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ABSTRACT

Data augmentation is a dominant method for reducing model overfitting and im-
proving generalization. Most existing data augmentation methods tend to find a
compromise in augmenting the data, i.e., increasing the amplitude of augmentation
carefully to avoid degrading some data too much and doing harm to the model
performance. We delve into the relationship between data augmentation and model
performance, revealing that the performance drop with heavy augmentation comes
from the presence of out-of-distribution (OOD) data. Nonetheless, as the same data
transformation has different effects for different training samples, even for heavy
augmentation, there remains part of in-distribution data which is beneficial to model
training. Based on the observation, we propose a novel data augmentation method,
named DualAug, to keep the augmentation in distribution as much as possible at
a reasonable time and computational cost. We design a data mixing strategy to
fuse augmented data from both the basic- and the heavy-augmentation branches.
Extensive experiments on supervised image classification benchmarks show that
DualAug improve various automated data augmentation method. Moreover, the
experiments on semi-supervised learning and contrastive self-supervised learning
demonstrate that our DualAug can also improve related method.

1 INTRODUCTION

Heavy Augmentation

Figure 1: Red Line: The performance of RandAug-
ment (RA) peaks with a carefully selected moderate
number of transformations, but it rapidly declines if the
number is increased further. Green Line: After simply
filtering out OOD data, the performance of RA further
improves even with heavy augmentation. The experi-
ment is conducted on CIFAR-100 using WideResNet-
28-2.

Deep neural networks lead to advances in
various computer vision tasks, such as im-
age classification (Krizhevsky et al., 2012;
He et al., 2016; Dosovitskiy et al., 2021),
object detection (Girshick et al., 2014; Ren
et al., 2015; He et al., 2017), and seman-
tic segmentation (Chen et al., 2017). The
training of deep neural networks often relies
on data augmentation to relieve overfitting,
including recent automated data augmen-
tations which increases the amount and di-
versity of data by transforming it following
some policies (Cubuk et al., 2019; 2020;
Lim et al., 2019; Zheng et al., 2022). Ap-
plying it normally requires searching for ap-
propriate transformation operators, range of
magnitudes, etc. Although a moderate level
of data transformation can improve model
accuracy, heavy augmentation which signif-
icantly increases the data diversity some-
times destroys semantic context in the aug-
mented visual data and leads to unsatisfac-
tory performance, as shown in Figure 1
(heavy augmentation part of the red line)
and Figure 2(b).
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Figure 2: Motivation of DualAug. Circle, Square and Cross represent different data point. (a) Current
automated augmentations with conservative parameters need to keep the data in distribution thus they
are insufficient for data like the Circle and Square in the figure. (b) When heavy augmentation is
introduced, the Cross become OOD. (c) Modify the OOD data (i.e., Cross) into in-distribution data
appropriately. (d) Visualization of basic augmentation, which is not sufficiently. (e) Visualization
of heavy augmentation, which is more sufficiently (augmented data is in in-distribution Area). (f)
Visualization of heavy augmentation (augmented data is in OOD Area)

Despite being somewhat effective, a moderate level of transformation in fact augments the whole
dataset conservatively, and many training samples may not be sufficiently augmented. See Figure 2
for an illustration of this problem. Comparing Figure 2(a) and Figure 2(b), we can see that, when
searching for the optimal data augmentation strategy, there exists a trade-off between the diversity of
augmentation and the distraction of semantically meaningless augmentations (shown in Figure 2(f)).
From our perspective, the samples without meaningful semantic contexts are OOD samples, hence,
in this paper, we consider the possibility of improving diversity without generating OOD samples. A
direct idea for achieving this is to detect OOD augmentation results and get rid of them. See Figure
2(c) for expected results.

Based on this intuition, we propose dual augmentation (DualAug), which applies heavy data augmen-
tation while keeping the in-distribution augmentation data as much as possible. DualAug consists of
two different data augmentation branches: one is the basic data augmentation branch which is the
same as existing augmentation methods (Cubuk et al., 2019; 2020; Zheng et al., 2022), and the other is
for heavy augmentation (i.e., more types or larger magnitudes of transformations). We take advantage
of the training model for building the OOD detector and we calculate the OOD score according to an
estimation of the distribution of augmented data in the basic branch. The threshold for filtering out
OOD augmented data is chosen by utilizing the 3σ rule of thumb. Meanwhile, augmented data that
does not meet the 3σ rule, from the heavy augmentation branch, will be regarded as OOD. These
OOD samples are caused by excessive transformation, and they will be replaced with their basic
augmentation version to keep the augmentation results in distribution as much as possible. Finally,
the in-distribution heavy augmentation results together with some basic augmentation results (which
are replacements of the OOD results) will be used in model training.

To summarize, the contribution of this paper is as follows:

• We demonstrate that, although heavy augmentation destroys semantic contexts in some data,
there still exists augmentation results which are informative enough and can be beneficial to
model training.

• We investigate the existence of OOD augmentation result, and we show that, to achieve
better performance, it is important to filter OOD data as much as possible when using heavy
augmentation.

• Based on our observation, we propose a two-branch data augmentation framework called
DualAug. DualAug makes data further augmented while avoiding the production of OOD
data as much as possible.
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• Extensive experiments on image classification tasks with four datasets prove that DualAug
improve various data augmentation methods. Furthermore, DualAug can also improve the
performance of semi-supervised learning and contrastive self-supervised learning.

