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Video Editing with STR-Match

Video Editing with STR-Match

Figure 1: Generated videos using our proposed algorithm, STR-Match. Our proposed algorithm,
STR-Match, successfully performs flexible domain transformations while preserving the visual
information of the source video during the video editing process. It is also applicable to various
scenarios, including large motion, multi-object, and background editing.

ABSTRACT

Existing text-guided video editing methods often suffer from temporal inconsis-
tency, motion distortion, and cross-domain transformation error. We attribute these
limitations to insufficient modeling of spatiotemporal pixel relevance during the
editing process. To address this, we propose STR-Match, a training-free video
editing technique that produces visually appealing and temporally coherent videos
through latent optimization guided by our novel STR score. The proposed score
captures spatiotemporal pixel relevance across adjacent frames by leveraging 2D
spatial attention and 1D temporal attention maps in text-to-video (T2V) diffu-
sion models, without the overhead of computationally expensive full 3D attention.
Integrated into a latent optimization framework with a latent mask, STR-Match
generates high-fidelity videos with strong spatiotemporal consistency, preserving
key visual attributes of the source video while remaining robust under significant
domain shifts. Our extensive experiments demonstrate that STR-Match consis-
tently outperforms existing methods in both visual quality and spatiotemporal
consistency.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 INTRODUCTION

Diffusion models (Ho et al., 2020; Song et al., 2021a;b) are the leading framework for high-fidelity
image and video generation using text prompts. Their applications now extend to tasks such as
text-guided image and video editing, where the goal is to generate outputs aligned with target
text prompts while preserving regions consistent with both the source and target prompts in the
original content. Text-guided image editing typically generates a target image using information
extracted during the forward or reconstruction pass of the source image—most commonly via latent
optimization (Parmar et al., 2023; Lee et al., 2025) or attention injection (Cao et al., 2023; Tumanyan
et al., 2023; Hertz et al., 2023), although some methods adopt alternative strategies such as text
embedding interpolation (Kawar et al., 2023; Lee et al., 2024).

While text-guided image editing methods have demonstrated impressive editing capabilities, directly
applying them to video editing presents several challenges, including frame inconsistency and
undesired motion change. To achieve strong video editing performance while addressing these issues,
many prior works (Qi et al., 2023; Jeong & Ye, 2024; Cong et al., 2024; Yang et al., 2025a) leverage
pretrained text-to-image (T2I) models augmented with additional components. Some other recent
works (Meral et al., 2024; Yatim et al., 2024; Zhang et al., 2025b; Bai et al., 2024) adopt text-to-video
(T2V) models to tackle these problems. However, these methods still suffer from the same issues and
exhibit degraded performance in challenging scenarios (e.g., large domain shifts).

These limitations in text-guided video editing stem from inadequate modeling of spatiotemporal
pixel relevance, which is crucial for producing natural and coherent video content. To address
these challenges, we introduce STR-Match, a training-free algorithm that generates videos via latent
optimization guided by a novel STR score. The STR score, defined as the multiplicative combination
of self- and temporal-attention maps, captures spatiotemporal pixel relevance across adjacent frames
by combining 2D spatial and 1D temporal attention from a text-to-video (T2V) diffusion model,
without relying on costly full 3D attention maps. This joint formulation offers greater flexibility
than treating the attention components separately, as it relaxes excessive constraints and facilitates
finding optimal solutions for video editing. Integrated into a latent optimization framework with
a masking strategy, STR-Match produces temporally consistent, high-fidelity outputs, effectively
handling challenging editing cases and maintaining the key visual attributes of the source.

Our primary contributions are summarized as follows:

• We introduce STR-Match, a novel training-free text-guided video editing approach built upon
pretrained T2V diffusion models. It matches spatiotemporal information in the generation
process (target latents) to that of the forward process (source latents) via latent optimization,
optionally incorporating a latent masking strategy for improved preservation of source content.
This design addresses key limitations of existing methods stemming from insufficient modeling
of spatiotemporal pixel relevances.

