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In this tutorial review, we briefly discuss the role that the Jaynes–Cummings model occupies in present-day research
in cavity quantum electrodynamics with a particular focus on the so-called ultrastrong-coupling regime. We start
by critically analyzing the various approximations required to distill such a simple model from standard quantum
electrodynamics. We then discuss how many of those approximations can be, and often have been, broken in recent
experiments. The consequence of these failures has been the need to abandon the Jaynes–Cummings model for
more complex models. In this, the quantum Rabi model has the most prominent role, and we will rapidly survey its
rich and peculiar phenomenology. We conclude the paper by showing how the Jaynes–Cummings model still plays
a crucial role even in nonperturbative light–matter coupling regimes. © 2024 Optica Publishing Group

https://doi.org/10.1364/JOSAB.522786

1. INTRODUCTION

The Jaynes–Cummings model (JCM) is a pivotal theoreti-
cal object in quantum optics, describing the quintessential
interaction between light and matter at the quantum level.
It models the simplest quantum emitter, a two-level system
(TLS), interacting with a single electromagnetic degree of free-
dom, a discrete mode of a photonic cavity. Their interaction is
described by a Hamiltonian composed of two terms with trans-
parent physical interpretation: the first describes the emitter
transitioning between the ground and the excited state by the
absorption of a photon, and the second, its Hermitic conjugate,
describes its de-excitation caused by photon emission. This
simplicity has made the JCM an outstanding pedagogical tool in
quantum optics and a fundamental framework for understand-
ing and analyzing light–matter interactions in cavity quantum
electrodynamics (CQED) systems. Since the Nobel-worthy
experiments of Haroche and Wineland [1,2], which for the first
time allowed us to experimentally measure some of the most
peculiar predictions of the JCM, the study of CQED has grown
into one of the most active in physics, with impact in fields as
different as quantum information [3–5], chemistry [6–8], pho-
tonics [9,10], material engineering [11–15], and many others.
As the boundary of knowledge was pushed forward, some of the
underlying hypotheses that allowed the distilling of the Platonic

simplicity of the JCM out of the complexity of an interacting
light–matter system have been stretched or altogether broken.
This led in turn to a vast theoretical effort to extend the JCM to
understand and solve these shortcomings.

This tutorial review aims to give an overview of the physics
of and beyond the JCM, exploring under which conditions
different approximations break down, how the theory can be
modified to accommodate those situations, and which novel
phenomenology becomes observable.

2. MINIMAL DESCRIPTION OF A CAVITY QED
SYSTEM

A. Introducing the Jaynes–Cummings Model

The JCM model describes the idealized system represented
in Fig. 1: a TLS coupled to a single electromagnetic mode of a
cavity. Its Hamiltonian reads

ĤJC = ~ωc â †â +
~ωeg

2
σ̂z + ~�R

(
â σ̂+ + â †σ̂−

)
. (1)

Here σ̂z and σ̂− = σ̂
†
+ = σ̂x − i σ̂y are Pauli matrices, â is the

annihilation operator of a cavity photon with frequency ωc ,
satisfying [â , â †

] = 1, ωeg is the frequency of an optically active
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Fig. 1. (a) Schematic illustration of the quantum light–matter interaction in a Fabry–Pérot cavity. A single atom is coupled to a single mode of
the cavity field (blue wave). The figure shows the four assumptions that lead to the quantum Rabi model. (i) A single atom is present in the cavity. (ii)
Single-mode approximation, which assumes that only one cavity mode is relevant for the atom-field coupling. The other cavity modes are shaded.
(iii) Dipolar approximation, with a constant electromagnetic field across the atom region. (iv) Two-level approximation, neglecting the higher-lying
states shaded in the figure. The rotating-wave approximation then leads to the Jaynes–Cumming model, whose two interaction terms are depicted
on the top of the mirrors. These processes result in the coherent exchange of energy between the atom and the field. (b) Superconducting circuit
that reaches the USC regime, taken from Ref. [16]. Used with permission of Springer Nature BV, from “Superconducting qubit-oscillator circuit
beyond the ultrastrong-coupling regime,” Yoshihara et al., Nat. Phys. 13, 44 (2016); permission conveyed through Copyright Clearance Center, Inc.
(c) Quantum dot coupled to a THz cavity in the USC regime, taken from Ref. [17]. Used with permission of Springer Nature BV, from “Vacuum-
field-induced THz transport gap in a carbon nanotube quantum dot,” Valmorra et al., Nat. Commun. 12, 5490 (2021); permission conveyed
through Copyright Clearance Center, Inc. (d) Plasmonic nanocavity device, taken from Ref. [18]. Used with permission of Springer Nature BV, from
“Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Chikkaraddy et al., Nature 535, 127–130 (2016); permission
conveyed through Copyright Clearance Center, Inc.

transition, and �R is the so-called vacuum Rabi frequency,
which quantifies the light–matter interaction strength.

The intuitive understanding of light–matter interactions
provided by the JCM is based on the concepts of absorption
and emission, spontaneous and stimulated, first introduced by
Einstein through his A, B coefficients [19]. The interaction part
of the JCM Hamiltonian in Eq. (1), proportional to the vac-
uum Rabi frequency �R, is of the flip-flop type, and whenever
a photon is destroyed, the TLS is excited, and vice versa. As a
consequence, the sum of photon number plus TLS excitation is
a conserved quantity, which can be formalized by introducing
the excitation number operator

N̂ = â †â +
1

2

[
σ̂z + 1

]
, (2)

which commutes with the JCM Hamiltonian [N̂, ĤJC] = 0. In
the spirit of the Noether theorem, conservation laws are linked
to symmetries. So the conservation of the excitation number is
reflected in the continuous U(1) symmetry of the JCM, where
N̂ is the generator of the phase shift transformation

e iθ N̂ â e−iθ N̂
= â e iθ , e iθ N̂ σ̂−e−iθ N̂

= σ̂−e iθ , (3)

which leaves the Hamiltonian in Eq. (1) invariant. The sym-
metry and the commutativity of N̂ with Ĥ allow us to express
the JCM Hamiltonian in Eq. (1) in block-diagonal form,
where each block is characterized by the quantum number
n ∈N+. Since each n 6= 0 eigenvalue of N̂ is doubly degener-
ate, with eigenstates |n, g 〉, |n − 1, e 〉, the JCM can be put in
two-by-two block-diagonal form (one-by-one for the n = 0
non-degenerate ground state |0, g 〉)

Ĥ0
JC =−

~ωeg

2
, (4)

Ĥn
JC =

[
~ωc n −

~ωeg
2 ~�R

√
n

~�R
√

n ~ωc (n − 1)+
~ωeg

2

]
, (5)

where for each n > 0 the eigenvalues of the nth block, ωn,±,
describe dressed states with n excitations. The JCM spectrum is
then immediately given by ωn,± =−ωeg/2+ωc n −1/2±√
12/4+�2

Rn, where we have introduced the cavity-TLS

detuning 1=ωc −ωeg. The saturation of the TLS makes
the system nonlinear, leading to a n-dependent intra-doublet
splitting, which at resonance,1= 0, reads [20,21]
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ωn,+ −ωn,− = 2�R
√

n. (6)

The JCM nonlinearity is at the base of many important
effects in quantum optics; among all it is worth mentioning
the photon blockade [22–25], which is a central object in the
developments of quantum technology [26,27].

Notice that when the vacuum Rabi frequency is larger
than the bare excitation frequencies �R >ωc , ωeg the lowest
eigenenergy of the JCM becomes negative, replacing the ground
state of the system and thus changing its equilibrium prop-
erties. This prediction gives us a hint regarding the potential
interest in studying the regime in which the vacuum Rabi fre-
quency is comparable to or larger than the bare cavity and TLS
frequencies.

B. Why We Need To Go Beyond the JCM: Three
Experimental Examples

The JCM is usually employed to describe systems in the strong-
coupling regime of CQED [28], in which the vacuum Rabi
frequency becomes larger than the loss rates for the light (γ ) and
matter (κ) degrees of freedom, and we can resolve the resonant
n = 1 splitting ω1,+ −ω1,− = 2�R as from Eq. (6). It is thus
useful to introduce the cooperativity parameter C = 4�2

R/(γ κ)

[21], with C > 1 marking the onset of the strong-coupling
regime.