2 RELATED WORK

2.1 AUTOMATED DATA AUGMENTATION

Over the past few years, data augmentation and automated data augmentation have developed
rapidly (Mumuni & Mumuni, 2022). A pioneer automated augmentation method is AutoAug-
ment (Cubuk et al., 2019), which proposes a well-designed search space and employs reinforcement
learning to search the optimal policy. Although it has demonstrated significant performance gains,
its high computational cost can pose a significant challenge in certain applications. To address this
issue, several different works have been proposed to reduce the computation cost of AutoAugment.
Fast AutoAugment (FAA) (Lim et al., 2019) considers data augmentation as density matching, which
can be efficiently implemented using Bayesian optimization. RandAugment (RA) (Cubuk et al.,
2020) explores a simplified search space that involves two easily understandable hyper-parameters,
which can be optimized with grid search. Differentiable Automatic Data Augmentation (DADA) (Li
et al., 2020) focuses on utilizing differentiability for efficient data augmentation, thus significantly
reducing the cost of policy search. Recently, Deep AutoAugment (DeepAA) (Zheng et al., 2022), a
new multi-layer data augmentation search method outperforms all these methods.

Although data augmentation increases the diversity of data, it still faces some problems if not
restricted (Wei et al., 2020; Cubuk et al., 2021; Gong et al., 2021; Suzuki, 2022; Wang et al.,
2022; Liu et al., 2023; Ahn et al., 2023). For instance, Suzuki (2022) discovers that adversarial
augmentation (Zhang et al., 2019) can produce meaningless or difficult-to-recognize images, such
as black and noise images, if it is not constrained properly. To address this problem, the proposed
method TeachAugment (Suzuki, 2022) uses a teacher model to avoid meaningless augmentations.
Although TeachAugment makes reasonable improvements, it has a significant drawback: it involves
alternative optimization that relies on an extra model, which significantly increases the training
complexity. Our method also handles unexpected augmented data, without introducing any extra
model.

2.2 OUT-OF-DISTRIBUTION DETECTION

OOD detection is critical in ensuring the safety of machine learning applications (Yang et al., 2021).
Hendrycks & Gimpel (2016) uses the maximum softmax probability (MSP) score to detect OOD
examples. In ODIN (Liang et al., 2017), the temperature is utilized in the computation of MSP,
and it has been demonstrated to be more effective in distinguishing between ID samples and OOD
samples. Since then, many studies have been conducted to improve the OOD detection performance
in different scenarios and settings (Techapanurak et al., 2020; Liu et al., 2020; Sun & Li, 2022).

It is important to note that OOD detection is a broad concept that has been systematically researched
and classified by Yang et al. (2021). Generalized OOD detection includes sensory anomaly detection,
one-class novelty detection, multi-class novelty detection, open set recognition, outlier Detection,
etc.As the first attempt of adopting OOD detection to data augmentation, our DuagAug uses the most
basic method for OOD detection (i.e., MSP).

3 METHOD

3.1 PRELIMINARIES

An image classification model f parameterized by θ is trained using a training set D = (xi, yi)
N
i=1 to

correctly classify images. Data augmentation has emerged as a popular technique for addressing the
problem of overfitting. The whole data augmentation pipeline can be regarded as a cascade of M
individual transformations:

Φ(x,K) = ϕM ◦ ϕM−1 ◦ · · · ◦ ϕ2 ◦ ϕ1 (1)
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Figure 3: The overview of the proposed DualAug, which has two branches for data augmentation. (a)
Basic Augmentation Branch: an automated augmentation are chose such as AutoAugment (Cubuk
et al., 2019), RandAugment (Cubuk et al., 2020) and DeepAA (Zheng et al., 2022). (b) Heavy
Augmentation Branch: more aggressive augmentation are used than basic augmentation. (c) OOD
Detection: the trained model evaluates Sbasic and Sheavy of two branch. τ is computed by µ(Sbasic)

and σ(Sbasic). If sheavyi ∈ Sheavy is smaller than τ , the corresponding heavy augmented data xheavy
i

is regarded as OOD. (d) Mix of two branch: OOD data in heavy augmentation branch are replaced
by corresponding basic augmentation version.
where K = [κ1, κ2 · · ·κM ] is the set of transformation parameters. In Φ(x,K), each individual
transformation ϕ is defined as:

x̃ = ϕ(x, κ) (2)
where κ represents the parameter for controling the transformation.

In this work, we propose a two-branch data augmentation framework, DualAug, as shown in Figure 3.
The two branches are the basic augmentation branch and the heavy augmentation branch. The heavy
augmentation branch enriches the data diversity of basic augmentations, while the basic augmented
data and the training model are used to detect OOD samples from the heavy augmentation branch
and replace them to corresponding basic augmentation version. In the following two subsections, we
will introduce the two branches in more details.

3.2 THE BASIC AUGMENTATION BRANCH

We choose a baseline automated augmentation method to build the basic augmentation branch. For
the convenience of description, AutoAugment (Cubuk et al., 2019) which seeks augmentation policies
via reinforcement learning is taken as an example 1. Its augmentation pipeline Φ(·,K) consists of
5 sub-groups of augmentation operations, each containing two individual transformations ϕ(·, κ),
where κ contains three parameters: 1) the type of transformation, 2) the probability of applying the
transformation, and 3) the magnitude of the transformation. For each image, a random sub-group is
selected to apply.

