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Figure 1. Overview: We introduce UAR-Scenes, a diffusion-guided refinement pipeline that enhances outputs from pre-trained single-
image to 3D scene reconstruction models, such as Flash3D [1], which yield imperfect renderings (red box) under slight viewpoint variations
(2nd column from left). By harnessing the generative power of a latent video diffusion model (LVDM) [2], our approach can sample plausible
explanations for unseen regions (green box) to produce refined, high-quality novel views of 3D scenes (3rd column from left).

Abstract

Reconstructing 3D scenes from a single image is a funda-001
mentally ill-posed task due to the severely under-constrained002
nature of the problem. Consequently, when the scene is ren-003
dered from novel camera views, existing single image to 3D004
reconstruction methods render incoherent and blurry views.005
This problem is exacerbated when the unseen regions are far006
away from the input camera. In this work, we address these007
inherent limitations in existing single image-to-3D scene008
feedforward networks. To alleviate the poor performance009
due to insufficient information beyond the input image’s view,010
we leverage a strong generative prior, in the form of a pre-011
trained latent video diffusion model, for iterative refinement012
of a coarse scene represented by optimizable Gaussian pa-013
rameters. To ensure that the style and texture of the generated014
images align with that of the input image, we incorporate015
on-the-fly Fourier-style transfer between the generated im-016
ages and the input image. Additionally, we design a semantic017
uncertainty quantification module that calculates the per-018

pixel entropy and yields uncertainty maps used to guide the 019
refinement process from the most confident pixels while dis- 020
carding the remaining highly uncertain ones. We conduct 021
extensive experiments on real-world scene datasets, includ- 022
ing in-domain RealEstate-10K and out-of-domain KITTI-v2, 023
showing that our approach can provide more realistic and 024
high-fidelity novel view synthesis results compared to exist- 025
ing state-of-the-art methods. 026

1. Introduction 027

3D Scene Reconstruction is a long standing challenging task, 028
playing a crucial role in holistic scene understanding [3, 4], 029
generative content creation, mixed reality [5], robot navi- 030
gation and path planning [6–9]. Reconstructing 3D scenes 031
involves Novel View Synthesis (NVS), wherein the scene is 032
rendered from unseen camera angles to obtain novel views of 033
the scene. Although notable progress has been made towards 034
improving NVS, most existing methods rely on multiple 035
images from numerous viewpoints [10–12] to increase the 036
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available information, which may not always be available.037
This leads us to the relatively underexplored task of 3D re-038
construction from a single RGB image [1]. Although the039
existing single image to 3D scene method can generate rea-040
sonable results, it often fails when the scene is rendered041
from an unseen camera angle, due to scarcity of information042
limiting its capability to reconstruct scenes in views it has043
never seen before. This bottleneck leads us to ask the ques-044
tion: “Can we design a pipeline that refines scenes so that045
it retains high fidelity in regions it has seen and generates046
consistent plausible completions for the unseen regions?”047

One way to compensate for this lack of multi-view infor-048
mation is to use generative priors so that they can provide049
valuable complementary information. The principle is to syn-050
thesize plausible 3D details even for regions not visible in the051
image, where plausibility refers to the fact that visible por-052
tions should remain multi-view consistent, while occluded053
or out-of-view areas should integrate seamlessly with the054
context of the scene (refer to supplementary for qualitative055
results). Some existing approaches toward solving this prob-056
lem include text-guided inpainting [13] and distillation of057
2D diffusion priors [14]. However, these methods either lack058
3D correspondence awareness [15] or do not have any tem-059
poral continuity as they denoise each image separately. This060
leads to issues with multi-view consistency for large view-061
point changes as the camera moves further away from the062
source. One way to address this challenge is to reformulate063
the problem in a 2.5D reconstruction [16, 17] setting, which064
can be limited in terms of fully capturing unseen regions.065
Moreover, extending such approaches to fully unbounded066
real world scenes, where the scene may not loop back to the067
starting point, is non-trivial. These methods often rely heav-068
ily on just generated features, leading to mode collapse [18],069
content distortion [18, 19] and visible artifacts in rendered070
views [20, 21], especially when the camera motion spans071
a large range. Although diffusion priors are well-suited for072
object-level enhancement, these limitations indicate that pri-073
ors primarily designed for object reconstruction, cannot be074
directly applied for scene refinement.075