When the coupling becomes instead comparable to the
frequencies of the bare excitations, the system enters a different
regime characterized by a novel nonperturbative phenomenol-
ogy. Such a regime has been named the ultrastrong-coupling
(USC) regime [29–31]. By analogy with the cooperativity,
it is useful to introduce the normalized coupling parameter
ζ = 4�2

R/(ωcωeg), with ζ ∼ O(1) identifying the USC regime
[32] (the value ζ = 0.04, corresponding in the resonant case
to �R = 0.1ωc , is usually used as threshold, but this is only a
historical accident [33]).

In the state-of-the-art experiments with Rydberg atoms
in high-finesse optical cavities C ∼ 10− 100� 1, but at
the same time ζ ∼ 10−5

� 1 [21]. It was indeed shown in
[34] that for a single hydrogenoid atom coupled to a reso-
nant electric field, the normalized coupling can be written as
�R/ωc ≈ α

3/2
fs /(`π

√
V ), where αfs ≈ 1/137 is the fine struc-

ture constant, ` is the principal quantum number, and V is the
cavity volume expressed in units of a cube with half-wavelength
sides. Without extreme subwavelength confinement, which is
often accompanied by large losses [35], it is thus impossible to
achieve nonperturbative light–matter USC on a single atom due
to the fundamental hard bound imposed by the fine structure
constant. From this analysis, it seems that the single-particle
USC regime is forbidden by the very basic principles of QED.

To circumvent this bound one can only rely on artificial,
highly engineered systems where the dynamics of the electro-
magnetic field is mediated by a material component [34]. In
particular, considering superconducting circuits it was found
that the fine structure constant is rescaled by the circuit imped-
ance αfs 7→ (Z/Z0)

`αfs, where Z0 = 1/(ε0c ) is the vacuum
impedance, while `=±1, depending on the origin of the
coupling (capacitive, inductive, etc.) [36,37]. Beyond supercon-
ducting circuits only, this concept has a broader application, and

Table 1. Parameters of CQED Setups in Which a TLS
Coupled to a Photonic Resonator Reaches the USC
Regime

System Cavityωc Atomωeg Coupling�R ζ

Superconducting
circuits [16]

35.2 GHz 23.9 GHz 35.2 GHz 6

Molecular
plasmonic
cavities [18]

452 THz 452 THz 73 THz 0.03

Graphene
quantum dots
[17]

25 THz 3.8 THz 49 THz 101

similar scaling can also be found for plasmonic cavities, metama-
terials, and in general for any subwavelength resonant structure
[38,39]. In such setups the impedance has no bound in principle
(if not merely technological), and a fully nonperturbative USC
is possible, with values of ζ ∼ 0.01− 100.

In Table 1 we report three examples of CQED setups working
in various frequency regimes where a TLS coupled to a photonic
resonator reaches the USC regime. Note that the performance
of the molecular plasmonic setup [18] was just close to USC
physics. It was nevertheless shown how small modifications [40]
could increase the coupling even further. In Fig. 1 we show these
three setups: superconducting circuits [Fig. 1(b)] [16] (also in
their multimode or multi-qubit USC versions [41–45]), carbon
nanotube quantum dots in THz cavities [Fig. 1(c)] [17], and
molecules in plasmonic resonators [Fig. 1(d)] [18,40,46,47].
Notwithstanding their differences, these USC systems share
the same underlying CQED structure: a discrete electronic
transition interacts coherently with a confined electromagnetic
field. Still, the JCM does not correctly reproduce their features.

3. UNDERSTANDING THE JAYNES–CUMMINGS
MODEL FROM QED

In order to understand this failure, and obtain a new model
applicable in the USC regime and that recovers the JCM for
weaker coupling strengths, we need first to understand how the
JCM itself is obtained. Its clear depiction of light–matter inter-
actions can be rigorously derived via a series of approximations
from the non-relativistic quantum electrodynamics (QED)
Hamiltonian. We list here the main steps to distill the JCM from
the underlying QED theory, with the main approximations
schematically represented in Fig. 1.

A. Dipolar Approximation

To start, the JCM considers the light–matter interaction in the
dipolar approximation. Formally this is obtained by expressing
the full non-relativistic QED Hamiltonian in the so-called
Poincaré gauge [48]: truncating its multipolar expansion to the
lowest order, one obtains the dipole gauge Hamiltonian [49].
In simpler terms, when the electromagnetic field does not vary
too much on the length scales of the TLS spatial extension, it can
be considered spatially uniform. As a consequence, the light–
matter interaction Hamiltonian can be derived by considering
the energy of an electric dipole d̂ in a uniform electric field Ê or a



Tutorial Vol. 41, No. 8 / August 2024 / Journal of the Optical Society of America B C209

magnetic dipole m̂ in a uniform magnetic field B̂:

ĤI ∝ d̂ · Ê or m̂ · B̂. (7)

While standard cavity QED discussed in textbook is typi-
cally due to the electric dipole coupling [21,50,51], it is worth
stressing that a magnetic coupling leads to the very same phe-
nomenology either through the Zeeman term [52–57] or
through orbital magnetism [58–60].

This is a safe approximation for atoms in microwave cavities
[1], but much less so for extended objects such as molecules or
quantum dots [61–63], or in nanophotonic resonators in which
higher-order modes can be excited [64] and can lead to the
phenomenon of fluorescence quenching [65]. In general, the
presence of selection rules can suppress the dipole coupling in
favor of other types of multipolar interactions due to symmetry
[61,66,67].

B. Modeling the Emitter as a TLS

While transitions in spin doublets can be exactly modeled as
TLS, most quantum emitters are implemented with electronic
transitions. The number of trapped electronic states can be
substantially larger than two, and the possibility of focusing
only on a single, discrete transition, between the ground state
(|g 〉) and a single excited state (|e 〉) rests on the assumption
that the coupling with all the other parts of the spectrum can be
neglected. The evolution of the system can thus be considered to
span only the two-dimensional Hilbert space [|g 〉, |e 〉]. Using
the Pauli matrices we can then describe any operator in the two-
level subspace; for instance, the atomic electric dipole operator
becomes

d̂∝ |e 〉〈g | + |g 〉〈e | = σ̂− + σ̂+. (8)

The reason to ignore the other energy levels is that they are
out of resonance, a justification so pervasive in physics that its
assumptions are sometimes overlooked and can become surpris-
ingly fragile in state-of-the-art CQED setups [68]. When this
approximation breaks down, modifications of the electronic
wavefunction can be obtained. The coupled wavefunctions are
interference patterns of the bare ones, and thus very sensitive
and tunable [69–72], a phenomenology referred to as very
strong coupling.

C. Considering a Single Cavity Mode

Analogously to the matter degrees of freedom, the photonic
resonator also hosts a complete set of modes [73], both discrete
and belonging to a continuum. If the field is strongly confined
in a cavity or in any artificial structure (e.g., subwavelength
resonators), the energy spacing between the different electro-
magnetic modes is such that we can discard all of them except
the one that is most resonant with the optically active transition
of interest. In such a way the cavity dynamics is completely
described as a harmonic oscillator, with annihilation operator â ,
and the electric and magnetic field operators are given by

Ê∝ â + â †, B̂∝−i
(
â − â †) . (9)

When this approximation is violated and the light–matter
coupling becomes larger than the free spectral range, we reach
a different regime, which has been called superstrong coupling
[74]. In such a regime considering a single photonic mode allows
faster-than-light signaling [75].

Analogously to the electronic case in the very strong-coupling
regime, the electromagnetic fields of the coupled modes in
the superstrong-coupling regime are linear superpositions of
multiple uncoupled electromagnetic modes, and dynamical
modifications of subwavelength mode profile can be achieved
[76,77]. The coupling of different electromagnetic modes also
provides extra degrees of freedom to the wavefunctions of the
coupled light–matter eigenmodes, which at larger values of
the normalized coupling can bend to avoid the dipoles. This
also realizes one among the various mechanisms that leads to
the phenomenon of light–matter decoupling [78] described in
Section 8.

