
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DPBLOOMFILTER: SECURING BLOOM FILTERS WITH
DIFFERENTIAL PRIVACY

Anonymous authors
Paper under double-blind review

ABSTRACT

The Bloom filter is a simple yet space-efficient probabilistic data structure that
supports membership queries for dramatically large datasets. It is widely uti-
lized and implemented across various industrial scenarios, often handling massive
datasets that include sensitive user information necessitating privacy preservation.
To address the challenge of maintaining privacy within the Bloom filter, we have
developed the DPBloomfilter. This innovation integrates the classical differential
privacy mechanism, specifically the Random Response technique, into the Bloom
filter, offering robust privacy guarantees under the same running complexity as
the standard Bloom filter. Through rigorous simulation experiments, we have
demonstrated that our DPBloomfilter algorithm maintains high utility while en-
suring privacy protections. To the best of our knowledge, this is the first work to
provide differential privacy guarantees for the Bloom filter for membership query
problems.

1 INTRODUCTION

In the current data-rich era, extracting meaningful information from the ever-growing volume of data
presents a significant challenge (Sagiroglu & Sinanc, 2013). To address this challenge, various data
structures have been developed to facilitate the extraction of insights from vast datasets (Chang,
2006), such as the Bloom filter (Bloom, 1970), count-min sketch (Cormode, 2009), hyperloglog
(Flajolet et al., 2007), and so on. Among them, the Bloom filter mainly handles membership queries
in big data (Bloom, 1970); count-min sketch handles the frequency of occurrence of a certain type
of data in big data (Cormode, 2009); Hyperloglog is used to count the cardinality of a set of data,
that is, the number of different elements in this set of data (Flajolet et al., 2007).

In this paper, we focus more on the Bloom filter (Bloom, 1970), which is a space-efficient probability
data structure that deals with membership queries. Due to its efficient space utilization and low time
complexity, it is widely used in various scenarios, especially industry scenarios requiring massive
data processing and low-latency response capability. Classical scenarios include database systems
and web-cache systems (Gremillion, 1982; Najork et al., 2009; Mun & Lim, 2016; Patgiri et al.,
2020).

In addition to the scenarios mentioned above, the Bloom filter is also used in various scenarios in-
volving sensitive user data. One usage is the privacy-preserving dataset intersection: When two
organizations want to find out what user data they have in common without revealing specific user
information, Bloom filters can be used. By converting the respective user datasets into Bloom filters
and then performing an intersection operation, common elements can be determined without expos-
ing specific user records (Budhkar, 2013; Jeffrey & Steffan, 2011). Another scenario is anonymous
login: Bloom filters can store hash values of login credentials. When a user tries to log in, the sys-
tem can check whether the hash of the credentials may exist in the filter instead of storing the actual
password hash (Laufer et al., 2011; Berardi et al., 2020). Since the content inserted into the Bloom
filter is user-sensitive, preventing attackers from reconstructing user-sensitive information from the
released Bloom filter vector is an essential task.

In this work, we consider the differential privacy of the Bloom filter under the membership query
scenario. The membership query problem involves storing information about a set of elements S
in a space-efficient manner to determine if an element x is a member of S. One example is the
membership query application of the Bloom filter in streaming media recommendation (Wang et al.,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2014), such as Tiktok. That is, the Bloom filter will be used for filtering to prevent users from being
recommended duplicate content when using streaming media. The Bloomfilter vector mentioned
above will also be released to other businesses, such as advertising, e-commerce, etc. When the
Bloomfilter vector is released, the user’s privacy information, which videos the user has watched,
needs to be well protected.

Thus, we introduce our DPBloomfilter (Algorithm 1) to protect the sensitive user information stored
in the Bloomfilter vector, i.e. the m index binary bits based on the hash values generated by k differ-
ent hash functions. To implement a differential privacy budget, we used the classic random response
technique (Warner, 1965) (Definition 3.4) in differential privacy, which randomly flips some bits
to ensure that attackers cannot restore sensitive user data from neighboring datasets (Definition3.2).
We theoretically show that our DPBloomfilter achieves (ϵ, δ)-DP guarantee, where the main tech-
nique is that we first ensure each bit holds a certain DP guarantee so that we achieve (ϵ, δ)-DP for
the entire Bloom filter. Also, we have theoretically proved that our DPBloomfilter has high utility
when DP parameters are in a certain regime. Furthermore, our empirical evidence verifies our utility
analysis that our DPBloomfilter can procedure membership query services with high accuracy while
protecting user data privacy. While providing privacy guarantees, our algorithm preserves the same
running complexity as the standard Bloom filter.

Our contribution can be summarized as follows: (1) To the best of our knowledge, this is the first
work to provide DP for the Bloom filter for membership query problems. (2) We have proved
from a theoretical perspective that DPBloomfilter can achieve (ϵ, δ)-DP under the random response
mechanism while preserving the same running time complexity compared with the standard Bloom
filter. (3) We have proved from a theoretical perspective that when the DP parameters ϵ and δ are
very small, DPBloomfilter can still maintain good utility. (4) Our simulation experiments also reflect
the same effect as our theoretical results. The two confirm each other.

2 RELATED WORK

2.1 BLOOM FILTER

The Bloom filter is first introduced by (Bloom, 1970) and there are many variants of the Bloom
filter. One variant is the Cuckoo filter (Fan et al., 2014), which “kicks out” the old hash value
to another place when a hash conflict occurs. This implementation principle enables it to support
the probability data structure of membership queries with deletion operation. Compared with the
Standard Bloom filter, it is more suitable for application scenarios with frequent element updates,
such as network traffic monitoring (Grashöfer et al., 2018) and cache system (Wang et al., 2022).

Another variant is the Quotient filter (Geil et al., 2018), which differs from the traditional Bloom
filter. It implements the heretical storage form of hash value atmosphere quotient and remainder.
This approach results in the Quotient filter requiring less storage space and offering faster query
speeds than the standard Bloom filter. It is more suitable for membership queries in scenarios with
limited resources and high latency requirements (Pandey et al., 2021; Al-Hisnawi & Ahmadi, 2016).

2.2 DIFFERENTIAL PRIVACY

Differential privacy is a technique used to defend against privacy attacks, first proposed by Dwork
et al. (Dwork et al., 2006). It has become one of the most popular frameworks for ensuring pri-
vacy in theoretical analysis and a wide range of application scenarios (Li et al., 2017; Yang et al.,
2023; Wang et al., 2023; Cheng et al., 2024; Sajadmanesh & Gatica-Perez, 2024; Gu et al., 2025; Li
et al., 2024a;c;b; Liang et al., 2024; Fan et al., 2024; Song et al., 2023; Liu et al., 2024; Hu et al.,
2024; Yu et al., 2024). Gaussian mechanism (Dwork et al., 2006) and Laplace mechanism (Dwork
et al., 2014) of DP are widely used techniques to achieve privacy budget. These two mechanisms
control the amount of privacy provided by adjusting the variance of the added noise. However,
these two mechanisms are very useful when the output is continuous, but they are slightly weak
when the output is discrete. However, another classic way to make a data structure private is to
add a random responses mechanism (Warner, 1965), also called a “flip coin”. Specifically, some
discrete values in the data structure are flipped with a certain probability to achieve privacy (Li
& Li, 2023; 2024). By controlling the probability of flipping, a given privacy budget is achieved.
Over the past decade, numerous works have applied differential privacy to data structures or deep

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

learning models. (Kasiviswanathan et al., 2013) applied differential privacy to graph data structure
and designed differentially node-private algorithms by projecting input graphs onto bounded-degree
graphs, enhancing privacy while maintaining accuracy in realistic network analyses. (Wang et al.,
2018) introduced an adaptive method for directly collecting frequent terms under local differential
privacy by constructing a tree, which can overcome challenges of accuracy and utility compared
to existing n-gram approaches. (Fletcher & Islam, 2019) focused on applying differential privacy
to classical data mining data structures, specifically decision trees, and analyzed the balance be-
tween privacy and the utility of existing methods. (Zhao et al., 2022) demonstrated the integration
of differential privacy into linear sketches, ensuring privacy while maintaining high performance in
processing sensitive data streams. A related work (Alaggan et al., 2012) introduced the BLIP mech-
anism, which also applies the Random Flip mechanism to the Bloom Filter. Here, we outline the
differences between our work and (Alaggan et al., 2012) as follows: (1) Our proposed DPBloom-
Filter can satisfy (ϵ, δ)−DP , while (Alaggan et al., 2012) only verified that BLIP mechanism can
satisfy ϵ-DP; (2) (Alaggan et al., 2012) did not provide theoretical guarantees for the utility of the
BLIP mechanism.

Roadmap. Our paper is organized as follows: Section 3 presents the preliminary of Bloom Filter
and Differential Privacy. In Section 4, we outline the main results of our algorithm. In Section 6, we
elaborate on the underlying intuitions that informed the design of the DPBloomfilter. In Section 7,
we conclude our paper.

