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Figure 1. Overview: We introduce UAR-Scenes, a diffusion-guided refinement pipeline that enhances outputs from pre-trained single-
image to 3D scene reconstruction models, such as Flash3D [1], which yield imperfect renderings (red box) under slight viewpoint variations
(2nd column from left). By harnessing the generative power of a latent video diffusion model (LVDM) [2], our approach can sample plausible
explanations for unseen regions (green box) to produce refined, high-quality novel views of 3D scenes (3rd column from left).

Abstract

Reconstructing 3D scenes from a single image is a funda-
mentally ill-posed task due to the severely under-constrained
nature of the problem. Consequently, when the scene is ren-
dered from novel camera views, existing single image to 3D
reconstruction methods render incoherent and blurry views.
This problem is exacerbated when the unseen regions are far
away from the input camera. In this work, we address these
inherent limitations in existing single image-to-3D scene
feedforward networks. To alleviate the poor performance
due to insufficient information beyond the input image’s view,
we leverage a strong generative prior, in the form of a pre-
trained latent video diffusion model, for iterative refinement
of a coarse scene represented by optimizable Gaussian pa-
rameters. To ensure that the style and texture of the generated
images align with that of the input image, we incorporate
on-the-fly Fourier-style transfer between the generated im-
ages and the input image. Additionally, we design a semantic
uncertainty quantification module that calculates the per-

pixel entropy and yields uncertainty maps used to guide the
refinement process from the most confident pixels while dis-
carding the remaining highly uncertain ones. We conduct
extensive experiments on real-world scene datasets, includ-
ing in-domain RealEstate-10K and out-of-domain KITTI-v2,
showing that our approach can provide more realistic and
high-fidelity novel view synthesis results compared to exist-
ing state-of-the-art methods.

1. Introduction

3D Scene Reconstruction is a long standing challenging task,
playing a crucial role in holistic scene understanding [3, 4],
generative content creation, mixed reality [5], robot navi-
gation and path planning [6—9]. Reconstructing 3D scenes
involves Novel View Synthesis (NVS), wherein the scene is
rendered from unseen camera angles to obtain novel views of
the scene. Although notable progress has been made towards
improving NVS, most existing methods rely on multiple
images from numerous viewpoints [10—12] to increase the
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available information, which may not always be available.
This leads us to the relatively underexplored task of 3D re-
construction from a single RGB image [1]. Although the
existing single image to 3D scene method can generate rea-
sonable results, it often fails when the scene is rendered
from an unseen camera angle, due to scarcity of information
limiting its capability to reconstruct scenes in views it has
never seen before. This bottleneck leads us to ask the ques-
tion: “Can we design a pipeline that refines scenes so that
it retains high fidelity in regions it has seen and generates
consistent plausible completions for the unseen regions?”

One way to compensate for this lack of multi-view infor-
mation is to use generative priors so that they can provide
valuable complementary information. The principle is to syn-
thesize plausible 3D details even for regions not visible in the
image, where plausibility refers to the fact that visible por-
tions should remain multi-view consistent, while occluded
or out-of-view areas should integrate seamlessly with the
context of the scene (refer to supplementary for qualitative
results). Some existing approaches toward solving this prob-
lem include text-guided inpainting [13] and distillation of
2D diffusion priors [14]. However, these methods either lack
3D correspondence awareness [15] or do not have any tem-
poral continuity as they denoise each image separately. This
leads to issues with multi-view consistency for large view-
point changes as the camera moves further away from the
source. One way to address this challenge is to reformulate
the problem in a 2.5D reconstruction [16, 17] setting, which
can be limited in terms of fully capturing unseen regions.
Moreover, extending such approaches to fully unbounded
real world scenes, where the scene may not loop back to the
starting point, is non-trivial. These methods often rely heav-
ily on just generated features, leading to mode collapse [18],
content distortion [18, 19] and visible artifacts in rendered
views [20, 21], especially when the camera motion spans
a large range. Although diffusion priors are well-suited for
object-level enhancement, these limitations indicate that pri-
ors primarily designed for object reconstruction, cannot be
directly applied for scene refinement.