D. Applying the Rotating-Wave Approximation

The rotating-wave approximation (RWA) is ubiquitous in phys-
ics even if known with different names, another one being secu-
lar approximation from its use in celestial mechanics, where the
errors introduced would have become observable only over cen-
turies. In the context of CQED is implemented by the following
reduction (the same holds for the magnetic coupling):

d̂ · Ê∝
(
σ̂− + σ̂+

) (
â + â †)

≈ σ̂−â †
+ σ̂+â . (10)

This approximation is the crucial one in defining the light–
matter interactions in terms of absorption/emission processes,
as it consists in neglecting terms that lack an intuitive physical
understanding and whose impact becomes non-negligible only
in the USC regime.

Given the importance of this approximation for the
definition of the ultrastrong-coupling regime, a more in-
depth discussion of the consequences of going beyond the
rotating-wave-approximation will be given in the next section
(Section 4).

4. UNWIND THE ROTATING WAVE: THE RABI
MODEL

For large enough values of the light–matter coupling strength,
all of these approximation but the dipole one eventually break
down [31,38]. In the region of interest for current experiments,
the RWA is the first one to be broken and hence the first we
discuss here.

A. Reintroducing the Counter-Rotating Terms

The JCM without the RWA it the so-called quantum Rabi model
(QRM), described by the Hamiltonian

ĤR = ~ωc â †â +
~ωeg

2
σ̂z + ~�R

(
â + â †) σ̂x . (11)

Since σ̂x = σ̂− + σ̂+, the interaction of the Rabi
Hamiltonian contains terms proportional to â †σ̂+ and
â σ̂−. These terms are not of the flip-flop type, as they involve
the simultaneous creation (destruction) of a photon and an
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atomic excitation, breaking the intuition based on the absorp-
tion/emission paradigm. They are called counter-rotating
because switching to the interaction picture Hamiltonian they
evolve as â σ̂−e−i(ωc+ωeg)t , contrary to the flip-flop terms evolv-
ing as â σ̂+e−i(ωc+ωeg)t [48]. At resonanceωc =ωeg, the flip-flop
terms become time-independent, while the counter-rotating
terms keep oscillating with frequency 2ωc [48]. These terms
thus couple states with different energies, and their impact scales
in perturbation theory with powers of the coupling�R divided
the bare frequencies ωc and ωeg, becoming non-negligible only
in the USC regime.

B. Validity of the RWA and the Boundary of the USC
Regime

In Section 2 we have seen that the JCM has an internal U(1)
symmetry that reduces its Hamiltonian in a block diagonal form
composed by scalar and infinite two-by-two blocks, allowing
for a simple analytical solution. On the contrary the Rabi model
does not have this symmetry: the counter-rotating terms do not
commute with the excitation number operator [N̂, â †σ̂+] 6= 0,
[N̂, â σ̂−] 6= 0. Counter-rotating terms, adding or subtracting
pairs of excitations, couple only states with even or odd excita-
tion numbers. The system thus still possesses a Z2 symmetry,
given by the invariance under parity transformation â 7→−â ,
σ̂− 7→−σ̂−. The simple analytical solution of the JCM is not
available anymore, even though an exact analytical solution can
still be obtained by exploiting the remaining symmetry [79].
The structure of the solution is, however, more intricate, and the
intuition developed in the JCM is lost [80–83]. In any case, the
Rabi model can be easily diagonalized numerically, for instance,
using the QuTip python library [84].

The transition from JCM to Rabi model is not sharp, but
rather a crossover, where the spectrum of the Rabi model is
indistinguishable from the JCM spectrum when the light–
matter coupling is sufficiently small�R�ωc , ωeg, as is visible
on the left side of Fig. 2(a). By further increasing the light–
matter coupling the difference between the Rabi model and the
JCM becomes more prominent due to the increasing impor-
tance of the counter-rotating terms. As pointed out in Ref. [32],
their relevance can be evaluated by means of perturbation theory
by computing the matrix element of the operators �Râ σ̂−
between different n, n′ excitation blocks. For instance, taking
the simplest case of n, n′ = n + 1, the RWA can be applied
only if �2

R|〈n, g |â σ̂−|n + 1, e 〉|2/(ωc +ωeg)
2
� 1. The

RWA regime of validity, delimited by the upper bound of this
equation, namely

nmax =
(ωc +ωeg)

2

�2
R

, (12)

is shaded in blue in Fig. 2(a). From here is clear that the JCM is
a low-coupling and low-energy effective model of the Rabi one.
Reaching the boundary of validity of the RWA has also well
visible observable physical consequences. The most striking one
is probably the Bloch–Siegert shift, which was first measured in
superconducting circuits [85] from the transmission spectros-
copy, and successively confirmed also in other different CQED
platforms such as Landau polariton setups [86]. Let us note that
the breaking of the RWA is the original definition of the USC
[87], and it was used for its first experimental validation [33].

C. Non-Empty Vacuum Beyond RWA

One of the most striking and investigated consequences of the
presence of counter-rotating terms is that the empty cavity
vacuum (i.e., the JCM ground state |GJC〉 = |0, g 〉) is not any-
more an eigenstate of the system. In fact, in the Rabi model, the
ground state coincides with the empty cavity vacuum only for
vanishing light–matter coupling and is then progressively filled
by photons as the light–matter coupling increases. Using the
same perturbative approach as in the previous section, one can
compute the ground state virtual photon population, obtaining

〈GR|â †â |GR〉 ∝

(
�R

ωc

)2

+ O

[(
�R

ωc

)4
]

. (13)

This result is not specific to the Rabi model only, but rather
a generic feature of USC systems. For instance, in Fig. 2(b)
we see the vacuum photon expectation number computed in
the quantum Rabi model. The JCM would instead result in a
photon population strictly vanishing in the ground state.

The presence of these photons in the coupled ground state
(often referred to as virtual photons) is a typical nonperturbative
phenomenon reminiscent, mutatis mutandis, of the quark-
gluon gas populating the non-empty vacuum of quantum
chromodynamics (QCD) [88]. The possibility of detecting
these virtual photons was a central interest in the initial devel-
opment of the theory of the USC regime [87], where CQED

Fig. 2. (a) Energy spectrum of the resonant Rabi model (black solid lines) and JCM (red dashed lines) as a function of the coupling strength. The
region of validity of the RWA is highlighted in cyan, whose boundary is given by the cyan solid line. (b) Plot of the number of photons in the ground
state of the quantum Rabi model by numerical diagonalization (black solid line) and using the first-order term from Eq. (13) (red dashed line).
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systems were identified as ideal playgrounds to study the fasci-
nating and still mysterious physics of vacuum phenomena in
QED [51].

As it will be explained in more detail in Section 7, observing
quantum vacuum physics is not an easy task, because virtual
photons (and virtual particles in general) are normally directly
unobservable in experiments and the only proposal in this direc-
tion has been to measure the static charge displacement caused
by virtual electronic excitations in an asymmetric system [89].
Otherwise, the observation of virtual photons is usually studied
under a time-dependent perturbation [90] or electrical current
[91] providing the required energy to convert virtual photons
to real ones, or weakly coupling the system to another external
probe system and observing its modified emission properties
[92–94].

D. Excited States Beyond RWA: Multi-Photon
Nonlinear Processes

The action of the counter-rotating terms in the USC regime
also impacts the qualitative nature of the excitation spectrum. In
particular, breaking the conservation of the excitation number
allows nonlinear processes with the absorption-emission of
multiple photons at the same time [95]. This phenomenology
is even richer when we explicitly break also the remaining Z2

symmetry, for instance, considering the co-called asymmetric
Rabi model

ĤaR =ωc â †â +
ωeg

2
σ̂z +�R

(
â + â †) σ̂x +

ε

2
σ̂x . (14)

Here ε quantifies the explicit symmetry breaking and can
be interpreted as an external static electric or magnetic field, as
commonly employed in circuit QED [16,96].

