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Paint a girl’s portrait with 
golden hair.

How to build this 
LEGO ship?

🤖🙂 🤖🙂

🤖🙂

Carve a wooden 
chair toy.

Give me a Chinese 
painting of a swan.

Give me a fabric 
toy of a cupcake.

Build a robot’s foot 
using ZBrush.

How to make meatball spaghetti?

Figure 1: We introduce MakeAnything, a tool that realistically and logically generates step-by-step
procedural tutorial for activities such as painting, crafting, and cooking, based on text descriptions or
conditioned images.

ABSTRACT

A hallmark of human intelligence is the ability to create complex artifacts through
structured multi-step processes. Generating procedural tutorials with AI is a long-
standing but challenging goal, facing three key obstacles: (1) scarcity of multi-task
procedural datasets, (2) maintaining logical continuity and visual consistency
between steps, and (3) generalizing across multiple domains. To address these
challenges, we propose a multi-domain dataset covering 21 tasks with over 24,000
procedural sequences. Building upon this foundation, we introduce MakeAnything,
a framework based on the diffusion transformer (DIT), which leverages fine-tuning
to activate the in-context capabilities of DIT for generating consistent procedural
sequences. We introduce asymmetric low-rank adaptation (LoRA) for image gener-
ation, which balances generalization capabilities and task-specific performance by
freezing encoder parameters while adaptively tuning decoder layers. Additionally,
our ReCraft model enables image-to-process generation through spatiotemporal
consistency constraints, allowing static images to be decomposed into plausible cre-
ation sequences. Extensive experiments demonstrate that MakeAnything surpasses
existing methods, setting new performance benchmarks for procedural generation
tasks.

1 INTRODUCTION

A defining characteristic of human intelligence—and a key differentiator from other species—is the
capacity to create complex artifacts through structured step-by-step processes. In computer vision,
generating such procedural sequences for tasks like painting, crafting, product design, and culinary
arts remains a significant challenge. The core difficulty lies in producing multi-step sequences that
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maintain logical continuity and visual consistency, requiring models to both capture intricate visual
features and understand causal relationships between steps. This challenge becomes particularly
pronounced when handling diverse domains and styles without compromising generation quality—a
problem space that remains underexplored.

Existing research primarily focuses on decomposing painting processes, with early methods employ-
ing reinforcement learning/optimization algorithms through stroke-based rendering to approximate
target images. Subsequent works like ProcessPainter Song et al. (2024a) and PaintsUndo Team (2024)
utilize temporal models on synthetic datasets, while Inverse Painting Chen et al. (2024)redicts the
order of human painting, generating the painting process by region. However, these approaches
remain limited to single-task scenarios and exhibit poor cross-domain generalization. Furthermore,
ProcessPainter’s Animatediff-based framework constrains modifications to minor motion adjust-
ments, making it unsuitable for categories requiring structural transformations (e.g., recipes or crafts).
Although Diffusion Transformer (DIT) Peebles & Xie (2023)-based video generation models can
produce long sequences, their effectiveness is hindered by distribution shifts in training data when
generating complex procedural workflows.

We posit that replicating human creative intelligence requires both high-quality multi-task procedural
data and advanced methodology design.. To this end, we curate a comprehensive multi-domain
dataset spanning 21 categories (including painting, crafts, SVG design, LEGO assembly, and cooking)
with over 24,000 procedurally annotated sequences—the largest such collection for step-by-step
creation tasks. Methodologically, we propose MakeAnything, a novel framework that harnesses
the in-context capabilities of Diffusion Transformers (DIT) through LoRA fine-tuning to generate
high-quality instructional sequences.

Addressing the challenge of severe data scarcity (some categories have as few as 50 data entries.)
and imbalanced distributions, we employ an asymmetric low-rank adaptation (LoRA)Zhu et al.
(2024); Hu et al. (2022) strategy for image generation. This approach combines a pretrained encoder
on large-scale data with a task-specific fine-tuned decoder, achieving an optimal balance between
generalization and domain-specific performance.

To address practical needs for reverse-engineering creation processes, we develop the ReCraft
Model—an efficient controllable generation method that decomposes static images into step-by-
step procedural sequences. Building upon the pretrained Flux model with minimal architectural
modifications, ReCraft introduces an image-conditioning mechanism where clean latent tokens
from the target image (encoded via VAE) guide the denoising of noisy intermediate frames through
multi-modal attention. Remarkably, this lightweight adaptation enables efficient training with limited
data—ReCraft achieves robust performance with just hundreds or even dozens of process sequences
per task. During inference, the model recursively predicts preceding frames over concatenated latent
representations, effectively reconstructing the creation history from static artworks.