The basic augmentation is formulated similar to Eq. (1):

x̃basic
i = Φ(xi,K

basic) (3)

where Kbasic denotes the augmentation parameters in the baseline automated augmentation method.

3.3 THE HEAVY AUGMENTATION BRANCH

In the heavy augmentation branch, we use more aggressive augmentation parameters Kheavy than in
the basic augmentation branch. There are several different ways of realizing heavy augmentation,

1Besides AutoAugment (Cubuk et al., 2019), there are a large number of methods to be chosen from, such as
RandAugment (Cubuk et al., 2020), Fast AutoAugment (Lim et al., 2019) and Deep Autoaugment (Zheng et al.,
2022),etc.

4



Under review as a conference paper at ICLR 2024

such as increasing the number of transformations, growing the magnitude of transformations, adding
more types of transformations, and enriching their combination. We implement it by increasing
the number of transformations due to its convenience of being applied to automated augmentation
methods.

Like the basic augmentation, heavy augmentation can be formualted as:

x̃heavy
i = Φ(xi,K

heavy) (4)

and we can rewrite it as follows:

Φ(·,Kheavy) = Φ(·,Kbasic) ◦ Φ(·,Kextra) (5)

where Kbasic is the same as in Eq. (3) and Kextra denotes the extra parameters. The effectiveness of
different heavy augmentation implementations is discussed in Section 4.4.

3.4 OOD DETECTION AND THE MIX OF TWO BRANCHES

Following Hendrycks & Gimpel (2016); Liang et al. (2017), MSP (with temperature) is adopted as
a score to decide whether an augmented sample x̃ ∈ X̃ is in-distribution or OOD data. The model
training on the fly is used for calculating the probabilities, and an apparent advantage of using it
instead of a pre-trained model is the saving of memory and computation. The OOD score of x̃i can
be obtained by

si = max
j∈{1,...,C}

exp(f j
θ (x̃i)/T )∑C

c=1 exp(f
c
θ (x̃i)/T )

, (6)

where f j
θ (x̃i) represents the logit of j-th class and T represents the temperature. Therefore, we have

sbasici for x̃basic
i and sheavyi for x̃heavy

i , respectively.

Samples with high scores are classified as in-distribution samples, and samples showing lower scores
are considered as OOD. Let Sbasic = {sbasici } be the set which collects all scores of the augmented
data from the basic branch, we know that most elements of Sbasic are in-distribution, based on which
we simply assume all elements of Sbasic form an Gaussian distribution and set the threshold for
filtering OOD data following the 3σ rule of thumb. That is, we use

τ = µ(Sbasic)− λ · σ(Sbasic) (7)

as the threshold, where λ is a hyper-parameter.

In order not to increase the sample complexity of augmentation, we mix augmented data from the
two branches, in the following manner

x̃dual
i =

{
x̃heavy
i , if sheavyi > τ

x̃basic
i , otherwise

(8)

That is, X̃dual = {x̃dual
i }Ni=1 is used to train the deep network fθ.

4 EXPERIMENTS

In this section, we evaluate DualAug in three different tasks: supervised learning (Section 4.1), semi-
supervised learning (Section 4.2), and contrastive self-supervised learning (Section 4.2). DualAug
effectively enhances the performance of data augmentation in the mentioned tasks. Additionally, we
provide an ablation study in Section 4.4.

4.1 SUPERVISED LEARNING

4.1.1 EXPERIMENTAL SETTINGS

In our experiments, the augmentation parameters of DualAug include Kbasic and Kextra. Kbasic

can choose from various automated data augmentation methods, such as AutoAugment (AA) (Cubuk
et al., 2019), RandAugment (RA) (Cubuk et al., 2020), and Deep AutoAugment (DeepAA) (Zheng
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et al., 2022). We follow the original augmentation parameters or policy of each corresponding method.
The extra augmentation include M extra operations, we have Kextra = {κ}Mi=1. We make M a
random number and sample it uniformly from the range [1, 10] for CIFAR-10/100 and SVHN-Core,
[1, 6] for ImageNet, respectively. For calculating the OOD score and threshold, the temperature T
and λ are set to 1000 and 1, respectively. Since the OOD Score of the model is unreliable in the
early stage of training, we will only use the basic augmentation branch at the initial training iterations
(which is referred to as the warm-up stage of our DualAug). The warm-up stage is set to be the first
20% training epochs in all experiments. Other information including the training batch size, number
of train epochs, and the optimizer will be introduced in appendix.

4.1.2 CIFAR-10/100 AND SVHN-CORE

Results. Table 1 reports the Top-1 test accuracy on CIFAR-10/100 (Krizhevsky et al., 2009), and
SVHN-Core (Netzer et al., 2011) for WideResNet-28-10 and WideResNet-40-2 (Zagoruyko &
Komodakis, 2016), respectively. When combined with automated data augmentation, DualAug
demonstrates superior on all networks and datasets. It can prove that the parameters proposed by
previous automated augmentation methods are tend to being conservative, which becomes an obstacle
to further growth in performance. Due to the heavy augmentation branch and effective mix strategy,
DualAug further augments data to boost model’s performance.

Table 1: Top-1 test accuracy (%) on CIFAR-10, CIFAR-100 and SVHN-Core. Better results in
comparison are shown in bold. Statistics are computed from three runs.