To this end, we propose Uncertainty-Aware Diffusion-
Guided Refinement of 3D Scenes: UAR-Scenes, an
uncertainty-aware Gaussian splatting based refinement
framework that combines the strengths of regressive and
generative approaches. We perform the refinement using
Adaptive Densification and Pruning (ADP) [6], a mecha-
nism that controls the density of 3D points by introducing
or deleting Gaussian primitives (check supplementary Sec-
tion 6.1). ADP plays a crucial role in expanding or shrink-
ing Gaussians depending on whether the region is over-
constructed or not. Therefore, in observed regions where
the confidence per pixel is high, our method mostly pre-
serves Gaussian primitives with high-fidelity details obtained
from the reconstruction backbone, while in unobserved or

occluded areas, it learns to introduce new Gaussians by using

uncertainty-driven sampling from a Latent Video Diffusion

Model (LVDM) [22] to produce plausible scene completions.

We leverage an MLLM [23], along with an open-vocabulary

segmentation model [24], to compute the per-pixel entropy

present in LVDM generated views which gives us the per-
pixel uncertainty associated with the generated images. In
this way, the inherent ambiguity present in single-view re-
construction methods can be addressed, expanding the appli-
cability of our pipeline from simple object-centric datasets
or scenes with limited backgrounds [25] to arbitrarily large
real-world unbounded scenes [26]. Furthermore, it does not
rely on any form of ground truth supervision (2D or 3D),
making the entire process self-supervised and thus, post-hoc
compatible with any existing 3D reconstruction algorithm.

This design effectively addresses ambiguities, such as miss-

ing artifacts and inconsistent 3D reconstructions inherent

in single-view settings. Thus, in a nutshell, our proposed
model integrates a differentiable feed-forward scene recon-
struction pipeline that operates from a single image with an
uncertainty-aware LVDM for self-supervised refinement of
noisy scenes.

The main contributions of our work are as follows:

* We propose UAR-Scenes, a novel uncertainty-aware re-
finement pipeline which can take an existing single image
to 3D scene reconstruction model and generate reliable and
plausible explanations for unseen and naturally occluded
regions present in unbounded real-world scenes. To the
best of our knowledge this is the first optimization-based
work for the refinement of single image to 3D reconstruc-
tion methods.

* UAR-Scenes utilizes a camera pose controlled Latent
Video Diffusion Model (LVDM) which generates consis-
tent posed images to serve as pseudo 2D supervision for
refining a noisy scene. To address noisy pseudo-views,
we design an innovative uncertainty quantification mod-
ule which leverages an MLLM guided open vocabulary
segmentation model for highlighting the most confident
pixels for UAR-Scenes to learn from.

* To address any texture and style inconsistencies between
the input image and the generated pseudo views from the
LVDM, we propose a Fourier Style Transfer (FST)-based
texture alignment methodology.

* We conduct extensive experiments on both real-world in-
domain dataset RealEstate-10K [26] (on which the base-
line method was trained) and an out-domain dataset KITTI-
v2 [27] which is unseen for both our method and the base-
line, demonstrating that UAR-Scenes enhances perfor-
mance significantly.

2. Related Works

Regressive 3D Reconstruction from Sparse Views. Exist-
ing generalizable reconstruction methods [1, 12, 28-32] aim
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to train a single feed-forward model which can predict a 3D
scene directly. Such methods include PixelSplat [11] which
utilizes epipolar transformers to reduce scale ambiguity and
obtain better scene features. Similarly, MVSplat [12] builds
cost volumes to obtain Gaussians in a fast and efficient man-
ner. LatentSplat [30] utilizes a GAN decoder as a generative
component but GANs are known to be highly unstable [33]
and hence unsuitable for modeling real-world unbounded
scenes. Recently, Flash3D [1] introduced a single image
to 3D scene pipeline leveraging a pre-trained depth estima-
tor. In this paper, we build upon this regressive framework
and show how most works falling in this paradigm fail to
generate realistic completions for unseen regions.
Generative Scene Reconstruction and Synthesis. Our
method falls within an under-explored area of utilizing only
2D (pseudo) labels to supervise 3D tasks using latent dif-
fusion models. Existing approaches like [34-37] denoise
multi-view images using a 3D-aware denoiser. However,
such methods do not produce a coherent 3D structure since
the denoising process is done separately for each image lead-
ing to sub-optimal multi-view consistency. Works such as
3DGS-Enhancer [38] address a similar problem in a sparse
view setting but they employ a mix of refined views along
with un-refined views when training the video-diffusion
model. Other works such as CAT3D [39], GeNVS [40], Re-
conFusion [14], LM-Gaussian [41], and ReconX [42]" all
tackle similar problems but they deal with the problem by
employing expensive conditioning techniques [43] which
may not always be multi-view consistent. Further, none of
these methods optimize the Gaussians directly but instead
fine-tune an existing generative diffusion model on datasets
to make it generalizable, which ties the models down to the
particular distribution on which it is trained.

