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Abstract

Previous studies have highlighted significant advancements in multimodal fusion.1

Nevertheless, such methods often encounter challenges regarding the efficacy of fea-2

ture extraction, data integrity, consistency of feature dimensions, and adaptability3

across various downstream tasks. This paper proposes a generalized multimodal fu-4

sion method (GMF) via the Poisson-Nernst-Planck (PNP) equation, which adeptly5

addresses the aforementioned issues. Theoretically, the optimization objective for6

traditional multimodal tasks is formulated and redefined by integrating information7

entropy and the flow of gradient backward step. Leveraging these theoretical8

insights, the PNP equation is applied to feature fusion, rethinking multimodal9

features through the framework of charged particles in physics and controlling their10

movement through dissociation, concentration, and reconstruction. Building on11

these theoretical foundations, GMF disassociated features which extracted by the12

unimodal feature extractor into modality-specific and modality-invariant subspaces,13

thereby reducing mutual information and subsequently lowering the entropy of14

downstream tasks. The identifiability of the feature’s origin enables our approach to15

function independently as a frontend, seamlessly integrated with a simple concate-16

nation backend, or serve as a prerequisite for other modules. Experimental results17

on multiple downstream tasks show that the proposed GMF achieves performance18

close to the state-of-the-art (SOTA) accuracy while utilizing fewer parameters and19

computational resources. Furthermore, by integrating GMF with advanced fusion20

methods, we surpass the SOTA results.21

1 Introduction22

The world is inherently multimodal; individuals perceive and integrate diverse sensory inputs to form23

a more comprehensive understanding of their surroundings. Similarly, multimodal learning processes24

inputs from multiple modalities, offering potential applications in complex downstream tasks such as25

cross-modal retrieval and multi-modal classification. Nevertheless, features from different modalities26

often differ significantly, even when describing the same event [1, 2]. Consequently, fusing features27

from different modalities is challenging, requiring a dedicated fusion phase before being applied in28

tasks, bridging the semantic gap between different modalities is crucial for valid feature fusion.29

Theoretical works on multimodal fusion have proposed more generalized schemes. MBT [3] ex-30

changes mutual information between different modalities to enhance understanding. Perceiver [4]31

stacks various features and extracts fusion features from transformer blocks to condense task-related32

features. Uni-Code [2] distinguishes between modality-invariant and modality-specific features,33

optimizing feature utilization. Moreover, in downstream tasks, innovative fusion methods are applied.34

MAP-IVR [5] considered that image features belong to the subset of video features, UAVM [6] fuses35

different modalities using an independent fusion block.36
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Although existing methods for feature fusion show considerable improvements, they often rely on37

several incomplete assumptions: 1)Feature dimension consistency: Feature dimensions across38

different modalities are perfectly aligned [7, 8], leading to inefficient representations, thus impairing39

model performance; 2)Data reliability: In reality, poor quality data (e.g. missing modalities) directly40

degrades performance [9, 10], even though datasets are assumed to be complete; 3)Downstream41

task applicability: Feature fusion requirements are uniform across different tasks, but matching42

tasks [11, 12, 13, 14, 5] require modality-invariant features (common to all modalities), whereas43

detection tasks [15, 16] necessitate modality-specific features (specific to each modality) additionally;44

4)Feature extraction effectiveness: Loss function in feature fusion does not affect the feature45

extractor’s gradients [17, 18] (See Appendix A), often results in feature extractor homogenization [17],46

deteriorating performance in downstream tasks [1]. Furthermore, the fixed quantity of modal features47

often limit the generalizability of proposed fusion methods [2].48

This paper introduces a generalized multimodal fusion method (GMF) that operates independently49

of the usual constraints. We formulate the learning objectives for traditional multimodal tasks and50

propose new definitions based on information entropy theory [19, 20]. Taking inspiration from the51

Poisson-Nernst-Planck equation (PNP) [21], treating features as charged particles to disassociate them,52

employing GMF for multimodal feature fusion. Leveraging the principles of the PNP equation, GMF53

orchestrates the guided migration of features within a high-dimensional space, segregating modality-54

invariant from modality-specific features within the disassociated feature landscape, reducing the55

mutual information between features further decreases the relevant entropy of downstream tasks.56

Specifically, the proposed method incorporates a reversible feature dissociation-concentration step57

and applies reasonable regional constraints to the reconstruction gradient, emphasizing the connection58

between the feature extractor and the loss of a downstream task, enabling GMF to generalize59

effectively and serve as the frontend for other fusion modules. We evaluated our method on multiple60

datasets across specific downstream tasks. It consistently demonstrated significant performance and61

generalization capabilities. In summary, our contributions are as follows:62

(1) We propose a novel theory for multimodal feature fusion based on the Poisson-Nernst-Planck63

equation and information entropy with an exhaustive proof, demonstrating its effectiveness64

through theoretical analysis and preliminary experiments.65

(2) We have devised a generalized feature fusion method GMF, grounded in entropy theory and the66

PNP equation, which stands independent of both feature extractors and downstream tasks.67

(3) Experiments demonstrate that GMF achieves comparable performance to SOTA with fewer68

computational demands and parameters, while also showing robustness to missing modalities.69

Moreover, when integrated with advanced fusion methods, its performance and robustness are70

notably enhanced, surpassing SOTA and ensuring greater reliability in real-world applications.71

2 Related Works72

Innovative advancements in multimodal fusion methods, both theoretically [2] and structurally [4],73

have significantly propelled the progress of generalized multimodal tasks (denote as GMTs). Some74

SOTA methods focusing on downstream tasks propose fusion methods specifically tailored for75

them. However, the fusion challenges vary with the diversity of downstream tasks. In this paper,76

we categorize multimodal tasks into two types: Native Multimodal Tasks (denote as NMTs) and77

Extended Multimodal Tasks (denote as EMTs), based on whether corresponding single-modal tasks78

exist. Specifically, cross-modal retrieval and matching tasks such as Image-Video retrieval [14, 5]79

and Image-Text matching [12, 13, 11] usually belong to NMT and only require the similarity of80

modalities. For example, CLIP [22] transforms the image classification task into an image-text81

retrieval task, achieving stunning zero-shot performance. Multi-modal classification, recognition, and82

detection tasks such as emotion recognition [16] and event classification [6] usually belong to EMT.83

Different modalities often have inconsistent perspectives, and fully aligned features will affect the84

performance of such tasks.85

To illustrate the generalization capabilities of these methods and their impact on downstream tasks,86

Tab 1 is presented. The "Type" column categorizes methods by GMT support. "Align." indicates87

feature alignment across modalities. "Grad. Ref." assesses if fusion affects feature extractor gradients.88

"Gene." denotes uniformity of fusion requirements across tasks. "Avail." indicates handling of missing89
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modalities during inference. Lastly, "Complexity" reflects computational complexity regarding (n)90

modalities. Perceiver [4] does not report multimodal correlation experiments.91

Table 1: Comparison of multimodal method proposed in the fusion phase.
Method Type Align. Grad. Ref. Gene. Avail. Complexity Mentioned Multimodal Related Task
CLIP [22] NMT ✓ ✓ × - O(n2) I-T, Contrastive Learning
ALBEF [12] NMT ✓ ✓ × - O(n2) I-T, Contrastive Learning and Matching
ViLT [11] NMT ✓ ✓ × - O(n2) I-T, Matching
METER [13] NMT ✓ ✓ × - O(n2) I-T, Matching
APIVR [14] NMT ✓ ✓ × - O(n2) I-V, Retrieval
MAP-IVR [5] NMT × ✓ × - O(n2) I-V, Retrieval
AVoiD-DF [15] EMT ✓ ✓ ✓ ✓ O(n2) A-V, Deepfake Detection
MISA [16] EMT ✓ ✓ × × O(n2) A-V-T, Emotion Recognition
UAVM [6] EMT ✓ × ✓ ✓ O(n2) A-V, Event Classification
DrFuse [8] EMT × ✓ × × O(n2) EHR-CXR, Representation
MBT [3] GMT ✓ × ✓ ✓ O(n2) A-V, Event Classification
Perceiver [4] GMT ✓ × ✓ × O(n) -
Uni-Code [2] GMT × ✓ ✓ ✓ O(n2) A-V, Event Classification; localization

It is worth noting that the evaluation of gradient correlation is simply whether there is an explicit92

excitation of the loss function. Some downstream methods introduce ways such as concat (e.g.,93

classifier of AVoiD-DF [15]) in the classification stage, and the modal missing adaptation in the fusion94

stage does not represent the adaptation for this task. In addition, for NMTs, the complete modal input95

is necessary, so the conclusion of this part is "-"; Here, the complexity takes the highest value, which96

does not represent the final computation cost. (e.g., the disentangled loss of MISA [16] is O(n2).97

3 Theory98

In this subsection, we briefly introduce the notation system used in this paper and the general structure99

of multimodal tasks, representing the information entropy at different stages of multimodal learning.100

After that, we generalize the information entropy to multi-modality and redefine the entropy reduction101

objective for multi-modal learning. Finally, we evaluate the impact of linear dimension mapping on102

the performance of downstream tasks and present the preamble theorem.

Extraction Fusion Classification

Figure 1: Stages of information entropy change. Where Zi might be a set of vectors ({ZA
i , . . . , ZM

i })
or a vector, depending on the fusion method F (·), and C(·) stands for classifier.

103

3.1 Formulation and Traditional Objective Definition104

Consider inputs with d modalities, where j ∈ {1, 2, . . . , d} represents different modalities. Ex-105

amine a dataset comprising n samples. Let the input be X = {X1, X2, . . . , Xn}, where a106

specific sample i ∈ {1, 2, . . . , n} is represented as Xi = {X(1)
i , X

(2)
i , . . . , X

(d)
i }. The output107

is Y = {Y1, Y2, . . . , Yn}, and each {Xi, Yi} forms a sample pair. X
(j)
i represents the orig-108

inal sample of modality j with varying shapes, while the shape of Yi depends on the specific109

datasets and downstream tasks. For each modality j, specific feature extractors f (j)(·, θ(j)) and110

parameters θ(j) are employed for feature extraction. The fused features capturing multimodal111

interactions for sample i are denoted as Zi = {Z(1)
i , Z

(2)
i , · · · , Z(d)

i }. The set of global fea-112
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tures is expressed as f(X, θ) = [f (1)(X(1), θ(1)); f (2)(X(2), θ(2)); . . . ; f (d)(X(d), θ(d))], where113

θ = {θ(1), θ(2), . . . , θ(d)}.114

The multimodal task is depicted in Figure 1, delineating three key parameters: the feature extractor115

θ, fusion parameter θF , and classifier parameter θC . Optimization of these parameters aims at116

maximizing performance. Regarding entropy, F (·) represents the fused mapping, extending the117

learning objective from feature extraction to fusion:118

min
θ,θF
{H(F (f(X, θ), θF ) | F (f(X, θ))} (1)

Similarly, we employ C(·) to represent the mapping for downstream tasks and generalize it to embody119

the learning objective fused with downstream tasks:120

min
θ,θF ,θC

{H(Y | C(F [f(X, θ), θF ], θC)])} (2)

In Eq. ( 2), these parameters are optimized by downstream task losses. If there is a loss in the fusion121

stage, then it optimizes the parameters in Eq. ( 1).122

3.2 Information Entropy and Objective Redefinition123

Feature extraction through dimensionality reduction involves reducing data uncertainty [19], as124

quantified by information entropy H . In Figure 1, we show a simplified approach to single-modal125

learning. The feature extractor and classifier (dotted arrow) directly minimize the information126

entropy of both the input X(j)
i and the output Yi by adjusting the parameters of the feature extractor127

f (j)(·, θ(j)) and the classifier C(j)(·, θC(j)