To this end, we propose Uncertainty-Aware Diffusion-076
Guided Refinement of 3D Scenes: UAR-Scenes, an077
uncertainty-aware Gaussian splatting based refinement078
framework that combines the strengths of regressive and079
generative approaches. We perform the refinement using080
Adaptive Densification and Pruning (ADP) [6], a mecha-081
nism that controls the density of 3D points by introducing082
or deleting Gaussian primitives (check supplementary Sec-083
tion 6.1). ADP plays a crucial role in expanding or shrink-084
ing Gaussians depending on whether the region is over-085
constructed or not. Therefore, in observed regions where086
the confidence per pixel is high, our method mostly pre-087
serves Gaussian primitives with high-fidelity details obtained088
from the reconstruction backbone, while in unobserved or089

occluded areas, it learns to introduce new Gaussians by using 090
uncertainty-driven sampling from a Latent Video Diffusion 091
Model (LVDM) [22] to produce plausible scene completions. 092
We leverage an MLLM [23], along with an open-vocabulary 093
segmentation model [24], to compute the per-pixel entropy 094
present in LVDM generated views which gives us the per- 095
pixel uncertainty associated with the generated images. In 096
this way, the inherent ambiguity present in single-view re- 097
construction methods can be addressed, expanding the appli- 098
cability of our pipeline from simple object-centric datasets 099
or scenes with limited backgrounds [25] to arbitrarily large 100
real-world unbounded scenes [26]. Furthermore, it does not 101
rely on any form of ground truth supervision (2D or 3D), 102
making the entire process self-supervised and thus, post-hoc 103
compatible with any existing 3D reconstruction algorithm. 104
This design effectively addresses ambiguities, such as miss- 105
ing artifacts and inconsistent 3D reconstructions inherent 106
in single-view settings. Thus, in a nutshell, our proposed 107
model integrates a differentiable feed-forward scene recon- 108
struction pipeline that operates from a single image with an 109
uncertainty-aware LVDM for self-supervised refinement of 110
noisy scenes. 111

The main contributions of our work are as follows: 112
• We propose UAR-Scenes, a novel uncertainty-aware re- 113

finement pipeline which can take an existing single image 114
to 3D scene reconstruction model and generate reliable and 115
plausible explanations for unseen and naturally occluded 116
regions present in unbounded real-world scenes. To the 117
best of our knowledge this is the first optimization-based 118
work for the refinement of single image to 3D reconstruc- 119
tion methods. 120

• UAR-Scenes utilizes a camera pose controlled Latent 121
Video Diffusion Model (LVDM) which generates consis- 122
tent posed images to serve as pseudo 2D supervision for 123
refining a noisy scene. To address noisy pseudo-views, 124
we design an innovative uncertainty quantification mod- 125
ule which leverages an MLLM guided open vocabulary 126
segmentation model for highlighting the most confident 127
pixels for UAR-Scenes to learn from. 128

• To address any texture and style inconsistencies between 129
the input image and the generated pseudo views from the 130
LVDM, we propose a Fourier Style Transfer (FST)-based 131
texture alignment methodology. 132

• We conduct extensive experiments on both real-world in- 133
domain dataset RealEstate-10K [26] (on which the base- 134
line method was trained) and an out-domain dataset KITTI- 135
v2 [27] which is unseen for both our method and the base- 136
line, demonstrating that UAR-Scenes enhances perfor- 137
mance significantly. 138

2. Related Works 139

Regressive 3D Reconstruction from Sparse Views. Exist- 140
ing generalizable reconstruction methods [1, 12, 28–32] aim 141
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to train a single feed-forward model which can predict a 3D142
scene directly. Such methods include PixelSplat [11] which143
utilizes epipolar transformers to reduce scale ambiguity and144
obtain better scene features. Similarly, MVSplat [12] builds145
cost volumes to obtain Gaussians in a fast and efficient man-146
ner. LatentSplat [30] utilizes a GAN decoder as a generative147
component but GANs are known to be highly unstable [33]148
and hence unsuitable for modeling real-world unbounded149
scenes. Recently, Flash3D [1] introduced a single image150
to 3D scene pipeline leveraging a pre-trained depth estima-151
tor. In this paper, we build upon this regressive framework152
and show how most works falling in this paradigm fail to153
generate realistic completions for unseen regions.154