In summary, our contributions are as follows:

1. Unified Procedural Generation Framework: We introduce MakeAnything, the first DIT-
based architecture enabling cross-domain procedural sequence synthesis, supporting both
text-to-process and image-to-process generation paradigms.

2. Technical Innovations: We employ an asymmetric LoRA architecture for cross-domain
generalization and the ReCraft Model for image-conditioned process reconstruction with
limited training data.

3. Dataset Contribution: We propose a multi-domain procedural dataset (21 categories, 24K+
sequences) with hierarchical annotations, significantly advancing research in procedural
understanding and generation.

2 RELATED WORK

2.1 DIFFUSION MODELS

Diffusion probability models (Song et al., 2020; Ho et al., 2020) are advanced generative models that
restore original data from pure Gaussian noise by learning the distribution of noisy data at various
levels of noise. Their powerful capability to adapt to complex data distributions has led diffusion
models to achieve remarkable success across several domains including image synthesis (Rombach
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et al., 2022; Peebles & Xie, 2023), image editing (Brooks et al., 2023; Hertz et al., 2022; Zhang et al.,
2024c;d; Yang et al., 2024; Li et al., 2024), and video gneration (Guo et al., 2023; Blattmann et al.,
2023; Song et al., 2024a), evaluation (Song et al., 2024b). Stable Diffusion (Rombach et al., 2022)
(SD), a notable example, utilizes a U-Net architecture and extensively trains on large-scale text-image
datasets to iteratively generate images with impressive text-to-image capabilities. The Diffusion
Transformer (DiT) model Peebles & Xie (2023), employed in architectures like FLUX.1 AI (2024),
Stable Diffusion 3 Esser et al. (2024), and PixArt (pixart), uses a transformer as the denoising network
to iteratively refine noisy image tokens. Customized generation methods enable flexible customization
of concepts and styles by fine-tuning U-Net (Ruiz et al., 2023) or certain parameters (Hu et al., 2022;
Kumari et al., 2023), alongside trainable tokens. Training-free customization methods (Ye et al.,
2023; Zhang et al., 2024a;b; Zeng et al., 2023) leverage pre-trained CLIP (Radford et al., 2021)
encoders to extract image features for efficient customized generation.

2.2 CONTROLLABLE GENERATION IN DIFFUSION MODELS

Controllable generation has been extensively studied in the context of diffusion models. Text-to-image
models Ho et al. (2020); Song et al. (2020) have established a foundation for conditional generation,
while various approaches have been developed to incorporate additional control signals such as
images. Notable methods include ControlNet Zhang & Agrawala (2023), enabling spatially aligned
control in diffusion models, and T2I-Adapter Mou et al. (2023), which improves efficiency with
lightweight adapters. UniControl Zhao et al. (2023) uses Mixture-of-Experts (MoE) to unify different
spatial conditions, further reducing model size. However, these methods rely on spatially adding
condition features to the denoising network’s hidden states, inherently limiting their effectiveness
for spatially non-aligned tasks like subject-driven generation. IP-Adapter Ye et al. (2023) addresses
this by introducing cross-attention through an additional encoder. Based on the DiT architecture,
OminiControl Tan et al. (2024) proposes a unified solution that is applicable to both spatially aligned
and non-aligned tasks by concatenating condition tokens with noise tokens.

2.3 PROCEDURAL SEQUENCES GENERATION

Generating the creation process of paintings or handicrafts is something that has always been desired
but is difficult to achieve. The problem of teaching machines "how to paint" has been thoroughly
explored within stroke-based rendering (SBR), focusing on recreating non-photorealistic imagery
through strategic placement and selection of elements like paint strokes Hertzmann (2003). Early
SBR methods included greedy searches or required user input Haeberli (1990); Litwinowicz (1997),
while recent advancements have utilized RNNs and RL to sequentially generate strokes Ha & Eck
(2017); Zhou et al. (2018); Xie et al. (2013). Adversarial training has also been introduced as an
effective way to produce non-deterministic sequences Nakano (2019). Techniques like Stylized
Neural Painting Kotovenko et al. (2021) have advanced stroke optimization, which can be integrated
with neural style transfer. The field of vector graphic generation employs similar techniques Frans
et al. (2022); Song et al. (2023); Song (2022); Song & Zhang (2022). However, these methods
differ greatly from human creative processes due to variations in artists’ styles and subjects. Inverse
Painting Chen et al. (2024) achieves realistic painting process simulation by predicting the painting
order and implementing image segmentation. ProcessPainter Song et al. (2024a) and Paints Undo
Team (2024) method fine-tunes diffusion models using data from artists’ painting processes to learn
their true distributions, enabling the generation of painting processes in multiple styles.