) for modality j:128

min
θ(j),θC

H[Yi|C(j)(f (j)(X(j), θ(j)), θC
(j)

)] (3)

This process, facilitated by feature extractors, condenses data samples into a feature space, preserving129

pertinent attributes for downstream tasks. Think loss as stimulation of entropy reduction, maximize130

mutual information about related features [18]. Expanding to the multimodal fusion stage, the131

objective is to minimize the entropy of the fused features compared to the sum of the entropy of132

each input feature. In the context of multimodal fusion, where outputs from disparate modalities are133

integrated post-feature extraction, the total information entropy of the system can be estimated using134

the joint entropy formula, and for constant X:135

H(f(X, θ)) =

d∑
j=1

H(f (j)(X(j), θ(j)))− I(f(X, θ))︸ ︷︷ ︸
Mutual information

==⇒ min
θ

H(f(X, θ))⇔ max
θ

I(f(X, θ))

(4)
Downstream objectives are typically structured to minimize mutual information, consequently leading136

to a reduction in entropy. However, in fusion stage, disparities observed among the equations (1),137

(2), and (3) suggest that certain fusion-method might not establish a straightforward correspondence138

between network inputs and outputs. Achieving complete consistency between modalities, where139

mutual information is zero, may not always lead to optimal outcomes [1, 20], potentially increasing140

entropy in downstream task-related features [17]. This observation is substantiated by the diminishing141

performance of certain multimodal methods [3, 15] compared to earlier unimodal methods, indicating142

a decline in their capacity to extract distinctive features from individual modalities when confronted143

with the absence of certain modalities. Thus, optimization objectives for multimodal tasks should144

balance minimizing entropy during fusion with maintaining or reducing entropy in downstream145

task-related features. This highlights the necessity of aligning deep learning tasks with downstream146

objectives and minimizing information entropy when designing loss functions for these tasks.147

Theorem 3.1: The overarching objective of multimodal tasks lies in minimizing entropy during the148

fusion stage without amplifying the entropy of downstream task-related features:149

min
θ,θF ,θC

{H(Y | C(F [f(X, θ), θF ], θC)])}

s.t. ∀j ∈ {1, 2, . . . , d}, θ(j) ∈ argmin
θ(j)

H(Y |f (j)(X(j), θ(j)))
(5)
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Some approaches introduce the fused results as residuals, which demonstrate a certain degree of150

improvement, and this theory provides a better rationale for such enhancement. However, given that151

the forward pass necessarily involves the operation of F (·), it becomes challenging to fully meet this152

precondition. During gradient backward, the loss incurred during the fusion stage for the feature153

extractor should align with the loss of the downstream task or be zero.154

3.3 Modality Feature Dissolution and Concentration155

Adding too many parameters, or overcharacterization, can improve the model’s ability to fit the data,156

acting like a parameterized memory function [23]. However, it’s important to balance this with the157

amount of data available for the next task to prevent learning too much noise and overfitting [7]. On158

the other hand, having too few parameters may weaken the model’s ability to represent complex159

patterns, resulting in lower performance across different methods (See Appendix C).160

Theorem 3.2: The dimension of the feature that is best suited to the downstream task varies, and161

there is always an optimal value for this feature. The dimension multiple relationship between each162

layer of the feature extractor is fixed, and the initial dimension is adjusted. Too low dimension of the163

final output will lead to inefficient representation, and too high dimension will introduce noise. The164

existence of an integer lbest such that for any integer l distinct from lbest, the conditional entropy of165

the model’s predictions fl(X, θl) is greater than that of the model’s predictions flbest(X, θlbest).166

∃lbest ∈ N,∀l ∈ N, l ̸= lbest, H(Y |fl(X, θl)) > H(Y |flbest(X, θlbest)) (6)

Theorem 3.3: The feature extractor is fixed, and its original output feature dimension l is mapped167

to nl, and finally back to l. The mapping result is used as the basis for the downstream task. The168

performance of downstream tasks is infinitely close to the original performance as n increases, but169

never greater than the original performance. For magnification n > 1, n ∈ Z, mapping matrix170

U1 ∈ Rl×nl and U2 ∈ Rnl×l, For the output features f(X, θ) ∈ Rl and Y :171

H(Y |f(X, θ)) < H(Y |U1 · (U2 · f(X, θ))) (7)
172

limn→∞H(Y |U1 · (U2 · f(X, θ)))) = H(Y |f(X, θ) (8)
Conjecture 3.1: Rely on Theorem 3.1, 3.2, 3.3, we propose an conjecture that a boundary of perfor-173

mance limitation exists, determined by downstream-related entropy. Theoretically, by establishing a174

direct correspondence between the extractor and classifier, fusion method can enhance the limitation175

boundary, further improve performance.176

3.4 Poisson-Nernst-Planck Equation177

The Nernst-Planck equation represents a mass conservation equation that characterizes the dynamics178

of charged particles within a fluid medium. This equation modifies Fick’s law of diffusion to include179

scenarios where particles are also mobilized by electrostatic forces relative to the fluid. The equation180

accounts for the total flux of particle p ∈ {+,−}, denoted as Jp, of charged particles, encompassing181

both diffusion driven by concentration gradients and migration induced by electric fields. Since fusion182

features are usually one-dimensional, we only consider the x direction here. For a given charged183

particle i, the equation describes its movement as follows:184

Jp = −Dp∇cp(x, t)︸ ︷︷ ︸
Diffusion

+ cp(x, t)v︸ ︷︷ ︸
Advection

+
Dpzpe

kBT
cp(x, t)E︸ ︷︷ ︸

Electromigration

(9)

p is abstracted as elements in the modality-invariant feature and the modality-specific feature. Here,185

cp(x, t) denotes the concentration of particle, while Dp (diffusivity of p), kB (Boltzmann constant),186

zp (valence also electric charge), and e (elementary charge) are constants. T is a hyperparameter,187

represent temperature. E represents the electric field of the entire system, and v represents the flow188

rate. The Poisson equation describes the relationship between the distribution of a field and the189

potential energy it induces, represented by the expression:190

∇2ϕ(x) = − ρ

ε0
, ρ = e(z+c+(x, t) + z−c−(x, t)) (10)

ϕ signifies the potential, considered as an external excitation, ε0 represent dielectric constant. By191

integrating the relationship between the concentration of charged particles and the electromigration192
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term in the Poisson equation, we derive the Poisson-Nernst-Planck (PNP) equation. Assuming that193

the dissociation process approaches equilibrium, for feature elements without magnetic field and flow194

velocity, we can consider the time-dependent change in concentration cp(x, t) of the charged particle195

i over time t is negligible:196

∂cp(x, t)

∂t
= Dp(

∂2cp(x, t)

∂x2
− zpeF

kBTϵ0
cp(x, t)(z+c+(x, t)+z−c−(x, t)+

zpe

kBT

∂cp(x, t)

∂x

dϕ(x)

dx
) ≈ 0

(11)
When the final state is stable, a sufficiently large 1D electrolytic cell of length l, at the potential197

equilibrium boundary b, it can be equivalent to (See Appendix B):198

(ϕ(0)− ϕ(b))− e

∫ b

0

c−(x, t)z−dx ≈ e

∫ l

0

c+(x, t)z+ − c−(x, t)z−dx (12)

In this context, ϕ(x) represents an external influence from another modality feature. We assume that199

modality-invariant feature elements have a positive charge, while modality-specific feature elements200

have a negative charge. The difference ϕ(0)− ϕ(b) indicates the enrichment potential of modality-201

invariant feature elements for the excitation modality. This potential attracts modality-specific feature202

elements in dissociated modality towards dissociation.203

Theorem 3.4: Following dissociation and Theorem3.3, in line with the principles of matter and204

information conservation, the excitation and attraction features can revert back to their original state.205

A cyclic feature electrolytic cell is generalized, using a loss function as stimulation:206

Ẑ
(j)
i = Udisf

(j)(X
(j)
i , θ(j)) (13)

207

L = ||U(j)
con[Ẑ

(j)
i (1 : bj); Ẑ

(j+1)
i (b(j+1) + 1 : nl(j+1))]− f (j)(X

(j)
i , θ(j))||2 (14)

L is loss function. l(j) and b(j) are feature dimension and dissociation boundary of modality j,208

respectively. Around this boundary, features are explicitly distinguished. The mapping matrix209

U(j)
dis ∈ Rnl(j)×l(j) , U(j)

con ∈ Rl(j)×(nl(j+1)+b(j)−b(j+1)) is learnable. Ẑ
(j)
i ∈ Rnl(j) is the result of210

f (j)(X
(j)
i , θ(j)) ∈ Rl(j) being linearly mapped (dissolved) into a higher dimensional space.211

4 Methodology212

Set the dissociation boundary b(j) and feature dimension l(j) of modality j. The feature with the213

smallest dimension is denoted as l∗. The feature dimension of the dissociation is nl(j), with a uniform214

magnification of n > 2.215

Combining information entropy theory with the PNP equation, we propose GMF method to optimize216

fusion feature mutual information on the premise of maintaining the downstream task related infor-217

mation of input features. Following Assumption3.1, GMF has only four learnable matrices for each218

modality, enforces correlations without complex structure, as shown in Fig 2.219

GMF is divided into three stages, for each modality j, applying different learnable mapping ma-220

trices: dissolve matrix P(j)
dis ∈ Rnl(j)×l(j) , concentrate matrix P(j)

cinv ∈ Rb(j)×l∗ and P(j)
cspec ∈221

R(nl(j)−b(j))×l(j) , reconstruct matrix P(j)
recon ∈ Rl(j)×(l(j)+l∗).222

Zi = GMF(f(Xi, θ), θ
GMF ), θGMF = {P(j)

dis,P(j)
cinv,P(j)

cspec,P(j)
recon} (15)

First, to make sure the features move, we map (dissolve) them to higher dimensions. Next, for the223

feature of each modality, after dimension elevation, the goal is explicitly divided as specific and224

invariant by abstracting different kinds of features into positive and negative charged particles:225

Ẑ
(j)
i = P(j)

dis(f
(j)(X

(j)
i , θ(j))), (Ẑ

(j)
i )inv = Ẑ

(j)
i (1 : b(j)), (Ẑ

(j)
i )spec = Ẑ

(j)
i (b(j) + 1 : nl(j))

(16)
f (j)(X

(j)
i , θ(j)) ∈ Rl(j) , and Ẑ

(j)
i ∈ Rnl(j) . Referencing Eq.( 4), irrespective of the initial length226

l(j) of a feature, partitioning it into invariant (Z(j)
i )inv ∈ Rl∗ and specific (Z

(j)
i )spec ∈ Rl(j)227

components aims to minimize output feature dimensions, thereby mitigating entropy disturbance.228

After concentrate, finally, the output Z(j)
i ∈ R(l(j)+l∗) is obtained:229

(Z
(j)
i )inv = P(j)

cinv(Ẑ
(j)
i )inv, (Z

(j)
i )spec = P(j)

spec(Ẑ
(j)
i )spec, Z

(j)
i = [(Z

(j+1)
i )inv; (Z

(j)
i )spec]

(17)
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Figure 2: Structure of GMF. The input is taken from f(Xi, θ) and the output is taken as Zi. This is
done in three steps: dissociation concentration, and reconstruction. As a front-end, the output can be
directly used for classification or can be connected to other fusion modules. See Appendix J

.