3 PRELIMINARY

Notations. For any positive integer n, let [n] denote the set {1, 2, · · · , n}. We use E[] to denote
the expectation operator and Pr[] to denote probability. We use n! to denote the factorial of integer
n. We use An

m := m!
(m−n)! to denote the number of permutation ways to choose n elements from

m elements considering the order of selection. We use
(
m
n

)
:= m!

n!(m−n!) to denote the number of
combination ways to choose n elements from m elements without considering the order of selection.
We use FX(x) to denote the Cumulative Distribution Function (CDF) of a random variable X and
use F−1

X (1− δ) to denote the 1− δ quantile of FX(x).

3.1 BLOOM FILTER

A Bloom filter is a space-efficient probabilistic data structure used to test whether an element is a
member of the set. Its formal definition is as follows.

Definition 3.1 (Bloom Filter, (Bloom, 1970)). A Bloom filter is used to represent a set A =
{x1, x2, . . . , x|A|} of |A| elements from a universe U = [n]. A Bloom filter consists of a binary
array g ∈ {0, 1}m of m bits, which are initially all set to 0, and uses k independent random hash
functions h1, . . . , hk with range {0, . . . ,m− 1}. These hash functions map each element in the uni-
verse to a random number uniform over the range {0, . . . ,m − 1} for mathematical convenience.
The computation time per execution for all hash functions is Th. Bloom Filter supports the following
operations: (1) INIT(A). It takes dataset A as input. For each element x ∈ A, the bits hi(x) of array
g are set to 1 for 1 ≤ i ≤ k. (2) QUERY(y ∈ [n]). It takes an element y as input. If all hi(y) are set
to 1, then it outputs a binary answer to indicate that y ∈ A. If not, then it outputs y is not a member
of A.

A Bloom Filter does not have false negative issues but may yield a false positive issue, where it
suggests that when a query is made to check if an element is in the set but all the positions it maps
to are already set to 1 (due to previous insertions of elements of dataset A). Following previous
literature (Li & Li, 2023; Broder et al., 1998; Li & König, 2011; Li et al., 2012), we assume a hash
function selects each array position with equal probability. Then, the false positive rate of the Bloom
Filter defined above can be mathematically approximated by the formula as (1− e−

k|A|
m)k.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 DIFFERENTIAL PRIVACY

We begin with introducing the neighboring dataset. We follow the standard definition in the DP
literature of “neighboring” for binary data vectors: two datasets are adjacent if they differ in one
element. The formal statement is as follows.

Definition 3.2 (Neighboring Dataset, (Dwork et al., 2006)). A,A′ ∈ {0, 1}n are neighboring
datasets if they only differ in one element, i.e., Ai ̸= A′

i for one i ∈ [n] and Aj = A′
j , for j ̸= i.

Differential Privacy (DP) ensures that the output of an algorithm remains statistically similar under
neighboring datasets introduced above, thereby protecting individual privacy. Its formal definition
is as follows.

Definition 3.3 (Differential Privacy, (Dwork et al., 2006)). For a randomized algorithm M : U →
Range(M) and ϵ, δ ≥ 0, if for any two neighboring data u and u′, it holds for ∀Z ⊂ Range(M),
Pr[M(u) ∈ Z] ≤ eϵ Pr[M(u′) ∈ Z] + δ, then algorithm M is said to satisfy (ϵ, δ)-differentially
privacy. If δ = 0, M is called ϵ-differentially private.

Finally, we introduce the formal definition of the random response mechanism.

Definition 3.4 (Random response mechanism). Let g ∈ {0, 1}m denote the m bit array in the
Bloom filter. For any j ∈ [m], let g̃[j] denote the perturbed version of g[j], using the random
response mechanism. Namely, for any j ∈ [m], we have

Pr[g̃[j] = y] =

{
eϵ0/(eϵ0 + 1), y = g[j]

1/(eϵ0 + 1), y = 1− g[j]

Let a = eϵ0/(eϵ0 +1), b = 1/(eϵ0 +1). Since a/b = eϵ0 , this implies random response can achieve
ϵ0-DP.

4 MAIN RESULTS

In Section 4.1, we will provide the privacy of our algorithm. Then, we will examine the utility
implications of our algorithm applying a random response mechanism. In Section 4.2, we introduce
the utility guarantees of our algorithm. In Section 4.3, we demonstrate that DPBloomfilter does not
import the running complexity burden to the standard Bloom filter.

4.1 PRIVACY FOR DPBLOOMFILTER

Algorithm 1 illustrates the application of the random response mechanism to the standard Bloom
filter, thereby accomplishing differential privacy. In detail, once the Bloom filter is initialized, each
bit in the m-bit array is independently toggled with a probability of 1

ϵ0+1 . Our algorithm will ensure
that modifications to any element within the dataset are protected to a degree, as the DPBloomfilter
maintains the privacy of the altered element. Then, we present the Theorem demonstrating that our
algorithm is (ϵ, δ)-DP.

Theorem 4.1 (Privacy for Query, informal version of Theorem C.2). Let N := F−1
W (1 − δ) and

ϵ0 = ϵ/N . Then, we can show, the output of QUERY procedure of Algorithm 1 achieves (ϵ, δ)-DP.

Theorem 4.1 shows that our DPBloomfilter in Algorithm 1 is (ϵ, δ)-DP. Our main technique lever-
ages the single-bit random response technique to enhance the privacy properties of the traditional
Bloom filter by composition rule (Lemma A.1).

4.2 UTILITY FOR DPBLOOMFILTER

Despite the introduction of privacy-preserving mechanisms, our algorithm still ensures that the util-
ity of the Bloom Filter remains acceptable. This is achieved through careful calibration of the
Random Response technique parameters, balancing the need for privacy with the requirement for
accurate set membership queries. Here, we present the theorem for the entire utility loss between
the output of our algorithm and ground truth.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Differentially Private Bloom Filter

1: data structure DPBLOOMFILTER ▷ Theorem 4.1, 4.2, 4.3
2:
3: members
4: [n] is the set universe
5: k is the number of hash functions
6: Let g ∈ {0, 1}m.
7: Let hi : [n]→ [m] for each i ∈ [k]
8: end members
9:

10: procedure INIT(A ⊂ [n], k ∈ N+,m ∈ N+) ▷ Lemma E.1
11: Let m denote the length of the filter
12: We pick k random hash functions, say they are h1, h2, · · · , hk, for each i ∈ [k], hi : [n] →

[m]
13: Set every entry of g to 0.
14: Let N = F−1(1− δ), and ϵ0 := ϵ/N
15: for x ∈ A do
16: for i = 1→ k do
17: Let j ← hi[x]
18: g[j]← 1
19: end for
20: end for
21: for j = 1→ m do
22: g̃[j]← g[j] with probability eϵ0

eϵ0+1

23: g̃[j]← 1− g[j] with probability 1
eϵ0+1

24: end for
25: end procedure
26:
27: procedure QUERY(y ∈ [n]) ▷ Lemma E.2, Theorem 4.1, Theorem 4.2
28: for i = 1→ k do
29: Let j ← hi[y]
30: if g̃[j] ̸= 1 then
31: return false
32: end if
33: end for
34: return true
35: end procedure
36:
37: data structure

Theorem 4.2 (Accuracy (compare DPBloom with true-answer) for Query, informal version of The-
orem D.4). Let z ∈ {0, 1} denote the true answer for whether x ∈ A. Let ẑ ∈ {0, 1} denote the
answer for whether x ∈ A output by Bloom Filter. Let α := Pr[z = 0] ∈ [0, 1], t := eϵ0/(eϵ0 + 1),
and δerr > 0. Then, we can show

Pr[z̃ = z] ≥ δerr · α · (1− t− tk) + α · t.

Theorem 4.2 shows that when most queries are not in A, the above theorem can ensure that the
utility of DPBloomfilter has a good guarantee. Namely, in such cases, answers from DPBloomfilter
are correct with high probability.

4.3 RUNNING COMPLEXITY OF DPBLOOMFILTER

Now, we introduce the running complexity for the DPBloomfilter in the following theorem.
Theorem 4.3 (Running complexity of DPBloomfilter). Let Th denote the time of evaluation of
function h at any point. Then, for the DPBloomfilter (Algorithm 1) we have

• The running complexity for the initialization procedure is O(|A| · k · Th +m).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

• The running complexity O(k · Th) for a single query.

Proof. It can be proved by combining Lemma E.1 and E.2.

Our Theorem 4.3 shows that DPBloomfilter not only addresses the critical need to protect the pri-
vacy of elements stored with Bloom filter but also ensures that the data structure’s utility remains
acceptable, with minimal impact on its computational efficiency. By keeping the running time within
the same order of magnitude as the standard Bloom filter, our approach is practical for real-world
applications requiring fast and scalable set operations.

5 TECHNICAL OVERVIEW

In this section, we provide an overview of the techniques we used in proving our theoretical results.

5.1 PRIVACY GUARANTEES OF SINGLE BIT

To accomplish differential privacy, Algorithm 1 applies a random response mechanism to each bit
of the standard Bloom Filter. In this section, we aim to examine the privacy guarantees for a single
bit of our algorithm.

Recall that in Definition 3.1, for dataset A ⊂ [n], we use g[j] to denote the j-th element of array
output by standard Bloom Filter. Here, we use ĝ[j] to denote the j-th element of array output by
DPBloomfilter. Similarly, for any neighboring dataset A′ ⊂ [n], we use g′[j] and ĝ′[j] to denote the
j-th element of array output by standard Bloom Filter and DPBloomfilter. To examine the privacy
guarantees for the i-th bit, we must consider two distinct cases.