Dataset Metric AA AA+Ours RA RA+Ours DeepAA DeepAA+Ours

CIFAR-10 WRN-40-2 96.34 ± .10 96.44 ± .04 96.30 ± .14 96.48 ± .10 96.45 ± .07 96.48 ± .08
WRN-28-10 97.36 ± .05 97.44 ± .09 97.13 ± .05 97.32 ± .12 97.50 ± .08 97.59 ± .07

CIFAR-100 WRN-40-2 79.63 ± .26 79.83 ± .19 78.13 ± .12 78.57 ± .07 78.41 ± .07 78.47 ± .11
WRN-28-10 83.04 ± .20 83.42 ± .21 83.11 ± .26 83.60 ± .23 84.14 ± .12 84.39 ± .21

SVHN-Core* WRN-40-2 97.71 ± .07 98.00 ± .09 97.95 ± .12 98.11 ± .03 - -
WRN-28-10 97.76 ± .19 98.08 ± .11 97.97 ± .15 98.15 ± .06 - -

* DeepAA does not report its policy on SVHN-Core, thus we do not test our method with it on SVHN-Core.

4.1.3 IMAGENET

Compared method. We compare our DualAug with the following methods: 1) AA (Cubuk et al.,
2019), 2) RA (Cubuk et al., 2020), 3) DeepAA (Zheng et al., 2022), 4) TeachAugment (Suzuki, 2022),
5) FastAA (Lim et al., 2019), 6) Faster AA (Hataya et al., 2020), 7) UA (LingChen et al., 2020), 8)
TA (Müller & Hutter, 2021). The code of training AA and RA on ImageNet is not released, thus we
reproduce them using the training settings of DeepAA.

Evaluation protocol. In addition to the standard ImageNet-1K test set, we have chosen
to assess the effectiveness of our DualAug using more challenging datasets. These datasets
include ImageNet-C (Hendrycks & Dietterich, 2019), ImageNet-C̄ (Mintun et al., 2021),
ImageNet-A (Hendrycks et al., 2021), and ImageNet-V2 (Recht et al., 2019). It is noted that,

Table 2: Top-1 test accuracy (%)
on ImageNet.

Method Accuracy (%)

Default 76.40
FastAA* 77.60
Faster AA* 76.50
UA* 77.63
TA* 78.04
TeachAugment* 77.80
AA 77.30
AA+Ours 77.46
RA 76.90
RA+Ours 77.25
DeepAA 78.30
DeepAA+Ours 78.44
* Reported in previous papers.

to refrain from potential domain conflicts, we have eliminated con-
trast and brightness variations from the ImageNet-C dataset. Fur-
thermore, we incorporate the RMS calibration error on ImageNet-
1K test set as a metric to evaluate the robustness of models, fol-
lowing previous work (Hendrycks et al., 2019).

Result. In Table 2, we present the results of DualAug on the
ImageNet dataset. By combining DualAug with AA, RA, and
DeepAA, we observe an improvement in the performance of all
three data augmentation techniques. This illustrates the effective-
ness of DualAug on large-scale datasets. Specifically, DualAug
with DeepAA (the state-of-the-art automated data augmentation
method) achieves the highest top-1 accuracy (78.44%). In Table
3, we evaluate DualAug on more challenging ImageNet variant
datasets. When combined with DualAug, automated data augmen-
tation show improvements in all of them. This demonstrates that
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Table 3: Result of calibration RMS on ImageNet and accuracy (%) on variants of ImageNet (including
ImageNet-C, ImageNet-C̄, ImageNet-A, and ImageNet-V2) when different basic augmentations are
combined with our DualAug. Lower is better for the calibration RMS. The result in bold is better
in comparison.

Method Calibration RMS (↓) ImageNet-C ImageNet-C̄ ImageNet-A ImageNet-V2

AA 6.77 38.95 39.67 5.72 66.00
AA+Ours 6.75 40.99 40.12 6.05 65.80
RA 7.91 38.99 38.96 4.09 65.10
RA+Ours 7.65 41.67 40.44 4.87 65.30
DeepAA 6.03 42.82 40.94 6.57 65.80
DeepAA+Ours 5.59 43.85 42.08 6.83 66.20

DualAug’s effective mixing strategy successfully prevents exces-
sive out-of-distribution (OOD) data from hindering the learning process. Due to its more aggressive
augmentations DualAug naturally has an advantage in handling challenging tasks.

Discussion about TeachAugment. Similar to our DualAug in motivation, TeachAugment (Suzuki,
2022) also considers augmentation data that is meaningless or difficult to recognize in Adversarial
AutoAugment (Zhang et al., 2019). As shown in Table 2, our DualAug outperforms TeachAugment
which utilizes a teacher model and requires updating it with less time and memory cost. In addition,
DualAug can be combined with a broader range of augmentation methods, while TeachAugment is
limited to Adversarial AutoAugment only.

4.2 SEMI-SUPERVISED LEARNING

Table 4: Semi-supervised learning results on
CIFAR-10 using WideResNet-28-2. “4000
Labels” denotes that 4,000 images have labels
while the other 4,6000 do not. Similar for
“250 Labels”.