Uncertainty Quantification in 3D Reconstruction. Quan-
tifying uncertainty has received relatively less attention in
3D scene reconstruction, especially considering it’s impor-
tance in the context of single image to 3D reconstruction
where there is inherently a lot of ambiguity. One of the first
approaches in estimating epistemic uncertainty in NeRFs
from sparse views using variational inference was studied
in works [44—46] but owing to increasing parameters along-
with using different models, these approaches are inherently
expensive. BayesRays [47] proposed a method to quantify
uncertainty in any NeRF based reconstruction module in a
post-hoc fashion. Further, uncertainty has also been explored
in the context of active-view selection and path planning in
the field of 3D mapping in robotics [7, 48] to estimate which
next view maximizes the information gain over a given pre-
trained model by approximating the hessian matrix of the
log-likelihood function. However, this becomes un-scalable
to compute for each Gaussian primitive. Inspired by these

1Code and models are not publicly available for these methods. ReconFu-
sion was trained on an internal dataset.

approaches, we opt for a semantic scene understanding based
approach for quantifying the uncertainty in novel test-time
views for refinement.

3. Methodology

Problem Formulation. Consider a single input image 7
with camera pose intrinsic /C, a sequence of test-camera
trajectory extrinsics P;_ ps, and any given pre-trained de-
terministic feed-forward reconstruction model F(-), from
which we obtain N noisy Gaussian splats each representing
a scene. Our goal is to refine these /N noisy 3D Gaussian
splats, ¢, € RV*4 to better representations ¢, € RN*?
leveraging the strong generative prior G. We further sample k
supplementary views derived from the LVDM for providing
pseudo 2D supervision, which refines the noisy Gaussians
without access to any 2D or 3D ground truth.

Overview. We provide an overview of our uncertainty-
sensitive refinement pipeline in Figure 2. To get an accurate
target representation of the scene, the geometric features
from the backbone deterministic reconstruction model are
preserved and the textures from the LVDM are utilized. The
discussion starts with the deterministic model, serving as
the initial point for refining scene Gaussians, detailed in
Section 3.1. Then, we briefly discuss the topic of camera
controllable LVDM s in Section 3.2 since it is crucial to align
the pseudo views and the noisy rendered views so that they
are in the same camera space. The next part addresses the
method of weighting the optimization objective based on the
confidence associated with each pixel, as outlined in Sec-
tion 3.3. The final section describes the application of the
video diffusion model to generate pseudo-views and facili-
tate iterative refinement, further elaborated in Section 3.4.

3.1. Initial Coarse 3D Representation

Here, we briefly discuss the working formulation behind
the 3D reconstruction model F(-) which provides us
with an initial set of gaussians representing the scene ¢.
Flash3D [1] uses an off-the-shelf monocular depth estima-
tion network [50] to estimate the metric depth D of the input
image Z. It utilizes a U-Net [51] with ResNet blocks [52] to
produce multiple sets of depth-ordered layered Gaussians per
pixel p estimating to a certain degree the occluded regions
of the scene. The model is then trained over a collection
of such scenes and, for each scene, it renders images along
a known set of camera extrinsics to get the corresponding
rendered images Z. These paired rendered and ground truth
views (Z, Z) can then be used to supervise the initialization
model with the reconstruction objective:

Lice = |Z — Iyll2 + a SSIM(Z, Zy,), 1)

where 7 is the image rendered by the initialized model F(-)
rasterizing its layered Gaussians and Zy; is the corresponding
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Figure 2. Workflow of UAR-Scenes. For a conditioning image Z, a pre-trained 3D reconstruction model F(-) produces coarse gaussians
(yn) representing the scene ¢, represented by optimizable gaussian parameters. Using temporally consistent pseudo 2D supervisory images
(Z,) sampled from the pre-trained camera extrinsic embedded LVDM model [22], we iteratively refine the gaussians vy, using Adaptive

Densification and Pruning (ADP) [49] to obtain clean gaussians ('y;l). To gauge the uncertainty of each pixel p in the generated pseudo
images (Z,), we propose a semantic uncertainty quantification method. We estimate the entropy present in each (Z,) obtained by utilizing an
off-the-shelf open-vocabulary segmentation model S [24] using which we obtain uncertainty maps U (as shown in Figure 3). We take the
hadamard product between Z, and I/ forming the target objective for the refinement loss in Equation 6, which guides the refinement process.

ground-truth image at train time. « is a hyper-parameter
weighting the SSIM [53] loss.