Eventually the entire system can be restored to its original state. A loss function is given as an230

external incentive to force the features to move in different directions. Following the Theorem3.4, we231

use P(j)
recon to map the features back to f (j)(X

(j)
i , θ(j)) and apply the disassociation loss.232

Ldis =

d∑
j=1

||(f (j)(X
(j)
i , θ(j))− P(j)

reconZ
(j)
i ||

2 (18)

233

5 Experiment234

In this section we briefly introduce the experimental dataset, evaluation metrics, implementation235

details, experimental results and analysis. Our evaluation focuses on solving the limitations mentioned236

in Section 1 and verifying our theory and hypothesis, so we pay more attention to the fusion237

performance under the same feature extraction ability.238

5.1 Datasets and experimental tasks239

We performed the NMT task for image-video retrieval on ActivityNet [24] dataset and the EMT task240

for audio-video event classification on VGGSound [25] and deepfake detection on FakeAVCeleb [26],241

and compared the NMT, EMT and GMT methods (as defined in the Related Work) respectively. We242

conduct three sets of comparison experiments:243

(1) Input the same features to simulate the freezing of the feature extractor, and evaluate the entropy244

reduction effect of the fusion method on the existing information.245

(2) Complete the training of the whole model including the same feature extractor, and evaluate the246

impact of the fusion method on the gradient of the feature extractor.247

(3) Select a set of method-specific feature extractors to test the limitation performance.248

For EMTs, VGGSound dataset evaluate (1) and (2)1, the evaluation metric is the classification249

accuracy ACC(%). FakeAVCeleb dataset evaluate (3), due to the imbalance of data samples, the250

evaluation focuses on the Area under the Curve of ROC (AUC). For NMTs, ActivityNet dataset251

evaluate (4), the evaluation metric is the matching accuracy mAP, mAP@n represents that the252

matching task target is selected from n samples.253

1When the dataset was acquired, 20% of the samples were no longer valid.
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5.2 Implement details254

For the methods proposed in different papers, we only compare the fusion structures except feature255

extractor and classifier. During the evaluation, we set n to 4 and b(j) to always be 1
2 of l(j). All256

experiments were performed on a single RTX4090@2.64GHz, the CPU for testing the inference257

time is R9 5900X@4.5GHz, and the random seed was fixed to ’1’ except for dropout proposed258

by baseline and some transformer [27]-based methods. There was no data augmentation (such as259

cropping, rotation) or introduction of any pre-training parameters in the data preprocessing process.260

See the Appendix G for details of the training parameters.261

The baseline of the multi-modal is all the direct connection of the features of the output of the262

single-modal baseline. GMF stands for simple connection as the back-end. "G-method name" stands263

for GMF as a front-end for the method, See Figure 13 in Appendix for the detailed structure.264

5.3 Evaluation265

For EMTs, our experiments, detailed in Table 2 and conducted on the VGGSound dataset [25],266

employ R(2+1)D [28] as the video feature extractor and ResNet-18 [29] as the audio feature extractor.267

The ’Training Extractor’ label indicates trainable parameters, while ’Frozen Extractor’ denotes268

fixed parameters. Columns ’A’ and ’V’ represent audio and video inputs, respectively, while a269

value of ’0’ for the other modality input indicates its absence. For trainable feature extractors, we270

introduce additional columns ’A(uni)’ and ’V(uni)’ to evaluate the direct use of extracted features for271

classification, thereby assessing feature extraction efficacy.272

Table 2: Comparison of EMTs and GMTs methods on VGGSound.

Method Frozen Extractor Training Extractor Real-Time Params FLOPs
A V AV A(uni) A V(uni) V AV CPU(s)

Baseline 23.31 25.14 28.56 23.31 - 25.14 - 28.56 - - -
AVoiD-DF [15] 16.56 18.33 31.61 15.32 10.81 17.71 13.44 30.05 0.028 57.45M 0.11G
MISA [16] 20.88 21.67 32.85 20.43 18.65 22.65 20.03 33.77 0.015 50.88M 0.40G
UAVM [6] 23.28 24.98 26.15 21.86 - 23.37 - 30.81 0.006 25.70M 0.05G
DrFuse [8] 20.45 21.92 32.79 20.31 18.77 22.39 20.31 33.23 0.011 37.33M 0.31G
MBT [3] 18.87 20.01 31.88 18.72 16.35 19.98 17.44 33.95 0.013 37.83M 0.15G
Perceiver [4] 17.98 18.31 33.41 21.45 15.31 23.83 16.05 35.21 0.301 45.05M 45.59G

GMF 22.01 24.32 31.64 21.83 21.55 23.93 23.67 32.01 0.001 5.25M 0.01G
G-MBT 21.67 22.98 34.28 19.81 18.33 20.68 19.25 34.97 0.013 43.08M 0.16G
G-Perceiver 20.13 21.66 34.73 21.53 17.92 23.81 18.17 35.85 0.301 50.31M 45.61G

UAVM [6] emphasizes unified expression, highlighting the importance of modality absence. In273

contrast, AVoiD-DF [15] and MBT [3] prioritize exchanging feature semantics, making them par-274

ticularly sensitive to missing modalities; MBT further distinguishes itself through the incorporation275

of bottlenecks. Notably, DrFuse [8] and MISA [16] marginally outperform our method, possibly276

due to the abundance of learnable cross-modal parameters enabled by their self-attention modules,277

which also magnifies the impact of modality absence. Perceiver [4], characterized by stacked features278

without explicit modal differentiation, is notably susceptible to missing modalities. In cases where279

the feature extractor is trainable, the impact of modality absence becomes more pronounced. At this280

juncture, this influence arises not only from modal fusion but also from the homogenization of features281

extracted by the feature extractor. GMF stands out for its minimal parameters and computational load,282

yet it achieves competitive performance while significantly reducing sensitivity to modality absence.283

This remarkable trait can be harnessed by integrating it with other methods, imparting them with284

similar characteristics. This integration leads to performance enhancement and decreased sensitivity285

to modality absence, showcasing the versatility and applicability of GMF.286

For NMTs, our performance report on the ActivityNet [24] dataset is presented in Table 3. To be287

fair, we utilize the features same as AP-IVR [14] (4096-dimensional for video, 128-dimensional for288

images) as input. We map image features to 4096 dimensions or video features to 128 dimensions.289

Three combinations are obtained: Image-Video feature dimensions are (1) 128-4096 (denoted as290

128-4096), (2) 4096-4096 (denoted as 4096), and (3) 128-128 (denoted as 128).291

We employ CLIP [22] as the baseline, which only requires computing cosine similarity of mapped292

features without introducing parameters. METER [13] introduces the cross-attention module on this293
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Table 3: Comparison of NMTs and GMTs methods on ActivityNet.
Method mAP@10 mAP@20 mAP@50 mAP@100 Params FLOPs

CLIP (4096) 0.235 0.221 0.213 0.205 - -
METER (4096) 0.252 0.245 0.235 0.228 62.96M 0.13G

Perceiver (128) 0.264 0.253 0.241 0.232 44.54M 45.56G
MAP-IVR (128) 0.341 0.323 0.306 0.294 3.81M 0.01G
GMF (128) 0.349 0.335 0.323 0.308 0.32M 0.00G

APIVR (128-4096) 0.264 0.255 0.249 0.232 2.19M 0.00G
MAP-IVR (128-4096) 0.349 0.337 0.322 0.311 11.94M 0.02G
GMF (128-4096) 0.355 0.341 0.327 0.315 119.21M 0.23G

basis, but the improvement is limited due to the sparse features. MAP-IVR [5] employs fixed-length294

mappings, while Perceiver [4] inputs an indistinguishable feature mapping, so the actual number of295

parameters relative to input dimensions is not apparent. GMF achieving competitive performance296

in (128) with minimal additional parameters and computations. Furthermore, the experiments (128-297

4096) demonstrate the necessity of unequal-length fusion, ensuring not only the flexibility of the298

method but also profoundly impacting its performance and additional parameters. In the experiments299

of unequal-length fusion, GMF achieved state-of-the-art performance. Given that GMF is composed300

of linear layers, an increase in input dimensionality leads to an escalation in parameter count.301

Table 4: Comparison of fusion methods based on different feature extractors on FakeAVCeleb.
Baseline MISA [16] UAVM [6] DrFuse [8] Perceiver [4] GMF G-Perceiver GMF-MAE

ACC 97.68 97.68 78.64 97.68 97.68 97.68 98.21 99.99
AUC 69.33 79.22 43.92 78.56 93.45 91.88 96.71 99.97

We performed a theoretical performance evaluation on FakeAVCeleb [26], as shown in Table 4. We302

use a feature extractor that is more compatible with the proposed method and remove the linear layer,303

denote as GMF-MAE (in Appendix, Fig. 14). For other SOTA methods involved in the comparison,304

we choose the feature extractor proposed in the original paper as much as possible (MISA utilizes305

sLSTM [30], UAVM adopts ConvNeXT-B [31], GMF-MAE employs MAE [32, 33]). The remaining306

methods, including Baseline employs R(2+1)D-18 [28]. Due to the imbalance in the dataset, with307

a ratio of approximately 1:39, the audio ratio is 1:1 and the video ratio is 1:19. UAVM [6] learns a308

unified representation, thus the easier classification of audio significantly impacts the overall results.309

Both DrFuse [8] and MISA [16] perform below our expectations; one potential explanation could be310

the influence of sample imbalance on their performance.311

The performance of GMF remains consistent with the conclusions drawn from Table 2. Furthermore,312

GMF’s insensitivity to missing modalities effectively mitigates the impact of sample imbalance,313

avoiding an excessive emphasis on any particular modality. The combination of GMF and MAE [32,314

33] demonstrates optimal performance limits, validating our approach’s effectiveness in addressing315

the challenges posed by downstream tasks. We provide a more comprehensive comparison with316

methods focused on deepfake detection in Table 7 (in Appendix).317

6 Conclusion318

In this paper, we combine the PNP equation with information entropy theory to introduce a multimodal319

fusion method for unrelated input features and downstream task features. The aim is to reduce the320

joint entropy of input features while decreasing the downstream task-related information entropy.321

Experimental results demonstrate that the proposed method takes a step forward in the generalization322

and robustness of multimodal tasks. Meanwhile, the additional burden can be negligible.323

GMF comprises basic linear layers and is consequently susceptible to the inherent characteristics of324

linear operations, which exhibit growth in parameter count relative to input dimensionality. However,325

as per our theoretical framework, the effective component is proportional to the feature dimension. In326

forthcoming research, we intend to concentrate on sparsifying mapping matrices to further diminish327

parameter count.328
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Appendix / supplemental material461

A Gradient Backward Flow462

A.1 Definition and Explaination463

In the gradient backward stage, the gradient is propagated from the output to the input direction464

according to the adjustment of the downstream task loss. The specific gradient backward diagram is

Extraction Fusion Classification

Proposed objective
Grad of fusion loss

Grad of task loss

Figure 3: The gradient diagram extended from Figure 1, the notation system is consistent with
Figure 1. The blue arrow represents the loss in the fusion stage (Lfusion), and the red arrow
represents the loss in the downstream task (Ltask). The green arrow is related to our redefined
optimization objective, and the meaning is consistent with the green dashed arrow in Figure 1. Not all
multimodal fusion methods have gradients with blue arrows and green arrows. These are not specific
losses, nor are they necessarily individual losses.