Increasing the value of ε opens some non-trivial avoided
crossings in the spectrum, allowing the system to undergo
multi-photon Rabi oscillations that might be used for the gen-
eration of multi-photons Fock states [95,97,98]. Here a single
atom can emit simultaneously multiple photons with a single
transition due to the USC. Differently from multi-photon
processes arising in devices with nonlinear quadrupolar light–
matter coupling [66,99], this dynamics is a USC consequence
of the interplay between the linear dipole coupling and the
nonlinearity (or saturability) of the TLS. These effects are typi-
cally called tunneling resonances [100] since their mathematical
description is identical to tunneling resonances appearing in
the physics of electronic transport assisted by phonons through
molecular or nanostructure quantum dots [101–104]. They
are currently a major reason of interest in the development of
these platforms projecting also new technological perspectives
on the USC regime, in terms of new devices for parametric
up/down conversion and multi-photon Fock state preparation
[42,43,105–108].

5. GAUGING EFFECTIVE MODELS

When building a theoretical model of a quantum system, it
is often useful to consider only a limited subspace of its full
Hilbert space (generally the lowest-energy states). In the case of
light–matter coupled systems, this projection could introduce

the risk of compromising the gauge invariance [68,109–115].
Gauge invariance is a fundamental property of QED, ensuring
that the dynamics remain unaltered upon gauge transforma-
tions. Truncating the Hilbert space can nevertheless break this
fundamental symmetry, leading to physical results that depend
on the (unphysical) choice of the gauge used to describe the
electromagnetic field.

To better understand the problem, let us consider the two
most used gauges to study non-relativistic light–matter inter-
actions: the Coulomb and the Power–Zienau–Woolley gauges
[48,116], where the latter is also known as a multipolar or dipole
gauge. Both gauges are also dubbed in the literature as the p̂ · Â
or velocity gauge and the d̂ · Ê or length gauge. Here p̂ and
d̂= q x̂ are the particle momentum and electric dipole moment
with charge q and displacement x̂. Â and Ê are the vector poten-
tial and the electric field. Notice that in many textbooks the
dipole gauge in the derivation of the JCM is conventionally
adopted, motivating our choice in Eq. (7) instead of reporting
the dipole coupling in terms of Coulomb gauge coupling. If we
consider the transition matrix elements between two states | j 〉
and |k〉 of a particle with mass m, position x̂, and momentum p̂
we can easily derive the equation [117]

〈 j |p̂|k〉 = imωjk〈 j |x̂|k〉. (15)

This relation shows that the matrix elements of the
momentum are proportional to those of the position, with a
proportionality factor linear in the energy difference between
the two states ωjk. In the Coulomb gauge, where the interac-

tion Hamiltonian is of the form p̂ · Â, the matrix element thus
vanishes more slowly with the detuning than in the d̂ · Ê case,
making the approximation of modeling the matter system as a
TLS, ignoring out-of-resonance states, more fragile.

To obtain a quantitative understanding of how serious this
problem of gauge non-invariance can be, we can start from the
Hamiltonian describing a one-dimensional particle interacting
with a single photonic mode in the Coulomb gauge ∇ · Â= 0
(for major details on its derivation see, e.g., Refs. [38,48,116]):

ĤC =
1

2m

(
p̂ − q Â

)2
+ V (x̂ )+ ~ωc â †â . (16)

The Hamiltonian in the dipole gauge can be obtained by
performing a gauge transformation [48,61,116], which is
implemented in quantum mechanics by the unitary transfor-
mation: ĤD = ÛĤCÛ†, with Û = exp[ q~ A0 x̂ (â − â †)], and
A0 the zero point fluctuation of the vector potential. The two
Hamiltonians ĤC and ĤD have the same spectrum, being
related by a unitary transformation. Projecting them onto the
two lowest-energy states |g 〉 and |e 〉 of the uncoupled matter
system, through the projection operator P̂ = |g 〉〈g | + |e 〉〈e |,
we obtain the Hamiltonians describing the interaction of a
single-mode electromagnetic field with a two-level system:
ĤC = P̂ ĤC P̂ in the Coulomb gauge and ĤD = P̂ ĤD P̂ in the
dipole gauge.

In Fig. 3(a) we compare the eigenvalues of the full
Hamiltonian in Eq. (16) with those of the of two projected
Hamiltonians ĤC and ĤD as a function of the vacuum Rabi
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Fig. 3. (a) Comparison of the lowest eigenvalues with respect to the ground state energy E0 as a function of the coupling strength �R, for the
two truncated Hamiltonians in the Coulomb (ĤC , green dashed) and dipole (ĤD, orange dash–dotted) gauges. They are compared to the full
Hamiltonian ĤC in Eq. (16). The Coulomb gauge already deviates at very small values of �R. In contrast, the dipole gauge breaks down at much
higher values. (b) First four eigenstates of the atom Hamiltonian, with the same parameters used in panel (a). The double-well potential is modeled as
V (x )= Ax 4

− Bx 2, and the used parameters are m = 1, A= 50, and the anharmonicity m B3/(~2 A2)= 45.

frequency �R ≡ qωc A0〈e |x̂ |g 〉/~. We consider a quartic
potential in which the energy separation between the first two
modes is 12 times smaller than the gap between the second and
the third. As the coupling increases, deviations between the
three models occur, already at the onset of the USC regime in the
Coulomb gauge and for much larger values of the coupling in
the dipole gauge. However, increasing the atom’s anharmonicity
extends the range of agreement of the dipole gauge with the
untruncated case. It is worth noticing that the gauge choice
that reduces the error on the truncated Hilbert space is system
dependent [111,115,118,119].

Gauge invariance can also be implemented already in the two-
level subspace by performing the minimal coupling replacement
directly in the truncated subspace, that is, applying the follow-
ing unitary transformation to the free photon Hamiltonian only
[112,113]:

Û = exp
[q
~

A0 P̂ x̂ P̂
(
â − â †)]

= exp

[
�R

ωc
σ̂x
(
â − â †)] .

(17)
While the results are completely equivalent to what was

described above, this approach represents the basis of lattice
gauge theories [120], becoming another interesting example of
how cavity QED can be a useful playground to experiment with
the most complex concepts of modern physics. It is worth men-
tioning that, as much as in other branches of physics [121,122],
the discussion about gauge invariance has risen an intense debate
in the community, which is still ongoing [123,124]. Moreover,
while here we focused mainly on Coulomb and dipole gauges,
depending on the specific problem, other gauge choices may
best suited [118].

We conclude this section by noticing that both dipole and
Coulomb gauges return a Hamiltonian that contains the
counter-rotating terms in the light–matter coupling. However,
it was shown in Refs. [111,125] that is possible to implement
an intermediate gauge transformation that exactly cancels the
counter-rotating terms. In this representation the RWA is no
longer an approximation and the vacuum is always empty.
While we will come back to the relative meaning of the quantum
vacuum in the last section, it is important to understand that,

under the standard assumptions given above and described in
Ref. [68], this representation pays the price of being not fully
compatible with the TLA as much as the Coulomb gauge [115].

6. SINGLE-PARTICLE VERSUS COLLECTIVE
COUPLING

Aside from the modification of the photonic vacuum, the USC
is predicted to also modify the state and properties of the mat-
ter counterpart, represented in the JCM or Rabi model by a
TLS [80,100,126,127]. From this observation, strong interest
has arisen to modify and control the properties of electrons,
molecules, or devices exploiting the quantum fluctuations of
the USC vacuum [14,128]. For instance, the USC between
a single electron and the resonator has been shown to have a
strong impact on electron transport [17], thus becoming very
interesting for more involved device operations with application
purposes [129,130]. Generalizing this concept to any light–
matter systems is certainly appealing as a powerful technological
framework, but also as a new way to explore the fundamental
science behind the quantum vacuum [51].

A. Bosonising the Light–Matter Interactions

Solid-state CQED setups, especially those in which USC has
been achieved, are usually not well described by the JCM nor by
the Rabi model because of the presence of multiple dipoles par-
ticipating in the light–matter dynamics. A minimal description
is provided by generalizing the JCM or the Rabi model where
multiple TLSs are identically coupled to the same photonic
mode (which means their separation is much smaller than the
wavelength), giving the so-called Dicke model [131]

ĤI ∝�R
(
â + â †) N∑

i=1

σ̂ i
x ≈
√

N�R
(
â + â †) (b̂ + b̂†

)
.