3 METHOD

This section first reviews diffusion transformers (Sec. 3.1), then outlines the MakeAnything archi-
tecture (Sec. 3.2). We introduce asymmetric LoRA for procedural learning (Sec. 3.3), followed by
the ReCraft model for image-conditioned sequence generation (Sec. 3.4), and conclude with our
proposed dataset (Sec. 3.5).

3.1 PRELIMINARY

The Diffusion Transformer (DiT) model, uses a transformer as the denoising network to iteratively
refine noisy image tokens. A DiT model processes two types of tokens: noisy image tokens z ∈ RN×d

and text condition tokens cT ∈ RM×d, where d is the embedding dimension, and N and M are the
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Figure 2: The MakeAnything framework comprises two core components: (1) an Asymmetric LoRA
module that generates diverse creation processes from text prompts through asymmetric LoRA, and
(2) the ReCraft Model, which constructs an image-conditioned base model by merging pretrained
LoRA weights with the Flux foundation model, enabling process prediction via injected visual tokens.

number of image and text tokens. Throughout the network, these tokens maintain consistent shapes
as they pass through multiple transformer blocks.

In FLUX.1, each DiT block consists of layer normalization followed by Multi-Modal Attention
(MMA) Pan et al. (2020), which incorporates Rotary Position Embedding (RoPE) Su et al. (2024) to
encode spatial information. For image tokens z, RoPE applies rotation matrices based on the token’s
position (i, j) in the 2D grid:

zi,j → z = zi,j ·R(i, j), (1)

where R(i, j) is the rotation matrix at position (i, j). Text tokens cT undergo the same transformation
with their positions set to (0, 0).

The multi-modal attention mechanism then projects the position-encoded tokens into query Q, key
K, and value V representations. It enables the computation of attention between all tokens:

MMA([z; cT ]) = softmax
(
QK⊤
√
d

)
V, (2)

where [z; cT ] denotes the concatenation of image and text tokens. This formulation enables bidirec-
tional attention.

3.2 OVERALL ARCHITECTURE

As shown in Fig. 2, the training of MakeAnything is divided into two stages: First, we train on
the MakeAnything dataset using the asymmetric LoRA method, enabling the generation of creative
tutorials from text descriptions. Then, the LoRA from this first phase is merged with the Flux
base model to form the base model for training the ReCraft Model. The second stage introduces
image-conditioned denoising by concatenating condition tokens with noised latents, followed by
LoRA-based fine-tuning of the ReCraft model.

3.3 ASYMMETRIC LORA FOR PROCEDURAL LEARNING

Serpentine Sequence Layout. The core of MakeAnything involves arranging different frames of a
sequence into a grid and using the in-context capabilities and attention mechanism of DiT to achieve
consistent Sequence generation. Tokens within the DiT’s attention mechanism tend to focus on
spatially adjacent tokens, a tendency that stems from the strong correlations between neighboring
image pixels captured during the pre-training of the diffusion model Wan et al. (2024). To enhance
the model’s learning effectiveness for grid sequences, we propose the Serpentine dataset construction
method. As shown in Fig. 3, we arrange sequences of 9 frames and 4 frames in a serpentine pattern
to ensure that temporally adjacent frames are also spatially adjacent (either horizontally or vertically
adjacent).

Asymmetric LoRA. Another challenge is that training a single LoRA on all data leads to difficulties
in learning diverse knowledge, while training LoRA on a single type of sequence data results in
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overfitting due to the limited quantity of process data for each category. Inspired by HydraLoRA Zhu
et al. (2024), we introduce an asymmetric LoRA design for the first time in image generation. This
design combines shared knowledge and specialized functionalities by jointly training a shared central
matrix A and multiple task-specific matrices B, significantly improving multi-task performance.