• To obtain spatiotemporal information, we propose the STR score, a spatiotemporal pixel
relevance score that combines self- and temporal-attention maps without requiring full 3D
attention maps. The STR score also enables flexible optimization, resulting in enhanced overall
video quality.

• Through extensive experiments on various video editing tasks, we demonstrate that STR-
Match outperforms existing training-free video editing approaches both quantitatively and
qualitatively. STR-Match generates temporally coherent, high-fidelity videos with flexible
domain transformations, while preserving the visual integrity of the source video. It consistently
outperforms prior methods in these aspects.

2 RELATED WORKS

2.1 TEXT-TO-VIDEO DIFFUSION MODEL

Recent works (Chen et al., 2024; Wang et al., 2024) build on diffusion models by extending pretrained
text-to-image (T2I) architectures. These methods commonly introduce lightweight 1D temporal
modules into 2D spatial backbones, enabling efficient video generation while preserving the visual
priors learned from T2I models. While previous T2V models such as VideoCrafter2 (Chen et al., 2024)
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and LaVie (Wang et al., 2024) extend pretrained T2I architectures by inserting lightweight temporal
modules into 2D spatial backbones, more recent approaches aim to capture richer spatiotemporal
pixel relevances through full 3D attention. Building on advances in efficient attention computation
frameworks such as xFormers (Lefaudeux et al., 2022) and FlashAttention (Dao et al., 2022), the
latest T2V models (Yang et al., 2025b; Peng et al., 2025) incorporate full 3D attention into their
architectures. For example, CogVideoX (Yang et al., 2025b) and Open-Sora-2.0 (Peng et al., 2025)
adopt 3D autoencoding architectures with integrated full 3D attention, leveraging FlashAttention to
enable efficient attention computation. These methods typically aim to optimize the computation
of attention outputs while avoiding the explicit construction of full 3D attention maps, which are
computationally expensive and thus impractical to use directly.

2.2 TRAINING-FREE VIDEO EDITING METHODS

T2I-based video editing methods With the rapid progress of image editing works (Cao et al.,
2023; Hertz et al., 2023; Tumanyan et al., 2023; Parmar et al., 2023; Lee et al., 2025; Si et al., 2025;
Kawar et al., 2023; Lee et al., 2024), recent works (Qi et al., 2023; Jeong & Ye, 2024; Cong et al.,
2024; Yang et al., 2025a) leverage pretrained T2I models with addtional components to complement
frame consistency. FateZero (Qi et al., 2023) manipulates attention maps using binary masks from
cross-attention and improves temporal consistency by warping middle-frame features during diffusion.
Ground-A-Video (Jeong & Ye, 2024) leverages external models—such as GLIGEN (Li et al., 2023a),
RAFT (Teed & Deng, 2020), ZoeDepth (Bhat et al., 2023), and ControlNet (Zhang et al., 2023)—to
guide attention modulation with attention maps. FLATTEN (Cong et al., 2024) manipulates attention
maps to follow patch trajectories derived from optical flow (Teed & Deng, 2020), aiming to maintain
frame consistency. VideoGrain (Yang et al., 2025a) modulates both self- and cross-attention to
address multi-grain video editing tasks, relying on external methods (Tumanyan et al., 2023; Cong
et al., 2024) to enhance frame consistency. Although these T2I-based methods have demonstrated
strong editing capabilities, they still struggle from temporal inconsistency and motion distortion.
Moreover, many of these approaches rely on attention injection, which can disrupt the computational
graph of the pretrained model and often lead to visual artifacts.