Method 250 Labels 4000 Labels

FixMatch 95.04 ± .68 95.77 ± .06
FixMatch+Ours 95.23 ± .45 96.10 ± .05

Semi-supervised learning (Yang et al., 2022) im-
proves data efficiency in machine learning by uti-
lizing both labeled data and unlabeled data. A series
of semi-supervised learning methods utilize consis-
tency training. Examples of these methods include
UDA (Xie et al., 2020), FixMatch (Sohn et al., 2020),
SoftMatch (Chen et al., 2023), among others. These
methods constraint consistency between the outputs
of two different data views, allowing the model to
learn features from unlabeled data. Data augmenta-
tion plays a crucial role in helping the models learn
invariants of data, guided by some consistency constraints. Therefore, having high-quality data
augmentation is of utmost importance in these methods.

In this section, we demonstrate the effectiveness of DualAug in semi-supervised learning by combin-
ing it with FixMatch as an example. FixMatch first generates pseudo-labels by using the model’s
predictions on weakly-augmented unlabeled data. A pseudo-label is only kept if the model makes a
highly confident prediction for a given data. The model is then trained to predict the pseudo-label
when being fed a strongly-augmented version of the same data. We apply our DualAug only to the
strongly-augmented data. The experiment setting of FixMatch is presented in appendix. The setting
for DualAug is the same as the one described in Section 4.1.1.

As shown in Table 4, we present the results of FixMatch with DualAug on CIFAR-10 using 250
and 4000 labelled samples only. The results show that our DualAug consistently improves the
performance of FixMatch.

4.3 CONTRASTIVE SELF-SUPERVISED LEARNING

Contrastive learning, such as MoCo (He et al., 2020), SimCLR (Chen et al., 2020), SwAV (Caron
et al., 2020), and SimSiam (Chen & He, 2021), is a crucial technique for self-supervised learning.
One key step in many contrastive learning methods is to generate two different views of each single
training image using data augmentations. Our DualAug significantly increases the data diversity
while preserving the data distribution, thus it is capble of providing more challenging and meaningful
views for contrastive learning. In this regard, we consider integrating our DualAug into contrastive
learning be beneficial.
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Figure 4: Score distribution of the total CIFAR-100 training set, which is obtained from the currently
trained model (using WRN-40-2) at the 100-th epoch. “Empirical pdf” refers to the empirical
probability density function, “Basic/Heavy/Dual Aug” refer to basic/heavy/dual augmentation, and
“No Aug” refers to the original data without augmentation. τ is threshold computed by Eq (7) and
averaged by iterations in one epoch. AutoAugment is chosen as basic augmentation.

Table 5: The linear evaluation results of
contrastive self-supervised learning with
DualAug.

Method CIFAR-10 ImageNet

SimSiam1 91.80 68.10
SimSiam+TeachAug2 - 68.20
SimSiam+RA2 - 68.00
SimSiam+TA2 - 62.70
SimSiam+AA - 67.85
SimSiam+YOCO3 - 68.30

SimSiam 91.61 68.23
SimSiam+Ours 92.29 68.67
1 Reported in SimSiam.
2 Reported in Teach Augment.
3 Reported in YOCO.

We try our DualAug on SimSiam (Chen & He, 2021).
We selected the original data augmentations mentioned
in the SimSiam paper to serve as the basic augmenta-
tions for our DualAug, which include geometric aug-
mentation, color augmentation, and blurring augmenta-
tion. The pre-train is conducted using ResNet-18 for 800
epochs on CIFAR-10, and ResNet-50 for 100 epochs on
ImageNet, respectively. The linear classification eval-
uation is conducted for 100 epochs on CIFAR-10 and
90 epochs on ImageNet, respectively. We follow other
experimental settings of SimSiam (which details is pre-
sented in appendix), and specific settings for DualAug
are consistent with those detailed in Section 4.1.1.

As shown in Table 5, we show the linear evaluation
results of pretrained SimSiam model on CIFAR-10 and
ImageNet when integrated with DualAug. Automated data augmentation (RA, TA, and AA) has
a negative impact on SimSiam. TeachAug (Suzuki, 2022) and YOCO (Han et al., 2022) enhance
SimSiam’s performance. DualAug consistently also improves SimSiam and outperforms previous
data augmentation methods.

4.4 ABLATION STUDY

Component. As shown in Table 6, we show the ablation study to analyze the impact of different
components in our DualAug. These components include the basic augmentation branch, the heavy
augmentation branch, and the OOD detector. For the basic augmentation, we chose AutoAugment.
Firstly, we observe a significant performance drop when only the heavy augmentation is applied
(2nd row) compared to 1st row. Secondly, when we add the OOD detector without using basic
augmentation (3rd row), the performance slightly improved compared to the 1st row. Thirdly,
when randomly mixing the heavy augmented data and basic augmented data without the OOD

Table 6: Ablation study about DualAug com-
ponent using WRN-28-2 on CIFAR-100. “Ba-
sic/Heavy Aug” refers to the basic/heavy augmen-
tation branch.

Basic Aug Heavy Aug OOD Detector Accuracy(%)

✓ ✗ ✗ 78.34 ± .10
✗ ✓ ✗ 73.32 ± .25
✗ ✓ ✓ 78.40 ± .19
✓ ✓ ✗ 77.43 ± .24
✓ ✓ ✓ 78.89 ± .21

detector (4th row), a slight performance drop
is observed compared to the 1st row. Finally,
when all three components of DualAug are used
(5th row), we achieve the best performance.
Moreover, compared with the 1st, 2nd, and 5th
row’s score distribution in Figure 4, DualAug
shifts the score distribution to a larger extent
while ensuring that most samples’ scores are
still above the threshold. This confirms that Du-
alAug makes data sufficiently augmented and
filters OOD data generated by heavy augmenta-
tion as much as possible.
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Figure 5: Hyper-parameters analysis of DualAug. Experiments are conducted on CIFAR-100 using
WideResNet-28-2. The dashed lines represent the accuracy of basic augmentation(AutoAugment).