Challenges. As illustrated in Figure 1, it is clear that relying
solely on depth-based modeling to capture the structure and
appearance of scenes is often insufficient in many cases.
This issue becomes more pronounced in scenarios involving
substantial camera motion, where a significant portion of
the rendered image extends beyond the field of view of the
input image. Moreover, merely utilizing the MSE loss as
described in Equation 1 drives the model to average out
pixels in unseen regions, which often results in suboptimal,
blurry renderings.

3.2. LVDM with Camera Control

Existing LVDMs (refer to the supplementary for the general
formulation of LVDMs) cannot generate denoised images
with user-specified camera pose trajectories. MotionCtrl [22]
addresses this issue which we have used in our method. It
injects the Pliicker embedding information of the correspond-
ing relative camera extrinsics: { 27, r(r,1), R, T} andem-
beds them into the cross-attention layers of the U-Net which
results in a modified revised objective (refer to Equation 2
of the supplementary for original objective of LVDMs):

Ezé..lw,y}..NI,6}__1\/[NN(O’I)H6tlnM — (5 M 1,9, Clamy) H27 2)

where C(g 7y is the embedding of the camera extrinsics.
Upon completion of the training process, the conditioning
image y can be provided along with the camera’s extrinsics
(R, T), to generate the target views corresponding to the
specified poses. For the sake of brevity, we refer to this
version of camera controllable LVDM as LVDM (G) unless
mentioned otherwise.

3.3. Semantic Uncertainty Quantification

Even though the pseudo-images generated by the video dif-
fusion model are plausible, they can generate over-saturated
textures which adversely affects novel view synthesis
(NVS) tasks (refer to Figure 5). Since we are directly
optimizing the Gaussian parameters representing the scene,
the aforementioned issues will lead to the degradation of
the composition of the scenes during refinement, resulting
in unrealistic renderings. To this end, to make the LVDM
self-aware of its predictions and pass only the confident
pixel information during refinement, we utilize a semantic
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1!"W

Red: Least confident

Blue: Most confident

Figure 3. Uncertainty Map Estimation. On the right is the ob-
tained uncertainty map from Pseudo Ground truth Image 7, (on the
left). It is generated by the LVDM after applying FST [54]. These
maps are crucial for guiding the Gaussian refinement process to
progressively focus more on the confident (blue and green regions)
and not on blurry ceiling and stairs (red).

understanding-driven uncertainty quantification module as
described below.

Uncertainty Distillation. For each pseudo-view fp gener-
ated by the LVDM, we use a Multimodal Large Language
Model (MLLM) [23] to detect objects (even if partially
visible) and obtain their object tags O;.. . These N+1
classes (including background) are then passed to an open-
vocabulary segmentation model S [24], producing pixel-
level logits:

0 = s(ip, o) € RN, 3)

where n is the number of pixels.

Let p; ; . denote the predicted probability that the pixel
at (4, j) belongs to class c. The per-pixel Shannon entropy is
defined as:

Uijy ==Y DPijelog(pije), 4

which forms the uncertainty map 2/ € R *W which is then
subsequently used to perform pixel-wise multiplication
with the LVDM image during refinement. Intuitively,
U; ;) captures the uncertainty present in the segmentation
map, whereby a higher entropy indicates a more uniform
(i.e. less confident) class distribution for a pixel, while a
lower entropy implies higher confidence in the predicted
semantic classes. This entropy-based uncertainty measure
thus provides a principled way to assess the reliability of
the pseudo-view segmentation for our uncertainty-aware
refinement. Further implementation details on how the
MLLM was used for object tagging alongwith an open-set
segmentation model [24] is explained in the supplementary.