Generative Scene Reconstruction and Synthesis. Our155
method falls within an under-explored area of utilizing only156
2D (pseudo) labels to supervise 3D tasks using latent dif-157
fusion models. Existing approaches like [34–37] denoise158
multi-view images using a 3D-aware denoiser. However,159
such methods do not produce a coherent 3D structure since160
the denoising process is done separately for each image lead-161
ing to sub-optimal multi-view consistency. Works such as162
3DGS-Enhancer [38] address a similar problem in a sparse163
view setting but they employ a mix of refined views along164
with un-refined views when training the video-diffusion165
model. Other works such as CAT3D [39], GeNVS [40], Re-166
conFusion [14], LM-Gaussian [41], and ReconX [42]1 all167
tackle similar problems but they deal with the problem by168
employing expensive conditioning techniques [43] which169
may not always be multi-view consistent. Further, none of170
these methods optimize the Gaussians directly but instead171
fine-tune an existing generative diffusion model on datasets172
to make it generalizable, which ties the models down to the173
particular distribution on which it is trained.174

Uncertainty Quantification in 3D Reconstruction. Quan-175
tifying uncertainty has received relatively less attention in176
3D scene reconstruction, especially considering it’s impor-177
tance in the context of single image to 3D reconstruction178
where there is inherently a lot of ambiguity. One of the first179
approaches in estimating epistemic uncertainty in NeRFs180
from sparse views using variational inference was studied181
in works [44–46] but owing to increasing parameters along-182
with using different models, these approaches are inherently183
expensive. BayesRays [47] proposed a method to quantify184
uncertainty in any NeRF based reconstruction module in a185
post-hoc fashion. Further, uncertainty has also been explored186
in the context of active-view selection and path planning in187
the field of 3D mapping in robotics [7, 48] to estimate which188
next view maximizes the information gain over a given pre-189
trained model by approximating the hessian matrix of the190
log-likelihood function. However, this becomes un-scalable191
to compute for each Gaussian primitive. Inspired by these192

1Code and models are not publicly available for these methods. ReconFu-
sion was trained on an internal dataset.

approaches, we opt for a semantic scene understanding based 193
approach for quantifying the uncertainty in novel test-time 194
views for refinement. 195

3. Methodology 196

Problem Formulation. Consider a single input image I 197
with camera pose intrinsic K, a sequence of test-camera 198
trajectory extrinsics P1...M , and any given pre-trained de- 199
terministic feed-forward reconstruction model F(·), from 200
which we obtain N noisy Gaussian splats each representing 201
a scene. Our goal is to refine these N noisy 3D Gaussian 202
splats, ϕn ∈ RN×d to better representations ϕ

′

n ∈ RN×d 203
leveraging the strong generative prior G. We further sample k 204
supplementary views derived from the LVDM for providing 205
pseudo 2D supervision, which refines the noisy Gaussians 206
without access to any 2D or 3D ground truth. 207
Overview. We provide an overview of our uncertainty- 208
sensitive refinement pipeline in Figure 2. To get an accurate 209
target representation of the scene, the geometric features 210
from the backbone deterministic reconstruction model are 211
preserved and the textures from the LVDM are utilized. The 212
discussion starts with the deterministic model, serving as 213
the initial point for refining scene Gaussians, detailed in 214
Section 3.1. Then, we briefly discuss the topic of camera 215
controllable LVDMs in Section 3.2 since it is crucial to align 216
the pseudo views and the noisy rendered views so that they 217
are in the same camera space. The next part addresses the 218
method of weighting the optimization objective based on the 219
confidence associated with each pixel, as outlined in Sec- 220
tion 3.3. The final section describes the application of the 221
video diffusion model to generate pseudo-views and facili- 222
tate iterative refinement, further elaborated in Section 3.4. 223