465
shown in Figure 3. The gradient generated by the downstream task loss is propagated through the466

entire network to the input, and the gradient of the fusion stage loss (if any) is propagated from the467

fusion output feature to the downstream task. The parameter adjustment of the feature extractor is468

affected by the gradient backward of the loss in the fusion stage and the loss of the downstream task.469

It is worth discussing that the gradient adjustments from downstream task classification loss and470

fusion-related loss may not necessarily align. Hence, there typically exists a set of hyperparameters471

to balance the impacts of different losses. For instance, in VAE [34], the KL divergence loss and the472

reconstruction loss serve distinct purposes. The KL divergence loss facilitates model generalization,473

a significant divergence between VAE and AE [35], while the reconstruction loss is task-specific,474

reconstructing a sample from the latent space. However, both the KL divergence loss and the475

reconstruction loss in VAE often cannot simultaneously be zero. The KL divergence loss encourages476

some randomness in the latent space features, whereas the reconstruction loss favors more consistency477

in the latent space features. This balancing act is commendable, yet weighting between the losses478

poses a significant challenge. Hence, when all losses in multi-stage learning bear significance and479

the gradient descent directions of feature extractors are incongruent, balancing a hyperparameter480

becomes necessary to harmonize diverse learning objectives.481

However, not all losses bear significance. Take contrastive loss, for example. It is a downstream482

task loss in some NMT tasks [22], yet in most EMT tasks, contrastive loss typically operates in483

the fusion stage, complementing downstream task-relevant cross-entropy losses, to narrow the gap484

between positive samples in the latent space and push away negative samples. Some studies [1, 20]485

have demonstrated the existence of gaps between modalities, and smaller gaps are not necessarily486
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better. There are also analyses of the behavior of contrastive loss [17], aiming to minimize mutual487

information for positive sample pairs and maximize mutual information for negative sample pairs [18].488

In EMT tasks, if positive and negative sample pairs coexist, as in Audio-Visual Deepfake Detec-489

tion [15], the contrastive loss in the fusion stage aims to extract consistent information from positive490

sample pairs (representing real samples) while ensuring inconsistency in negative sample pairs491

(representing fake samples). It must be emphasized that the significant advantage of EMT tasks lies492

in modality commonality. Some studies have proven the existence of commonality [36, 37], but493

this doesn’t alter the fact that auditory and visual modalities are fundamentally distinct (not only494

the semantic gap), with their enriched information not entirely consistent. In action recognition495

tasks, there is currently no work that effectively achieves this through audio; in speech recognition496

tasks [38], even with more complex, advanced feature extractors for extracting video features, or497

introducing priors to isolate video features solely for lip movements, the results are far inferior to498

audio single modality. While contrastive loss constrains the feature extractor to extract the most499

effective synchronous-related features, in the absence of a modality [15], it leads to a significant500

performance decline.501

Moreover, not all tasks in EMT tasks involve positive and negative sample contrastive learning, so502

sometimes contrastive loss is equivalent to operating mutual information. For example, in some503

EMT methods’ decoupling works [8, 16], each modality enjoys a common encoder and a specific504

encoder, minimizing mutual information for different modalities’ common encoders to homogenize505

the extracted content and maximizing mutual information for the same modality’s common encoder506

and specific encoder to heterogenize them, adapting well to the environment of modality absence.507

However, this method fixes the dimensions of each feature part, and the introduced losses directly508

manipulate the behavior of the feature extractor, compelling it to extract a predetermined quantity of509

common and specific features. The design of hyperparameters (encoder dimensions) will alter the510

behavior of the feature extractor. Additionally, when expanding to more modalities, the training cost511

of this method is also worth discussing.512

A.2 Combine With Residual513

ResNet [29] solves the bottleneck of the number of network layers, and this epoch-making work514

allows the number of network layers to be stacked into thousands. A plausible explanation is that515

it reduces gradient disappearance or gradient explosion in deep networks. We try to explain this516

problem based on our information entropy related theory (Theory 3.1).

D
ow

nS
am

pl
e

R
es

id
ua

l ×
 n

Residual Forward

Residual Backward

Directly Backward

Totally Backward

Directly Forward

Forward Grad. Sum.

Backward Grad. Sum.

Totally Forward

Figure 4: Structure of Residual in Networks.
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The basic block structure of ResNet [29] and the gradient propagation are illustrated in Figure 4. We518

abstract it into a more general structure, where the downsampling block is considered as an arbitrary519

function f(·, θf ), and the residual block is considered as another arbitrary function g(·, θg). Here,520

both of these arbitrary functions represent a type of network structure (in fact, this structure can be521

further generalized), with θf and θg representing the parameters of the functions f and g, respectively.522

Same as Eq.(2), the objective of gradient optimization is to optimize these parameters to minimize523

the conditional entropy of Input X,Y and Output Ypred:524

Ypred = (g(f(X, θf ) , θg), L = H[Y | g(f(X, θf ) , θg)] (19)

The expression for gradient descent can be derived by computing the partial derivatives of the loss525

function with respect to the parameters θf and θg . Denote the loss function as Eq.( 19), the gradient526

descent expressions are:527

∂L
∂(θf , θg)

=
∂L
∂θf

+
∂L
∂θg

,
∂L
∂θf

=
∂L
∂g
· ∂g
∂f
· ∂f
∂θf

,
∂L
∂θg

=
∂L
∂g
· ∂g
∂θg

(20)

For functions f positioned further back, their ultimate gradients are influenced by the partial deriva-528

tives of the loss function with respect to functions g positioned earlier. If network g is composed of529

g1, g2, ..., gn, then during backward, it will be multiplied by numerous coefficients, making it more530

prone to gradient vanishing or exploding. The introduction of residuals can alleviate this problem. It531

is expressed as:532

Ypred = (g(f(X, θf ) , θg) + f(X, θf ) (21)

These derivatives represent the directions of steepest descent with respect to the parameters θf and533

θg , guiding the optimization process towards minimizing the loss function. Rethinking the associated534

gradient of f :535

∂L
∂θf

=
∂L
∂g
· ∂g
∂f
· ∂f
∂θf

+
∂L
∂f
· ∂f
∂θf

(22)

For the two elements of addition, compared to no residual, the first half of the gradient is numerically536

consistent, and the second half of the gradient is used as the residual. Obviously, this gradient is537

going to be direct.538

Even in multimodal tasks, there exist challenges akin to residual issues yet to be resolved [39]. For539

instance, the association between feature extractors and downstream tasks may be compromised by540

the presence of feature fusion modules, manifested particularly in the introduction of intermediate541

gradients by deep fusion mechanisms, leading to gradient explosion or vanishing gradients. One542

approach to addressing this is through the incorporation of residuals. Indeed, some experimental543

endeavors have already undertaken this step, demonstrating its efficacy. These inferences may serve544

as a possible explanation, offering a generalized perspective.545

However, residuals alone cannot entirely resolve the issue. Residuals, as a vector addition method,546

demand strict consistency in dimensions between inputs and outputs; moreover, excessive layer-by-547

layer transmission of residuals may result in the accumulation of low-level semantics onto high-level548

semantics, thereby blurring the representations learned by intermediate layers. While it may be549

feasible to employ residuals in a smaller phase within the fusion stage, utilizing residuals across550

the entire stage not only imposes stringent constraints on inputs and outputs but also risks semantic551

ambiguity.552

Another method of applying residuals is akin to DenseNet [40], directly stacking channels. This still553

necessitates consistency in residual dimensions across different stages but circumvents the issue of554

semantic confusion. However, the final classifier remains a linear layer, requiring the flattening of555

multiple channels. Based on our theory, regardless of semantic sophistication, their initial origins556

remain consistent. As dimensions accumulate, elements describing the same set of features proliferate,557

inevitably leading to mutual information and subsequently reducing the conditional entropy relevant558

to downstream tasks.559

In light of the foregoing analysis, residual connections at the skip-fusion stage can effectively alleviate560

the prevalent gradient issues in deep networks. However, this phased residual connection directly561

linking feature extractors to downstream tasks rigorously constrains the form of inputs and outputs,562

necessitating equilength features and overly blurred semantics, thus failing to achieve optimal effects.563

Furthermore, the nature of multimodal tasks diverges from simple downsampling-residual networks,564
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as gradients stem not only from downstream tasks but also from multiple sources before the fusion565

stage. Our proposed method entails reducing the network layers in the fusion stage to align the fusion566

gradients with the descent direction of downstream task gradients. Alternatively, the scope of the567

fusion stage loss function gradient can be restricted.568

B Proof of Theorem 3.4569

We explain the derivation of the PNP equation to the proposed loss in detail. As before, let’s assume570

that the cell is one-dimensional, and only the direction x exists.
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Figure 5: Schematic diagram of the electrolytic cell, + (orange) and - (black) represent the charged
species (ions and electrodes). There is a boundary b (black line) in the electrolytic cell, assuming that
the positive potential is U0, the negative potential is −U0, and the boundary b is the zero potential.

571

For the basic Nernst-Planck equation, as shown in Figure 5, the ion p ∈ {+,−} in the cell system572

conforms to:573

Jp = −Dp∇cp(x, t)︸ ︷︷ ︸
Diffusion

+ cp(x, t)v︸ ︷︷ ︸
Advection

+
Dpzpe

kBT
cp(x, t)E︸ ︷︷ ︸

Electromigration

(23)

We abstract the feature vector into a one-dimensional electrolytic cell and need to correspond each574

term of the equation to it. Throughout the system, the fluid remains stationary; The electric field E575

that guides the movement of ions is generated by the electric potential ϕ and the magnetic field A.576

We need to externally excite ϕ and do not additionally apply a magnetic field. The actual learning577

rate is usually not very large (< 100), and the charge of the ion is assumed to be very small. This578

gradient can be neglected as the magnetic field generated by the excitation.579

E=−∇ϕ− ∂A
∂t=========⇒

v≡0,A≡0
−Dp∇cp(x, t)︸ ︷︷ ︸

Diffusion

+
Dpzpe

kBT
cp(x, t)(−∇ϕ)︸ ︷︷ ︸

Electromigration

(24)

Our external excitation electric field is constant, so the potential expression can be expressed by the580

ion concentration.581

ϕ(x) = U0 + e

∫ x

0

(c+(y, t)z+ + c−(y, t)z−)dy (25)
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The final state of the system is that the flux is fixed with respect to time, that is, the partial differential582

is zero. From the ion point of view, diffusion and electromigration are in equilibrium.583

∂cp(x, t)

∂t
= −∇ · Jp ≈ 0 (26)

==⇒ −∇{̇ −Dp∇cp(x, t) +
Dpzpe

kBT
cp(x, t)[−∇ϕ(x)]} ≈ 0 (27)

∇2ϕ(x)=− ρ(x)
ϵ0

,ρ(x)=
∑

j zjcj(x,t)
======================⇒

using Poisson equation
(28)

Dp(
∂2cp(x, t)

∂x2
− zpeF

kBTϵ0
cp(x, t)

∑
j

zjcj(x, t) +
zpe

kBT

∂cp(x, t)

∂x

dϕ(x)

dx
) ≈ 0 (29)

Initial distribution

Ideal distribution

Actual distribution

Figure 6: Representation of ion distribution. The ordinate represents the ion concentration and
the abscissa represents the electrolytic cell position. 0 is the position of the positive electrode, l is
the position of the negative electrode, and b is the potential equilibrium boundary. The green line
represents a uniform distribution of initial state ions to conform to macroscopic electrical neutrality,
the yellow line represents the ideal electrolysis target, that is, the foreign ions are completely divided
at the equilibrium boundary, and the red line represents the practically possible situation.