Case 1. Suppose g′[j] = g[j], then we can obtain (See also Lemma C.1) that for all v ∈ {0, 1}, we
have Pr[g̃[j]=v]

Pr[g̃′[j]=v] = 1.

Case 2. Suppose g′[j] ̸= g[j], then we can obtain (See also Lemma C.1) that for all v ∈ 0, 1, we
have e−ϵ0 ≤ Pr[g̃[j]=v]

Pr[g̃′[j]=v] ≤ eϵ0 .

By combining the above two cases, we can demonstrate the privacy guarantees of a single bit for
our algorithm.
Lemma 5.1 (Differential Privacy for single Bit, informal version of Lemma C.1). Let ϵ0 ≥ 0 and
g̃[i] ∈ {0, 1} be the i-th element of array output by DPBloomfilter. Then, we can show that, for all
j ∈ [m], g̃[j] is ϵ0-DP.

5.2 PRIVACY GUARANTEES OF DPBLOOMFILTER

Here, we comprehensively analyze the DP guarantees for our DPBloomFilter. Recall that in Defini-
tion 3.1, for dataset A, we use g to denote the array output by standard Bloom Filter. Here, we use
g̃ to denote the array output by DPBloomfilter. Similarly, for any neighboring dataset A′, we use g′

and ĝ′ to denote the array output by standard Bloom Filter and DPBloomfilter, respectively. Here,
we consider the set of indices j within the range m where the value of g[j] and g′[j] differs, which
is defined as S := {j ∈ [m] : g[j] ̸= g′[j]}. Thus, the set of indices j where the value of g[j] and
g′[j] are the same can be defined as S := [m]\S.
We can use the result of privacy guarantees of a single bit in Section 5.1, for any j ∈ S and v ∈
{0, 1}, we have Pr[g̃[j]=v]

Pr[g̃′[j]=v] = 1, and for any j ∈ S and v ∈ {0, 1}, we have

e−ϵ0 ≤ Pr[g̃[j] = v]

Pr[g̃′[j] = v]
≤ eϵ0 .

By applying the composition lemma (refer to Lemma A.1) , we obtain the following for any Z ∈
{0, 1}m,

| ln Pr[g̃ = Z]

Pr[g̃′ = Z]
| ≤ |S|ϵ0. (1)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Here, we define W := |S| for convenience. To get a better bound for Equation 1, we need to
calculate the probability distribution function of the random variable W . Before that, we need to
define two random variables we will use. Firstly, we define Y as the set of distinct values among
the k hash values generated by the standard Bloom filter considering one x ∈ [n]. Then we consider
two data x, x′ ∈ [n]. We define Z as the set of distinct values in Yx ∪ Yx′ .

Then firstly we proceed to calculate the distribution of |Y | (see details in Lemma B.4), we can show
for any y = 1, 2, . . . , k

Pr[|Y | = y] =

{
1/mk−1, y = 1(
m
y

)
(y
m)k −

(
m−i
y−i

)∑k−1
i=1 Pr[Y = i], y = 2, · · · , k

Given the probability of |Y |, we can calculate the conditional probability of |Z| conditioned on
|Yx| = a and |Yx′ | = b, where a, b ∈ [k] (see details in Lemma B.5)

Pr[|Z| = z||Yx| = a, |Yx′ | = b]

=
Aa

m ·
(
b
t

)
·At

m−a ·Ab−t
a

Aa
m ·Ab

m

.

Finally, we use the property of union probability. We can calculate the probability of W (see details
in Lemma B.6). Recall the notations in Section 3, we use F−1

X to denote the 1 − δ quantile of the
Cumulative Distribution Function FX(x) of random variable X . Here, we define N := F−1

W (1− δ)
Hence, by the properties of the quantile function, we have Pr[N ≤ W] = 1 − δ. By choosing the
appropriate value of ϵ0 = ϵ/N , we have | ln Pr[g̃=Z]

Pr[g̃′=Z] | ≤ W ϵ
N . Then we have, with probability

1 − δ, | ln Pr[g̃=Z]
Pr[g̃′=Z] | ≤ ϵ. Then, we can demonstrate the privacy guarantees for DPBloomfilter (see

also Theorem 4.1).

5.3 UTILITY GUARANTEES OF DPBLOOMFILTER

This section will present a comprehensive analysis of the utility guarantees for DPBloomfilter. We
start by introducing the following conditions for the Utility guarantee of DPBloomFilter.
Condition 5.2. We need the following conditions for Utility guarantees of DPBloomfilter:

• Condition 1. Assume that a hash function selects each array position with equal probabil-
ity.

• Condition 2. Let z ∈ {0, 1} denote the ground truth for whether an element y ∈ A.

• Condition 3. Let ẑ ∈ {0, 1} denote the answer output by standard Bloom Filter for whether
an element y ∈ A.

• Condition 4. Let z̃ ∈ {0, 1} denote the answer output by DPBloomfilter for whether an
element y ∈ A

• Condition 5. Let α := Pr[z = 0] ∈ [0, 1]

• Condition 6. Let t := eϵ0/(eϵ0 + 1).

Firstly, we proceed to derive the utility of the standard Bloom Filter by calculating

Pr[ẑ = z] = 1− Pr[ẑ = 1|z = 0]Pr[z = 0].

The above equation comes from the fact that Bloom Filter will not introduce a false negative. After
the initialization process of Bloom Filter, the probability of one certain bit is not set to 1 is (see also
Lemma D.2) (1 − 1

m)|A|k ≥ e−2|A|k/m. A false positive occurs when, for all i ∈ [k], the elements
g[hi(y)] are all set to 1 after initialization. In this case, we have:

Pr[ẑ = 1|z = 0] = (1− (1− 1

m
)|A|k)k ≤ (1− e−2|A|k/m)k.

Therefore, we have Pr[ẑ = z] ≥ 1 − (1 − e−2|A|k/m)kα. Further if m = Ω(|A|k) and k =
Θ(log(α/δerr)), we have Pr[ẑ = z] = 1− δerr · α.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Lemma 5.3 (Accuracy for query of Standard Bloom filter, informal version of Lemma D.2). If
Condition 5.2 holds, we have

Pr[ẑ = z] ≥ 1− (1− e−2|A|k/m)k · α.

Further if m = Ω(|A|k) and k = Θ(log(1/δerr)), we have

Pr[ẑ = z] ≥ 1− δerr · α.

We then quantify the error introduced by applying the random response mechanism in the DPBloom-
filter by calculating Pr[z̃ = ẑ]. Using basic probability rules, we have

Pr[z̃ = ẑ] = Pr[z̃ = 1|ẑ = 1]Pr[ẑ = 1]

+ Pr[z̃ = 0|ẑ = 0]Pr[ẑ = 0].

We can compute the following term by using the definition of DPBloomfilter in Algorithm 1 (see
details in Lemma D.3)

Pr[z̃ = 1|ẑ = 1] = (
eϵ0

eϵ0 + 1
)k, and Pr[z̃ = 0|ẑ = 0] ≥ eϵ0

eϵ0 + 1
.

Here we let Pr[ẑ = 0] = α̂, note that α̂ = α(1 − δerr). Hence, Pr[ẑ = 1] = 1 − Pr[ẑ = 0] =
1− α+ α · δerr. Then we will have (see details in Lemma D.3)

Pr[ẑ = z] ≥ t · α · (1− δerr).

Lemma 5.4 (Accuracy (compare DPBloomFilter with Bloom) for Query, informal version of
Lemma D.3). If Condition 5.2 holds, we can show Then, we can show

Pr[z̃ = ẑ] ≥ t · α · (1− δerr).

Now, we can proceed to examine the utility guarantees of DPBloomfilter by calculating Pr[z̃ = z],
i.e., comparing the output of DPBloomfilter with the ground truth for the query. By combining the
result of the analysis above, we will have (see more details in Theorem D.4)

Pr[z̃ = z] ≥ α · (1− t− tk) · δerr + α · t.

Then, we demonstrated the utility guarantees of our algorithm while simultaneously ensuring pri-
vacy (see Theorem 4.2). Similar to other differential privacy algorithms, our algorithm encounters
a trade-off between privacy and utility, where increased privacy typically results in a reduction in
utility, and conversely. An in-depth examination of this trade-off is provided as follows.
Remark 5.5 (Trade-off between Privacy and Utility of DPBloomfilter). An inherent trade-off exists
between the privacy and utility guarantees of our algorithm. To ensure privacy, we must lower the
value of ϵ0 in Theorem 4.1. On the other hand, for utility considerations (in Theorem 4.2), we define
the lower bound of Pr[z̃ = z] as u = α(1 − t − tk)δerr + αt , a reduction in ϵ0 will lead to a
reduction in t then finally result in a reduction in u. This, in turn, leads to diminished utility.

5.4 RUNNING TIME OF DPBLOOMFILTER

In this section, we will analyze the running time of our DPBloomfilter. Recall in Definition 3.1, we
let Th denote the computation time per execution for all hash functions. To analyze the algorithm’s
running time, firstly, we consider the running time of initialization in Algorithm 1.

