015 0.789±0.008 0.780±0.019 0.736±0.021 0.770±0.019 0.789±0.009 0.793±0.013 0.787±0.008 0.783±0.008 0.816±0.012
AUC 0.813±0.010 0.865±0.004 0.852±0.006 0.842±0.019 0.823±0.014 0.838±0.013 0.845±0.010 0.837±0.008 0.853±0.011 0.844±0.007 0.885±0.013

Table 2: Comparisons with the state of the arts over mixed Breast Ultrasound and COVID-CT: Train-
ing with 440 (Benign Breast Lesion), 158 (Malignant Breast Lesion), 234 (Non-Covid-19), and 191
(Covid-19) samples. The proposed augmentation manner (TA+HyperDisGAN) mostly outperforms
the state-of-the-arts in AUC score on the limited medical image datasets. We report ACC (↑) and
AUC (↑) averaged over three runs.

TA+HyperDisGANTA+CycleGAN
Traditional

Augmentation (TA)
Original TA+VACGAN
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Figure 6: Training samples’ distribution of downstream ConvNeXt (Liu et al., 2022) visualized by
t-SNE. From left to right column: original samples, traditional augmentation (TA), TA+VACGAN,
TA+CycleGAN, TA+HyperVerDisGAN, TA+HyperHorDisGAN, TA+HyperDisGAN.

4.2 EXPERIMENTS ON BREAST ULTRASOUND AND COVID-CT

Figure 5 demonstrates that the HyperDisGAN can generate more realistic images compared with
the CycleGAN. The HyperDisGAN generates dark shadowing below the lesion when transform the
source benign images, and generate bright region in the inverse transformation. Moreover, we can
observe the smoothness changes of the breast lesion’s boundary. In bi-directional generation of CT
images, we can also see the generation and elimination of ground glass shadow regions.

Table 2 quantitatively compares the proposed augmentation manner with several state-of-the-art
GANs over datasets Mixed Breast Ultrasound and COVID-CT. We can see that this augmentation
manner consistently outperforms traditional-only augmentation and mostly outperforms the state-of-
the-arts in AUC score, especially using the limited training samples. Appendix C shows the ablation
study for HyperDisGAN’s two major components.

4.3 VISUALIZATION OF TRAINING SAMPLE DISTRIBUTION

The generated samples participate in reshaping the hyperplane in the latent space. Figure 6 shows
the training samples’ distribution and the reshaped hyperplanes of various methods on two limited
medical datasets by t-Distributed Stochastic Neighbor Embedding (t-SNE) (Van der Maaten & Hin-
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ton, 2008), by downstream ConvNeXt. Compared with the state of the arts, TA+HyperDisGAN
can construct a more precise hyperplane by generating samples alongside the its margins. Training
samples’ distribution for more downstream classification models are shown in Appendix G.
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Horizontal Distance Reconstruction of HyperHorDisGANVertical Distance Reconstruction of HyperVerDisGAN

Figure 7: The curves of vertical and horizontal distance (Blue) and the auxiliary classifier’s recon-
structed distance (Orange). The examples comes from an auxiliary classifier ConvNeXt.

5 DISCUSSION

Innovation of parameterized network: To the best of our knowledge, we are the first to collect
sample’s location information in the initial classification phase and generating controllable samples
reshaping the decision boundary in the second classification phase (same classification architecture
as the initial phase). The collected location information includes the vertical distances between the
samples and the optimal hyperplane, and the horizontal distances between the intra-domain samples.

The SGAN and ACGAN’s auxiliary classifiers share the same architectures with the discrimina-
tors, whereas the HyperDisGAN’s auxiliary classifier is external and can easily change to any latest
architecture like VACGAN. Moreover, SGAN’s auxiliary classifier takes the generated samples as
an additional class, and ACGAN and VACGAN’s auxiliary classifiers reconstruct the classification
labels from the generated samples. Unlike these methods, the HyperDisGAN’s auxiliary classifier
reconstructs location information for the cross-domain and intra-domain samples.