Uncertainty-Weighted Reconstruction. Instead of relying
solely on the standard reconstruction loss introduced in Sec-
tion 3.1, we leverage the derived per-pixel uncertainty map
U; ;) to guide the refinement process. In particular, given

the rendered image 7 from the pre-trained reconstruction
model F(-) and the pseudo image Z,, we modify Equation |
to compute an uncertainty-weighted reconstruction loss by
taking the Hadamard (pixel-wise) product between the re-
construction error and the complement of the uncertainty
map to get the pixel-wise confidence:

Lowree = H -, p) @ (T-1T,) H2 +aSSIM(Z,Z,), (5)

where ® denotes element-wise multiplication. This loss for-
mulation ensures that regions with high segmentation un-
certainty U (¢, j) contribute less to the overall loss, thus em-
phasizing the confident areas in the image. The optimization
is steered towards refining the scene Gaussians in regions
where the pseudo-view segmentation is reliable, leading to
more accurate and visually coherent reconstruction.

3.4. Iterative Refinement of Gaussians

After obtaining the coarse Gaussians 7, from F(-) in Sec-
tion 3.1, utilizing camera controlled LVDM @ for generating
pseudo views for guidance (in Section 3.2) and defining our
uncertainty weighted refinement objective in Section 3.3, we
optimize the parameters of -, iteratively to obtain 7;1- How-
ever, it is observed that naive refinement of all the parameters
leads to distorted renderings. We discuss the optimization
strategy, style, texture alignment and the final refining objec-
tive for our pipeline below.

Selective Optimization of Scales. We observe that naive
refinement of Gaussian scales obtained from the baseline
method F(-) can lead to an explosion in gradients and dis-
torted renderings. This is primarily due to the tendency to
fit multiple small Gaussians per pixel during the warm-up
phase which rapidly increases the total number of Gaussians
representing the scene. We limit this by optimizing the scales
within a fixed range which we vary in an order of magnitude
of 10~2 from the initial scales obtained from JF(-).
Texture alignment with FST (). LVDMs tend to exhibit
over-saturated colors and features which may become more
pronounced in indoor scenes (as shown in Figure 5). While
the generated images may be plausible, they might hurt
the performance quantitatively in metrics like PSNR and
SSIM which evaluate pixel-level accuracy. To address this,
we perform Fourier Style Transfer (FST) adaptation [54] on
the fly between the input image Z and the output images
generated by the LVDM model. This helps align the pseudo-
images 7, with the texture of the incoming source images.
Aligning textures in this manner contributes to improving
the overall performance, as shown in Table 4.

Refinement Objective. During the iterative refinement
stage, we adjust the parameters of each Gaussian primi-
tive, v, = (ttn, Rn, Sn, an), to better align the synthesized
pseudo target view with the reference. Specifically, we op-
timize using the uncertainty-weighted reconstruction loss
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Table 1. Novel View Synthesis. Our model shows superior performance on RealEstate10k [26] for small, medium, and large baseline ranges.

We highlight the best performance in bold and the second best performance in underline.

Model

5 frames

10 frames

U[-30,30]

PSNRt SSIMtT LPIPS| PSNRtT SSIMtT LPIPS| PSNRtT SSIMtT LPIPS|

Syn-Sin [55] - - - - - - 2230 0.740 -
SV-MPI [56] 27.10  0.870 - 2440 0812 - 2352 0.785 -

BTS [16] - - - - - - 2400 0755  0.194
Splatter Image [29]  24.15  0.894  0.110  25.60 0760 0240  23.10 0730  0.290
MINE [57] 2845  0.897  0.111 2589 0850  0.150 2475 0.820  0.179
Flash3D [1] 2846  0.899  0.100 2594 0.857 0.133 2493  0.833  0.160
UAR-Scenes 28.67 0902 0.095 2654 0861 0.112 2781 0887  0.107

(Eq.5), Lyw-rec, after performing the color correction with
FST, which leads to our final optimization objective.

Lhiree = |1 -UGD) © @ = 0(E,))|, + aSSM(Z, ©(Z,), (6)
In practice, the Gaussian parameters are iteratively refined
via a gradient-based scheme, ensuring that each update im-
proves the fidelity of the rendered view while accounting for
the uncertainty maps obtained using the segmentation model
S. The 2D supervisory updates rule progressively accounts
for regions with higher confidence (lower uncertainty) that
have a greater influence on the parameter updates, leading to
refined, more accurate representations of the scene.