(18)
Here the index i on the Pauli matrices addresses the differ-

ent TLSs. We introduced the collective annihilation operator
b̂ =

∑N
i=1 σ̂

i
−
/
√

N, describing a collective excitation of all the
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Fig. 4. Solid-state CQED setups and their spectral features changing as they approach the single-dipole nonlinear regime. (a) ISB polariton
experimental setup and transmission spectrum, taken from Ref. [137]. Reprinted with permission from Todorov et al., Phys. Rev. Lett., 105, 196402
(2010). Copyright 2010 by the American Physical Society. (b) Landau polariton setup and transmission spectrum, taken from Ref. [138]. From
Scalari et al., “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335, 1323 (2012). Reprinted
with permission from AAAS. (c) Magnonic setup and transmission spectrum, taken from Ref. [139]. Reprinted with permission from Golovchanskiy
et al., Phys. Rev. Appl. 16, 034029 (2021). Copyright 2021 by the American Physical Society. (d) Comparison between collective and single-particle
transmission spectrum, taken from Ref. [140].

TLSs. This operator satisfies [b̂, b̂†
] ≈ 1+ O( nx

N ) in the dilute
regime, that is, when the number of excitations nx is much
smaller than the total number N of TLSs [132,133]. It is worth
noticing that in this same limit, the equilibrium Dicke model is
exactly solvable [134–136], making it a paradigmatic example
to discuss basics many-body effects in light–matter interactions.

This transformation also leads to a vacuum Rabi frequency
enhanced by a factor

√
N, often referred as collective enhance-

ment, which makes it much simpler to reach extreme values
of the coupling [33,87,137,138]. Increasing the number of
dipoles, the coupling increases, but the optical nonlinearity
decreases. The saturation of the TLS washes out, as the system is
able to absorb multiple photons. The system becomes then well
described by a linear optical approach, where both the cavity and
the material are described by harmonic oscillators.

In Figs. 4(a)–4(c), we show three paradigmatic examples of
CQED setups well described by the bosonic approximation:
intersubband polaritons [137], Landau polaritons [138], and
magnonic polaritons [139]. In order to recover the techno-
logically relevant nonlinear regime [141], there has been a
constant effort in those systems to reduce the number of dipoles
while keeping the system in the USC regime [5,140,142,143].
Spectral differences at the transition between collective and
single-particle physics are shown in Fig. 4(d). It is important to
point out that Bosonized excitations with non-negligible non-
linearities are also found in phonon-polariton THz materials,
which is another great area of interest regarding the USC impact
on matter [118,119,144–147].

B. Large N Problem

What impact the linearity of the Dicke model has on the pos-
sibility of modifying ground-state properties is not immediately
clear, given the multitude of possible interactions between
the dipolar degree of freedom coupled to the photonic field

and all the other internal degrees of freedom of the quantum
emitter. Analyzing different simplified models, it has been
shown that many single-particle effects are not enhanced by the
collective coupling and scale with zero or negative powers of
N [7,148,149], with adverse consequences on the possibility
to modify the equilibrium properties of the matter involved
[149–152].

An intuitive explanation behind the lack of an impact of
collective USC on the state of a single TLS [148] can be grasped
by noticing that, to the lowest order, the energy shift of a cou-
pled collective eigenmode is of order 1E ∝

√
N�R, and the

maximal change in such an energy when the internal state of one
molecule changes is of order ∂1E

∂N ∝
�R√

N
. The force acting on

the single dipole is thus vanishing in the thermodynamics limit
N→∞.

However, some experimental works showed a change in
chemical reactions [8,14], a shift in the critical temperature
of specific material properties [153], or a modification of the
macroscopic quantum Hall transport properties [13] when the
system is embedded in a resonant cavity. These systems have a
significant coupling strength only considering their collective
coupling, thus contradicting the theoretical predictions cited
above. Other theoretical works have shown that considering
more sophisticated and complex models, the collective coupling
might have a macroscopic effect on the total reaction process or
the material properties [154–156]. The clash between intuitive
results, experimental facts, and complex ab-initio calculations
has opened a debate that is still unsolved.

7. OPEN QUANTUM SYSTEMS: CAN WE
MEASURE THE NON-EMPTY VACUUM?

The photon flux leaking out of a resonator can usually be
approximated as the number of photons in the cavity times their
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escape rate. The presence of photons in the ground state pre-
dicted by the USC regime [see Eq. (13)] immediately shows how
such an intuitive picture fails in this nonperturbative regime,
which would otherwise predict photonic emission from the
ground state, breaking energy conservation.

Multiple approaches have been developed to correctly deal
with such an issue [90,157–161]. Without getting into the
technical details required to understand the subtle differences
between these various approaches, we will try here to build an
intuition of the problem with the standard approaches to open
quantum systems. To this aim we will consider the standard
Lindblad master equation describing the evolution of the den-
sity matrix of a system coupled to a zero temperature reservoir,
leading to a loss rateγ :

Lstdρ̂ = γD
[

Ŝ
]
ρ̂, (19)

where Ŝ is the operator describing the loss of a bare excitation in
the system, the Lindblad dissipator is defined as

D
[

Ŝ
]
ρ̂ =

1

2

[
2Ŝρ̂ Ŝ†

− Ŝ† Ŝρ̂ − ρ̂ Ŝ† Ŝ
]
, (20)

and we neglected the part describing unitary evolution. It is
easy to verify that if the ground state is the vacuum for the bare
excitations, Ŝ|G〉 = 0, then Lstd|G〉〈G| = 0 and the ground
state is stable against losses. This is the case, for example, for the
JCM ground state when the operator Ŝ describes a photonic (â )
or matter (σ̂−) loss:

â |G JC〉 = σ̂−|G JC〉 = 0. (21)

This is not the case anymore when the ground state is not the
vacuum for the bare excitations Ŝ|G〉 6= 0, as clearly shown in
Eq. (13) for the Rabi model. This leads to Lstd|GR〉〈GR| 6= 0,
and the ground state is unstable against losses.

The issue lies in the details of the master equation derivation,
which is derived using the bare basis ({g , e } ⊗ {n ∈N}) rather
than in the energy eigenbasis, and assumes a white reservoir
whose density of states can be considered constant in the spectral
interval of reference. While these are usually safe approxima-
tions, they catastrophically fail in the USC regime, where the
energy shifts are of the same order as the bare frequencies. In
these conditions, a fully white reservoir implicitly assumes to
have a non-vanishing density of states also at negative energies,
which explains the instability of the ground state as the emission
of unphysical negative-energy excitations in the reservoir.

This problem can be solved by not performing the white-
reservoir approximation and deriving the Liouvillian in the
eigenbasis of the light–matter Hamiltonian [157,162]. The
resulting dressed master equation takes the form

L′ρ̂ =
∑
j ,k

γ (ωjk)D [|k〉〈 j |] ρ̂, (22)

where the dissipator is expressed in terms of jump operators
between the kth and the j th eigenstates of the coupled light–
matter Hamiltonian, |k〉〈 j |, with the associated Bohr frequency
ωjk =ω j −ωk . Consistently with the secular approximation
(or just RWA) needed to obtain the master equation in a Linblad
form, one needs to discard all the transitions with negative
frequencies that simultaneously create an excitation in the
bath, for which in the above expression we must enforce that

Fig. 5. (a) Schematic description of an open hybrid system whose subparts are in weak interaction. (b) Same as before, but this time the two sub-
systems are ultrastrongly coupled, and the model of the interaction with the environment must take into account their hybridization. (c) Comparison
of three different methods to describe open quantum systems, showing the photon emission rate at the steady state as a function of the vacuum Rabi
frequency �R. The generalized master equation is the only one that works across all values of the coupling. (d) Logscale intensity of the spectrally
resolved black-body radiation emitted from a cavity QED system as a function of the light–matter coupling. While for intermediate couplings the two
polaritonic branches are well visible, deep in the USC regime the spectrum collapses to the uncoupled cavity emission spectrum. Figure taken from
Ref. [149].
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j > k. The problem of energy conservation is now solved, being
only an artifact of a wrong derivation. As a consequence, the
open dynamics must be interpreted as transitions between the
true eigenstates, where light and matter are entangled together
and it is not possible to simply distinguish them separately, as
schematized in Figs. 5(a) and 5(b). The above derivation is well
justified at weak system-bath coupling, and it can be equiva-
lently rephrased as a vanishing density of states of the bath at
negative frequencies leading toγ (ω < 0)= 0.