In the initial condition, ions undergo spontaneous and uniform distribution through diffusion driven584

by Brownian motion (the green line in Figure 6). This dynamic process leads to the establishment of a585

heterogeneous distribution of ions within the system. However, as the system approaches the potential586

equilibrium boundary b, the electrostatic forces acting on ions become increasingly influential. At587

this boundary, denoted as the end condition [41], the principles of electroneutrality come into play.588

Here, positive and negative ions are balanced such that their net charge is neutral, resulting in an589

electrically neutral region around the potential equilibrium boundary:590

∑
j

zjcj(x, t) ≈ 0,
∂2cp(x, t)

∂x2
+

zpe

kBT

∂cp(x, t)

∂x

dϕ(x)

dx
≈ 0 (30)

591

ϕ(0)− ϕ(B) ≈ −e
∫ B

0

c−(x, t)z−dx|t=T ≈ ϕ(B +1)− ϕ(L) ≈ e

∫ L

B+1

c+(x, t)z+dx|t=T (31)

The positive and negative properties of diffusion and electromigration are always opposite. If the592

ion species used as the external electrode is the same as that of the original solution, then we can593

approximately assume that the ion on either side of the zero potential boundary b, combined with the594

ion equivalent to the external electrode, can reduce the initial solute.595

Assuming features from another modality are perfectly ordered, they can serve as a constant stimulus596

guiding the ionization of the awaiting electrolytic modality. However, unlike in deep learning, where597

the loss function can be equivalent to an external potential, both serve as stimuli capable of guiding598

the respective fundamental ion directional motion.599

Beginning with two modalities, initially disordered features prompt GMF to attempt cyclic con-600

nections, as depicted in the diagram. The imposition of external guidance induces the movement601

of feature particles of different polarities in distinct directions, ultimately coalescing at one end.602
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According to the law of conservation of mass, these aggregated features can be fully reconstructed603

into the original modality representation of the guided modality particles at the opposite end.604

Expanding to multiple modalities, electrochemical cells allow for parallel multi-level connectivity,605

where applying a set of stimuli can simultaneously guide the movement of ions across multiple cell606

groups. These potentials, as per the principles of basic circuitry, are distributed across each cell, as607

shown in Figure 7.
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Figure 7: Example diagram of loop guidance. The modes are excited by each other.

608

The PNP equation provides a theoretical basis for GMF, and then we can propose to model material609

conservation with a reconstruction loss. The reconstruction loss can well simulate the motion of610

particles, and its reduction condition does not lead to ambiguity due to the existence of modality-611

specific, as expressed in Eq.( 31).612

18



2 4 8 16 32 64 128

70

75

80

85

90

95

ResNet20
ResNet32
ResNet44
ResNet56
ResNet110

(a) ResNet in CIFAR-10, Test ACC
2 4 8 16 32 64 128

0.92

0.94

0.96

0.98

1.00

1.02

1.04
ResNet20
ResNet32
ResNet44
ResNet56
ResNet110

(b) ResNet in CIFAR-10, Ratio

2 4 8 16 32 64 128
80

82

84

86

88

90

92

94

small
large

(c) MobileNet in CIFAR-10, Test ACC
2 4 8 16 32 64 128

0.90

0.92

0.94

0.96

0.98

1.00

small
large

(d) MobileNet in CIFAR-10, Ratio

32 64 128 256 512 1024

76

78

80

82

84

86
VIT7,Head=8
VIT12,Head=8
VIT12,Head=16

(e) ViT in CIFAR-10, Test ACC
32 64 128 256 512 1024

0.76

0.78

0.80

0.82

0.84

0.86
VIT7,Head=8
VIT12,Head=8
VIT12,Head=16

(f) ViT in CIFAR-10, Ratio

Figure 8: Evaluate ResNet, MobileNet and ViT test accuracy and the ratio of test accuracy to training
accuracy (denote as ratio) on the CIFAR-10 dataset.

C Proof of Theorem 3.2613

Theorem 3.2: The dimension of the feature that is best suited to the downstream task varies, and614

there is always an optimal value for this feature. The dimension multiple relationship between each615

layer of the feature extractor is fixed, and the initial dimension is adjusted. Too low dimension of the616

final output will lead to inefficient representation, and too high dimension will introduce noise. The617

existence of an integer lbest such that for any integer l distinct from lbest, the conditional entropy of618

the model’s predictions fl(X, θl) is greater than that of the model’s predictions flbest(X, θlbest).619

∃lbest ∈ N,∀l ∈ N, l ̸= lbest, H(Y |fl(X, θl)) > H(Y |flbest(X, θlbest)) (32)

C.1 Experiment620

There was some previous work [42] that demonstrated that this optimal dimension exists. However,621

existing methods do not account particularly well for the conditions under which poor fitting occurs,622

so we conduct experiments to demonstrate the existence of this phenomenon. At the end we present623

a possible conjecture. The existence of this optimal dimension is universal and at the same time624

inconsistent. Specifically, each type of feature extractor, each type of dataset, and each corresponding625

downstream task have different optimal dimensions.626
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Our set of experiments is shown in Fig 8. In addition to the intuitive visualization of the validation627

accuracy, we also show the ratio of the validation accuracy to the training accuracy, aiming to measure628

the validation accuracy and reflect the fitting effect of the model. The closer the ratio is to 1, the629

stronger the generalization ability is, and the better the fit is.630

In Figure 8 (a) and (b), the evaluation results of ResNet [29] on CIFAR-10 [43] are presented. As the631

dimensionality increases, the testing performance of the model improves, and the performance range632

stabilizes. However, with a twofold increase in dimensionality, the variation in testing performance633

diminishes, approaching zero. In other words, doubling the parameter count does not yield any634

improvement. Additionally, for larger networks like ResNet110, performance begins to decline.635

Furthermore, while absolute performance is increasing, the ratio is declining, indicating a weakening636

in generalization capability.637

Figure 8 (c) and (d) depict the evaluation results of MobileNetV3 [44] on CIFAR-10 [43], showing638

conclusions similar to those of ResNet. For larger networks like MobileNetV3-Large, at lower639

dimensionalities, its generalization capability is significantly lower compared to simpler networks.640

Figure 8 (e) and (f) illustrate the evaluation results of ViT [45] on CIFAR-10 [43]. As ViT is based641

on transformers [27] and possesses a global receptive field, its base dimensionality is significantly642

larger than that of convolutional neural networks. Both in terms of absolute performance and ratio,643

its optimal representation dimensionality approaches 256, distinct from other networks.644
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Figure 9: Evaluate ResNet test accuracy and the ratio of test accuracy to training accuracy (denote as
ratio) on the CIFAR-100 dataset.

However, it is worth noting that the presence of optimal features is not only closely related to network645

type and structure, but also to the dataset and downstream tasks. We chose CIFAR-100 [43] for this646

set of comparative experiments. This is because its data volume is consistent with CIFAR-10, but647

with more categories and greater difficulty. The experimental results of ResNet [29] evaluated on648

CIFAR-100 are shown in Figure 9. Compared to the results shown in Figure 8(a) and (b), firstly, the649

impact of different dimensions on accuracy is more significant (for example, the maximum difference650

in test performance of ResNet-20 on CIFAR-10 is about 25%, exceeding 40% here); for ResNet-110,651

excessive dimensions no longer lead to performance stabilization, but rather a visible performance652

decline.653

The experimental results demonstrate the existence of an optimal dimensionality. This dimensionality654

may vary based on the different structures of networks. Hence, the concept of optimal dimensionality655

should be discussed in consideration of multiple external conditions.656

D Proof of Theorem 3.3657

Theorem 3.3: The feature extractor is fixed, and its original output feature dimension l is mapped658

to nl, and finally back to l. The mapping result is used as the basis for the downstream task. The659

performance of downstream tasks is infinitely close to the original performance as n increases, but660

never greater than the original performance. For magnification n > 1, n ∈ Z, mapping matrix661

U1 ∈ Rl×nl and U2 ∈ Rnl×l, For the output features f(X, θ) ∈ Rl and Y :662

H(Y |f(X, θ)) < H(Y |U1 · (U2 · f(X, θ))) (33)
663

limn→∞H(Y |U1 · (U2 · f(X, θ)))) = H(Y |f(X, θ) (34)
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Figure 10: Evaluate ResNet test accuracy and the ratio of test accuracy to training accuracy (denote
as ratio) on the CIFAR-10 dataset.

D.1 Theoretically664

Denote V = f(X, θ), the rank of each stage:665

V =


v1
v2
...
vl

 , r(V ) ≤ l, r(U2) ≤ l, r(U2 · V ) ≤ min(r(V ), r(U2)) ≤ l, (35)

666

r(U1) ≤ l r(U1 · (U2 · f(X, θ)) ≤ l (36)

The mapped rank is always less than or equal to the original rank. That is, downstream task-relevant667

features may be compressed while not generating features out of thin air. Eq. (33) gets the certificate.668

For Eq.(34), we discuss the problem from pruning, linear algebra and probability theory. Neural669

networks are often overparameterized, requiring more network parameters than needed to get a670

good fit. In theory [23], however, only a subset of these parameters are useful in practice. Hence,671

some knowledge distillation methods such as teacher-student networks and pruning [46]. These672

tested models maintain good performance while removing most of the parameters, which proves that673

overparameterization is a common phenomenon. We interpret it as a probabilistic problem, that is,674

the effective parameters are generated with a certain probability. Overparameterization significantly675

improves the effective parameter generation, and knowledge distillation removes these redundant and676

invalid parameters.677

Let A ∈ Rnd×d be a learnable matrix (n >> 1). Act on v ∈ Rd to complete the mapping from678

lower dimension to higher dimension:679

A = [a1,a2, . . . ,and], v̂ = Av = [v̂1, v̂2, . . . , v̂nd]
T (37)

Denote v̂ ∈ Rnd as the mapping result. v̂k represents the k-th row element. For any two of these680

row vectors ai and aj (i ̸= j). They have a ratio c for their first elements.A necessary and sufficient681

condition for linearity between two vectors can be extended to the following: for any element in the682

same row of these two vectors, the ratio should be c.683

ai = [ai1, ai2, . . . , aid], aj = [aj1, aj2, . . . , ajd], c =
ai1
aj1

(38)

684
d∑

t=1

ajt
ait

= c (39)

If A is learnable, each element will have a different weight for each parameter adjustment. denote685

P(ajt

ait
= c) as the probability that the proportion of the t-th element of ai and aj is equal to686

c, which cannot be determined directly because the input sample is uncertain. In the context of687

neural networks, the adjustment of gradients can be regarded as following a continuous probability688

distribution. Consequently, the probability of the adjustment taking on a specific constant value689

21



is zero (does not imply impossibility). By cumulatively multiplying this probability, we get the690

probability that the two column vectors are linearly related in gradient descent.691

d∏
t=1

P(
ajt
ait

= c) ≈ 0 (40)

However, for a d-dimensional vector, there cannot be more than d linearly independent features. To692

simplify the expression, we assume that Eq.(40) is a fixed value on the interval (0,1). The probability693

that exactly d-dimensional features are linearly dependent is given by:694

(nd)!

d!(nd− d)!
(

d∏
t=1

P(
ajt
ait

= c))d(1−
d∏

t=1

P(
ajt
ait

= c))nd−d (41)

695

(nd+ 1)!

d!(nd+ 1− d)!
(

d∏
t=1

P(
ajt
ait

= c))d(1−
d∏

t=1

P(
ajt
ait

= c))nd+1−d (42)

In deep learning methods, the feature dimension is usually not set too small, d is sufficiently696

large. Combined with gradient descent, the parameter adjustment is random, the linear correlation697

probability of two random features is close to 0.698

d∏
t=1

P(
ajt
ait

= c) ≈ 0,
Eq.(42)

Eq.(41)
=

nd+ 1

nd+ 1− d

d∏
t=1

P(
ajt
ait

= c) ≈ 1 +
d

nd+ 1− d
≥ 1 (43)

Consider mapping matrix U2 ∈ Rnl×l. As n increases, the probability of rank l increases. The same699

is true for the matrix U1 ∈ Rl×nl. Therefore, as the probability of two correlation matrices being full700

rank becomes larger, a larger n helps to restore the original representation under the premise that the701

network does not involve unexpected situations such as gradient explosion and vanishing gradients.702

However, it can be determined that when n is less than 1 (n > 0), there must be information loss. This703

is because the upper limit of the rank of a matrix depends on the smaller value of the number of rows,704

columns. Furthermore, it is not appropriate to increase the number of parameters blindly, which will705

lead to an exponential number of parameters.706

D.2 Experiment707
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Figure 11: Theoretical validation on ImageNet on the performance impact of raising and then reducing
the original features. The horizontal coordinate represents the mapped feature dimension, the upper
bound is the best performance, the lower bound is the worst performance, and the ordinate represents
the validation set accuracy. The dashed line represents the results reported for directly validating the
performance of the pretrained model.