It contains two steps as follows

• Step 1. Let’s consider the initialization of the standard Bloom Filter. For a single element
x ∈ A, it needs O(k · Th) time to compute over k hash functions. And |A| elements need
to be inserted. Combining these two facts, it needs |A| ·k · Th time to initialize the standard
Bloom Filter.

• Step 2. Let’s consider the “Flip each bit” part in DPBloomfilter. Since there are m bits in
the Bloom Filter, it takes O(m) time to flip each bit. Hence, it takes O(|A| · k · Th +m)
time to run the initialization function in Algorithm 1. (see also in Lemma E.1)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Then, we consider the running time of a single query in Algorithm 1. For each query y, the algorithm
needs O(k ·Th) time to compute the hash values of y over k hash functions. Hence, it takes O(k ·Th)
time to run each query y in. (see also in Lemma E.2)

By combining the two running times together, we can obtain the running time of our entire algorithm
is O(|A| ·k ·Th+m). This highlights the advantage of our algorithm: it matches the time complexity
of a standard Bloom Filter while providing a strong privacy guarantee.

6 DISCUSSION

Why Random Response but not Gaussian or Laplace Noise? As mentioned in Section 2, Gaus-
sian and Laplace noise are two classical mechanisms to achieve differential privacy. The advantage
of the Laplace mechanism is that its distribution is concentrated on its mean. Under the same pri-
vacy budget, it will not introduce too much noise like the Gaussian mechanism due to the long-tail
nature of its distribution. The advantage of the Gaussian mechanism is that it has good mathematical
properties and makes it easy to analyze the utility of private data structures. However, the above two
mechanisms are not as effective as the random response (flip coin) mechanism when dealing with
discrete values. Here, we consider the case where the discrete values are integers. Under certain
privacy budgets, the noise added by Gaussian and Laplace mechanisms does not reach the threshold
of 0.5, resulting in attackers being able to remove the noise through rounding operations easily, and
the privacy of the data structure no longer exists. In our case, each bit of the Bloom filter can only
be 1 or 0, which is consistent with the above situation. Hence, our work only considers the random
response mechanism instead of classical Gaussian and Laplace mechanisms.

Why Flip Both 0 and 1? In our work, we apply a random response mechanism to each bit in the
Bloom filter, either it is 0 or 1. Although this will lead to a certain probability of false negatives
in the Bloom filter, we argue that it is necessary to make the Bloom filter differentially private.
Let’s consider what will happen if we don’t apply a random response mechanism like this. Suppose
we only apply random responses to bits that are 1 in the Bloom filter and leave the bits with 0
untouched. Following the notations used in Lemma A, we use g ∈ {0, 1}m to represent the bit
array generated by inserting the original dataset into the Bloom filter and g′ ∈ {0, 1}m to represent
the bit array generated by inserting the neighboring dataset into the Bloom filter. We use g̃ and
g̃′ to denote their private version, respectively. Without loss of generality, for some j ∈ [m], we
assume g[j] = 1 and g′[j] = 0. Since we only apply a random response mechanism on bits with
value 1, then Pr[g̃′[j] = 1] = 0. Therefore, we cannot calculate Pr[g̃[j] = 1]/Pr[g̃′[j] = 1], since
the denominator is 0. Hence, we cannot have any privacy guarantees under this setting. Similar
situations occur when we apply a random response mechanism on bits with value 0. We also cannot
prove the differential privacy property of the Bloom filter. Therefore, we have to apply the random
response mechanism on bits either with value 0 or 1.

7 CONCLUSION AND FUTURE WORK

In this work, we introduced DPBloomfilter, a novel approach that leverages the random response
mechanism to ensure the privacy of Bloom filters. To the best of our knowledge, this is the first
work that applies random response to achieve differential privacy (DP) in the membership query
tasks associated with Bloom filters.

From a privacy standpoint, we have rigorously demonstrated that our method achieves (ϵ, δ)-DP
while retaining the same computational complexity as the standard Bloom filter. Furthermore, our
theoretical analyses, complemented by extensive experimental evaluations, confirm that the DP-
Bloomfilter not only upholds strong privacy guarantees but also maintains high utility.

Our results open several promising avenues for future research. In particular, one interesting di-
rection is to explore more refined trade-offs between privacy and utility, potentially by further op-
timizing the random response mechanism to minimize any impact on accuracy. In summary, the
DPBloomfilter integrates differential privacy into the Bloom filter data structure, and we anticipate
our work can advance the state-of-the-art in privacy-preserving data structures.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This paper does not involve human subjects, personally identifiable data, or sensitive applications.
We do not foresee direct ethical risks. We follow the ICLR Code of Ethics and affirm that all aspects
of this research comply with the principles of fairness, transparency, and integrity.

REPRODUCIBILITY STATEMENT

We ensure reproducibility of our theoretical results by including all formal assumptions, definitions,
and complete proofs in the appendix. The main text states each theorem clearly and refers to the
detailed proofs. No external data or software is required.

REFERENCES

Mohammad Al-Hisnawi and Mahmood Ahmadi. Deep packet inspection using quotient filter. IEEE
Communications Letters, 20(11):2217–2220, 2016.

Mohammad Alaggan, Sébastien Gambs, and Anne-Marie Kermarrec. Blip: non-interactive
differentially-private similarity computation on bloom filters. In Symposium on Self-Stabilizing
Systems, pp. 202–216. Springer, 2012.

Davide Berardi, Franco Callegati, Andrea Melis, and Marco Prandini. Password similarity using
probabilistic data structures. Journal of Cybersecurity and Privacy, 1(1):78–92, 2020.

Burton H Bloom. Space/time trade-offs in hash coding with allowable errors. Communications of
the ACM, 13(7):422–426, 1970.

Andrei Z Broder, Moses Charikar, Alan M Frieze, and Michael Mitzenmacher. Min-wise inde-
pendent permutations. In Proceedings of the thirtieth annual ACM symposium on Theory of
computing, pp. 327–336, 1998.

Prerna Budhkar. Solving intersection searching problem for spatial data using bloom filters. In 2013
IEEE International Conference on Electronics, Computing and Communication Technologies, pp.
1–5. IEEE, 2013.

Chia-Hui Chang. A survey of web information extraction systems. IEEE transactions on knowledge
and data engineering, 18(10):1411–1428, 2006.

Zirui Cheng, Jingfei Xu, and Haojian Jin. Treequestion: Assessing conceptual learning outcomes
with llm-generated multiple-choice questions. Proceedings of the ACM on Human-Computer
Interaction, 8(CSCW2):1–29, 2024.

Graham Cormode. Count-min sketch., 2009.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
in private data analysis. In Theory of Cryptography: Third Theory of Cryptography Conference,
TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings 3, pp. 265–284. Springer, 2006.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations
and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.

Bin Fan, Dave G Andersen, Michael Kaminsky, and Michael D Mitzenmacher. Cuckoo filter: Practi-
cally better than bloom. In Proceedings of the 10th ACM International on Conference on emerging
Networking Experiments and Technologies, pp. 75–88, 2014.

Chenglin Fan, Ping Li, and Xiaoyun Li. k-median clustering via metric embedding: towards better
initialization with differential privacy. Advances in Neural Information Processing Systems, 36,
2024.

Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. Hyperloglog: the analysis
of a near-optimal cardinality estimation algorithm. Discrete mathematics & theoretical computer
science, 2007.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Sam Fletcher and Md Zahidul Islam. Decision tree classification with differential privacy: A survey.
ACM Computing Surveys (CSUR), 52(4):1–33, 2019.

Afton Geil, Martin Farach-Colton, and John D Owens. Quotient filters: Approximate membership
queries on the gpu. In 2018 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pp. 451–462. IEEE, 2018.

Badih Ghazi, Pritish Kamath, Ravi Kumar, Pasin Manurangsi, and Kewen Wu. On differentially pri-
vate counting on trees. In 50th International Colloquium on Automata, Languages, and Program-
ming (ICALP 2023), volume 261, pp. 66. Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
2023.

Jan Grashöfer, Florian Jacob, and Hannes Hartenstein. Towards application of cuckoo filters in
network security monitoring. In 2018 14th International Conference on Network and Service
Management (CNSM), pp. 373–377. IEEE, 2018.

Lee L Gremillion. Designing a bloom filter for differential file access. Communications of the ACM,
25(9):600–604, 1982.

Jiuxiang Gu, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. Differential privacy mech-
anisms in neural tangent kernel regression. In Proceedings of the IEEE/CVF winter conference
on applications of computer vision, 2025.

Jerry Yao-Chieh Hu, Erzhi Liu, Han Liu, Zhao Song, and Lichen Zhang. On differentially private
string distances. arXiv preprint arXiv:2411.05750, 2024.

Mark C Jeffrey and J Gregory Steffan. Understanding bloom filter intersection for lazy address-set
disambiguation. In Proceedings of the twenty-third annual ACM symposium on Parallelism in
algorithms and architectures, pp. 345–354, 2011.

Shiva Prasad Kasiviswanathan, Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. Analyzing
graphs with node differential privacy. In Theory of Cryptography: 10th Theory of Cryptography
Conference, TCC 2013, Tokyo, Japan, March 3-6, 2013. Proceedings, pp. 457–476. Springer,
2013.