It is worth noticing that the above approach relies on having
a different bath for each transition [162]. This remains true
even if the all the system’s transitions decay in the same bath,
provided that their coupling to the bath is smaller than their
relative distance in frequencies. In the weak coupling regime
of cavity QED, for instance, this condition is removed and a
problem with this formulation can nevertheless emerge due to
the degenerate nature of the spectrum in such a regime. This in
turn led to the derivation of generalized master equations [160]
explicitly taking these degeneracies into account and leading to
correct results for all values of the light–matter coupling. Similar
issues are partially discussed also in Refs. [163–165] and, more
completely in a very extensive way, in Ref. [166].

Although the dressed and the generalized master equations
at zero temperature lead the system to the ground state, the
detection of each quantity can still lead to major mistakes due
to the possibly wrong representation of the observables. As
a concrete example, we show how the photodetection has to
be revised in the USC. Indeed, we already mentioned that
〈GR|â †â |GR〉 6= 0. This suggests that â †â can no longer be
interpreted as the output photon rate; otherwise, we would
have photon emission even in the ground state. Following the
standard theory of photodetection [50,167,168], the output
photon rate for a light–matter system in the generic state |9〉 is
proportional to

W ∝
〈
9|Ê− Ê+|9

〉
, (23)

where Ê+ (Ê− = (Ê+)†) is the positive (negative) frequency
part of the electric field operator. In case of weak coupling we
have Ê+ ∝ â and we obtain the usual formula. In the USC
regime, however, we have a hybridization of the frequencies and
the positive frequency operator becomes

Ê+ =
∑
k> j

〈
j |Ê |k

〉
| j 〉〈k|, (24)

which gives 〈GR|Ê− Ê+|GG〉 = 0. Moreover, the form of the
electric field operator becomes gauge dependent [149,169,170],
but leaving the photon rate in Eq. (23) gauge-invariant. Similar
analysis was carried out on pure dephasing processes, where
the system experienced a loss of coherence due to stochastic
fluctuations of the bare energies of the systems [162,171].

Aside from the correct formalism to adopt, these issues make
us reflect on the meaning of photons in the presence of matter, a
point that was raised already a while ago [172]. Virtual photons
arising from the USC to matter cannot be simply interpreted as
quanta of the transverse electric field oscillations, as commonly
done in the free space case. Their physical meaning depends on

the gauge that we adopt to describe the interaction with matter,
and it must be handled with care [38,111,173,174].

In order to provide a concrete example of the formalism intro-
duced here, in Fig. 5(c) we show results for the rate of emitted
photons out of a Rabi model where both the cavity and the two-
level atom are in interaction with their respective environment.
The cavity reservoir is at zero temperature (Tc = 0), while that
of the atom has a relatively low temperature Ta = 0.05~ωeg/kB.
The atom environment is the only source of energy (thermal
pumping), and thus the emitted photons are only the result of
interaction with the atom. The results are shown for the stand-
ard (std), dressed (dr), and generalized (gme) master equations,
clearly showing their respective regions of applicability. The
well-known Purcell effect [175] is clearly visible in the weak
coupling region, where the photon emission rate increases with
�R. The signature of the USC can be related to the increase
in the photon emission of several orders of magnitude, while
the sudden decrease is related to the decoupling effect of the
deepstrong-coupling regime [78,100,118,176,177], which
will be discussed in details in the next section. In Fig. 5(d)
we show the black-body emitted spectrum derived in Ref.
[149] within the dressed framework. At low temperatures, for
intermediate couplings, the emitted thermal radiation shows
the presence of the two polaritonic branches that collapse
in a single line at higher coupling strength. Also here we see
another manifestation of the nonperturbative light–matter
decoupling effect. At higher temperatures, other lines appear
at intermediate couplings, before the light–matter decoupling
regime, due to nonlinear multi-photon transitions, similar to
the single-particle transmission spectra from Ref. [140] shown
in Fig. 4(d).

8. RECOVERING THE JCM IN THE
DEEPSTRONG-COUPLING REGIME: THE
LIGHT–MATTER DECOUPLING

After having explored the different ways in which the JCM can
break for sufficiently large values of the light–matter coupling,
in this last section we will close the loop, showing how a JCM
can be recovered for even stronger interaction strengths.

A. Light–Matter Decoupling

One surprising phenomenon of nonperturbative CQED is the
so-called light–matter decoupling : while increasing the coupling
strength between light and matter typically makes their dynam-
ics more correlated and entangled, for�R >ωc , ωeg this trend is
reversed, and light and matter are rapidly decoupled. As already
anticipated in the previous section, this feature is well visible
in Fig. 5 where the photonemission rate drops to zero at large
coupling strength.

The light–matter decoupling was first reported in Ref. [78]
in the context of harmonic polariton systems where it was inter-
preted as a metallization of the optical response of a dielectric
for extreme values of the dipolar moment. The dipoles then
become perfect metallic mirrors and expel the electromagnetic
field [inset in Fig. 6(a)].

This first prediction was indirectly confirmed in Ref. [178].
One important prediction of Ref. [78], shown in Fig. 6(a), is
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Fig. 6. (a) Theoretically predicted electroluminescence emission rate as a function of the coupling strength, taken from Ref. [78]. Reprinted with
permission from De Liberato, Phys. Rev. Lett. 112, 016401 (2014). Copyright 2014 by the American Physical Society. (b) Experimentally measured
absorption spectra of a plasmonic nanoparticle setup in the USC regime and (in the inset) its radiative damping rate as a function of the light–matter
coupling strength, taken from Ref. [177]. Used with permission of Springer Nature BV, from “Deep strong light–matter coupling in plasmonic
nanoparticle crystals,” Mueller et al., Nature 583, 780–784 (2020); permission conveyed through Copyright Clearance Center, Inc. (c) Liouvillian
gap of the open-dissipative Rabi model as a function of the coupling strength, taken from [100]. Reprinted with permission from De Bernardis, Phys.
Rev. A 108, 043717 (2023). Copyright 2023 by the American Physical Society.

that the Purcell effect [175] breaks down in the USC regime, and
the spontaneous emission rate changes non-monotonically with
the light–matter coupling, an effect experimentally measured in
Ref. [177] and reported in Fig. 6(b).

The USC light–matter decoupling was also investigated
in the context of superconducting circuit QED, for instance,
in Ref. [37,176], exhibiting a very similar phenomenology.
Another related consequence was illustrated and generalized in
Ref. [100], where there is predicted an exponential slow-down
in the thermalization and relaxation dynamics of any USC
system. Its quantification can be deduced by the Liouvillian gap
[179] of the USC master equation described in the previous
section [see Fig. 6(c)].

B. gRWA and the Polaronic JCM

The origin of the USC light–matter decoupling in single-mode
systems can be traced back to the existence of a hidden approxi-
mation: the generalized rotating-wave approximation (gRWA).
As was first reported in Ref. [180] and then developed in Ref.
[181], it is possible to recover the simple physics of the JCM
when the coupling strength places the system deep into the USC
regime, where �R/ωc � 1. As a consequence, and apparently
contradicting what we reported in the previous sections, the
ground state of the system appears as a trivial empty vacuum.