We employed pre-trained ResNet-18, ResNet-34, ResNet-50, and ResNet-101 [29] models provided708

by PyTorch [47], removing their classifiers to obtain raw features with dimensions of 512, 512, 2048,709
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and 2048 respectively. After freezing the other layers, we mapped these original features to another710

dimension and subsequently retrained the classifiers based on these new features. As depicted in711

Figure 11, where the abscissa represents the dimensions of the mapped features and the ordinate712

represents the classification accuracy of the new classifier on the ImageNet [48] validation set. Our713

experimental hyperparameter design and optimizer were identical to those reported in the original714

paper. We recorded the validation accuracy every 400 iterations, and if the accuracy did not improve715

for 10 consecutive validations, training was terminated prematurely. The final results are depicted in716

a bar chart, where the upper and lower bounds represent the maximum and minimum values of the717

validation accuracy.718

It can be observed that larger mapping dimensions lead to faster convergence and yield better results.719

Smaller mapping dimensions, especially when they are smaller than the original dimensions, not720

only exhibit significant differences in upper and lower bounds of validation accuracy but also witness721

a substantial decrease in the upper limit. This observation aligns with our theoretical expectations.722

When the scaling factor n is close to 4, the performance loss has entered the acceptable range.723

E Different Between Theorem 3.2 and Theorem 3.3724

Both Theorem 3.2 and Theorem 3.3 focus on the dimension of presentation. The most significant725

difference between the two theories is what the original input was.726

Theorem 3.2 is for the case where the sample is known and the representation is unknown, and this727

representation contains relevant information and irrelevant information. Therefore, this theory is728

more about the number of parameters needed to characterize, the minimum dimension needed to get729

the best performance, or the best performance in the minimum dimension. In this paper, this theory730

emphasizes the necessity of unequal-length fusion, and points out and proves through experiments731

that equal-length fusion may bring the problem of feature redundancy or feature missing, which not732

only increases the unnecessary amount of computation, but also affects the performance to some733

extent.734

Theorem 3.3 is to analyze the influence of linear mapping on the representation in the case of known735

representation and unknown samples. Our proposed GMF method is very simple and contains only a736

number of linear layers, achieving the performance of larger parameter fusion methods of previous737

works. However, our original intention is not to be guided by experimental results, but to theoretically738

analyze whether the possible information loss is acceptable. We expect our work to be interpretable739

and applicable.740

F Derivation of Conjecture 3.1741

Conjecture 3.1: Rely on Theorem 3.1, 3.2, 3.3, we propose an conjecture that a boundary of perfor-742

mance limitation exists, determined by downstream-related entropy. Theoretically, by establishing a743

direct correspondence between the extractor and classifier, fusion method can enhance the limitation744

boundary, further improve performance.745

Based on the proof of Theorem 3.2, one of the foundations of learning in neural networks is gradient746

descent, which presuppositions that gradients can be backpropagated. Every tuning of the learnable747

parameters will eventually be implemented on the original input. Assuming that the feature extractor748

is fixed, the original input at this time is the feature output by the feature extractor. For any learnable749

parameter, the value of a certain sample can be expressed by an exact formula. For a completely750

consistent input, it is assumed that its downstream task-related information entropy can be efficiently751

calculated, and its information entropy minimum is certain. Therefore, there is a performance upper752

bound, depending on how the existing features are utilized.753

In practical deep learning tasks, the input features are often not fixed, and gradients need to propagate754

to be able to fully determine the original samples—which must also be fully determined. We continue755

to analyze the feature layers outputted by the feature extractor, assuming that the relevant information756

entropy of downstream tasks can be manually calculated. Thus, for the output features at a certain757

moment, the lower bound of the conditional entropy of downstream tasks can still be computed,758

which represents the performance upper bound.759
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Therefore, the entire multimodal learning network is divided into two parts: one is the lower bound of760

the conditional entropy of the feature extractor output relative to the original samples, and the other761

is the lower bound of the conditional entropy of downstream tasks relative to the feature extractor762

output. The former is a prerequisite for the latter sequentially. However, as stated in the formulas,763

assuming the existence of fusion loss and downstream task loss, and the gradient descent directions764

are not completely consistent, let the weight of the fusion loss Lfusion be λ1, and the loss of the765

downstream task Ltask be λ2, the total loss can be expressed as:766

L = λ1Lfusion + λ2Ltask (44)

The learning task is to minimize the training loss. Assuming that λ1Lfusion > λ2Ltask, then the767

gradient of the feature extractor will tend more toward the fusion loss. In severe cases (such as opposite768

gradient descent directions), the downstream task-related loss will be completely overshadowed.769

This also leads to an increase in the lower bound of the conditional entropy of downstream tasks770

and a decrease in the theoretical performance upper limit. Therefore, we assume that there exists a771

boundary, which is determined by the theoretical performance upper bound based on a fixed feature772

and the conditional entropy of downstream tasks. Regardless of how outstanding the fusion method773

design is, just like the principle of energy conservation law for features, the final task performance of774

this method cannot exceed this upper bound.775

Perceiver

GMF+Perceiver

GMF

Boundary of our proposed objective

Boundary of tranditional objective

Performance

Training step

Figure 12: Visualizing performance improvements based on conjectures.

The reason why our proposed GMF achieves performance improvement is not due to the performance776

enhancement brought by the complex fusion network, but rather from a higher upper bound. However,777

in reality, we are still far from this upper bound, and demonstrating our method as a precursor to778

other methods can prove this point well. As shown in the Figure 12, we have drawn a hypothetical779

graph based on the data reported in the paper. Assuming GMF as the precondition method for the780

Perceiver [4], the result that GMF can be on par with complex networks with almost no resource781

consumption is interpretable.782

G Experiment Supplement783

G.1 Implement Details784

For all experiments, we use apex to optimize the v-memory and the parameter is set to ’O1’. The785

random seed fixed ’1’ for all GMF related implementation. However, for some dropout design786

methods, the reported experimental results may not be fully reproducible. More details are listed in787

Table 5788

(1) torch.manual_seed(seed)789

(2) torch.cuda.manual_seed_all(seed)790

(3) np.random.seed(seed)791
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(4) random.seed(seed)792

Table 5: Details of GMF. Momentun of SGD = 0.9, weight delay=1e-4. Lr_scheduler = ReduceL-
ROnPlateau, factor=0.1, patience=1000.

Dataset Lr Optimizer Batchsize Epoch Input Shape

VGGSound 0.01 SGD 64 20 [512,512]
ActivityNet 0.01 SGD 64 20 [4096,128], [4096,4096], [128,128]
FakeAVCeleb 0.01 SGD 64 20 [512,512], [128,512]

G.2 Information About Preprocess and Baseline793

For the VGGSound dataset, we downsample all currently available samples to 5fps, with videos of794

size 192*256 and audio sampled at 16000 Hz, while retaining only the first 9 seconds to accommodate795

most samples that are not exactly 10 seconds in duration. Samples without audio or video are removed.796

As for FakeAVCeleb, since the fabricated samples exhibit a global range of fabrication, with lengths797

distributed from 0.8 seconds and above, and a frame rate between 15 to 30 fps, we only select the798

first 8 frames along with their corresponding audio to ensure adaptability to the dataset.799

We employ the default testing-training split provided by VGGSound. For FakeAVCeleb, consistent800

with much of the prior work focused on audio-visual deepfake detection, we first sort each class801

(real audio-real video, real audio-fake video, fake audio-real video, fake audio-fake video), and then802

allocate the first 70% of each class to the training set and the remaining 30% to the testing set.803

The baseline of VGGSound pretrained on KINETICS400V1. Momentun of SGD = 0.9, weight804

delay=1e-4. Adam betas=(0.5, 0.9). lr_scheduler = ReduceLROnPlateau, factor=0.1, patience=1000805

on VGGSound, factor=0.5, patience=50, verbose=True, min_lr=1e-8 on FakeAVCeleb. The generated806

audio sequence is quite long, and the receptive field of the convolutional network is not global. To807

address this potential issue, we stack the audio into a timing sequence (144000 to 9 × 16000).808

Audio wave transform to input tensor by MelSpectrogram(sample_rate=16000, n_fft=400,809

win_length=400, hop_length=160, n_mels=192) for VGGSound and log (abs (STFT(n_fft=1024,810

hop_length=256, win_length=1024,window=blackman_window(1024))) + 1e-8) for FakeAVCeleb.811

Video frame directly as the input of network without any preprocess.812

The hyperparameter as shown in Table 6813

Table 6: Model Details of Baseline.
Model Modality Dataset Role Lr Optimizer Batchsize Epoch Input Shape

R2+1D-18 A VGGSound Baseline 0.01 SGD 64 20 [9,192,100,1]
R2+1D-18 V VGGSound Baseline 0.01 SGD 64 20 [15,128,96,3]
R2+1D-18 A FakeAVCeleb Baseline 0.005 Adam 16 5 [1,1,513,60]
R2+1D-18 V FakeAVCeleb Baseline 0.005 Adam 16 5 [8,224,224,3]

G.3 Compared Method Structure814

The integration of our method with others is depicted in Figure 1. By bypassing modality-invariant815

features and focusing solely on modality-specific features for fusion, the input represents a representa-816

tion with reduced mutual information. This leads to a reduction in the conditional entropy magnitude817

during the initial stages. The backend component may consist of a simple concatenation or modules818

proposed by other methods. Consequently, the inherent characteristics of GMF are constrained by819

the limitations of the backend module. Comparatively, the limitations are minimal with a simple820

concatenation approach.821

H More Comparison on the FakeAVCeleb Dataset822

We expanded the experimental table of FakeAVCeleb (Tab. 4) in the main text, incorporating additional823

comparisons focused on deepfake detection methods. Apart from the experiments reported in the824
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Figure 13: G-structure schematic diagram. Yellow feature vectors represent modality-invariant
features, while other colors represent modality-specific features for each modality. Modality-invariant
features are directly connected to downstream task classifiers, while modality-specific features serve
as new inputs to the fusion module.