Effectiveness of parameterized network: The success of the HyperDisGAN is the controllable
variation degrees represented by the parameterized vertical and horizontal distances. The ability of
the parameterized generators are shown in Figure 7 using two limited medical datasets: the recon-
structed vertical distance curve trend is generally consistent with the target’s vertical distance curve
(left); and the reconstructed horizontal distance curve trend is consistent with the target’s horizontal
distance curve (right). More experimental results are presented in Appendix F. Therefore, control-
ling the location of generated samples can be achieved by the parameterized generation, whereas
the previous GAN-based methods are difficult to achieve this goal when training data is extremely
small like the tiny Butterfly Mimics dataset.

6 CONCLUSION

The primary aim of this paper is to develop a general data augmentation manner that can be applied
to different classifiers’ architectures. We have showcased the effectiveness of the HyperDisGAN
for generating diverse samples to improve the eleven downstream classification models in both nat-
ural and medical datasets. We observe that enabling controlling the variation degrees of generated
samples has significantly more impact than blindly increasing the number of the training samples.
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A BASELINE OF CYCLEGAN

According to the basic formulation in CycleGAN Zhu et al. (2017), given two domains X and
Y , we consider unpaired training samples {xi}Ni=1 where xi ∈ X , and {yi}Ni=1 where yi ∈ Y .
The goal of unpaired image-to-image transformation is to learn bidirectional mappings including
GX2Y : X → Y and GY 2X : Y → X . Adversarial discriminators DX and DY are employed to
distinguish between real images and generated images. In particular, the DX aims to discriminate
between real images {x} and generated images {GY 2X(y)}; similarly, DY discriminates between
{y} and {GX2Y (x)}.

Therefore, the adversarial losses for both mappings are expressed as follows respectively:

LGAN(GX2Y , DY , X, Y ) = Ey∼PY
[logDY (y)] + Ex∼PX

[log(1−DY (GX2Y (x))], (16)

LGAN(GY 2X , DX , Y,X) = Ex∼PX
[logDX(x)] + Ey∼PY

[log(1−DX(GY 2X(y))]. (17)

Since the samples in the two domains are unpaired, cycle consistency is introduced to establish
relationships between individual input xi and a desired output yi. The cycle consistency enforces
that GX2Y and GY 2X are a pair of inverse mappings, and that the transformed samples can be
mapped back to the original samples. The cycle consistency includes the forward cycle consistency
x → GX2Y (x) → GY 2X(GX2Y (x)) ≈ x and the backward cycle consistency y → GY 2X(y) →
GX2Y (GY 2X(y)) ≈ y. Thus, the cycle consistency loss is formulated as:

Lcyc(GX2Y , GY 2X) = Ex∼PX
[||GY 2X(GX2Y (x)− x||1]

+ Ey∼PY
[||GX2Y (GY 2X(y)− y||1].

(18)

With the cycle consistency loss, the overall objective is written as:

L(GX2Y , GY 2X , DX , DY ) = LGAN(GX2Y , DY , X, Y ) + LGAN(GY 2X , DX , Y,X)

+ λLcyc(GX2Y , GY 2X).
(19)

where the weight λ determines the significance of the corresponding objective.

CycleGAN can be taken as an augmentation tool increasing the number of training samples by
generating the arbitrary samples from one domain to another. Specifically, the generated samples
are combined with the real samples to jointly train the downstream binary classifiers. However,
the quality of generated samples with respect to their classification labels is uncertain, resulting in
impairing the downstream classification. To address this issue, we control the variation degree for
the generated samples in the both cross-domain and intra-domain generation background.

B TRAINING SETTINGS.

All networks are trained using Adam (Kingma & Ba, 2014) with β1 = 0.5 and β2 = 0.999. The
initial learning rate is set to 1 × e−4 over the first 25 epochs and linearly decays to 0 over the next
25 epochs. All images are normalized between -1 and 1, and resized to 224× 224. For the auxiliary
and downstream classifiers optimized by hinge loss, the number of output node of last linear layer
is set to 1. We adopt transfer learning for all downstream classifiers using ImageNet Dataset (Deng
et al., 2009). We use traditional augmentation such as horizontal flipping to pre-augment the training
samples for the state of the arts and the HyperDisGAN.