Each layer of LoRA consists of an A matrix and a B matrix, where A captures general knowledge,
and B adapts to specific tasks. The asymmetric LoRA architecture can be formulated as:

W = W0 +∆W = W0 +

N∑
i=1

ωi ·BiA, (3)

where Bi ∈ Rd×r and the shared matrix A ∈ Rr×k, ωi is the weight of the i-th LoRA module. This
structure effectively balances generalization and task-specific adaptation, enhancing the model’s
performance across diverse tasks.

Inference stage, the domain-specific matrix B and the domain-agnostic matrix A are used in combina-
tion, balancing generalization capabilities with performance on specific tasks. Our method can also
be combined with the stylized LoRA from the Civitai website (which is not trained on procedural
sequences), to enhance performance in unseen domains.

Conditional Flow Matching Loss. The conditional flow matching loss function is following SD3
Esser et al. (2024), which is defined as follows:

LCFM = Et,pt(z|ϵ),p(ϵ)

[
∥vΘ(z, t, cT )− ut(z|ϵ)∥2

]
(4)

Where vΘ(z, t, cT ) represents the velocity field parameterized by the neural network’s weights, t is
timestep, cI and cT are image condition tokens extracted from source image Isrc and text tokens.
ut(z|ϵ) is the conditional vector field generated by the model to map the probabilistic path between the
noise and true data distributions, and E denotes the expectation, involving integration or summation
over time t, conditional z, and noise ϵ.

3.4 RECRAFT MODEL

In practical applications, users not only want to generate creation processes from text but also wish to
upload an image and predict the creation process of the existing artwork or handicraft in the picture.
For this, we implemented the ReCraft model, which allows users to upload images and generates a
sequence of steps highly consistent with the uploaded image.

A major challenge in training the ReCraft model is the limited number of datasets available for each
task, which is insufficient to train a controllable plugin like Controlnet or IP-Adapter from scratch.
To address this, we innovatively designed the ReCraft model by reusing the pretrained Flux model
and making minimal modifications to extend it into an image-conditioned model. Specifically, during
training, we input the final frame into a VAE to obtain latent image condition tokens, which are
then concatenated with noised latent tokens, using the attention mechanism to provide conditional
information for denoising other frames. Notably, the noise addition and removal process are only
performed on other frames, while the image condition tokens are clean. During inference, we
reconstruct the prior eight steps from the final frame, revealing the object’s formation process.

In ReCraft model, multi-modal attention mechanisms are used to provide conditional information for
the denoising of other frames.

MMA([z; cI ; cT ]) = softmax
(
QK⊤
√
d

)
V, (5)

where [z; cI ; cT ] denotes the concatenation of image and text tokens. This formulation enables
bidirectional attention. The conditional flow matching loss with image condition can be defined as:

LCFM = Et,pt(z|ϵ),p(ϵ)

[
∥vΘ(z, t, cI , cT )− ut(z|ϵ)∥2

]
(6)

Where vΘ(z, t, cI , cT ) represents the velocity field parameterized by the neural network’s weights.
During inference, Recraft Model predict previous 8 frames based on the final frame. This predicts
how the object in the reference image was created step by step.

5
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Figure 3: Examples from the MakeAnything Dataset, which consists of 21 tasks with over 24,000
procedural sequences.

3.5 MAKEANYTHING DATASET

As shown in Fig. 3, we have collected a multi-task dataset that encompasses tutorials for 21 tasks.
We assembled a professional data collection and annotation team that gathered and processed various
tutorials from the internet and also collaborated with artists to customize high-quality painting process
data. The datasets vary in size from 50 to 10,000 entries, totaling over 24,000. The first ten tasks have
data in 9 frames, while the rest have 4 frames, arranged into 3x3 and 2x2 grids for training purposes.
We used GPT-4o to label all datasets and describe each frame.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTING

Setup. We implemented MakeAnything based on the pre-trained Flux 1.0 dev. We replaced the
Adam optimizer with the CAME optimizer, and experiments showed that this setup achieved better
generation quality. During the training phases of Asymmetric LoRA and the ReCraft model, the
resolution was set to 1024, LoRA rank was 64, learning rate was 1e-4, and batch size was 2.
Asymmetric LoRA and the ReCraft model were trained for 40,000 steps and 15,000 steps, respectively.