3.1. Initial Coarse 3D Representation 224

Here, we briefly discuss the working formulation behind 225
the 3D reconstruction model F(·) which provides us 226
with an initial set of gaussians representing the scene ϕ. 227
Flash3D [1] uses an off-the-shelf monocular depth estima- 228
tion network [50] to estimate the metric depth D of the input 229
image I. It utilizes a U-Net [51] with ResNet blocks [52] to 230
produce multiple sets of depth-ordered layered Gaussians per 231
pixel p estimating to a certain degree the occluded regions 232
of the scene. The model is then trained over a collection 233
of such scenes and, for each scene, it renders images along 234
a known set of camera extrinsics to get the corresponding 235
rendered images Ĩ. These paired rendered and ground truth 236
views (Ĩ, Igt) can then be used to supervise the initialization 237
model with the reconstruction objective: 238

Lrec = ∥Ĩ − Igt∥2 + α SSIM
(
Ĩ, Igt

)
, (1) 239

where Ĩ is the image rendered by the initialized model F(·) 240
rasterizing its layered Gaussians and Igt is the corresponding 241
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Initial Coarse 3D
Gaussians

Adaptive
Densification/Pruning (ADP)

Generate
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LVDM 

Figure 2. Workflow of UAR-Scenes. For a conditioning image I, a pre-trained 3D reconstruction model F(·) produces coarse gaussians
(γn) representing the scene ϕ, represented by optimizable gaussian parameters. Using temporally consistent pseudo 2D supervisory images
(Ĩp) sampled from the pre-trained camera extrinsic embedded LVDM model [22], we iteratively refine the gaussians γn using Adaptive
Densification and Pruning (ADP) [49] to obtain clean gaussians (γ

′
n). To gauge the uncertainty of each pixel p in the generated pseudo

images (Ĩp), we propose a semantic uncertainty quantification method. We estimate the entropy present in each (Ĩp) obtained by utilizing an
off-the-shelf open-vocabulary segmentation model S [24] using which we obtain uncertainty maps U (as shown in Figure 3). We take the
hadamard product between Ĩp and U forming the target objective for the refinement loss in Equation 6, which guides the refinement process.

ground-truth image at train time. α is a hyper-parameter242
weighting the SSIM [53] loss.243
Challenges. As illustrated in Figure 1, it is clear that relying244
solely on depth-based modeling to capture the structure and245
appearance of scenes is often insufficient in many cases.246
This issue becomes more pronounced in scenarios involving247
substantial camera motion, where a significant portion of248
the rendered image extends beyond the field of view of the249
input image. Moreover, merely utilizing the MSE loss as250
described in Equation 1 drives the model to average out251
pixels in unseen regions, which often results in suboptimal,252
blurry renderings.253

3.2. LVDM with Camera Control254

Existing LVDMs (refer to the supplementary for the general255
formulation of LVDMs) cannot generate denoised images256
with user-specified camera pose trajectories. MotionCtrl [22]257
addresses this issue which we have used in our method. It258
injects the Plücker embedding information of the correspond-259
ing relative camera extrinsics: {xT , x(R,T ), R, T} and em-260
beds them into the cross-attention layers of the U-Net which261
results in a modified revised objective (refer to Equation 2262
of the supplementary for original objective of LVDMs):263

Ex1..M
0 , y1..M

t , ϵ1..Mt ∼N (0,I)

∥∥∥ϵ1..Mt − ϵθ
(
z1..Mt , t, y, C(R,T )

)∥∥∥
2
, (2) 264

where C(R,T ) is the embedding of the camera extrinsics. 265
Upon completion of the training process, the conditioning 266
image y can be provided along with the camera’s extrinsics 267
(R,T), to generate the target views corresponding to the 268
specified poses. For the sake of brevity, we refer to this 269
version of camera controllable LVDM as LVDM (G) unless 270
mentioned otherwise. 271