Rafael P Laufer, Pedro B Velloso, and Otto Carlos MB Duarte. A generalized bloom filter to secure
distributed network applications. Computer Networks, 55(8):1804–1819, 2011.

Ninghui Li, Min Lyu, Dong Su, and Weining Yang. Differential privacy: From theory to practice.
Springer, 2017.

Ping Li and Arnd Christian König. Theory and applications of b-bit minwise hashing. Communica-
tions of the ACM, 54(8):101–109, 2011.

Ping Li and Xiaoyun Li. Smooth flipping probability for differential private sign random projection
methods. Advances in Neural Information Processing Systems, 36, 2024.

Ping Li, Art Owen, and Cun-Hui Zhang. One permutation hashing for efficient search and learning.
arXiv preprint arXiv:1208.1259, 2012.

Xiaoyu Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Junwei Yu. Fast john ellipsoid computation
with differential privacy optimization. arXiv preprint arXiv:2408.06395, 2024a.

Xiaoyu Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Junwei Yu. Fast john ellipsoid computation
with differential privacy optimization. arXiv preprint arXiv:2408.06395, 2024b.

Xiaoyu Li, Jiangxuan Long, Zhao Song, and Tianyi Zhou. Fast second-order method for neural
network under small treewidth setting. In 2024 IEEE International Conference on Big Data
(BigData). IEEE, 2024c.

Xiaoyun Li and Ping Li. Differentially private one permutation hashing and bin-wise consistent
weighted sampling. arXiv preprint arXiv:2306.07674, 2023.

Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Differential privacy of cross-attention with
provable guarantee. arXiv preprint arXiv:2407.14717, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Erzhi Liu, Jerry Yao-Chieh Hu, Alex Reneau, Zhao Song, and Han Liu. Differentially private kernel
density estimation. arXiv preprint arXiv:2409.01688, 2024.

Ju Hyoung Mun and Hyesook Lim. Cache sharing using a bloom filter in named data networking.
In Proceedings of the 2016 Symposium on Architectures for Networking and Communications
Systems, pp. 127–128, 2016.

Marc Najork, Sreenivas Gollapudi, and Rina Panigrahy. Less is more: sampling the neighborhood
graph makes salsa better and faster. In Proceedings of the Second ACM International Conference
on Web Search and Data Mining, pp. 242–251, 2009.

Prashant Pandey, Alex Conway, Joe Durie, Michael A Bender, Martin Farach-Colton, and Rob John-
son. Vector quotient filters: Overcoming the time/space trade-off in filter design. In Proceedings
of the 2021 International Conference on Management of Data, pp. 1386–1399, 2021.

Ripon Patgiri, Sabuzima Nayak, and Samir Kumar Borgohain. Passdb: A password database with
strict privacy protocol using 3d bloom filter. Information Sciences, 539:157–176, 2020.

Seref Sagiroglu and Duygu Sinanc. Big data: A review. In 2013 international conference on
collaboration technologies and systems (CTS), pp. 42–47. IEEE, 2013.

Sina Sajadmanesh and Daniel Gatica-Perez. Progap: Progressive graph neural networks with dif-
ferential privacy guarantees. In Proceedings of the 17th ACM International Conference on Web
Search and Data Mining, pp. 596–605, 2024.

Zhao Song, Xin Yang, Yuanyuan Yang, and Lichen Zhang. Sketching meets differential privacy:
fast algorithm for dynamic kronecker projection maintenance. In International Conference on
Machine Learning (ICML), pp. 32418–32462. PMLR, 2023.

Ning Wang, Xiaokui Xiao, Yin Yang, Ta Duy Hoang, Hyejin Shin, Junbum Shin, and Ge Yu.
Privtrie: Effective frequent term discovery under local differential privacy. In 2018 IEEE 34th
International Conference on Data Engineering (ICDE), pp. 821–832. IEEE, 2018.

Shangguang Wang, Zibin Zheng, Zhengping Wu, Michael R Lyu, and Fangchun Yang. Reputation
measurement and malicious feedback rating prevention in web service recommendation systems.
IEEE Transactions on Services Computing, 8(5):755–767, 2014.

Yinyin Wang, Yuwang Yang, Xiulin Qiu, Yaqi Ke, and Qingguang Wang. Ccf-lru: hybrid storage
cache replacement strategy based on counting cuckoo filter hot-probe method. Applied Intelli-
gence, pp. 1–15, 2022.

Yuntao Wang, Zirui Cheng, Xin Yi, Yan Kong, Xueyang Wang, Xuhai Xu, Yukang Yan, Chun Yu,
Shwetak Patel, and Yuanchun Shi. Modeling the trade-off of privacy preservation and activity
recognition on low-resolution images. In Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems, pp. 1–15, 2023.

Stanley L Warner. Randomized response: A survey technique for eliminating evasive answer bias.
Journal of the American statistical association, 60(309):63–69, 1965.

Mengmeng Yang, Taolin Guo, Tianqing Zhu, Ivan Tjuawinata, Jun Zhao, and Kwok-Yan Lam.
Local differential privacy and its applications: A comprehensive survey. Computer Standards &
Interfaces, pp. 103827, 2023.

Jiahao Yu, Haozheng Luo, Jerry Yao-Chieh Hu, Wenbo Guo, Han Liu, and Xinyu Xing. En-
hancing jailbreak attack against large language models through silent tokens. arXiv preprint
arXiv:2405.20653, 2024.

Fuheng Zhao, Dan Qiao, Rachel Redberg, Divyakant Agrawal, Amr El Abbadi, and Yu-Xiang Wang.
Differentially private linear sketches: Efficient implementations and applications. Advances in
Neural Information Processing Systems, 35:12691–12704, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Appendix
Roadmap. The Appendix organizes as follows: In Section A, we introduce the notations used in the
paper and differential privacy tools. In Section B, we elaborate the derivations for the closed-form
distribution of the random variable W , where N is the 1− δ quantile of W . Section C contains the
proof of privacy guarantees for DPBloomfilter. Section D presents a detailed analysis of utility guar-
antees for DPBloomfilter. Section E restates the analysis results of running time for DPBloomfilter.

A BASIC TOOLS

In this section, we display the notations and basic tools for a better understanding of the readers. In
Section A.1, we introduce the notations used in this paper. In Section A.2, we provide an essential
basic composition Lemma for Differential Privacy.

A.1 NOTATIONS

In this section, we describe the notations we use in this paper.

For any positive integer n, let [n] denote the set {1, 2, · · · , n}. We use E[] to denote the expectation
operator and Pr[] to denote probability. We use n! to denote the factorial of integer n. We use
An

m := m!
(m−n)! to denote the number of permutation ways to choose n elements from m elements

considering the order of selection. We use
(
m
n

)
:= m!

n!(m−n!) to denote the number of combination
ways to choose n elements from m elements without considering the order of selection. We use
FX(x) to denote the Cumulative Distribution Function (CDF) of a random variable X and use
F−1
X (1− δ) to denote the 1− δ quantile of FX(x).

A.2 BASIC COMPOSITION OF DIFFERENTIAL PRIVACY

If multiple differential privacy algorithms are involved, a composition rule becomes necessary. This
section presents the simplest form of composition, as stated as follows:
Lemma A.1 (Basic composition, (Ghazi et al., 2023)). Let M1 be an (ϵ1, δ1)-DP algorithm and M2

be an (ϵ2, δ2)-DP algorithm. Then M(X) = (M1(X),M2(M1(X), X) is an (ϵ1 + ϵ2, δ1 + δ2)-DP
algorithm.

The basic composition lemma quantifies the total privacy loss across all operations. This is essential
for determining whether the overall privacy guarantee remains acceptable.

B PROOF FOR 1− δ QUANTILE

In this section, we provide the calculation of the probability distribution of random variable W :=∑m
j=1 1{g[j] ̸= g′[j]}, which plays an important part in the proof of the privacy guarantee for our

algorithm (see Section C). In Section B.1, we present the definition of random variables W,Y,Z
used in this section. In Section B.2, we calculate the probability distribution of Y . In Section B.3,
we calculate the probability distribution of Z conditioned on Y . In Section B.4, we calculate the
probability distribution of W .

B.1 DEFINITION

In this section, we present the definitions of random variables which will be used in the section.
Definition B.1 (Definition of W). Let W :=

∑m
j=1 1{g[j] ̸= g′[j]}, where g ∈ {0, 1}m denotes

the ground truth values generated by dataset A, and g′ ∈ {0, 1}m denotes the ground truth values
generated by neighboring dataset A′.
Definition B.2 (Definition of Y). Consider a x ∈ [n].

Let y1, y2, · · · , yk denotes the k hash values generated by the standard Bloom filter (Definition 3.1).

We define Y as the set of distinct values among y1, y2, · · · , yk, where |Y | ∈ 1, 2, · · · , k.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Definition B.3 (Definition of Z). Consider two data x, x′ ∈ [n].

Let y1, y2, · · · , yk denotes the k hash values generated by x, and y′1, y
′
2, · · · , y′k denotes the k hash

values generated by x′.