Baselines. In the Text-to-Sequence task, we compare our approach with state-of-the-art baseline
methods, namely ProcessPainter Song et al. (2024a), Flux 1.0 AI (2024), and the commercial API
Ideogram Ideogram (2023). We categorize the test prompts into two types: painting and others,
because some baselines only support painting. In the Image-to-Sequence task, our baselines are
Inverse Painting Chen et al. (2024) and PaintsUndo Team (2024), which are capable of predicting the
creation process of a painting.

Evaluation Metrics. A good procedural sequence needs to be coherent, logical, and useful; however,
evaluating procedural sequence generation and its rationality lacks precedents. We employ the CLIP
Score to assess the text-image alignment of the generated results. Additionally, we evaluate the
coherence and usability of the generated results using GPT-4o and human evaluations. Specifically, we
meticulously design the input prompts for GPT-4o and scoring rules to align with human preferences.
For comparison, we concatenate outputs from all methods and prompt GPT-4o to identify the best
results across different criteria.

4.2 EXPERIMENTAL RESULTS

Fig. 4(a) showcases the results of generating process sequences from textual descriptions. Benefiting
from high-quality datasets, a robust pre-trained model, and an innovative method design, MakeAny-
thing consistently produces high-quality and logically coherent process sequences. Table 1 presents
the quantitative evaluation results of MakeAnything across 21 tasks, including scores from GPT and
human assessments, with 20 sequences generated per task.
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Oil painting process, <image-1> 
a basic sketch of a vibrant 
autumn forest with colorful 
leaves outlined. <image-2> …

Step-by-step wool 
fabric making process, 
<image-1> A grey 
crocheted owl base is 
formed. <image-2>…

Step-by-step carving 
process, <image-1> 
initial outline of an 
eagle soaring, 
sketched on the 
material . <image-2>…

 Sketch painting process, 
<image-1> Sketching the basic 
form of a historical figure. 
<image-2> …

 Chinese painting process, 
<image-1> outlines the basic 
form of a cherry blossom 
branch. <image-2> …

Pottery making process, 
<image-1> Kneading and 
conditioning the clay for 
hand-building. <image-2> 
Forming the clay into a 
basic teapot shape…

Step-by-step clay making 
process, <image-1> Roll a 
pink clay base for the 
cupcake. <image-2> 
Shape the cupcake liner 
with ridges.…

Landscape create process, 
<image-1> a pale violet dusk 
sky, then subtle silhouettes of 
leafless trees. <image-2> …

Sand art creation process, 
<image-1> The outline of a 
cozy cottage begins to form, 
capturing the basic shape of 
the house and chimney…

Transformers from vehicles to 
robots, <image-1> A red 
convertible sports car <image- 
2>The open-top roof folds 
inward…

 Wood carving process of pineapple, <image-1> a basic sketch of the pineapple on wood…

Input image

Input image

Input image

Step-by-step ketch process, a cartoon character drawing, <image-1>basic geometric shapes, outlining the character's head, <image-2> …

LEGO Brickheadz of Santa Claus,  step-by-step tutorial, <image-1> the base of the character being formed,<image-2> …

 Wood carving process of a cat toy, <image-1> a basic sketch of a cat toy on wood…

(a) Text-to-Sequence generation results

(b) Image-to-Sequence generation results

(c) Generalization results on the unseen domain tasks

 Ice sculpture process of a house, <image-1> a basic shape of a house made of ice …

 Paper quilling process of flower, <image-1> a basic sketch of flower made of paper…

 Relief sculpture process of a flower, <image-1> a basic shape of flower on white wall …

 Painting process of a house in watercolor style, <image-1> a basic shape of a house…

+ Ink painting LoRA 

+ Sketch LoRA 

+ Oil painting LoRA 

+ Landscape Ill.  LoRA 

+ Clay toys LoRA 

+ Clay LoRA 

+ Illustration LoRA 

+ Fabric toys LoRA 

+ Sand Art LoRA 

+ Transformer LoRA 

Ice Sculpture LoRA 

+ Painting LoRA 
Paper Quilling LoRA 

+ Wood Sculpture LoRA 

+ Painting LoRA 

+ Painting LoRA 
Relief sculpture LoRA 

Watercolor LoRA 

Input image

Figure 4: Generation results of MakeAnything. From top: Text-to-Sequence outputs conditioned
on textual prompts; Image-to-Sequence reconstructions via ReCraft Model; Unseen Domain
generalization combining procedural LoRA (blue) with stylistic LoRA (red).