Table 7: Ablation study about OOD
Detector generation using WRN-
28-10 on CIFAR-100. Online
(✓): currently-trained model used
as OOD detector. Online (✗) : pre-
trained model used as OOD detector.

Method Online Accuracy(%)

AA - 83.04 ± .20
AA + Ours ✗ 83.34 ± .15
AA + Ours ✓ 83.42 ± .21

OOD detector. We also make an ablation study on OOD
detector generation options. As shown in Table 7, the “On-
line (✓)” yields better results compared to the “Online (✗)”.
Furthermore, the ”Online (✓)” is more efficient for time and
memory saving.

Hyper-parameter analysis. Then, we investigate the effect
of three hyper-parameter of DualAug, including λ of 3σ rule
mentioned in Section 3.4, upper limit of M and the percentage
of epochs in warm-up phase mentioned in Section 4.1.1. We
perform experiments on CIFAR-100 dataset with WRN-28-2
backbone and evaluate on AutoAugment. According to the
result shown in Figure 5(a), it is reasonable to set λ in [0.6,1.2]
for all our experiments. According to the result shown in Figure 5(b), more aggresive upper limit of
M bring better performance, M = 8/10 is suitable. According to the result shown in Figure 5(c),
20% epochs of total stage bring the best performance.

Table 8: Ablation study about heavy
augmentation implementation using
WRN-28-10 on CIFAR-100. The
word in parentheses represents im-
plementations of heavy augmenta-
tion, which includes more Type, big-
ger Magnitude and extra Number of
transformations.

Method Accuracy (%)

RA 83.11 ± .26
+Ours (Type) 82.10 ± .18

+Ours (Magnitude) 83.21 ± .14
+Ours (Number) 83.60 ± .23

Heavy augmentation implementation analysis. As men-
tioned in Section 3.3, there are various implementation ways
to use heavy augmentation. In Table 8, RA (Cubuk et al.,
2020) is chosen as an example to analyze the optimal heavy
augmentation implementation manner. In detail, three dif-
ferent methods for heavy augmentation are chosen. Firstly,
more types of transformations such as Gaussian, Blur, Sample
Pairing, etc.are included into the transformations set in heavy
augmentation. Additionally, a higher degree of transformation
magnitude is used. While RA uses an magnitude of 14 in their
original paper, Our heavy Augmentation uses an magnitude
of 18. Finally, the number of augmentation transformations
are increased, which is the DualAug’s implementation. Re-
sults indicate that increasing the number of transformations is
the best choice, and it can be easily applied to various basic
augmentations.

5 CONCLUSION

This paper revealed that a large amount of well-augmented data can still be exploited in heavy-
augmentation while the weakness introduced by some OOD data outweighs the benefit of these
well-augmented data. Based on this observation, we proposed a generic yet straightforward dual-
branch framework, named DualAug, for automatic data augmentation. Specifically, the network
is encouraged to take advantage of heavy-augmentation by data mixing strategy, which makes
augmented data from the basic- and the heavy-augmentation branches wisely fuse. Extensive
experiments show the effectiveness of the proposed DualAug. Moreover, the experiments of semi-
supervised consistent learning and contrastive self-supervised learning prove that our DualAug can
be generalized to other task settings.
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A ALGORITHM

Algorithm 1 describe the pseudo code of Dual Augmentation.

Algorithm 1 Dual Augmentation

Input: Dataset D = {(xi, yi)}Ni=1, model fθ, temperature T of Maximum Softmax Probability, λ
of 3σ rule, warmup period epoch w, mini-batch size B;
Initialization: Perform random initialization for θ of the model;
for each epoch do

for each mini-batch do
Sample mini-batch data X = {xi}Bi=1, Y = {yi}Bi=1 from D

Augment x ∈ X to x̃basic
i ∈ X̃basic and x̃heavy

i ∈ X̃heavy by Eq 3 and Eq 4
Calculate sbasici ∈ S̃basic and sheavyi ∈ S̃heavy by Eq 6
τ = µ(Sbasic)− λ · σ(Sbasic)
if epoch ≥ w then

X̃dual = {x̃dual
i |

{
x̃heavy
i , if sheavyi > τ

x̃basic
i , otherwise

}

else
X̃dual = X̃basic

end if
Compute Loss of X̃dual and Y
Update θ

end for
end for
Output: model fθ

B TRAINING SETTINGS

For all basic augmentations, our experiments use the original settings and policy of augmentation,
including the range, probability, and magnitude of transformations.

B.1 SUPERVISED LEARNING

For CIFAR-10/100 and SVHN-Core the WideResNet-40-2 and WideResNet-28-10 (Zagoruyko
& Komodakis, 2016) network is trained for 200 epochs using SGD with Nesterov Momentum, a
learning rate of 0.1, a batch size of 128, a weight decay of 5e-4, and cosine learning rate decay.