T2V-based video editing methods In contrast to T2I-based approaches, several recent meth-
ods (Meral et al., 2024; Yatim et al., 2024; Zhang et al., 2025b; Bai et al., 2024) leverage pretrained
T2V models to address temporal consistency in the video editing task. For example, DMT (Yatim
et al., 2024) utilizes a pretrained T2V model and introduces a feature descriptor extracted from inter-
mediate layers to guide latent optimization for motion preservation. MotionFlow (Meral et al., 2024)
incorporates losses from cross-, self-, and temporal-attention, along with mask-based manipulation,
to preserve motion information in the source video. Zhang et al. (Zhang et al., 2025b) extracts motion
patterns using temporal modules and applies a frame-to-frame consistency loss during generation.
These approaches utilize latent optimization, which preserves the pretrained model’s computation
graph, allowing for smoother outputs with fewer visual artifacts. However, these methods primar-
ily focus only on motion guidance, which often leads to modifications in unwanted regions (e.g.,
backgrounds). While UniEdit (Bai et al., 2024) uses attention injection for appearance and motion
editing, the foreground and background often become visually decoupled, resulting in incoherent
video outputs.

3 PRELIMINARY

Text-to-video diffusion model We summarize the basic concept of pretrained text-to-video diffusion
models as we use the models to perform text-guided video editing. The key components of text-
to-video model are an encoder Enc(·), a decoder Dec(·), and a noise prediction network εθ(·).
Encoder spatially and temporally compresses a video vector x ∈ RF×H×W×3 to a latent vector
z0 ∈ Rf×h×w×c, and decoder decompresses the latent vector to the video vector. The noise prediction
network learns the distribution of latent vectors z0, and is trained to minimize following objective
function:

Ez0,c,t,ε[||εθ(zt, t, c)− ε||22], (1)

where z0 denotes the video latent, c is the corresponding text prompt, t is the diffusion timestep, and
zt = αtz0 + σtε for ε ∼ N (0, I). αt and σt are predifined constants satisfying α0 = 1, σ0 = 0, and
σT /αT � 1.
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“... goldfish swim ...”

“... sharks swim ...”

. . .

. . .

Figure 2: Illustration of overall STR-Match framework. We first perform a forward diffusion
process, and extract the STR score Ωsrc

STR,t from the source video. Then, the target latent is initialized
as ztgt

T = zsrc
T , and during the generation process, we extract the target STR score Ωtgt

STR,t and optimize
the latent ztgt

t using a negative cosine similarity between the source and target STR scores. To further
preserve unediting regions, we optionally apply a latent mask strategy using a binary mask M .

Attention maps We specifically focus on two key components of text-to-video models: the spatial
self-attention map and the temporal-attention map. Spatial self-attention map, whose dimension
is Rf×h×n×n, captures relevances between pixels within each frame, where f denotes the number
of frames, n represents the number of pixels per frame, and h indicates the number of attention
heads. For the rest of the paper, we denote p, q ∈ {1, 2, ...n} for the spatial location of pixel and
i, j ∈ {1, 2, ...f} for the frame number. Combining these, Ii(p) represents the pixel at location
p in i-th frame. Then, the self-attention map element Attn(Ii(p) → Ii(q)) can be interpreted as
importance of Ii(q) to Ii(p) in 2D spatial space. Similarly, temporal-attention map, whose dimension
is Rn×h×f×f , encodes inter-frame relevances for each pixel, and the element Attn(Ii(p)→ Ij(p))
represents the importance of Ij(p) to Ii(p) in 1D temporal space.

4 METHODS

Many text-guided image editing methods (Cao et al., 2023; Hertz et al., 2023; Tumanyan et al.,
2023; Parmar et al., 2023; Si et al., 2025) manipulate attention maps, demonstrating that modeling
pixel relevances is crucial for effective image editing. Likewise, we expect that spatiotemporal
pixel relevances in videos are essential for effective video editing. To this end, we propose the STR
score, which captures spatiotemporal pixel relevance across frames by leveraging self- and temporal-
attention maps from both U-Net and DiT-based T2V models. It is an aggregation of bidirectional
pixel relevances across adjacent frames, efficiently capturing spatiotemporal information and enabling
the extraction of key visual attributes from the source video. By integrating the STR score into a
latent optimization framework, as illustrated in Figure 2, we enable video editing that preserves
source content while achieving high visual quality with flexible domain shifts.