We set the same downstream classification weights for the real samples and that of the generated
samples. For fair comparison, we follow the CycleGAN (Zhu et al., 2017) for λcrossCYC = 10.0,
λintraCYC = 10.0. Considering the vertical distances and horizontal distances having different
large-scales, the hyper-parameter λverDIS is set from 0.01 to 0.1 and the hyper-parameter λhorDis is
set from 0.001 to 0.01. The details of hyper-parameters are described in Table 3 for better repro-
ducibility. Note that the λhorDIS is less than or equal to the λverDIS, and several λhorDIS, λverDIS

of auxiliary classifiers are less or equal to that of other auxiliary classifiers. These settings have the
following two reasons respectively: (1) The error of reconstructing the horizontal distances is larger
than that of reconstructing the vertical distances. (2) Several specific auxiliary classifiers constructs
overfitting hyperplanes resulting in the larger scales of the distances.
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Datasets Hyper-parameters AlexNet VGG13 VGG16 GoogLeNet ResNet18 ResNet34 DenseNet121 MnasNet1 0 MobileNet V3 EfficientNet V1 ConvNeXt

Butterfly Mimics
λverDIS 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

λhorDIS 0.001 0.001 0.001 0.01 0.001 0.001 0.001 0.001 0.001 0.01 0.01

Asian vs African
Elephants

λverDIS 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

λhorDIS 0.001 0.001 0.001 0.01 0.001 0.01 0.001 0.001 0.001 0.01 0.01

Breast Ultrasound
λverDIS 0.1 0.01 0.01 0.1 0.1 0.1 0.01 0.1 0.01 0.01 0.1

λhorDIS 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.01

COVID-CT
λverDIS 0.1 0.01 0.01 0.1 0.1 0.1 0.01 0.1 0.01 0.1 0.1

λhorDIS 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.01 0.01

Table 3: Hyper-parameters settings of the λverDIS and the λhorDIS for the HyperDisGAN.

DataSets Metrics Original Traditional
Augmentation (TA) TA+VD TA+HD TA+HD+HD

Butterfly Mimics
ACC 0.872 0.889 0.891 0.887 0.897
AUC 0.934 0.937 0.946 0.940 0.951

Asian vs African Elephants
ACC 0.820 0.817 0.830 0.821 0.845
AUC 0.892 0.892 0.896 0.908 0.915

(a) Butterfly Mimics and Asian vs African Elephants.

DataSets Metrics Original Traditional
Augmentation (TA) TA+VD TA+HD TA+HD+HD

Breast Ultrasound
ACC 0.823 0.817 0.830 0.817 0.854
AUC 0.908 0.905 0.920 0.907 0.931

COVID-CT
ACC 0.745 0.747 0.757 0.756 0.781
AUC 0.820 0.822 0.831 0.829 0.845

(b) mixed Breast Ultrasound and COVID-CT.

Table 4: Ablation study of the HyperDisGAN: controllable vertical distance (VD) and controllable
horizontal distance (HD). The HyperDisGAN performs the best as VD and HD are complementary
to each other. The ACC (↑) and AUC (↑) averaged over the eleven downstream classifiers.

C ABLATION STUDY

The HyperDisGAN consists of two major components: the HyperVerDisGAN controlling the verti-
cal distances (VDs) and the HyperHorDisGAN controlling the vertical distances (HDs). We evaluate
the contributions of these two components to the overall downstream classification respectively. As
illustrated in Table 4, the HyperDisGAN combining the VD and HD gets the highest ACC and AUC
scores using the average performance of the eleven classification architectures.

D IMPLEMENTATION DETAILS

Network Architecture. The generators adopt Johnson et al. (2016) containing three convolutions
for downsampling, nine residual blocks, and two transposed convolutions with the stride size of
1
2 for upsampling. We adopt instance normalization (Ulyanov et al., 2016) in the generators but no
normalization in the first convolution of discriminator. We add one channel for the first convolutional
layer, because the distance parameters needs to be spatially replicated match the size of the input
image and concatenated with the input image. The discriminators adopt PatchGANs (Isola et al.,
2017) to determine if the 70× 70 overlapping image patches is a real one of a generated one.