For ImageNet (Deng et al., 2009), the ResNet-50 (He et al., 2016) is trained using the training setup
of DeepAA (Zheng et al., 2022). The training process lasts for 270 epochs, with each GPU using a
batch size of 512. The training is conducted on 2 A6000 GPUs, using image crops of size 224 x 224.
The initial learning rate is set to 0.1. A stepwise 10-fold reduction is applied after 90, 180, and 240
epochs. A linear warmup factor of 8 over the first 5 epochs is used.

B.2 SEMI-SUPERVISED LEARNING

We train the FixMatch for 1024 epochs on a 2080Ti GPU using a batch size of 64. The initial learning
rate is set to 0.03, and we adopt a cosine learning rate schedule. The weight decay is set at 5e−4. The
coefficient for the unlabeled batch size is 7, the coefficient for the unlabeled loss is 1, the pseudo-label
temperature is 1, and the pseudo-label threshold is 0.95.

B.3 CONTRASTIVE SEMI-SUPERVISED LEARNING

For CIFAR-10, we pre-train SimSiam on a single 3060Ti GPU using a batch size of 512 for 800
epochs. The learning rate adjusts using cosine scheduling, starting at 0.05, with a weight decay
of 5e − 4. For the linear evaluation of SimSiam, it runs for 100 epochs with a batch size of 256.
The initial learning rate is set to 30 and decays by a factor of 0.1 at the 60th and 80th epochs. The
momentum is set at 0.9.
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Figure 6: Visualization on CIFAR-100 of the original image, basic augmented image, heavy aug-
mented image, and dual augmented image. Basic/Heavy/Dual Aug refer to basic/heavy/Dual augmen-
tation, and No Aug refers to the original data without augmentation. The Heavy Aug row is sorted
from min to max based on the image’s score, with corresponding images in the other rows.

For ImageNet, we pre-train SimSiam on two A6000 GPUs with a batch size of 512. The learning rate
follows a cosine adjustment, starting from 0.05, with a weight decay of 5e − 4. During the linear
evaluation of SimSiam, which lasts 100 epochs with a batch size of 256, the initial learning rate is set
to 0.1 and employs a cosine learning rate schedule. The momentum is set at 0.9.

C DUALAUG WITH FASTAUTOAUGMENT AND UNIFORMAUGMENT

Table 9: Result of DualAug with FasetAA and UA. Result in
bold is better in comparison.

Dataset Model FastAA UA
Ours (✗) Ours (✓) Ours (✗) Ours (✓)

CIFAR-10 WRN-40-2 96.40 96.65 96.25 96.53
WRN-28-10 97.30 97.54 97.33 97.58

CIFAR-100 WRN-40-2 79.40 79.40 79.01 79.74
WRN-28-10 82.70 83.16 82.82 83.34

As a supplement, the results of com-
bining DualAug with FastAutoAug-
ment (Lim et al., 2019) and Unifor-
mAugment (LingChen et al., 2020)
are presented in Table 17. It can
be seen that DualAug effectively im-
proves the performance of basic aug-
mentation, except for the comparable
performance of WideResNet-40-2 on
CIFAR-100 for FastAutoAugment.

D VISUALIZATION OF DUAL AUGMENTED IMAGE

Figure 6 shows the visualization on CIFAR-100 of the original image, image of basic augmentation,
heavy augmentation, and dual augmentation. Among them, the images in the row of Heavy Aug are
sorted from minimum to maximum according to the Score of the image, and the other rows are the
corresponding images of the Heavy Aug row. As described in Section 3.4, heavy augmented images
that is out-of-distribution is degraded to basic augmented images, and dual augmented images mix
heavy augmented images and basic augmented images.

E DUALAUG’S FAIR COMPARISON WITH TEACHAUGMENT AND KDFORAA
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KDforAA. We present a fair comparison between DualAug and KDforAA (Wei et al., 2020), as
shown in Table 10. The experiments are based on AutoAugment and use the WRN-28-10 model. To
ensure fairness, the settings and Memory/Time cost are aligned with those of KDforAA. DualAug
demonstrate better performance compared to KDforAA.

TeachAugment. We provide a fair comparison between TeachAugment (Suzuki, 2022) and DualAug
in the same training pipeline, as shown in Table 11. The experiments use the WRN-28-10 model.
To ensure fairness, we use the EMA model to filter OOD data in Adv. Aug+DualAug, as done in
TeachAugment. TeachAug and DualAug present comparable performance in the fair setting, using
the Adv. Aug (Zhang et al., 2019) as the baseline. Furthermore, compared to TeachAug, we are
able to improve upon a more widely automated augmentation method(DeepAA+DualAug), resulting
in better performance in the same training pipeline. It is also worth noting that DualAug exhibits
better performance in comparison to TeachAug in self-supervised learning task, as shown in Table 5
(68.67% vs. 68.20%).

Table 10: Comparison between KD-
forAA and Ours. Result in bold is the
best.

Dataset KDforAA* AA + Ours

CIFAR-10 97.6 97.63 ± .09
CIFAR-100 83.8 83.94 ± .26
* Reported in KDforAA

Table 11: Comparison between TeachAugment and Ours.
Result in bold is the best.