Table 7: Performance on the FakeAVCeleb dataset. ’A’, ’V’ represents the separate audio and video
modality, and the input of the other modality is 0. ’AV’ stands for the full sample.

Method Extractor ACC(%) AUC(%)

A V AV A V AV

Baseline R(2+1)D-18 [28] 98.76 95.36 97.68 99.73 54.38 69.33
MISA [16] sLSTM [30] 61.75 71.66 97.68 58.98 64.76 79.22
UAVM [6] ConvNeXT-B [31] 86.59 73.05 78.64 83.98 69.38 43.92

DrFuse [8] R(2+1)D-18 [28] 66.83 75.35 97.68 62.86 69.33 78.56
Perceiver [4] R(2+1)D-18 [28] 56.81 78.84 97.68 51.36 58.20 93.45
Joint-AV [49] R(2+1)D-18 [28] and 1D CNN 81,77 65.73 71.81 79.25 69.61 75.81
AVoiD-DF [15] ViT [45] 70.31 55.81 83.71 72.41 57.21 89.21

VFD [50] Transformer [27] - - 81.52 - - 86.11
Emo-Foren [51] 2D CNN and MFN [52] - - 78.11 - - 79.81
MDS [53] 3D-ResNet [54] Like - - 83.86 - - 86.71

GMF R(2+1)D-18 [28] 71.25 85.33 97.68 67.32 64.91 91.88
GMF+Perceiver R(2+1)D-18 [28] 64.01 82.15 98.21 66.53 62.42 96.71
GMF-MAE MAE [32] and Audio-MAE [33] 99.79 97.74 99.99 99.73 89.82 99.97

original text, the remaining data were sourced from the original paper proposing the method. Here,825

VFD [50], Emo-Foren [51], and MDS [53] are grouped together because these methods transform826

EMT into NMT. Specifically, these methods emphasize certain aspects of multimodal performance:827

VFD emphasizes identity, Emo-Foren emphasizes emotion, and MDS, while not emphasizing a828

specific mode, relies on computing confidence in matching a certain segment. Therefore, the modal829

absence evaluation for these methods is marked as ’-’, indicating absence. Importantly, our method830

effectively connects representations of different modalities without additional overhead for AE-based831

feature extractors, resulting in a highly competitive outcome.832

H.1 The reason of choose FakeAVCeleb833

The FakeAVCeleb dataset is atypical, characterized by severe class imbalance posing significant834

challenges to methods. Specifically, the ratio of positive to negative samples is 1:1 for audio and 1:19835

for video, resulting in an overall ratio of 1:39. While audio often possesses discriminative capabilities836

less susceptible to the impact of sample proportions, most methods evaluated in our tests struggle to837

effectively address this bias.838

Addressing this imbalance necessitates multimodal methods to learn weight disparities across modali-839

ties to mitigate the effects of sample bias. This manifests in high accuracy (ACC) juxtaposed with840

mismatched area under the curve (AUC). Methods capable of mitigating this bias often underutilize it,841

resulting in suboptimal ACC. However, in real-world scenarios, the distribution of genuine and fake842

26



samples may not be balanced, and a single segment may not adequately represent an event. Hence,843

the adaptability of methods to publicly available datasets warrants thorough investigation.844

I GMF with AutoEncoder (GMF-AE/MAE)845

AutoEncoder [35] (AE) was initially proposed as a feature dimensionality reduction method, com-846

pressing samples into a latent space and then reconstructing them to retain the details of the entire847

sample in the latent space features. Masked AutoEncoder [32] (MAE) is a more powerful feature848

extraction variant of AE, masking most of the original samples and reconstructing them, allowing849

the model to learn more sample features. An intriguing point is that this concept can be seamlessly850

integrated with GMF (proposed Generalized Multimodal Fusion). GMF applies reconstruction loss
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Figure 14: Simplified GMF frame diagram with MAE as feature extractor.

851
as an incentive, directing the movement of different types of features towards a relatively ordered852

representation. Combining with PNP equations and our theoretical framework, this requires two853

additional linear layers for feature dimensionality reduction, expansion, and a linear layer for recon-854

struction. Thus, the additional overhead includes a reconstruction loss and the mentioned linear layers.855

However, due to the nature of AE, this feature-directional movement process can be accomplished856

during AE’s self-supervised learning. Specifically, instead of feeding complete latent space features857

into the Decoder, a combination of features from the corresponding Encoder and another modality858

Encoder is used. This allows us to achieve our goal without any additional overhead. However, if859

done so, explicit boundary delineation is necessary, which may affect model performance; moreover,860
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this learning process must be conducted in a multi-modal task, and features must be intact during the861

learning process.862

The specific structural diagram is shown in Figure 14. Here, we also consider the transformer [27]863

initially used for text as a variant of MAE, video encoder is MAE [32] and the Audio encoder is864

Audio-MAE [33].865

J GMF Architecture866

Algorithm 1 GMF (Generalized Multimodal Fusion)

1: Input: Dimensions dims, multiple m, boundary b
2: Output: x1, x2, x1recon, x2recon
3: procedure GMF(x1, x2)
4: x1inv, x1spec ← ELEMENTSPLIT(x1, dims[0], min(dims), m, b)
5: x2inv, x2spec ← ELEMENTSPLIT(x2, dims[1], min(dims), m, b)
6: x1← concat([x2inv, x1spec])
7: x2← concat([x1inv, x2spec])
8: x1re ← Linear(x1, dims[0] + min(dims), dims[0])
9: x2re ← Linear(x2, dims[1] + min(dims), dims[1])

10: return x1, x2, x1re, x2re
11: end procedure

Algorithm 2 ElementSplit

1: Input: Dimension dim, min_len, multiple m, boundary b
2: Output: xinv, xspec
3: procedure ELEMENTSPLIT(x)
4: b← ⌊b×m× dim⌋
5: d← m× dim
6: x← Linear(x, dim,m× dim)
7: xinv ← Linear(x[:, : b], b,min_len)
8: xspec ← Linear(x[:, b : d], d− b, dim)
9: return xinv, xspec

10: end procedure

Algorithm 3 Reconstruction Loss

1: Input: xrecon, xoriginal
2: Output: Reconstruction loss
3: procedure RECONSTRUCTIONLOSS(xrecon, xoriginal)
4: return MSE(xrecon, xoriginal)
5: end procedure
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NeurIPS Paper Checklist867

1. Claims868

Question: Do the main claims made in the abstract and introduction accurately reflect the869

paper’s contributions and scope?870

Answer: [Yes]871

Justification: We propose a generalized multimodal fusion model via Poisson-Nernst-Planck872

Equation, which can greatly improve the fusion performance.873

Guidelines:874

• The answer NA means that the abstract and introduction do not include the claims875

made in the paper.876

• The abstract and/or introduction should clearly state the claims made, including the877

contributions made in the paper and important assumptions and limitations. A No or878

NA answer to this question will not be perceived well by the reviewers.879

• The claims made should match theoretical and experimental results, and reflect how880

much the results can be expected to generalize to other settings.881

• It is fine to include aspirational goals as motivation as long as it is clear that these goals882

are not attained by the paper.883

2. Limitations884

Question: Does the paper discuss the limitations of the work performed by the authors?885

Answer: [Yes]886

Justification: We provide an outlook on future work in the conclusion section and write a887

separate subsection in the appendix to state limitations.888

Guidelines:889

• The answer NA means that the paper has no limitation while the answer No means that890

the paper has limitations, but those are not discussed in the paper.891

• The authors are encouraged to create a separate "Limitations" section in their paper.892

• The paper should point out any strong assumptions and how robust the results are to893

violations of these assumptions (e.g., independence assumptions, noiseless settings,894

model well-specification, asymptotic approximations only holding locally). The authors895

should reflect on how these assumptions might be violated in practice and what the896

implications would be.897

• The authors should reflect on the scope of the claims made, e.g., if the approach was898

only tested on a few datasets or with a few runs. In general, empirical results often899

depend on implicit assumptions, which should be articulated.900

• The authors should reflect on the factors that influence the performance of the approach.901

For example, a facial recognition algorithm may perform poorly when image resolution902

is low or images are taken in low lighting. Or a speech-to-text system might not be903

used reliably to provide closed captions for online lectures because it fails to handle904

technical jargon.905

• The authors should discuss the computational efficiency of the proposed algorithms906

and how they scale with dataset size.907

• If applicable, the authors should discuss possible limitations of their approach to908

address problems of privacy and fairness.909

• While the authors might fear that complete honesty about limitations might be used by910

reviewers as grounds for rejection, a worse outcome might be that reviewers discover911

limitations that aren’t acknowledged in the paper. The authors should use their best912

judgment and recognize that individual actions in favor of transparency play an impor-913

tant role in developing norms that preserve the integrity of the community. Reviewers914

will be specifically instructed to not penalize honesty concerning limitations.915

3. Theory Assumptions and Proofs916

Question: For each theoretical result, does the paper provide the full set of assumptions and917

a complete (and correct) proof?918
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Answer: [Yes]919

Justification: We briefly introduce the theory in the main text and present the necessary for-920

mulas that will help the reader to understand. For each proposed theory and hypothesis, the921

necessary derivations and experimental results are proved in the corresponding subsections922

of the experimental section and appendix.923

Guidelines:924

• The answer NA means that the paper does not include theoretical results.925

• All the theorems, formulas, and proofs in the paper should be numbered and cross-926

referenced.927

• All assumptions should be clearly stated or referenced in the statement of any theorems.928

• The proofs can either appear in the main paper or the supplemental material, but if929

they appear in the supplemental material, the authors are encouraged to provide a short930

proof sketch to provide intuition.931

• Inversely, any informal proof provided in the core of the paper should be complemented932

by formal proofs provided in appendix or supplemental material.933

• Theorems and Lemmas that the proof relies upon should be properly referenced.934

4. Experimental Result Reproducibility935

Question: Does the paper fully disclose all the information needed to reproduce the main ex-936

perimental results of the paper to the extent that it affects the main claims and/or conclusions937

of the paper (regardless of whether the code and data are provided or not)?938

Answer: [Yes]939

Justification: We fixed the random seed, and used source code that can be directly used as a940

class, rather than pseudocode, during the introduction to the algorithm. For fixed features,941

we will provide pre-trained models with the results of feature extraction. In addition, we942

have added our code in the attachment, and annotate the reference projects in detail. In943

addition, we present the detailed hyperparameters of the replication method in a tabular944

form in the appendix, and open source this part of the code.945

Guidelines:946

• The answer NA means that the paper does not include experiments.947

• If the paper includes experiments, a No answer to this question will not be perceived948

well by the reviewers: Making the paper reproducible is important, regardless of949

whether the code and data are provided or not.950

• If the contribution is a dataset and/or model, the authors should describe the steps taken951

to make their results reproducible or verifiable.952

• Depending on the contribution, reproducibility can be accomplished in various ways.953