The gRWA is not the standard RWA that leads to the JCM
because it first requires transforming the Rabi Hamiltonian in
Eq. (11) in a new basis, often called polaron frame [182,183].
The coordinate transformation is implemented by the same uni-
tary transformation in Eq. (17), which was used to implement
the minimal substitution in the Coulomb gauge Hamiltonian
directly in the truncated two-level subspace. In this context,
unrelated to gauge choices, this transformation is known as
polaron transformation. The polaron frame Rabi Hamiltonian
(which coincides with the Coulomb gauge TLS Hamiltonian
presented at the end of Section 5) is then given by

Ĥpol
R = Û † ĤRÛ =ωc â †â +

ωeg

2

[
cos θ̂ σ̂z − sin θ̂ σ̂y

]
, (25)

where θ̂ =−i2�R/ωc (â − â †). At this point, one can
Taylor expand the trigonometric operators consider-
ing that cos θ̂ = (ÛD(�R/ωc )+ ÛD(�R/ωc )

†)/2 and
sin θ̂ =−i(ÛD(�R/ωc )− ÛD(�R/ωc )

†)/2 [100,180,181].
These operators are expressed in terms of displacement oper-
ators ÛD = exp[(x ∗â − x â †)], allowing for a normal order
expansion [184] that permits us to easily isolate the posi-
tive/negative frequency contributions. After some tedious but
straightforward passages, one can re-express the interaction
Hamiltonian in a JCM-like form [100,180,181]

Ĥpol
R ≈ωege−2�2

R/ω
2
c
[

f (â †â)â σ̂+ + f ∗(â †â)â †σ̂−
]
, (26)

where f is a complicated polynomial function [180]. This
expression is still mathematically very complicated but has the
advantage of clearly showing that also the Rabi model is mostly
built over the concept of absorption/emission. The exponential
coefficient in front e−2�2

R/ω
2
c can be seen as a nonperturbative

Lamb-shift [41,185], emerging also as a feature of the polaron
transformation, and explicitly accounts for the light–matter
decoupling in the infinite coupling limit �R→∞. It also
explains why the gRWA is applicable in such a limit, suppressing
the polaron light–matter interaction term, which is then treated
in perturbation theory, similarly to what is introduced in
Section 2.

As a specific property, the ground state in the polaron frame
is given by |Gpol〉 ≈ |0, g 〉 being indeed the empty cavity vac-
uum. To obtain the ground state in the standard frame (or Rabi
vacuum) we have to transform this state back, obtaining

|GR〉 ≈ Û |0, g 〉 =
1
√

2
(|α,→〉+ |− α,←〉) , (27)

where |α〉 is a photon’s coherent state with amplitude
α =�R/ωc and |← /→〉= (|e 〉 ± |g 〉)/

√
2. We then
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notice that all the notions of vacuum and virtual photons are
only relative to the specific considered frame (or Hilbert space
basis). Moreover, we see that the Rabi vacuum is not only
non-empty but is also highly entangled since for �R�ωc it
is a cat state [1]. In the polaron basis, the ground state instead
becomes quite trivial and loses all the entanglement (which is
also a relative property). This observation stimulated the idea
that in light–matter problems one can always find a disentan-
gling transformation that strongly simplifies the description.
In particular, this was explored in multimodal light–matter
systems, where the polaron transformation is generalized to treat
the USC regime on the basis of minimizing the entanglement
between matter and light. In Refs. [163,185,186] it is shown
that a generalized polaron transformation can be used to extract
semi-analytical approximated solutions of the multimode USC
systems.

To close this section, we notice that the existence of a dis-
entangling transformation such as the polaron one does not
immediately imply the aforementioned light–matter decou-
pling since that is a property of the full dynamics and not just
of the ground state. However, in the contest, for instance, of
the Rabi model, it realizes an optimal basis from which the
light–matter decoupling phenomenon emerges quite clearly.
In this sense one should interpret the implication in a reversed
way: because of the light–matter decoupling a disentanged basis
offers a simpler and more natural view of the system. In this
perspective, while light–matter decoupling exists on every basis,
its manifestation in formalism can be very different from one
representation to another. For instance, it was recently shown
[118] that considering a different frame than the polaron one,
the light–matter decoupling can be seen as the increase of the
electron effective mass meff =m[1+ 2(�R/ωc )

2
], giving rise to

a tight localization of the electron around the potential minima.

9. CONCLUSION

In this paper, we tried to provide a non-technical report on the
relevance of the JCM in the contemporary research landscape.
The vitality of such a topic of investigation can be easily gauged
by the fact that essentially all the approximations on which the
JCM rests have been tested, stretched, and broken in one way
or another. The JCM remains today an important toy model
to approach the topic of light–matter coupling at the quantum
level. Still, it is best understood as one node of various related
models, mapping a much broader section of the parameter space
and hosting a corresponding much-richer phenomenology,
which we are sure will continue to fascinate researchers for many
years to come.
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145. Y. Ashida, A. İmamoğlu, J. Faist, et al., “Quantum electrodynamic
control of matter: cavity-enhanced ferroelectric phase transition,”
Phys. Rev. X 10, 041027 (2020).

146. J. Li, D. Golez, G. Mazza, et al., “Electromagnetic coupling in tight-
binding models for strongly correlated light and matter,” Phys. Rev.
B 101, 205140 (2020).

147. G. Mazza and C. Budroni, “Collective entanglement in quantum
materials with competing orders,” arXiv (2024).

148. E. Cortese, P. G. Lagoudakis, and S. De Liberato, “Collective
optomechanical effects in cavity quantum electrodynamics,” Phys.
Rev. Lett. 119, 043604 (2017).

149. P. Pilar, D. D. Bernardis, and P. Rabl, “Thermodynamics of
ultrastrongly coupled light-matter systems,” Quantum 4, 335
(2020).

150. J. Galego, C. Climent, F. J. Garcia-Vidal, et al., “Cavity Casimir-
Polder forces and their effects in ground-state chemical reactivity,”
Phys. Rev. X 9, 021057 (2019).

151. L. A. Martínez-Martínez, R. F. Ribeiro, J. Campos-González-Angulo,
et al., “Can ultrastrong coupling change ground-state chemical
reactions?” ACS Photon. 5, 167–176 (2018).

152. K. S. U. Kansanen, “Theory for polaritonic quantum tunneling,”
Phys. Rev. B 107, 035405 (2023).

153. G. Jarc, S. Y. Mathengattil, A. Montanaro, et al., “Cavity-mediated
thermal control of metal-to-insulator transition in 1T-TaS2,” Nature
622, 487–492 (2023).

154. C. Schäfer, J. Flick, E. Ronca, et al., “Shining light on the micro-
scopic resonant mechanism responsible for cavity-mediated
chemical reactivity,” Nat. Commun. 13, 7817 (2022).

155. K. Lenk, J. Li, P. Werner, et al., “Collective theory for an interacting
solid in a single-mode cavity,” arXiv (2022).

156. P. Fadler, J. Li, K. P. Schmidt, et al., “Engineering photon-mediated
long-range spin interactions in Mott insulators,” arXiv (2023).

157. C. Ciuti and I. Carusotto, “Input-output theory of cavities in the ultra-
strong coupling regime: the case of time-independent cavity param-
eters,” Phys. Rev. A 74, 033811 (2006).

158. M. Bamba and T. Ogawa, “System-environment coupling derived
by Maxwell’s boundary conditions from the weak to the ultrastrong
light-matter-coupling regime,” Phys. Rev. A 88, 013814 (2013).

159. M. Bamba and T. Ogawa, “Recipe for the Hamiltonian of
system-environment coupling applicable to the ultrastrong-
light-matter-interaction regime,” Phys. Rev. A 89, 023817
(2014).

160. A. Settineri, V. Macrí, A. Ridolfo, et al., “Dissipation and thermal
noise in hybrid quantum systems in the ultrastrong-coupling
regime,” Phys. Rev. A 98, 053834 (2018).

161. O. Di Stefano, A. F. Kockum, A. Ridolfo, et al., “Photodetection prob-
ability in quantum systems with arbitrarily strong light-matter inter-
action,” Sci. Rep. 8, 17825 (2018).

162. F. Beaudoin, J. M. Gambetta, and A. Blais, “Dissipation and
ultrastrong coupling in circuit QED,” Phys. Rev. A 84, 043832
(2011).

163. D. Zueco and J. García-Ripoll, “Ultrastrongly dissipative quantum
Rabi model,” Phys. Rev. A 99, 013807 (2019).

164. M. Lednev, F. J. García-Vidal, and J. Feist, “Lindblad master
equation capable of describing hybrid quantum systems in the
ultrastrong coupling regime,” Phys. Rev. Lett. 132, 106902 (2024).

165. D. F. de la Pradilla, E. Moreno, and J. Feist, “Taming the Bloch-
Redfield equation: recovering an accurate Lindblad equation for
general open quantum systems,” arXiv (2024).