Dataset TeachAug Adv. Aug + Ours DeepAA+Ours

CIFAR-10 97.25 ± .11 97.35 ± .09 97.52 ± .18
CIFAR-100 83.08 ± .39 83.02 ± .34 84.54 ± .23

F COMPUTATIONAL COST OF DUALAUG AND OTHER METHODS

We present a comparison of computation costs in Table 12. The experiment is carried out on
CIFAR-100 using a single 2080Ti GPU with WRN-28-10 model. As shown, when considering
memory cost, DualAug use the same memory cost as AA 2, while TeachAug and KDforAA require
additional memory. When it comes to time cost, DualAug use the least additional time cost. 3 All
in all, considering all factors, DualAug is a reasonable choice for achieving better performance in
comparison to KDforAA and TeachAug.

G DUALAUG’S RESULTS ON THE FGVC DATASET

We present more results on Flowers(Nilsback & Zisserman, 2008), Caltech(Fei-Fei et al., 2004),
Pets(Em et al., 2017), Aircraft(Maji et al., 2013), Cars(Krause et al., 2013) in Table 13. The
experiments train the inception-v4 model for 1000 epoch. DualAug demonstrates a significant
improvement over AutoAugment in almost all FGVC datasets except for Pets.

Table 12: The computational cost of
DualAug and other methods

Method Time Cost Memory Cost

AA 5.6h 4453MiB
AA+Ours 8.6h 4453MiB
KDforAA 12.9h 5804MiB
TeachAug 9.5h 8714MiB

Table 13: Results of DualAug on FGVC dataset. Result in bold
is better in comparison.

Method Flowers Caltech Pets Aircraft Cars Avg.

AA 87.55% 81.76% 84.52% 85.63% 93.51% 86.59%
AA+Ours 88.92% 84.85% 83.70% 86.74% 94.01% 87.64%

H DUALAUG’S RESULTS ON THE OBJECT DETECTION TASK

DualAug can also be extended to other tasks, such as object detection. We can analyze its effectiveness
in two phases: the pre-training phase and the finetuning phase.

2In our implementation, DualAug computes the scores of two branches one after another, thus it does not
incur any additional memory cost.

3The time cost of KDforAA includes the time spent training the teacher model.

15



Under review as a conference paper at ICLR 2024

In the pre-training phase. Our pre-training backbone can also be leveraged for object detection and
other related tasks. When we expand the results of Table 5 to the object detection task, we find that
DualAug leads to improvements in performance in Table 14.

In the finetuning phase, when DualAug is applied to a specific task, its softmax score can also be
utilized for out-of-distribution (OOD) detection. Following Zoph et al. (2020), we conduct an
experiment to demonstrate the performance of DualAug in object detection in Table 15.

Table 14: Results of classification and object detection on the
pre-train Simsiam model.

Method Classification(Acc. %) VOC 07+12 Detection(AP)

Simsiam 68.20 51.67
Simsiam+Ours 68.67 52.02

Table 15: Results of DualAug on
object detection finetune phase.

Method VOC 07 Detection(AP)

AA 56.30
AA+Ours 56.73

Expanding DualAug to encompass a wider range of tasks is an exciting aspect of future work. We
believe it will lead to further exploration and advancement in the field.

I DISCUSSION ABOUT DUALAUG’S ADDITIONAL COMPUTATIONAL COST

We conduct experiments to ensure that the training costs are aligned. We increase RA’s training time
to ensure a fair comparison, calling it RA*. The results in Table 16 clearly demonstrate that RA+Ours
outperforms the RA* and RA. The experiment is conducted using WRN-28-2 on CIFAR-100.

It is important to note that the policy search cost for RA, AA, and other automated augmentation
Table 16: Analysis of DualAug’s additional computa-
tional cost

Method Accuracy(%) Search Time(h) Train Time(h)

RA 77.94±.15 25 1
RA* 78.11±.13 25 1.5

RA+Ours 78.46±.12 0 1.5

methods is quite expensive, despite not in-
curring extra costs in training (as reported
in the table below and DeepAA (Zheng
et al., 2022)’s Table 4). Therefore, the in-
crease in computational cost is slight and
reasonable when compared to the signif-
icant performance improvement that Du-
alAug provides.

J AN ABLATION STUDY OF DUALAUG’S OOD SCORE

From a theoretical perspective, it appears that refining the metrics for the OOD score

Table 17: Results of DualAug using
different OOD score

Method Accuracy(%)

AA+Ours(SoftMax) 79.83 ± .19
AA+Ours(EBM) 79.95 ± .21

could improve the performance of DualAug. However, when in-
tegrating it into DualAug, the trade-off between computational
expenses of OOD score calculation and the gain of performance
must be carefully weighed within the context of the specific task.
We attempt to use energy-base model(EBM) (Liu et al., 2020)
as an alternative OOD Score. EBM may have a slight edge over
softmax. The experiment is conducted using WRN-40-2 on
CIFAR-100.

K DUALAUG’S RESULTS BASED ON MIXUP

We use Mixup (Zhang et al., 2017) as an example to analyze the integration of DualAug with
mixed-base augmentation. The experiment is conducted using ResNet-18 on CIFAR-10. Upon

Table 18: Results of DualAug based on Mixup

Method Accuracy(%)

Mixup(α = 1.0) 95.64 ± .11
Mixup(α = 10.0) 94.67 ± .14

Mixup(α = 10.0)+Ours 95.78 ± .09
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observation, it appears that mixup tends to select α <= 1 in Beta(α, α) which may not provide a
enough amplitude of augmentation. To address this, we can simply set α > 1 and utilize DualAug
to filter OOD data in mixup data. The Table 18 demonstrates that we achieve some improvement
compared to standard mixup.
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