For example, if the contribution is a novel architecture, describing the architecture fully954

might suffice, or if the contribution is a specific model and empirical evaluation, it may955

be necessary to either make it possible for others to replicate the model with the same956

dataset, or provide access to the model. In general. releasing code and data is often957

one good way to accomplish this, but reproducibility can also be provided via detailed958

instructions for how to replicate the results, access to a hosted model (e.g., in the case959

of a large language model), releasing of a model checkpoint, or other means that are960

appropriate to the research performed.961

• While NeurIPS does not require releasing code, the conference does require all submis-962

sions to provide some reasonable avenue for reproducibility, which may depend on the963

nature of the contribution. For example964

(a) If the contribution is primarily a new algorithm, the paper should make it clear how965

to reproduce that algorithm.966

(b) If the contribution is primarily a new model architecture, the paper should describe967

the architecture clearly and fully.968

(c) If the contribution is a new model (e.g., a large language model), then there should969

either be a way to access this model for reproducing the results or a way to reproduce970

the model (e.g., with an open-source dataset or instructions for how to construct971

the dataset).972
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(d) We recognize that reproducibility may be tricky in some cases, in which case973

authors are welcome to describe the particular way they provide for reproducibility.974

In the case of closed-source models, it may be that access to the model is limited in975

some way (e.g., to registered users), but it should be possible for other researchers976

to have some path to reproducing or verifying the results.977

5. Open access to data and code978

Question: Does the paper provide open access to the data and code, with sufficient instruc-979

tions to faithfully reproduce the main experimental results, as described in supplemental980

material?981

Answer: [Yes]982

Justification: We will open source all original code (such as the implementation and repro-983

duction method of the proposed method), for non-original code, we will mark the reference984

project.985

Guidelines:986

• The answer NA means that paper does not include experiments requiring code.987

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/988

public/guides/CodeSubmissionPolicy) for more details.989

• While we encourage the release of code and data, we understand that this might not be990

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not991

including code, unless this is central to the contribution (e.g., for a new open-source992

benchmark).993

• The instructions should contain the exact command and environment needed to run to994

reproduce the results. See the NeurIPS code and data submission guidelines (https:995

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.996

• The authors should provide instructions on data access and preparation, including how997

to access the raw data, preprocessed data, intermediate data, and generated data, etc.998

• The authors should provide scripts to reproduce all experimental results for the new999

proposed method and baselines. If only a subset of experiments are reproducible, they1000

should state which ones are omitted from the script and why.1001

• At submission time, to preserve anonymity, the authors should release anonymized1002

versions (if applicable).1003

• Providing as much information as possible in supplemental material (appended to the1004

paper) is recommended, but including URLs to data and code is permitted.1005

6. Experimental Setting/Details1006

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-1007

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the1008

results?1009

Answer: [Yes]1010

Justification: We briefly describe the hyperparameter Settings and experimental equipment1011

used in the experiment section of the main text. For methods not previously available on the1012

corresponding dataset, our preset hyperparameters are described in detail in the appendix.1013

Guidelines:1014

• The answer NA means that the paper does not include experiments.1015

• The experimental setting should be presented in the core of the paper to a level of detail1016

that is necessary to appreciate the results and make sense of them.1017

• The full details can be provided either with the code, in appendix, or as supplemental1018

material.1019

7. Experiment Statistical Significance1020

Question: Does the paper report error bars suitably and correctly defined or other appropriate1021

information about the statistical significance of the experiments?1022

Answer: [No]1023
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Justification: We fixed all random seeds to 1, and no data augmentation was applied to the1024

original data, so the results should be similar across multiple runs. Furthermore, feature1025

extractors are mostly aligned, which has nothing to do with dataset integrity.1026

Guidelines:1027

• The answer NA means that the paper does not include experiments.1028

• The authors should answer "Yes" if the results are accompanied by error bars, confi-1029

dence intervals, or statistical significance tests, at least for the experiments that support1030

the main claims of the paper.1031

• The factors of variability that the error bars are capturing should be clearly stated (for1032

example, train/test split, initialization, random drawing of some parameter, or overall1033

run with given experimental conditions).1034

• The method for calculating the error bars should be explained (closed form formula,1035

call to a library function, bootstrap, etc.)1036

• The assumptions made should be given (e.g., Normally distributed errors).1037

• It should be clear whether the error bar is the standard deviation or the standard error1038

of the mean.1039

• It is OK to report 1-sigma error bars, but one should state it. The authors should1040

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1041

of Normality of errors is not verified.1042

• For asymmetric distributions, the authors should be careful not to show in tables or1043

figures symmetric error bars that would yield results that are out of range (e.g. negative1044

error rates).1045

• If error bars are reported in tables or plots, The authors should explain in the text how1046

they were calculated and reference the corresponding figures or tables in the text.1047

8. Experiments Compute Resources1048

Question: For each experiment, does the paper provide sufficient information on the com-1049

puter resources (type of compute workers, memory, time of execution) needed to reproduce1050

the experiments?1051

Answer: [Yes]1052

Justification: For each set of experiments in the main text, we report not only the evaluation1053

metrics, but also the number of parameters, the amount of computation, and the time required1054

for inference.1055

Guidelines:1056

• The answer NA means that the paper does not include experiments.1057

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1058

or cloud provider, including relevant memory and storage.1059

• The paper should provide the amount of compute required for each of the individual1060

experimental runs as well as estimate the total compute.1061

• The paper should disclose whether the full research project required more compute1062

than the experiments reported in the paper (e.g., preliminary or failed experiments that1063

didn’t make it into the paper).1064

9. Code Of Ethics1065

Question: Does the research conducted in the paper conform, in every respect, with the1066

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1067

Answer: [Yes]1068

Justification: We’ve read the spec and followed it to the letter. Our paper does not involve1069

human subjects and the datasets used are all open source datasets. These data sets are all1070

instant downloads, and we cannot obtain them when the sample provider sets the sample1071

private.1072

Guidelines:1073

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1074

• If the authors answer No, they should explain the special circumstances that require a1075

deviation from the Code of Ethics.1076
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1077

eration due to laws or regulations in their jurisdiction).1078

10. Broader Impacts1079

Question: Does the paper discuss both potential positive societal impacts and negative1080

societal impacts of the work performed?1081

Answer: [NA]1082

Justification: Our approach is a deep learning architecture, and the selection of downstream1083

tasks does not require a natural person to do it. This is not directly related to society.1084

Guidelines:1085

• The answer NA means that there is no societal impact of the work performed.1086

• If the authors answer NA or No, they should explain why their work has no societal1087

impact or why the paper does not address societal impact.1088

• Examples of negative societal impacts include potential malicious or unintended uses1089

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1090

(e.g., deployment of technologies that could make decisions that unfairly impact specific1091

groups), privacy considerations, and security considerations.1092

• The conference expects that many papers will be foundational research and not tied1093

to particular applications, let alone deployments. However, if there is a direct path to1094

any negative applications, the authors should point it out. For example, it is legitimate1095

to point out that an improvement in the quality of generative models could be used to1096

generate deepfakes for disinformation. On the other hand, it is not needed to point out1097

that a generic algorithm for optimizing neural networks could enable people to train1098

models that generate Deepfakes faster.1099

• The authors should consider possible harms that could arise when the technology is1100

being used as intended and functioning correctly, harms that could arise when the1101

technology is being used as intended but gives incorrect results, and harms following1102

from (intentional or unintentional) misuse of the technology.1103

• If there are negative societal impacts, the authors could also discuss possible mitigation1104

strategies (e.g., gated release of models, providing defenses in addition to attacks,1105

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1106

feedback over time, improving the efficiency and accessibility of ML).1107

11. Safeguards1108

Question: Does the paper describe safeguards that have been put in place for responsible1109

release of data or models that have a high risk for misuse (e.g., pretrained language models,1110

image generators, or scraped datasets)?1111

Answer: [NA]1112

Justification: The ultimate goal of our proposed method is not to propose any model,1113

but to propose a valuable theory of multi-modal learning. The training data used only1114

includes matching, classification and detection, and the data sets are all open source data1115

sets. Therefore, as far as this article is concerned, there is no risk of abuse.1116

Guidelines:1117

• The answer NA means that the paper poses no such risks.1118

• Released models that have a high risk for misuse or dual-use should be released with1119

necessary safeguards to allow for controlled use of the model, for example by requiring1120

that users adhere to usage guidelines or restrictions to access the model or implementing1121

safety filters.1122

• Datasets that have been scraped from the Internet could pose safety risks. The authors1123

should describe how they avoided releasing unsafe images.1124

• We recognize that providing effective safeguards is challenging, and many papers do1125

not require this, but we encourage authors to take this into account and make a best1126

faith effort.1127

12. Licenses for existing assets1128
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in1129

the paper, properly credited and are the license and terms of use explicitly mentioned and1130

properly respected?1131

Answer: [Yes]1132

Justification: We annotated any sources in detail.1133

Guidelines:1134

• The answer NA means that the paper does not use existing assets.1135

• The authors should cite the original paper that produced the code package or dataset.1136

• The authors should state which version of the asset is used and, if possible, include a1137

URL.1138

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1139

• For scraped data from a particular source (e.g., website), the copyright and terms of1140

service of that source should be provided.1141

• If assets are released, the license, copyright information, and terms of use in the1142

package should be provided. For popular datasets, paperswithcode.com/datasets1143

has curated licenses for some datasets. Their licensing guide can help determine the1144

license of a dataset.1145

• For existing datasets that are re-packaged, both the original license and the license of1146

the derived asset (if it has changed) should be provided.1147

• If this information is not available online, the authors are encouraged to reach out to1148

the asset’s creators.1149

13. New Assets1150

Question: Are new assets introduced in the paper well documented and is the documentation1151

provided alongside the assets?1152

Answer: [No]1153

Justification: For the code and resources involved in the full text, we only provide our1154

original parts, such as our methods and our reproduced methods. For resources that already1155

exist (e.g., the feature extractor code), the reader should follow the documentation. Since1156

the concept we propose contains some conclusions that should be tried by the reader (such1157

as the optimal dimension), the specific training procedure should also be designed by the1158

reader.1159

Guidelines:1160

• The answer NA means that the paper does not release new assets.1161

• Researchers should communicate the details of the dataset/code/model as part of their1162

submissions via structured templates. This includes details about training, license,1163

limitations, etc.1164

• The paper should discuss whether and how consent was obtained from people whose1165

asset is used.1166

• At submission time, remember to anonymize your assets (if applicable). You can either1167

create an anonymized URL or include an anonymized zip file.1168

14. Crowdsourcing and Research with Human Subjects1169

Question: For crowdsourcing experiments and research with human subjects, does the paper1170

include the full text of instructions given to participants and screenshots, if applicable, as1171

well as details about compensation (if any)?1172

Answer: [NA]1173

Justification: Our work does not involve any human subjects.1174

Guidelines:1175

• The answer NA means that the paper does not involve crowdsourcing nor research with1176

human subjects.1177

• Including this information in the supplemental material is fine, but if the main contribu-1178

tion of the paper involves human subjects, then as much detail as possible should be1179

included in the main paper.1180
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1181

or other labor should be paid at least the minimum wage in the country of the data1182

collector.1183

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human1184

Subjects1185

Question: Does the paper describe potential risks incurred by study participants, whether1186

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1187

approvals (or an equivalent approval/review based on the requirements of your country or1188

institution) were obtained?1189

Answer: [NA]1190

Justification: Our work does not involve any human subjects.1191

Guidelines:1192

• The answer NA means that the paper does not involve crowdsourcing nor research with1193

human subjects.1194

• Depending on the country in which research is conducted, IRB approval (or equivalent)1195

may be required for any human subjects research. If you obtained IRB approval, you1196

should clearly state this in the paper.1197

• We recognize that the procedures for this may vary significantly between institutions1198

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1199

guidelines for their institution.1200

• For initial submissions, do not include any information that would break anonymity (if1201

applicable), such as the institution conducting the review.1202
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