Follow the Definition B.2, let Yx denotes the set of distinct values in y1, y2, · · · , yk, and Yx′ denotes
the set of distinct values in y′1, y

′
2, · · · , y′k.

Suppose |Yx| = a, |Yx′ | = b, where a, b ∈ {1, 2, · · · , k}
We define Z is the set of distinct values in Yx ∪ Yx′ , where |Z| ∈ {1, 2, · · · , 2k}

B.2 DISTRIBUTION OF Y

Then we proceed to calculate the probability distribution of Y in this section.
Lemma B.4 (Distribution of Y). If the following conditions hold

• Let y1, y2, · · · , yk be defined in Definition B.2.

• Let Y be defined as Definition B.2.

Then, we can show, for y = 1, 2, · · · , k,

Pr[|Y | = y]

=

{
1/mk−1, y = 1(
m
y

)
· yk/mk −

∑k−1
i=1

(
m−i
y−i

)
Pr[Y = i], y = 2, · · · , k

Proof. Step 1. We consider Y = 1 case.

Without any constraints, there are total mk situations. This is because each hash value can be freely
chosen from m positions, and there are k hash values. Therefore, there are total mk situations.

Then, with constraint Y = 1, k hash values must be assigned to the same position. The position can
be chosen from a total of m positions. Therefore, in this case, there are m situations.

Combining the above two analysis, we have

Pr[Y = 1] =
m

mk

=
1

mk−1
.

Step 2. We consider Y = 2, · · · , k cases.

Similarly, without any constraints, there are total mk situations.

Since we need Y = y, we must choose y from different positions in the total m positions. Therefore,
we have

(
m
y

)
term.

Note that in each position, we need at least one hash value. We first compute the number of freely
assigning k hash values to the y positions. Then we remove the failure cases.

As there are y positions and k hash values, we have the yk term for freely assigning k hash values
to y positions.

For the failure case, we have
∑k−1

i=1 Pr[Y = i] ·
(
m−i
y−i

)
. The

(
m−i
y−i

)
term is due to repeated counting

for each i ∈ [k − 1], where we first fix i positions and then randomly pick the other y − i different
positions in the total m− i positions.

Thus, in all, we have the following formula,

Pr[Y = y] =

(
m
y

)
· yk

mk
−

k−1∑
i=1

Pr[Y = i] ·
(
m− i

y − i

)
.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B.3 DISTRIBUTION OF Z CONDITIONED ON Y

In this section, we calculate the probability distribution of Z condition on Y .

Lemma B.5 (Probability of Z conditioned on Yx and Yx′). If the following conditions hold

• Let Yx, Yx′ , Z be defined as Definition B.3.

• Let Am
n denotes n!/(n−m)!.

• Let t := z −max(a, b).

Then, we can show, for z = max(a, b), · · · , (a+ b),

Pr[|Z| = z||Yx| = a, |Yx′ | = b] =
Aa

m ·
(
b
t

)
·At

m−a ·Ab−t
a

Aa
m ·Ab

m

.

Proof. Since the minimum value of Z is max(a, b), without loss of generality, we assume a ≥ b.
Then we have a ≤ z ≤ (a+ b).

Recall we have t = z −max(a, b) = z − a, t ∈ {0, 1, · · · , b}. Then we have

Pr[|Z| = a+ t||Yx| = a, |Yx′ | = b]

=
Aa

m ·
(
b
t

)
·At

m−a ·Ab−t
a

Aa
m ·Ab

m

.

We explain why we have the above equation in the following steps.

Step 1. We consider the denominator.

Without any constraints, since |Yx| = a, we need to choose a from different positions in the total m
positions. Therefore, we have the Aa

m term in the denominator. Similarly, since |Yx′ | = b, we have
the Ab

m term in the denominator.

Step 2. We consider the numerator.

Firstly, since |Yx| = a, we need to choose a different positions in total m positions. Therefore, we
have the Aa

m term in the numerator.

Since Z is defined as Definition B.3, we can have the following

|Yx ∩ Yx′ | = a+ b− z

|Yx′ | − |Yx ∩ Yx′ | = z − a

= t

Then, we need to choose t values from Yx′ to construct |Yx′ | − |Yx ∩ Yx′ | part. Therefore, we have
the

(
b
t

)
term in the numerator.

We also need to choose t different positions in the rest m − a positions for |Yx′ | − |Yx ∩ Yx′ | part.
Hence, we have the At

m−a term in the numerator.

Lastly, let’s consider the b− t part. For this part, we need to choose b− t different positions from a
positions. Therefore, we have the Ab−t

a term in the numerator.

Combining all analyses together, finally, we have

Pr[|Z| = z||Yx| = a, |Yx′ | = b] =
Aa

m ·
(
b
t

)
·At

m−a ·Ab−t
a

Aa
m ·Ab

m

.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6
W

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

Pr
ob

ab
ilit

y
in

 P
er

ce
nt

ag
e

10.0%

28.1%

32.8%

20.4%

7.2%

1.3%
0.1%

Probability Mass Function of W

Figure 1: Let W := |S| denote the number of bits in the Bloom filter changed by substituting an
element in the inserted set A (Definition 3.2). We achieve ϵ0-DP for each single bit and (ϵ, δ)-DP
for the entire Bloom filter via the random response (Definition 3.4), where ϵ0 = ϵ/N . The N is
1− δ quantile of the random variable W . It can be inferred from this visualization that the values of
random variable W have good concentration properties, mostly concentrated around its mean.

B.4 DISTRIBUTION OF W

Finally, we present the calculation of the probability distribution of W in this section.
Lemma B.6 (Distribution of W). If the following conditions hold

• Let Yx, Yx′ , Z be defined as Definition B.3.

• Let W be defined as Definition B.1.

• Let Am
n denotes n!

(n−m)! .

• Let p0 := (1− 1
m)(|A|−1)k denotes the proportion of bits which are still 0 in the bit-array.

• Let n1 := |Yx ∩ Yx′ | = a+ b− z denotes the number of overlap elements in Yx and Yx′ .

• Let n2 := |Yx ∪ Yx′ | − |Yx ∩ Yx′ | = z − (a+ b− z) = 2z − a− b denotes the number of
exclusive or elements in Yx and Yx′ .

Then, we can show, for w = 0, · · · 2k,

Pr[W = w]

=

k∑
a=1

k∑
b=1

a+b∑
z=1

Pr[W = w||Z| = z, |Yx| = a, |Yx′ | = b]

· Pr[|Z| = z||Yx| = a, |Yx′ | = b]

· Pr[|Yx| = a] · Pr[|Yx′ | = b].

where

Pr[W = w||Z| = z, |Yx| = a, |Yx′ | = b]

=

{
0, n2 < w(
n2

w

)
· pw0 · (1− p0)

n2−w, n2 ≥ w

Proof. By basic probability rules, we have the following equation

Pr[W = w]

=

k∑
a=1

k∑
b=1

a+b∑
z=1

Pr[W = w||Z| = z, |Yx| = a, |Yx′ | = b]

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

· Pr[|Z| = z||Yx| = a, |Yx′ | = b]

· Pr[|Yx| = a, |Yx′ | = b]

=

k∑
a=1

k∑
b=1

a+b∑
z=1

Pr[W = w||Z| = z, |Yx| = a, |Yx′ | = b]

· Pr[|Z| = z||Yx| = a, |Yx′ | = b]

· Pr[|Yx| = a] · Pr[|Yx′ | = b].

where the first step follows from basic probability rules, the second step follows from Yx, and Yx′

are independent.

We can get the probability of Pr[|Yx| = a] and Pr[|Yx′ | = b from Lemma B.4.

We can get the probability of Pr[|Z| = z||Yx| = a, |Yx′ | = b] from Lemma B.5.

Now, let’s consider the Pr[W = w||Z| = z, |Yx| = a, |Yx′ | = b] term.

Note that only elements in the exclusive-or set may contribute to the final W . Therefore, we have
w ≤ n2. Namely, when n2 < w, we have Pr[W = w||Z| = z, |Yx| = a, |Yx′ | = b] = 0.

Now, let’s calculate Pr[W = w||Z| = z, |Yx| = a, |Yx′ | = b] under n2 ≥ w condition.

Recall x denotes the element deleted from A, and x′ denotes the element added to A for constructing
the neighbor dataset A′.

Let Afix := A − x denote the fixed set of elements during the modifications. We have |Afix| =
|A| − 1.

Consider the following steps:

• We construct a new Bloom filter.

• We insert all elements in Afix in the Bloom filter.

• We define Zzero as the set of positions of bits which are still 0 after the insertion of Afix.

We define Zxor as the exclusive-or set of Yx and Yx′ . We have

Zxor = (Yx ∪ Yx′)− (Yx ∩ Yx′),

|Zxor| = |Yx ∪ Yx′ | − |Yx ∩ Yx′ |
= z − (a+ b− z)

= 2z − a− b

= n2.

Note that only positions in Zxor∩Zzero will contribute to W . Namely, we need |Zxor∩Zzero| = w.

We achieve the above condition by selecting w elements in Zxor and let them satisfy the condition
of Zzero.

Therefore, we have

Pr[|Zxor ∩ Zzero| = w]

=

(
n2

w

)
· (1− 1

m
)(|A|−1)kw · (1− (1− 1

m
)(|A|−1)k)n2−w.