3.3. Semantic Uncertainty Quantification 272

Even though the pseudo-images generated by the video dif- 273
fusion model are plausible, they can generate over-saturated 274
textures which adversely affects novel view synthesis 275
(NVS) tasks (refer to Figure 5). Since we are directly 276
optimizing the Gaussian parameters representing the scene, 277
the aforementioned issues will lead to the degradation of 278
the composition of the scenes during refinement, resulting 279
in unrealistic renderings. To this end, to make the LVDM 280
self-aware of its predictions and pass only the confident 281
pixel information during refinement, we utilize a semantic 282
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Figure 3. Uncertainty Map Estimation. On the right is the ob-
tained uncertainty map from Pseudo Ground truth Image Ĩp (on the
left). It is generated by the LVDM after applying FST [54]. These
maps are crucial for guiding the Gaussian refinement process to
progressively focus more on the confident (blue and green regions)
and not on blurry ceiling and stairs (red).

understanding-driven uncertainty quantification module as283
described below.284

285
Uncertainty Distillation. For each pseudo-view Ĩp gener-286
ated by the LVDM, we use a Multimodal Large Language287
Model (MLLM) [23] to detect objects (even if partially288
visible) and obtain their object tags O1...N . These N+1289
classes (including background) are then passed to an open-290
vocabulary segmentation model S [24], producing pixel-291
level logits:292

ot = S
(
Ĩp, O

)
∈ Rn×(N+1), (3)293

where n is the number of pixels.294
Let pi,j,c denote the predicted probability that the pixel295

at (i, j) belongs to class c. The per-pixel Shannon entropy is296
defined as:297

U(i,j) = −
∑
c

pi,j,c log
(
pi,j,c

)
, (4)298

which forms the uncertainty map U ∈ RH×W which is then299
subsequently used to perform pixel-wise multiplication300
with the LVDM image during refinement. Intuitively,301
U(i,j) captures the uncertainty present in the segmentation302
map, whereby a higher entropy indicates a more uniform303
(i.e. less confident) class distribution for a pixel, while a304
lower entropy implies higher confidence in the predicted305
semantic classes. This entropy-based uncertainty measure306
thus provides a principled way to assess the reliability of307
the pseudo-view segmentation for our uncertainty-aware308
refinement. Further implementation details on how the309
MLLM was used for object tagging alongwith an open-set310
segmentation model [24] is explained in the supplementary.311

312
Uncertainty-Weighted Reconstruction. Instead of relying313
solely on the standard reconstruction loss introduced in Sec-314
tion 3.1, we leverage the derived per-pixel uncertainty map315
U(i,j) to guide the refinement process. In particular, given316

the rendered image Ĩ from the pre-trained reconstruction 317
model F(·) and the pseudo image Ĩp, we modify Equation 1 318
to compute an uncertainty-weighted reconstruction loss by 319
taking the Hadamard (pixel-wise) product between the re- 320
construction error and the complement of the uncertainty 321
map to get the pixel-wise confidence: 322

Luw-rec =
∥∥∥(1− U(i,j)

)
⊙
(
Ĩ − Ĩp

)∥∥∥
2
+ α SSIM

(
Ĩ, Ĩp

)
, (5) 323

where ⊙ denotes element-wise multiplication. This loss for- 324
mulation ensures that regions with high segmentation un- 325
certainty U(i, j) contribute less to the overall loss, thus em- 326
phasizing the confident areas in the image. The optimization 327
is steered towards refining the scene Gaussians in regions 328
where the pseudo-view segmentation is reliable, leading to 329
more accurate and visually coherent reconstruction. 330

3.4. Iterative Refinement of Gaussians 331

After obtaining the coarse Gaussians γn from F(·) in Sec- 332
tion 3.1, utilizing camera controlled LVDM G for generating 333
pseudo views for guidance (in Section 3.2) and defining our 334
uncertainty weighted refinement objective in Section 3.3, we 335
optimize the parameters of γn iteratively to obtain γ