4. Experiments

We evaluate UAR-Scenes on the task of Novel View Syn-
thesis (NVS) of scenes. Keeping in mind that multi-view
consistency is a major focus to assess the quality of refined
scenes, we present results on both narrow and wide baselines
in Table 1. We further evaluate the interpolation and extrapo-
lation performance following [1] and [30] after refinement in
Table 2. To highlight the transferability of our method across
datasets, we also show NVS results on KITTI-v2 in Table 3.
This shows our refinement pipeline can be seamlessly inte-
grated with any existing reconstruction method across a wide
variety of tasks. Finally, we present ablation studies in show-
ing the importance of each component in our framework and
how it contributes towards overall performance.

4.1. Experimental Setup

Datasets. Our experiments involve in-domain results on
the real-world scenes dataset RealEstate-10K [26] and out-
domain results on the driving dataset KITTI-v2 [27] fol-
lowing the protocol of the base reconstruction model [1].
RealEstate- 10K consists of 69893 real estate videos show-
ing the indoor and outdoor views of houses collected from
YouTube. KITTI-V2 consists of driving sequences recorded
with a stereo camera per day. We follow the standard protocol
of 1079 images for testing this dataset.

Evaluation Metrics. We adopt PSNR, SSIM [53] and Per-
ceptual Similarity (LPIPS) [60] as our photo-metric evalu-
ation standard as in [1, 11, 12]. Further, we report Frechet-
Inception Distance (FID) [61] as well since we generate
plausible explanations for unobserved regions which do not
have a corresponding paired ground truth.

Pseudo-View Generation. We utilize the MotionCtrl [22]
LVDM model which has fine-grained camera control for
generating the pseudo views and provides supervision for
refining the Gaussian primitives. This is essential to align the
generated views with those obtained by rendering the coarse
Gaussians of F(-). Following this, we perform 50 inference
sampling steps with a reduced batch size of 10 to address
the increased computational load.

Optimization Details. We optimize each scene for 1000
steps in which the learning rate of position information de-
cays from 1 x 1073 to 2 x 10~°. We use a single NVIDIA
L40 48 GB GPU for running all our experiments. Finally,
our rendering resolution for all images is 256 x 384 follow-
ing the protocol in [1]. We keep a batch size of 2 for all our
experiments. Further implementation details are listed in the
supplementary material.

4.2. Novel View Synthesis

RealEstate-10K. We benchmark our refinement model on
the RealEstate dataset where we show improvements over
stereo and sparse view methods while refining a single-image
to 3D reconstruction pipeline. UAR-Scenes obtains around
1dB improvement on average across both the closer and
wide baselines in PSNR showing the effectiveness of our
pipeline in improving existing feed-forward models. Notice
that while the performance of the baseline model Flash3D
steadily decreases as the distance from the source increases,
UAR-Scenes is able to still provide decent renderings. This
is important as it suggests that these feed-forward methods
fail to capture those areas of the scene which progressively
start falling out of the range of the input conditioning image.
We provide qualitative results in Figure 1 and Figure 4(a)
where we clearly show how UAR-Scenes provides high
quality rendering results in cases where Flash3D fails. We
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(a) RealEstate-10K
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Figure 4. Qualitative Results. (a) Qualitative comparisons on the RealEstate-10K dataset shows that our method produces more realistic
results which are more plausible and faithful to the original image (In 1st row, Flash3D’s renderings are blurry outside the camera’s seen
frustum where UAR-Scenes is able to complete the window. Similarly UAR-Scenes can provide reasonable completions which may not
always align with the GT as shown in 2nd row). (b) Qualitative comparison on the KITTI-v2 dataset which shows that our method can
deliver sharp results especially in edges where there may be ambiguity (Back edge of car is distorted in Flash3D’s prediction in 2nd column).
Notice that despite the significant camera motion between the original input view and the target novel views, UAR-Scenes can render
realistic and plausible renderings as highlighted above.

Flash3D LVDM-FST UAR-Scenes
Figure 5. Ablation Results. The leftmost image is the rendered view from the baseline method Flash3D which fails in extrapolation. Next,
we have the LVDM generated image which clearly has oversaturated textures which does not align with real world scenes. On the 3rd image
from the left, FST alleviates this issue by performing style alignment which leads to better quality results in the final output on the right.
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Table 2. Interpolation vs. Extrapolation. We compare our method (UAR-Scenes) on the RealEstate-10K dataset against baselines on
PSNR, SSIM, LPIPS, and FID metrics. We highlight the best performance in bold and the second best performance in underline.