166. M. Cattaneo, G. L. Giorgi, S. Maniscalco, et al., “Local versus global
master equation with common and separate baths: superiority of
the global approach in partial secular approximation,” New J. Phys.
21, 113045 (2019).

167. R. J. Glauber, “The quantum theory of optical coherence,” Phys.
Rev. 130, 2529–2539 (1963).

168. D. Walls and G. J. Milburn, eds.,QuantumOptics (Springer, 2008).
169. A. Settineri, O. Di Stefano, D. Zueco, et al., “Gauge freedom, quan-

tum measurements, and time-dependent interactions in cavity
QED,” Phys. Rev. Res. 3, 023079 (2021).

170. A. Mercurio, V. Macrì, C. Gustin, et al., “Regimes of cavity QED
under incoherent excitation: from weak to deep strong coupling,”
Phys. Rev. Res. 4, 023048 (2022).

171. A. Mercurio, S. Abo, F. Mauceri, et al., “Pure dephasing of light-
matter systems in the ultrastrong and deep-strong coupling
regimes,” Phys. Rev. Lett. 130, 123601 (2023).

172. W. E. Lamb, “Anti-photon,” Appl. Phys. B 60, 77–84 (1995).
173. D. M. Rouse, A. Stokes, and A. Nazir, “Theory of photon condensa-

tion in an arbitrary-gauge condensed matter cavity model,” Phys.
Rev. B 107, 205128 (2023).

174. A. Stokes, H. Riley, and A. Nazir, “The gauge-relativity of quantum
light, matter, and information,” Open Syst. Inf. Dyn. 30, 2350016
(2023).

175. E. M. Purcell, H. C. Torrey, and R. V. Pound, “Resonance absorption
by nuclear magnetic moments in a solid,” Phys. Rev. 69, 37–38
(1946).

176. J. J. García-Ripoll, B. Peropadre, and S. De Liberato, “Light-matter
decoupling and A2 term detection in superconducting circuits,” Sci.
Rep. 5, 16055 (2015).

177. N. S. Mueller, Y. Okamura, B. G. M. Vieira, et al., “Deep strong light–
matter coupling in plasmonic nanoparticle crystals,” Nature 583,
780–784 (2020).

178. A. Bayer, M. Pozimski, S. Schambeck, et al., “Terahertz light-
matter interaction beyond unity coupling strength,” Nano Lett. 17,
6340–6344 (2017).

179. F. Minganti, A. Biella, N. Bartolo, et al., “Spectral theory of
Liouvillians for dissipative phase transitions,” Phys. Rev. A 98,
042118 (2018).

https://doi.org/10.48550/arXiv.2307.05472
https://doi.org/10.1038/s41467-023-39594-z
https://doi.org/10.1038/s41467-023-39594-z
https://doi.org/10.1038/s41467-023-39594-z
https://doi.org/10.1002/qute.201800043
https://doi.org/10.1002/qute.201800043
https://doi.org/10.1002/qute.201800043
https://doi.org/10.1103/PhysRev.58.1098
https://doi.org/10.1103/RevModPhys.63.375
https://doi.org/10.1016/0003-4916(73)90039-0
https://doi.org/10.1103/PhysRevA.7.831
https://doi.org/10.1103/PhysRevLett.105.196402
https://doi.org/10.1126/science.1216022
https://doi.org/10.1103/PhysRevApplied.16.034029
https://doi.org/10.1103/PhysRevApplied.16.034029
https://doi.org/10.1103/PhysRevApplied.16.034029
https://doi.org/10.1103/PhysRevX.4.041031
https://doi.org/10.1103/PhysRevB.107.115431
https://doi.org/10.1021/acs.nanolett.7b03228
https://doi.org/10.1038/s41467-022-29974-2
https://doi.org/10.1103/PhysRevLett.122.017401
https://doi.org/10.1103/PhysRevLett.122.017401
https://doi.org/10.1103/PhysRevLett.122.017401
https://doi.org/10.1103/PhysRevX.10.041027
https://doi.org/10.1103/PhysRevB.101.205140
https://doi.org/10.1103/PhysRevB.101.205140
https://doi.org/10.1103/PhysRevB.101.205140
https://doi.org/10.48550/arXiv.2404.12931
https://doi.org/10.1103/PhysRevLett.119.043604
https://doi.org/10.1103/PhysRevLett.119.043604
https://doi.org/10.1103/PhysRevLett.119.043604
https://doi.org/10.22331/q-2020-09-28-335
https://doi.org/10.1103/PhysRevX.9.021057
https://doi.org/10.1021/acsphotonics.7b00610
https://doi.org/10.1103/PhysRevB.107.035405
https://doi.org/10.1038/s41586-023-06596-2
https://doi.org/10.1038/s41467-022-35363-6
https://doi.org/10.48550/arXiv.2205.05559
https://doi.org/10.48550/arXiv.2311.01339
https://doi.org/10.1103/PhysRevA.74.033811
https://doi.org/10.1103/PhysRevA.88.013814
https://doi.org/10.1103/PhysRevA.89.023817
https://doi.org/10.1103/PhysRevA.98.053834
https://doi.org/10.1038/s41598-018-36056-1
https://doi.org/10.1103/PhysRevA.84.043832
https://doi.org/10.1103/PhysRevA.99.013807
https://doi.org/10.1103/PhysRevLett.132.106902
https://doi.org/10.48550/arXiv.2402.06354
https://doi.org/10.1088/1367-2630/ab54ac
https://doi.org/10.1103/PhysRev.130.2529
https://doi.org/10.1103/PhysRev.130.2529
https://doi.org/10.1103/PhysRev.130.2529
https://doi.org/10.1103/PhysRevResearch.3.023079
https://doi.org/10.1103/PhysRevResearch.4.023048
https://doi.org/10.1103/PhysRevLett.130.123601
https://doi.org/10.1007/BF01135846
https://doi.org/10.1103/PhysRevB.107.205128
https://doi.org/10.1103/PhysRevB.107.205128
https://doi.org/10.1103/PhysRevB.107.205128
https://doi.org/10.1142/S1230161223500166
https://doi.org/10.1103/PhysRev.69.37
https://doi.org/10.1038/srep16055
https://doi.org/10.1038/srep16055
https://doi.org/10.1038/srep16055
https://doi.org/10.1038/s41586-020-2508-1
https://doi.org/10.1021/acs.nanolett.7b03103
https://doi.org/10.1103/PhysRevA.98.042118


Tutorial Vol. 41, No. 8 / August 2024 / Journal of the Optical Society of America B C221

180. E. K. Irish, “Generalized rotating-wave approximation for arbitrarily
large coupling,” Phys. Rev. Lett. 99, 173601 (2007).

181. L. Yu, S. Zhu, Q. Liang, et al., “Analytical solutions for the Rabi
model,” Phys. Rev. A 86, 015803 (2012).

182. A. Nazir, D. P. S. McCutcheon, and A. W. Chin, “Ground state and
dynamics of the biased dissipative two-state system: beyond varia-
tional polaron theory,” Phys. Rev. B 85, 224301 (2012).

183. S. Bera, A. Nazir, A. W. Chin, et al., “Generalized multipolaron
expansion for the spin-boson model: environmental entanglement
and the biased two-state system,” Phys. Rev. B 90, 075110 (2014).

184. K. E. Cahill and R. J. Glauber, “Ordered expansions in boson ampli-
tude operators,” Phys. Rev. 177, 1857–1881 (1969).

185. G. Díaz-Camacho, A. Bermudez, and J. J. García-Ripoll,
“Dynamical polaron Ansatz: a theoretical tool for the ultrastrong-
coupling regime of circuit QED,” Phys. Rev. A 93, 043843
(2016).

186. T. Shi, Y. Chang, and J. J. García-Ripoll, “Ultrastrong coupling few-
photon scattering theory,” Phys. Rev. Lett. 120, 153602 (2018).

https://doi.org/10.1103/PhysRevLett.99.173601
https://doi.org/10.1103/PhysRevA.86.015803
https://doi.org/10.1103/PhysRevB.85.224301
https://doi.org/10.1103/PhysRevB.90.075110
https://doi.org/10.1103/PhysRev.177.1857
https://doi.org/10.1103/PhysRevA.93.043843
https://doi.org/10.1103/PhysRevLett.120.153602