Classification Model Selection. We randomly select eleven downstream classifiers with different
architectures including AlexNet (Krizhevsky et al., 2012), VGGs (Simonyan & Zisserman, 2015),
GoogleLeNet (Szegedy et al., 2015), ResNets (He et al., 2016), DenseNet (Huang et al., 2017),
MnasNet 1 0 (Tan et al., 2019), MobileNet V3 (Small) (Howard et al., 2019), EfficientNet V1 (B5)
(Tan & Le, 2019) and ConvNeXt (Tiny) (Liu et al., 2022). In the HyperDisGAN and the VACGAN,
the auxiliary classifiers share the same deep learning architectures with the downstream classifiers.

E DATASETS AND EVALUATION METRICS

E.1 DATASETS COLLECTION AND EVALUATION METRICS

We conduct experiments over multiple public datasets: Butterfly Mimics (KeithPinson, 2022), Asian
vs African Elephants (Goumiri et al., 2023; Zhang et al., 2023), Breast Ultrasound Images Dataset
(BUSI) (Al-Dhabyani et al., 2020), Breast Ultrasound images Collected from UDIAT Diagnostic
Center (UDIAT) (Yap et al., 2018) and CT Scan Dataset about COVID-19 (COVID-CT) (Zhao et al.,
2020), and perform evaluations with two widely adopted metrics in image classification: accuracy
(ACC) and the area under the receiver operating characteristic curve (AUC). We mix the BUSI
dataset with UDIAT dataset to increase the challenge of breast ultrasound image classification.
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Mode Butterfly Mimics Asian vs African Elephants Breast Ultrasound COVID-CT

Monarch Butterfly Viceroy Butterfly Asian Elephant African Elephant Benign Lesion Malignant Lesion non-COVID-19 COVID-19

Train 90 67 294 296 440 158 234 191

Validation 21 21 100 100 53 53 58 60

Test 21 21 100 100 53 53 105 98

Table 5: Random split of the four public small datasets for training, validation and test.
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Figure 8: The curves of vertical and horizontal distance (Blue) and the reconstructed distance (Or-
ange). The examples comes from an auxiliary classifier ConvNeXt (Liu et al., 2022).

E.2 DATASETS SPLITTING

For all the experiments, four public small datasets are used: Butterfly Mimics, Asian vs African Ele-
phants, mixed Breast Ultrasound and COVID-CT. Butterfly Mimics contains 132 monarch butterfly
images and 109 Viceroy butterfly images. Asian vs African Elephants contains 494 asian elephant
images and 496 african elephant images. mixed Breast Ultrasound contains 546 benign breast lesion
images and 264 malignant breast lesion images. COVID-CT contains 307 non-COVID-19 images
and 349 COVID-19 CT images. For each of the dataset, we randomly split them for training, vali-
dation and test. The details are listed in Table 5.

F EFFECTIVENESS OF GENERATOR ON NATURAL DATASETS

We have explained the effectiveness of HyperDisGAN using two medical datesets in Section 5. We
verified the distances reconstruction again using auxiliary classifier ConvNeXt as an example. The
ability of the parameterized generator is shown in Figure 8 using two limited natural datasets.

G TRAIN DATA DISTRIBUTION FOR STATE-OF-THE-ARTS CLASSIFIERS

We have shown the training data distribution for downstream ConvNeXt using two limited medical
datasets in Section 4.3. Now we show training data distribution for ten state-of-the arts downstream
classification models. Figure 9 compares the distribution of traditional augmentation (TA) + vari-
ous auxiliary classifiers based HyperDisGANs on the two limited medical datasets by t-Distributed
Stochastic Neighbor Embedding (t-SNE) (Van der Maaten & Hinton, 2008). The HyperDisGANs
with ten different auxiliary classifiers tend to fill the hyperplane spaces of these ten downstream
classification models, and generate samples along the margins of the hyperplanes.
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TA+HyperDisGANTA+ HyperVerDisGAN TA+ HyperHorDisGAN