Fig. 4(b) highlights the model’s ability to generate process sequences conditioned on input images.
The results indicate a high degree of alignment between the generated sequences and the original
image content. This showcases the model’s capacity to interpret complex visual inputs and reconstruct
logically consistent creation processes, enabling its application in diverse fields such as reverse
engineering and educational tutorials.

Fig. 4(c) shows the results of MakeAnything in unseen domains. We collected various LoRAs from
the Civitai Civitai (2025) website, including watercolor, relief, ice sculpture, and paper quilling art,
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Table 1: Combined evaluation of procedural sequence generation across tasks. G = GPT score, H =
Human, C = CLIP.

Task Align (G|H|C) Coher (G|H) Usab (G|H) Task Align (G|H|C) Coher (G|H) Usab (G|H)

Painting 4.50|4.27|34.24 4.80|3.98 4.60|4.13 Sketch 4.10|3.97|29.35 4.70|4.11 4.10|4.13
Sand Art 4.20|4.30|31.82 4.70|4.12 4.30|4.18 Portrait 4.25|4.28|33.84 5.00|4.28 4.05|4.33
Icon 3.45|4.33|31.46 3.50|4.17 3.15|4.25 Landscape Ill. 4.55|4.28|32.25 4.85|3.95 4.50|4.12
Illustration 3.12|4.17|31.68 3.40|4.07 2.45|4.07 LEGO 4.60|4.32|34.40 4.90|4.15 4.75|4.00
Transformer 4.75|4.30|33.03 4.90|4.23 4.75|4.15 Cook 3.20|4.21|34.41 4.25|4.03 3.65|3.90
Clay Toys 4.30|4.17|35.25 4.50|4.30 4.20|4.30 Pencil Sketch 3.85|4.33|34.44 4.50|4.20 3.80|4.25
Chinese Painting 4.80|4.37|33.46 4.90|4.22 4.70|4.33 Fabric Toys 4.35|4.30|32.83 4.60|4.08 4.40|4.30
Oil Painting 4.90|4.30|37.30 4.95|4.17 4.85|4.20 Wood Sculpture 4.65|4.32|33.83 4.85|4.23 4.65|4.08
Clay Sculpture 4.30|4.17|35.25 4.50|4.30 4.20|4.30 Brush Modeling 4.20|4.33|32.27 4.15|4.03 4.05|4.25
Jade Carving 4.90|4.28|32.93 4.85|4.12 4.75|4.00 Line Draw 4.10|4.20|30.76 4.20|3.97 3.90|4.08
Emoji 3.75|4.25|34.20 3.60|4.17 3.80|4.18

and combined them with our procedural LoRA. It is evident that MakeAnything demonstrates quite
impressive generalization capabilities, despite not having been trained on these creative processes.

(1) Image-to-Tutorial methods (2) Text-to-Tutorial methods (others) (3) Text-to-Tutorial methods (painting)

Input image
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Figure 5: MakeAnything produces more logically consistent sequences compared to baseline methods.

4.3 COMPARATION AND EVALUATION

This section consolidates the comparative evaluations of our method against baseline approaches
on 50 sequence groups. Fig. 5(a) and (b), demonstrate that MakeAnything produces higher quality
procedural sequence with superior logic and coherence, unlike the baseline methods which struggle
with consistency. Fig. 5(c) compares the ReCraft model to a baseline, highlighting our method’s
training on diverse real data, resulting in varied and authentic creative processes. Quantitative results
in Fig. 6 confirm MakeAnything’s superiority in text-image alignment, coherence, and usability.

Text-to-Painting Sequence (GPT)

0
0.15
0.3

0.45
0.6

Alignment Coherence Usability

Ours Ideogram
Flux ProcessPainter

Text-to-Painting Sequence (Human)

0
0.175
0.35

0.525
0.7

Alignment Coherence Usability

Text-to-Other Sequence (GPT)

0
0.15
0.3

0.45
0.6

Alignment Coherence Usability

Ours Ideogram Flux

Text-to-Other Sequence (Human)

0
0.2
0.4
0.6
0.8

Alignment Coherence Usability

Image-to-Painting Sequence (GPT)

0
0.2
0.4
0.6
0.8

Consistency Coherence Usability

Image-to-Painting Sequence (Human)

0
0.2
0.4
0.6
0.8

Consistency Coherence Usability

Ours Inverse Paints PaintsUndo

Figure 6: Comparison results on three tasks, evaluated by GPT and humans respectively.