Combining the above analysis, we have

Pr[W = w||Z| = z, |Yx| = a, |Yx′ | = b]

=

{
0, n2 < w(
n2

w

)
· pw0 · (1− p0)

n2−w, n2 ≥ w
.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C PRIVACY GUARANTEES FOR ONE COORDINATE

In this section, we provide proof of the privacy guarantees of the DPBloomfilter.

In Section C.1, we demonstrate the privacy guarantees for single bit of array in Bloom filter.

Then in Section C.2, we provide the proof of privacy guarantees for our entire algorithm.

C.1 SINGLE BIT IS PRIVATE

We first consider the privacy guarantees of single bit of array in Bloom filter.

Lemma C.1 (Single bit is private). If the following conditions hold:

• Let ϵ0 ≥ 0.

• Let g̃[j] ∈ {0, 1} be the i-th element of array output by DPBloomfilter

Then, we can show that, for all j ∈ [m], g̃[j] is ϵ0-DP.

Proof. ∀j ∈ [m], g[j] is the ground truth value generated by dataset A ⊂ [n]. (An alternative view
of g is g : [m]→ {0, 1}.) Suppose g[j] = u, u ∈ {0, 1}. For any neighboring dataset A′ ⊂ [n], we
denote the ground truth value generated by it as g′[j]. Similarly, we can define the g̃′[j].

We consider the following two cases to prove g̃[j] is ϵ0-DP, for all j ∈ [m].

Case 1. Suppose g′[j] = u. We know

Pr[g̃[j] = u] =
eϵ0

eϵ0 + 1
,

Pr[g̃′[j] = u] =
eϵ0

eϵ0 + 1
.

Combining the above two equations, then we obtain

Pr[g̃[j] = u]

Pr[g̃′[j] = u]
= 1.

Similarly, we know

Pr[g̃[j] = 1− u] =
1

eϵ0 + 1
,

Pr[g̃′[j] = 1− u] =
1

eϵ0 + 1
.

Combining the above two equations, then we obtain

Pr[g̃[j] = 1− u]

Pr[g̃′[j] = 1− u]
= 1.

Thus, we know for all v ∈ {0, 1},

Pr[g̃[j] = v]

Pr[g̃′[j] = v]
= 1.

Case 2. Suppose g′[j] ̸= u.

We know

Pr[g̃[j] = u] =
eϵ0

eϵ0 + 1
,

Pr[g̃′[j] = u] =
1

eϵ0 + 1
.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Combining the above two equations, then we obtain

Pr[g̃[j] = u]

Pr[g̃′[j] = u]
= eϵ0 .

Similarly, we know

Pr[g̃[j] = 1− u] =
1

eϵ0 + 1
,

Pr[g̃′[j] = 1− u] =
eϵ0

eϵ0 + 1
.

Combining the above two equations, then we obtain

Pr[g̃[j] = 1− u]

Pr[g̃′[j] = 1− u]
= e−ϵ0 .

For v ∈ {0, 1}, we have

e−ϵ0 ≤ Pr[g̃[j] = v]

Pr[g̃′[j] = v]
≤ eϵ0 .

Therefore, ∀j ∈ [m], g̃[j] is ϵ0-DP.

C.2 PRIVACY GUARANTEES FOR DPBLOOMFILTER

Then, we can prove that our entire algorithm is differentially private.
Theorem C.2 (Privacy for Query, formal version of Lemma 4.1). If the following conditions hold

• Let N = F−1
W (1 − δ) denote the 1 − δ quantile of the random variable W (see Defini-

tion B.1).

• Let ϵ0 = ϵ/N .

Then, we can show, the output of QUERY procedure of Algorithm 1 achieves (ϵ, δ)-DP.

Proof. Let A and A′ are neighboring datasets. Let g ∈ {0, 1}m is the ground truth value generated
by dataset A, and g′ ∈ {0, 1}m is the ground truth value generated by dataset A′.

We define

S := {j ∈ [m] : g[j] ̸= g′[j]}.

We further define

S := [m]\S.

We consider two cases, Case 1 is j ∈ S and Case 2 is j ∈ S.

Case 1. j ∈ S.

We can show that
Pr[g̃[j] = v]

Pr[g̃′[j] = v]
= 1.

holds for ∀v ∈ {0, 1}.
Case 2. j ∈ S.

We can show that

e−ϵ0 ≤ Pr[g̃[j] = v]

Pr[g̃′[j] = v]
≤ eϵ0 . (2)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

holds for ∀v ∈ {0, 1}.
Thus, for any Z ∈ {0, 1}m, the absolute privacy loss can be bounded by

| ln Pr[g̃ = Z]

Pr[g̃′ = Z]
| = | ln

∏
j∈S

Pr[g̃[j] = v]

Pr[g̃′[j] = v]
|

≤ |S|ϵ0
= |S| ϵ

N
. (3)

where the first step follows from each entry of g is independent, the second step follows from Eq. (2),
and the last step follows from choice of ϵ0.

By the definition of N , we know that with probability at least 1−δ, |S| ≤ F−1(1−δ) = N . Hence,
Eq. (3) is upper bounded by ϵ with probability 1− δ.

This proves the (ϵ, δ)-DP.

D UTILITY ANALYSIS

In this section, we establish the utility guarantees for our algorithm. Initially, we calculate the
accuracy for the query of the standard Bloom filter in Section D.1. We then assess the utility loss
caused by introducing the random response technique by comparing the output of the DPBloomfilter
with the output of the standard Bloom filter in Section D.2. Ultimately, we present the assessment
of our algorithm’s utility in Section D.3.

We begin by defining the notation we will use in this section.
Definition D.1. Let z ∈ {0, 1} denote the true answer for whether x ∈ A. Let ẑ ∈ {0, 1} denote the
answer outputs by BLOOM FILTER. Let z̃ ∈ {0, 1} denote the answer output by DPBLOOMFILTER
(Algorithm 1).

D.1 ACCURACY FOR QUERY OF STANDARD BLOOM FILTER

We first present the accuracy of the query of the standard bloom filter, as follows.
Lemma D.2 (Accuracy for query of Standard Bloom Filter). If the following conditions hold

• Assume that a hash function selects each array position with equal probability.

• Let ẑ be defined as Definition D.1.

• Let z be defined as Definition D.1.

• Let α := Pr[z = 0]

Then, we can show

Pr[ẑ = z] ≥ 1− (1− e−2|A|k/m)k · α.
Further if m = Ω(|A|k) and k = Θ(log(1/δerr)), we have

Pr[ẑ = z] ≥ 1− δerr · α.

Proof. Recall that we have defined Bloom filter in Definition 3.1, it only has false positive error.
Therefore, we only need to calculate the following

Pr[ẑ = 1|z = 0]

Recall that A ⊂ [n] denotes the set of elements inserted into the Bloom filter. And hi : [n] → [m]
for each i ∈ [k] denotes k hash functions used in the Bloom filter.

For a query y /∈ A, we denotes event E1 happens if the following happens:

hi[y] = 1,∀i ∈ [k]

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Recall that we have defined Bloom filter in Definition 3.1, we have

Pr[ẑ = 1|z = 0] = Pr[E1]. (4)

Now, we start calculating Pr[E1].

Recall that we assume a hash function selects each array position with equal probability in the lemma
statement.

During one inserting operation, the probability of a certain bit is not set to 1 is

(1− 1

m
)k

If we have inserted |A| elements, the probability that a certain bit is still 0 is

(1− 1

m
)|A|k = ((1− 1

m
)m)|A|k/m ≥ e−2|A|k/m

where the last step follows from (1− 1/m)m ≥ e−2 for all m ≥ 2.

Thus the probability that a certain bit is 1 is

1− (1− 1

m
)|A|k ≤ 1− e−2|A|k/m.

Combining the above fact, we have

Pr[E1] = (1− (1− 1

m
)|A|k)k

≤ (1− e−2|A|k/m)k. (5)

where the first step follows from the definition of event E1, the second step follows from (1 −
1/m)m ≥ e−2 for all m ≥ 2.

Therefore, the accuracy of Bloom filter is

Pr[ẑ = z] = 1− Pr[ẑ = 1|z = 0]Pr[z = 0]

= 1− Pr[E1]α

≥ 1− (1− e−2|A|k/m)kα.

where the first step follows from Bloom filter only has false positive error, the second step follows
from the definition of event E1 and the definition of α, the third step follows from Eq. (5).

D.2 ACCURACY (COMPARE DPBLOOMFILTER WITH STANDARD BLOOMFILTER) FOR
QUERY

We then assess the accuracy loss caused by the introduction of the random response technique by
comparing the outputs of the DPBloomfilter with those of the standard Bloom filter.

Lemma D.3 (Accuracy (compare DPBloomFilter with Standard BloomFilter) for Query). If the
following conditions hold

• Let ẑ be defined as Definition D.1.

• Let z̃ be defined as Definition D.1.

• Let α := Pr[z = 0] ∈ [0, 1]

• Let t := eϵ0

eϵ0+1 .

• Let δerr be defined as in Lemma D.2.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Then, we can show

Pr[z̃ = ẑ] ≥ t · (α− δerr).