′

n. How- 336
ever, it is observed that naive refinement of all the parameters 337
leads to distorted renderings. We discuss the optimization 338
strategy, style, texture alignment and the final refining objec- 339
tive for our pipeline below. 340
Selective Optimization of Scales. We observe that naive 341
refinement of Gaussian scales obtained from the baseline 342
method F(·) can lead to an explosion in gradients and dis- 343
torted renderings. This is primarily due to the tendency to 344
fit multiple small Gaussians per pixel during the warm-up 345
phase which rapidly increases the total number of Gaussians 346
representing the scene. We limit this by optimizing the scales 347
within a fixed range which we vary in an order of magnitude 348
of 10−2 from the initial scales obtained from F(·). 349
Texture alignment with FST (Φ). LVDMs tend to exhibit 350
over-saturated colors and features which may become more 351
pronounced in indoor scenes (as shown in Figure 5). While 352
the generated images may be plausible, they might hurt 353
the performance quantitatively in metrics like PSNR and 354
SSIM which evaluate pixel-level accuracy. To address this, 355
we perform Fourier Style Transfer (FST) adaptation [54] on 356
the fly between the input image I and the output images 357
generated by the LVDM model. This helps align the pseudo- 358
images Ĩp with the texture of the incoming source images. 359
Aligning textures in this manner contributes to improving 360
the overall performance, as shown in Table 4. 361
Refinement Objective. During the iterative refinement 362
stage, we adjust the parameters of each Gaussian primi- 363
tive, γn = (µn, Rn, Sn, αn), to better align the synthesized 364
pseudo target view with the reference. Specifically, we op- 365
timize using the uncertainty-weighted reconstruction loss 366
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Table 1. Novel View Synthesis. Our model shows superior performance on RealEstate10k [26] for small, medium, and large baseline ranges.
We highlight the best performance in bold and the second best performance in underline.

Model 5 frames 10 frames U[-30,30]

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Syn-Sin [55] – – – – – – 22.30 0.740 –
SV-MPI [56] 27.10 0.870 – 24.40 0.812 – 23.52 0.785 –
BTS [16] – – – – – – 24.00 0.755 0.194
Splatter Image [29] 24.15 0.894 0.110 25.60 0.760 0.240 23.10 0.730 0.290
MINE [57] 28.45 0.897 0.111 25.89 0.850 0.150 24.75 0.820 0.179
Flash3D [1] 28.46 0.899 0.100 25.94 0.857 0.133 24.93 0.833 0.160

UAR-Scenes 28.67 0.902 0.095 26.54 0.861 0.112 27.81 0.887 0.107

(Eq.5), Luw-rec, after performing the color correction with367
FST, which leads to our final optimization objective.368

LΦ
uw-rec =

∥∥∥(1− U(i, j)
)
⊙
(
Ĩ − Φ(Ĩp

)
)
∥∥∥
2
+ α SSIM

(
Ĩ,Φ(Ĩp)

)
, (6)369

In practice, the Gaussian parameters are iteratively refined370
via a gradient-based scheme, ensuring that each update im-371
proves the fidelity of the rendered view while accounting for372
the uncertainty maps obtained using the segmentation model373
S. The 2D supervisory updates rule progressively accounts374
for regions with higher confidence (lower uncertainty) that375
have a greater influence on the parameter updates, leading to376
refined, more accurate representations of the scene.377

4. Experiments378

We evaluate UAR-Scenes on the task of Novel View Syn-379
thesis (NVS) of scenes. Keeping in mind that multi-view380
consistency is a major focus to assess the quality of refined381
scenes, we present results on both narrow and wide baselines382
in Table 1. We further evaluate the interpolation and extrapo-383
lation performance following [1] and [30] after refinement in384
Table 2. To highlight the transferability of our method across385
datasets, we also show NVS results on KITTI-v2 in Table 3.386
This shows our refinement pipeline can be seamlessly inte-387
grated with any existing reconstruction method across a wide388
variety of tasks. Finally, we present ablation studies in show-389
ing the importance of each component in our framework and390
how it contributes towards overall performance.391

4.1. Experimental Setup392

Datasets. Our experiments involve in-domain results on393
the real-world scenes dataset RealEstate-10K [26] and out-394
domain results on the driving dataset KITTI-v2 [27] fol-395
lowing the protocol of the base reconstruction model [1].396
RealEstate-10K consists of 69893 real estate videos show-397
ing the indoor and outdoor views of houses collected from398
YouTube. KITTI-V2 consists of driving sequences recorded399
with a stereo camera per day. We follow the standard protocol400
of 1079 images for testing this dataset.401