Breast Ultrasound COVID-CT
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Figure 9: Training samples’ distribution of the ten downstream classification models (Liu et al.,
2022) visualized by t-SNE (Van der Maaten & Hinton, 2008). From up to low row with ten different
auxiliary classifiers: ConvNeXt, EfficientNet V1, MobileNet V3, MnasNet 1 0, DenseNet 121,
ResNet 34, ResNet 18, GoogLeNet, VGG16 and VGG13.
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Figure 10: The traning loss curve (red) and validation loss curve (blue) for the traditional augmen-
tation (TA)+CycleGAN and the TA+HyperDisGAN on COVID-CT Zhao et al. (2020) dataset. The
example auxiliary classifier used in the HyperDisGAN is ResNet34.
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H TRAINING AND VALIDATION LOSS CURVES

We show the curves of training and validation loss for the “traditional augmentation
(TA)+CycleGAN” and the “TA+HyperDisGAN” respectively on the COVID-CT dataset. The loss
of HyperDisGAN is the sum of the HyperVerDisGAN and the HyperHorDisGAN. As shown in Fig-
ure 10, the validation loss of the TA+HyperDisGAN gradually decreases even if in the later training
phase, which is more stable than the TA+CycleGAN. Moreover, the distance loss of HyperDisGAN
also gradually decreases, which further proofs the effectiveness of the parameterized generators.

I LIMITATIONS AND EXTENSIONS

The current work has limitations that need to be studied in the future: (1) The HyperDisGAN primar-
ily focuses on the binary classifications, and exploiting hyperplane between multi-classes remains to
be investigated. (2) Controlling the locations of generated samples utilizes the pre-trained auxiliary
classifier constructing the hyperplane. We hypothesize that this can be an interactive process: the
final binary classifier can be used again as the auxiliary classifier. This iterative process is expected
to be the part where the artifical intelligence improves itself in the future. (3) A comprehensive
evaluation of the generated samples in terms of usefulness beyond augmenting training samples.

I.1 EXTENDING TO MULTI-CLASS CLASSIFICATION

The current method can be extended to multi-class classification, but we would like to start with the
basical binary classification problem which is the foundation and starting point of machine learning.
This extension work is in progress. Unlike the cross-entropy, multi-hinge loss solves the multi-class
classification by constructing the multiple hyperplanes, this will be specifically divided into two
ways: (1) OneVsRest: It takes a multi-class classification and turns into multiple binary classifi-
cation for each class. (2) OneVsOne: It takes a multi class classification and turns into multiple
binary classification where each class competes against every other class. Obviously, for n classes,
OneVsRest constructs n hyperplanes whereas OneVsOne constructs n(n−1)

2 hyperplanes.

Upgrading the HyperDisGAN for multi-class classification is as follows: We firstly pretrain a multi-
class classifier by the oneVsRest manner, and use ith hyperplane to classify between ith domain and
not ith domain. Second, we can collect location information including the vertical distance between
samples to hyperplane, and the horizontal distance between the intra-domain samples. Third, we
can use only two generators (inter-domain and intra-domain) taking additional location information
as input and one discriminator to control the generated samples’ variation degrees by modifying
the multi-domain generation method (such as the starGAN Choi et al. (2018)). The controllable
generated samples will be used to adjust the decision boundaries for this multi-class classifier.

I.2 LEVERAGING PRE-TRAINED GENERATORS

Restart training the generators to generate samples will costs resources and efforts. The proposed
method is possible to be extended to leverage pre-trained generators, if the practitioners want to use
their own dataset having same classes as our train dataset. The current input distance parameters
representing the real target samples’ location are not random enough. Now we should extend the
generators to take any random distances as inputs. The range of the random distances can refer to
the coordinate axis in Figure 7 and Figure 8. This is practical because we can still use the auxiliary
classifier to reconstruct the random distances and impose the random distance loss. In the test phase,
the practitioners can load the pretrained generators and take their own input images and any random
distance to generate the large amount of samples.

J POTENTIAL NEGATIVE SOCIETAL IMPACTS

We believe the machine learning community should work together to minimize the potential negative
societal impacts. Although the cross-domain generation benefits the downstream tasks, it should be
used cautiously inspected for generating training data only. It shall not be used to tamper real patient
data to jeopardize the life of patients.
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