Method Interpolation Extrapolation

PSNRT SSIM?T LPIPS| PSNRT SSIM?T LPIPS| FID]
PixeINeRF [10] 24.00 0.589  0.550  20.05 0.575 0.567 160.77
Du et al. [58] 2478 0820 0410 21.23 0.760 0480 14.34
pixelSplat [11] 2549 0.794 0291 22,62 0.777 0216 578
latentSplat [30] 25.53 0.853  0.280 2345 0.801 0.190 297
MVSplat [12] 26.39 0.869 0.128 24.04 0.812  0.185 3.87
Flash3D [1] 23.87 0811 0.185 24.10 0.815 0.185  4.02
UAR-Scenes  26.37 0871 0.125 2437 0819 0.144 255

Table 3. Out-Domain Evaluation. We evaluate on the KITTI-
v2 [27] Dataset. We highlight the best performance in bold and
the second best performance is underlined. We beat the baseline
method comprehensively.

KITTI

Method PSNRT SSIMt1 LPIPS|
LDI [59] 16.50 0.572 -
SV-MPI [56] 19.50 0.733 —
BTS [16] 20.10 0.761 0.144
MINE [57] 21.90 0.828 0.112
Flash3D [1] 21.96 0.826 0.132
UAR-Scenes 22.31 0.844 0.128

show additional qualitative results in the supplementary.
KITTI-v2. We also perform an out-domain evaluation on
the KITTI dataset showing that our refinement procedure
is dataset agnostic and can be used in a post-hoc fashion
to adapt to any setting. We obtain a PSNR improvement of
around 0.35 dB over the baseline method. We provide further
qualitative results in Figure 4(b).

4.3. Generative Results

We report interpolation and extrapolation results on the
RealEstate-10K dataset using Flash3D as the baseline
method. We are able to beat all the methods except MV Splat
which uses stereo information to interpolate. In Extrapola-
tion, over a wide baseline, our FID is significantly lower
then all methods including LatentSplat [30] which uses a
generative GAN denoiser but still fails to handle complex
real-world scenes. Except Flash3D [1], we report FID num-
bers following existing feed forward methods [30, 62].

4.4. Ablation Studies

Architectural Choice. We conduct our ablation studies on
the real world RealEstate-10K dataset to measure the effects
of the various architectural designs on the overall perfor-
mance. The results are listed in Table 4. It can be observed
that adding the LVDM and performing uncertainity aware

Table 4. Ablation Studies. We report PSNR (1), SSIM (7), and
LPIPS () on RealEstate-10K. The component columns indicate
whether LVDM (G), FST (®), and uncertainty (/) are included.

Models Components Metrics

G ® U PSNR?T SSIM?T LPIPS|
Baseline XX X 2493 0.833 0.160
Baseline + LVDM XX 27.24 0.867 0.126
Baseline + LVDM-FST v v X 27.33 0.869 0.119
UAR-Scenes a4 27.81 0.887 0.107

refinement contributes significantly to performance gains.
The rendering effect behind each choice is shown in Figure 5.
Note how the oversaturated texture information generated by
the LVDM does not align with either the input image or the
ground truth. We therefore perform the alignment operation
using P to produce better quality supervision which is more
practical for Novel View Synthesis tasks for scenes.

5. Conclusion

We introduced UAR-Scenes, a novel 3D scene refinement
pipeline that enhances scene Gaussians derived from a sin-
gle image, thereby improving the quality of Gaussians pro-
duced by 3D reconstruction pipelines. Our results demon-
strate the versatility of UAR-Scenes across both in-domain
and out-domain datasets. Through Novel View Synthesis
experiments, we outperform state-of-the-art feed-forward
methods across small, medium, and large baseline settings.
Additionally, UAR-Scenes excels in challenging interpo-
lation and extrapolation tasks, yielding superior rendered
views and high-quality generations at unseen camera angles,
as evidenced by both qualitative and quantitative results.
Furthermore, our ablation studies validate the effectiveness
of individual components and design choices within the
UAR-Scenes pipeline, highlighting the benefits of employ-
ing Fourier-style texture alignment with real-world scenes.
Overall, our findings highlight UAR-Scenes’s potential to
advance 3D scene understanding and novel view synthesis.
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