Evaluation Metrics. We adopt PSNR, SSIM [53] and Per- 402
ceptual Similarity (LPIPS) [60] as our photo-metric evalu- 403
ation standard as in [1, 11, 12]. Further, we report Frechet- 404
Inception Distance (FID) [61] as well since we generate 405
plausible explanations for unobserved regions which do not 406
have a corresponding paired ground truth. 407
Pseudo-View Generation. We utilize the MotionCtrl [22] 408
LVDM model which has fine-grained camera control for 409
generating the pseudo views and provides supervision for 410
refining the Gaussian primitives. This is essential to align the 411
generated views with those obtained by rendering the coarse 412
Gaussians of F(·). Following this, we perform 50 inference 413
sampling steps with a reduced batch size of 10 to address 414
the increased computational load. 415
Optimization Details. We optimize each scene for 1000 416
steps in which the learning rate of position information de- 417
cays from 1× 10−3 to 2× 10−5. We use a single NVIDIA 418
L40 48 GB GPU for running all our experiments. Finally, 419
our rendering resolution for all images is 256× 384 follow- 420
ing the protocol in [1]. We keep a batch size of 2 for all our 421
experiments. Further implementation details are listed in the 422
supplementary material. 423

4.2. Novel View Synthesis 424

RealEstate-10K. We benchmark our refinement model on 425
the RealEstate dataset where we show improvements over 426
stereo and sparse view methods while refining a single-image 427
to 3D reconstruction pipeline. UAR-Scenes obtains around 428
1dB improvement on average across both the closer and 429
wide baselines in PSNR showing the effectiveness of our 430
pipeline in improving existing feed-forward models. Notice 431
that while the performance of the baseline model Flash3D 432
steadily decreases as the distance from the source increases, 433
UAR-Scenes is able to still provide decent renderings. This 434
is important as it suggests that these feed-forward methods 435
fail to capture those areas of the scene which progressively 436
start falling out of the range of the input conditioning image. 437
We provide qualitative results in Figure 1 and Figure 4(a) 438
where we clearly show how UAR-Scenes provides high 439
quality rendering results in cases where Flash3D fails. We 440
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(b) KITTI-v2

Input View Ground TruthFlash3D UAR-Scenes

Input View

Ground
Truth

Flash3D

UAR-Scenes

(a) RealEstate-10K

Figure 4. Qualitative Results. (a) Qualitative comparisons on the RealEstate-10K dataset shows that our method produces more realistic
results which are more plausible and faithful to the original image (In 1st row, Flash3D’s renderings are blurry outside the camera’s seen
frustum where UAR-Scenes is able to complete the window. Similarly UAR-Scenes can provide reasonable completions which may not
always align with the GT as shown in 2nd row). (b) Qualitative comparison on the KITTI-v2 dataset which shows that our method can
deliver sharp results especially in edges where there may be ambiguity (Back edge of car is distorted in Flash3D’s prediction in 2nd column).
Notice that despite the significant camera motion between the original input view and the target novel views, UAR-Scenes can render
realistic and plausible renderings as highlighted above.

LVDM UAR-ScenesFlash3D LVDM-FST
Figure 5. Ablation Results. The leftmost image is the rendered view from the baseline method Flash3D which fails in extrapolation. Next,
we have the LVDM generated image which clearly has oversaturated textures which does not align with real world scenes. On the 3rd image
from the left, FST alleviates this issue by performing style alignment which leads to better quality results in the final output on the right.
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Table 2. Interpolation vs. Extrapolation. We compare our method (UAR-Scenes) on the RealEstate-10K dataset against baselines on
PSNR, SSIM, LPIPS, and FID metrics. We highlight the best performance in bold and the second best performance in underline.