4.4 USER STUDY

To comprehensively evaluate MakeAnything’s effectiveness, we conducted a user study comparing
our method against baselines. Participants rated sequences across four metrics: Alignment (text-image
similarity), Coherence (logical step progression), Usability (practical value), and Consistency (consis-
tency between image condition). As shown in Fig. 6, MakeAnything demonstrates comprehensive
superiority across all metrics.
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Full

w/o 
Asymmetric 

LoRA

Sketch, Drawing a character on a motorcycle, starting from basic shapes and lines…Painting of a goldfish, beginning with a simple color blocking…

Base model

Figure 7: Ablation shows that the full settings yield the best prompt-following ability and sequence
coherence, while removing components leads to noticeable performance drops.

4.5 ABLATION STUDY

In this section, we conducted ablation experiments on asymmetric LoRA, and Fig. 7 compares
the results of portrait and sketch tutorial generation task. The former was trained on 50 portrait
painting sequences, while the latter was trained on 300 cartoon character sketch sequences. While
the base model produces coherent text but fails in step-by-step synthesis, standard LoRA exhibits
severe overfitting on small datasets with imbalanced class distributions—yielding plausible steps but
compromised text-image alignment. Our method achieves both procedural rationality and text-image
alignment by leveraging knowledge from large-scale pretraining. Quantitative results across more
tasks (Table 2) further validate these findings.

Table 2: Ablation Study Results Using GPT Evaluation and CLIP Score.

Model Task Alignment(G | C) Coherence Usability Task Alignment(G | C) Coherence Usability

Base Model

Portrait 3.75| 29.78 3.45 3.35 Lego 4.00| 28.29 3.55 3.95
Wood Sculpture 3.25| 35.29 2.95 2.65 Icon 3.25| 32.67 3.35 3.95

Fabric toys 3.55| 32.95 4.00 3.85 Sand Art 4.05| 31.75 3.85 3.80
Sketch 3.85| 29.12 3.55 3.30 Oil Painting 3.65| 31.05 3.70 3.70

Zbrush Modeling 4.25| 29.11 3.25 3.25 Ink Painting 3.55| 31.16 3.35 3.95

w/o Asymmetric LoRA

Portrait 4.25| 31.08 4.50 4.15 Lego 4.20| 32.69 3.85 4.45
Wood Sculpture 3.55| 31.05 4.35 3.75 Icon 3.80| 30.77 3.65 3.90

Fabric toys 3.75| 30.72 3.15 3.20 Sand Art 3.85| 30.37 3.85 4.00
Sketch 4.55| 32.84 3.70 3.55 Oil Painting 4.05| 32.53 3.75 3.35

Zbrush Modeling 4.15| 28.00 3.80 3.40 Ink Painting 3.65| 29.41 3.70 3.75

Full

Portrait 4.55| 32.95 4.75 4.25 Lego 4.35| 30.01 4.15 4.65
Wood Sculpture 4.25| 33.89 3.80 4.05 Icon 3.75| 30.49 3.45 4.05

Fabric toys 4.40| 32.01 4.25 4.35 Sand Art 4.40| 30.24 4.20 4.35
Sketch 3.95| 31.45 3.60 3.75 Oil Painting 3.95| 29.67 3.65 3.55

Zbrush Modeling 4.55| 32.48 3.95 3.55 Ink Painting 4.30| 33.82 3.95 4.15

5 LIMITATIONS AND FUTURE WORK

The current grid-based composition strategy in MakeAnything introduces two inherent limitations:
constrained output resolution (max 1024×1024) and fixed frame count (up to 9 steps). We plan
to address these limitations in future work, enabling arbitrary-length sequence generation with
high-fidelity outputs.

6 CONCLUSION

We introduced MakeAnything, a novel framework for generating high-quality process sequences using
the DiT model with LoRA fine-tuning. By leveraging multi-domain procedural dataset and adopting
an asymmetric LoRA design, our approach effectively balances generalization and task-specific
performance. Additionally, the image-conditioned plugin enables controllable and interpretable
sequence generation. Extensive experiments demonstrated the superiority of our method across
diverse tasks, establishing a new benchmark in this field. Our contributions pave the way for further
exploration of step-by-step process generation, opening up exciting possibilities in computer vision
and related applications.
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demonstrations, and other publicly shared content. These data sources do not involve sensitive human
information and therefore pose no privacy or ethical risks.
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We have fully open-sourced our models, training code, and inference code, enabling complete
reproducibility of the results reported in this paper. All hyperparameters, architecture details, and
evaluation metrics are documented. With the released dataset, model checkpoints, and scripts,
researchers can replicate and extend our findings without ambiguity.