Proof. We denote the query as q.

We define

Q := {j ∈ [m] : hi(q) = j, i ∈ [k]} (6)

We denote Q[i] as the i-th element in Q.

Using basic probability rules, we have

Pr[z̃ = ẑ]

= Pr[z̃ = 1|ẑ = 1]Pr[ẑ = 1]

+ Pr[z̃ = 0|ẑ = 0]Pr[ẑ = 0].

Step 1. Calculate Pr[z̃ = 1|ẑ = 1]

We denote event E2 happens as the following happens:

g̃[j] = g[j],∀j ∈ Q.

Recall that we have defined Bloom filter in Definition 3.1, we have

Pr[z̃ = 1|ẑ = 1] = Pr[E2].

Now, we calculate the probability that E2 happens.

Pr[E2] =

k∏
i=1

Pr[g̃[Q[i]] = g[Q[i]]]

= (
eϵ0

eϵ0 + 1
)k.

where the first step follows from each entry of g is independent, the second steps follows from the
definition of g̃.

Therefore, we have

Pr[z̃ = 1|ẑ = 1] = (
eϵ0

eϵ0 + 1
)k. (7)

Step 2. Calculate Pr[z̃ = 0|ẑ = 0]

Recall we have defined Q ⊂ [m] in Eq. (6). We further define

Z := {j ∈ Q : g[j] = 0}.

We denote Z[i] as the i-th element in Z.

We further define

Q := Q\Z.

By basic probability rules, we have

Pr[z̃ = 0|ẑ = 0] = 1− Pr[z̃ = 1|ẑ = 0].

Now, let’s calculate Pr[z̃ = 1|ẑ = 0]

[z̃ = 1|ẑ = 0] happens only if the following conditions hold:

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

1. All elements in Z flip from 0 to 1.

2. All elements in Q remain 1.

Then, we have

Pr[z̃ = 1|ẑ = 0] =

|Z|∏
i=1

Pr[g̃[Z[i]] = 1]

|Q|∏
i=1

Pr[g̃[Q[i]] = 1]

= (
1

eϵ0 + 1
)|Z|(

eϵ0

eϵ0 + 1
)|Q|

≤ (
1

eϵ0 + 1
)|Z|

≤ 1

eϵ0 + 1
.

where the first step follows from the above analysis, the second step follows from the definition of
g̃, the third step follows from |Q| ≥ 0 and eϵ0

eϵ0+1 < 1, the fourth step follows from |Z| ≥ 1 and
1

eϵ0+1 < 1.

Therefore, we have

Pr[z̃ = 0|ẑ = 0] = 1− Pr[z̃ = 1|ẑ = 0]

≥ 1− 1

eϵ0 + 1

=
eϵ0

eϵ0 + 1
. (8)

Let α̂ := Pr[ẑ = 0], then we have 1 − α̂ = Pr[ẑ = 1]. Let α := Pr[z = 0]. Note that α̂ =
α(1− δerr).

Let t := eϵ0

eϵ0+1 .

The final accuracy is

Pr[z̃ = 0|ẑ = 0] · Pr[ẑ = 0] + Pr[z̃ = 1|ẑ = 1] · Pr[ẑ = 1]

= Pr[z̃ = 0|ẑ = 0] · α̂+ Pr[z̃ = 1|ẑ = 1] · (1− α̂)

= Pr[z̃ = 0|ẑ = 0] · α(1− δerr)

+ Pr[z̃ = 1|ẑ = 1] · (1− α+ α · δerr)

≥ eϵ0

eϵ0 + 1
· α(1− δerr) + (

eϵ0

eϵ0 + 1
)k · (1− α+ α · δerr)

= t · (α− α · δerr) + tk · (1− α+ α · δerr)
≥ t · α · (1− δerr).

where the first step follows from the definition of α̂, the second step follows from α̂ = α(1 − δ),
the third step follows from Eq. (7) Eq. (8), the fourth step follows from basic algebra rules, the fifth
step follows from (1− α+ α · δerr) ≥ 0.

Therefore, the final accuracy is t · (α− δerr).

D.3 ACCURACY (COMPARE DPBLOOMFILTER WITH TRUE-ANSWER) FOR QUERY

Now we can examine the utility guarantees of DPBloomfilter by calculating the error between the
ground truth for query and the output of DPBloomfilter.

Theorem D.4 (Accuracy (compare DPBloomfilter with true-answer) for Query, formal version of
Lemma 4.2). If the following conditions hold

• Let ẑ be defined as Definition D.1.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

• Let z be defined as Definition D.1.

• Let α := Pr[z = 0] ∈ [0, 1]

• Let t := eϵ0/(eϵ0 + 1).

• Let δerr be defined as in Lemma D.2.

Then, we can show

Pr[z̃ = z] ≥ α(1− t− tk)δerr + αt.

Proof. We have

Pr[z̃ = z]

= Pr[z̃ = 0|ẑ = 0]Pr[ẑ = 0|z = 0]Pr[z = 0]

+ Pr[z̃ = 0|ẑ = 1]Pr[ẑ = 1|z = 0]Pr[z = 0]

+ Pr[z̃ = 1|ẑ = 1]Pr[ẑ = 1|z = 1]Pr[z = 1]

+ Pr[z̃ = 1|ẑ = 0]Pr[ẑ = 0|z = 1]Pr[z = 1]

≥ t · (1− Pr[E1]) · α+ (1− tk) · Pr[E1] · α+ tk · 1 · (1− α)

= α(1− t− tk)δerr + αt+ tk(1− α)

≥ α(1− t− tk)δerr + αt.

where the first step from basic probability rules, the secod step follows from Equation 4, Equation 8
and definition of α and t, the third step follows from basic algebra, the fourth step follows from the
fact that t, α ∈ [0, 1].

To make it easier to understand, we also provide the utility analysis of the Bloom filter under the
case of random guess.
Lemma D.5 (Accuracy for Query under Random Guess). If the following conditions hold

• Let ẑ be defined as Definition D.1.

• ϵ0 = 0. Namely, each bit in the bit-array of the DP Bloom has 1
2 probability to be set to 0,

and 1
2 probability to be set to 1.

Then, we can show

Pr[z̃ = 0] = 1− 1

2k
,

Pr[z̃ = 1] =
1

2k
.

Proof. By the definition of Bloom filter 3.1, the answer z̃ = 1 requires k corresponding positions in
the bit-array of the query are all set to 1.

Note that each bit has 1
2 probability to be set to 1. Therefore, we have

Pr[z̃ = 1] =
1

2k
.

Then, we have Pr[z̃ = 0] = 1− Pr[z̃ = 1] = 1− 1
2k
.

E RUNNING TIME

In this section, we provide the proof of running time for Algorithm 1. The running time for our algo-
rithm consists of two parts: time for initialization in Section E.1 and time for query in Section E.2.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

E.1 RUNNING TIME FOR INITIALIZATION

Now we calculate the time of initialization for our algorithm.
Lemma E.1 (Running time for initialization). Let Th denote the time of evaluation of function h at
any point.

It takes O(|A| · k · Th +m) time to run the initialization function.

Proof. Step 1 Let’s consider the initialization of the standard Bloom filter.

A single element x needs O(k · Th) time to compute over k hash functions.

There are |A| elements which need to be inserted.

Combining the above two facts, it needs O(|A| · k · Th) time to initialise the standard Bloom filter.

Step 2 Let’s consider the “Flip each bit” part.

Since there are m bits in the Bloom filter, it takes O(m) time to flip each bit.

Therefore, the initialization function needs O(|A| · k · Th +m) time to run.

E.2 RUNNING TIME FOR QUERY

Then, we proceed to calculate the query time for our algorithm.
Lemma E.2 (Running time for query). Let Th denote the time of evaluation of function h at any
point. It takes O(k · Th) time to run each query y in the query function.

Proof. For each query y, the algorithm needs O(k · Th) time to compute the hash values of y over k
hash functions.

Therefore, it takes O(k · Th) time to run the query function for each query.

By combing the result of Lemma E.1 and Lemma E.2, we can obtain the running of our entire
algorithm is O(|A| · k · Th +m).

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.

25

	Introduction
	Related Work
	Bloom Filter
	Differential Privacy

	Preliminary
	Bloom Filter
	Differential Privacy

	Main Results
	Privacy for DPBloomfilter
	Utility for DPBloomfilter
	Running Complexity of DPBloomfilter

	Technical Overview
	Privacy Guarantees of Single Bit
	Privacy Guarantees of DPBloomFilter
	Utility Guarantees of DPBloomfilter
	Running Time of DPBloomfilter

	Discussion
	Conclusion and Future Work
	Basic Tools
	Notations
	Basic Composition of Differential Privacy

	Proof for Quantile
	Definition
	Distribution of
	Distribution of conditioned on
	Distribution of

	Privacy guarantees for one coordinate
	Single bit is private
	Privacy guarantees for DPBloomfilter

	Utility analysis
	Accuracy for query of Standard Bloom Filter
	Accuracy (compare DPBloomFilter with Standard BloomFilter) for Query
	Accuracy (compare DPBloomfilter with true-answer) for Query

	Running Time
	Running time for initialization
	Running time for query