Method
Interpolation Extrapolation

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ FID↓

PixelNeRF [10] 24.00 0.589 0.550 20.05 0.575 0.567 160.77
Du et al. [58] 24.78 0.820 0.410 21.23 0.760 0.480 14.34
pixelSplat [11] 25.49 0.794 0.291 22.62 0.777 0.216 5.78
latentSplat [30] 25.53 0.853 0.280 23.45 0.801 0.190 2.97
MVSplat [12] 26.39 0.869 0.128 24.04 0.812 0.185 3.87
Flash3D [1] 23.87 0.811 0.185 24.10 0.815 0.185 4.02

UAR-Scenes 26.37 0.871 0.125 24.37 0.819 0.144 2.55

Table 3. Out-Domain Evaluation. We evaluate on the KITTI-
v2 [27] Dataset. We highlight the best performance in bold and
the second best performance is underlined. We beat the baseline
method comprehensively.

KITTI

Method PSNR↑ SSIM↑ LPIPS↓
LDI [59] 16.50 0.572 –
SV-MPI [56] 19.50 0.733 –
BTS [16] 20.10 0.761 0.144
MINE [57] 21.90 0.828 0.112
Flash3D [1] 21.96 0.826 0.132

UAR-Scenes 22.31 0.844 0.128

show additional qualitative results in the supplementary.441
KITTI-v2. We also perform an out-domain evaluation on442
the KITTI dataset showing that our refinement procedure443
is dataset agnostic and can be used in a post-hoc fashion444
to adapt to any setting. We obtain a PSNR improvement of445
around 0.35 dB over the baseline method. We provide further446
qualitative results in Figure 4(b).447

4.3. Generative Results448

We report interpolation and extrapolation results on the449
RealEstate-10K dataset using Flash3D as the baseline450
method. We are able to beat all the methods except MVSplat451
which uses stereo information to interpolate. In Extrapola-452
tion, over a wide baseline, our FID is significantly lower453
then all methods including LatentSplat [30] which uses a454
generative GAN denoiser but still fails to handle complex455
real-world scenes. Except Flash3D [1], we report FID num-456
bers following existing feed forward methods [30, 62].457

4.4. Ablation Studies458

Architectural Choice. We conduct our ablation studies on459
the real world RealEstate-10K dataset to measure the effects460
of the various architectural designs on the overall perfor-461
mance. The results are listed in Table 4. It can be observed462
that adding the LVDM and performing uncertainity aware463

Table 4. Ablation Studies. We report PSNR (↑), SSIM (↑), and
LPIPS (↓) on RealEstate-10K. The component columns indicate
whether LVDM (G), FST (Φ), and uncertainty (U) are included.

Models Components Metrics

G Φ U PSNR↑ SSIM↑ LPIPS↓

Baseline ✗ ✗ ✗ 24.93 0.833 0.160
Baseline + LVDM ✓ ✗ ✗ 27.24 0.867 0.126
Baseline + LVDM-FST ✓ ✓ ✗ 27.33 0.869 0.119
UAR-Scenes ✓ ✓ ✓ 27.81 0.887 0.107

refinement contributes significantly to performance gains. 464
The rendering effect behind each choice is shown in Figure 5. 465
Note how the oversaturated texture information generated by 466
the LVDM does not align with either the input image or the 467
ground truth. We therefore perform the alignment operation 468
using Φ to produce better quality supervision which is more 469
practical for Novel View Synthesis tasks for scenes. 470

5. Conclusion 471

We introduced UAR-Scenes, a novel 3D scene refinement 472
pipeline that enhances scene Gaussians derived from a sin- 473
gle image, thereby improving the quality of Gaussians pro- 474
duced by 3D reconstruction pipelines. Our results demon- 475
strate the versatility of UAR-Scenes across both in-domain 476
and out-domain datasets. Through Novel View Synthesis 477
experiments, we outperform state-of-the-art feed-forward 478
methods across small, medium, and large baseline settings. 479
Additionally, UAR-Scenes excels in challenging interpo- 480
lation and extrapolation tasks, yielding superior rendered 481
views and high-quality generations at unseen camera angles, 482
as evidenced by both qualitative and quantitative results. 483
Furthermore, our ablation studies validate the effectiveness 484
of individual components and design choices within the 485
UAR-Scenes pipeline, highlighting the benefits of employ- 486
ing Fourier-style texture alignment with real-world scenes. 487
Overall, our findings highlight UAR-Scenes’s potential to 488
advance 3D scene understanding and novel view synthesis. 489
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