USE OF LARGE LANGUAGE MODELS

We only used large language models such as GPT-4 and GPT-5 to assist with English grammar
refinement and error correction at the writing stage. All technical content—including method design,
experimental setup, and quantitative results—was independently conceived, implemented, and verified
by the authors. Large language models were not used to modify any experimental data or code. This
guarantees the scientific integrity and originality of this work.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS OF THE GPT4-O EVALUATION.

In the GPT-4-o evaluation process, we tailor distinct evaluation metrics for different tasks, ensuring
both direct scoring and selective ranking are covered to suit the task’s nature.

A.1.1 DIRECT SCORING EVALUATION (FOR PROCEDURAL SEQUENCE GENERATION AND
ABLATION STUDIES)

The assistant evaluates a sequence of images depicting a procedural process with criteria such as:

• Accuracy: Measures content alignment with the provided prompt, scored from 1 (not
accurate) to 5 (completely accurate).

• Coherence: Assesses logical flow from 1 (disjointed) to 5 (seamless progression).
• Usability: Rates helpfulness for understanding the procedure from 1 (not helpful) to 5

(highly helpful).

Scores are output in JSON format, for example:

{
"Accuracy": 4,
"Coherence": 5,
"Usability": 4

}

A.1.2 SELECTIVE RANKING EVALUATION (FOR USER STUDY COMPARISONS)

This evaluation compares multiple images from different models, ranking them by:

• Accuracy: Which image best represents the prompt?
• Coherence: Which image shows the clearest, most logical process?
• Usability: Which image offers the most helpful visual guidance?

Rankings are provided from 1 (best) to 4 and outputted in JSON format, e.g.,

{
"Accuracy": 1,
"Coherence": 2,
"Usability": 3

}

Example of Task Prompt and Evaluation: Prompt: "This image shows the process of creating a
handmade sculpture." Images: [Upload images of models 1, 2, 3, and 4] Evaluation: The assistant
ranks the models for Accuracy, Coherence, and Usability in JSON format. This evaluation merges
qualitative and quantitative assessments to determine the effectiveness of the images generated by
GPT-4-o models.

A.2 MORE RESULTS

Fig 8-11 show more generation results of MakeAnything. Table 3-6 display the raw data from GPT
evaluations and human assessments.
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Table 3: Compare with Text-to-Sequence methods (GPT)

Category Methods Alignment Coherence Usability

Painting

Processpainter 0.24 0.26 0.22
Ideogram 0.32 0.14 0.26

Flux 0.02 0.04 0.00
Ours 0.42 0.56 0.52

Others
Ideogram 0.36 0.30 0.32

Flux 0.28 0.28 0.30
Ours 0.36 0.42 0.38

Table 4: Compare with Image-to-Sequence methods (GPT)

Category Methods Consistency Coherence Usability

Painting
Inverse Paints 0.02 0.00 0.02
PaintsUndo 0.18 0.30 0.24

Ours 0.80 0.70 0.74

Table 5: Compare with Text-to-Sequence methods (Human)

Category Methods Alignment Coherence Usability

Painting

Processpainter 0.06 0.10 0.14
Ideogram 0.06 0.06 0.10

Flux 0.21 0.15 0.13
Ours 0.67 0.69 0.63

Others
Ideogram 0.19 0.19 0.17

Flux 0.11 0.13 0.12
Ours 0.70 0.68 0.71

Table 6: Compare with Image-to-Sequence methods (Human)

Category Methods Consistency Coherence Usability

Painting
Inverse Paints 0.27 0.31 0.33
PaintsUndo 0.18 0.08 0.06

Ours 0.55 0.61 0.61
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Figure 8: More generation results. From top to bottom, they are portrait, Sand Art, landscape
illustration, painting, LEGO, transformer, and cook respectively.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 9: More generation results. From top to bottom, they are oil painting and line draw.
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Figure 10: More generation results. From top to bottom, they are ink painting and clay sculpture.
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Figure 11: More generation results. From top to bottom, they are wood sculpure, Zbrush, and fabric
toys.
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Figure 12: More generation results of MakeAnything and baseline methods.
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