4.1 STR SCORE: SPATIOTEMPORAL RELEVANCE SCORE

U-Net based T2V Models To quantitatively represent relevance between two pixels Ii(p) and Ij(q)
in spatiotemporal space, we define two functions: bidirectional relevance g(·, ·), and directional
relevance g(· → ·). The directional relevance g(Ii(p)→ Ij(q)) quantifies the importance of Ij(q)
to Ii(p) in spatiotemporal space, and intuitively, it is expected to be large if both the importance of
Ij(p) to Ii(p) and Ij(q) to Ij(p) are high, or the importance of Ii(q) to Ii(p) and Ij(q) to Ii(q) are
high. From this motivation, we define directional relevance between Ij(q) given Ii(p) as

g(Ii(p)→ Ij(q)) := Attn(Ii(p)→ Ij(p)) Attn(Ij(p)→ Ij(q))

+ Attn(Ii(p)→ Ii(q)) Attn(Ii(q)→ Ij(q)), (2)

for Attn(· → ·) defined in Section 3. The bidirectional relevance g(Ii(p), Ij(q)) extends the di-
rectional relevance by considering the connection between Ii(p) and Ij(q) in both directions, as
illustrated in Figure 3. Specifically, it is defined as a sum of the importance of Ij(q) to Ii(p) and the

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 3: Illustration of STR score. (Left) The bidirectional pixel relevance in the spatiotemporal
space g(Ii(p), Ij(q)) is computed by summing two directional relevance scores along opposite
directions. (Right) Each figure illustrates the directional pixel relevance, g(Ii(p) → Ij(q)) and
g(Ij(q)→ Ii(p)), both of which are computed solely through pixel-wise multiplication of self- and
temporal-attention maps.

importance of Ii(p) to Ij(q):

g(Ii(p), Ij(q)) := g(Ii(p)→ Ij(q)) + g(Ij(q)→ Ii(p)). (3)

Notably, the bidirectional relevance is fully computed from self- and temporal-attention maps without
requiring any additional training or models.

To capture spatiotemporal information in the source video—such as motion and structural layout—we
aggregate bidirectional pixel relevances across adjacent frames into a unified representation, termed
the STR score. The STR score ΩSTR, or spatiotemporal pixel relevance, is formally defined as follows:

ΩSTR(i, p, q) =
∑

j∈N (i)

g(Ii(p), Ij(q)), (4)

where N (i) is a set of neighboring frame numbers to the i-th frame.

DiT-based T2V Models Recent DiT-based T2V models often bypass the explicit computation of
attention maps, which makes it challenging to obtain spatiotemporal relevances, Attn(Ii(p)→ Ij(p))
and Attn(Ij(p)→ Ij(q)). To address this limitation, we introduce pseudo self-attention and temporal-
attention maps that efficiently approximate these relevances. The query and key matrices generally
have the shape (h, f × n, c), where c denotes the channel dimension and the remaining symbols
follow the notation in Section 3. For computation, we reshape the query and key tensors to two
forms—(f × h, n, c) and (n× h, f, c)—to compute pseudo self- and temporal-attention maps via
dot-product and softmax. This yields a pseudo self-attention map of shape (f, h, n, n) and a pseudo
temporal-attention map of shape (n, h, f, f), which are directly employed in Equation (2). Our
formulation enables the efficient computation of STR scores across diverse T2V models, independent
of their architectures, without the need to construct full 3D attention maps—a strategy further
analyzed in terms of computational complexity in Appendix B.

4.2 OVERALL FRAMEWORK: STR-MATCH

The overall procedure of our method is illustrated in Figure 2 and Algorithm 1. We first solve the
forward diffusion process of the source video. During the forward process, we extract STR scores
Ωsrc

STR,t at every timestep and noisy latent zsrc
T . Then, starting from ztgt

T = zsrc
T as initial point, we

perform generation process with latent optimization. For each denoising step, we first optimize the
latent variable ztgt

t , and then solve diffusion process with the optimized latents. The optimization is
performed with the following equation:

ztgt
t ← ztgt

t − λ∇ztgt
t
Lcos(Ωsrc

STR,t,Ω
tgt
STR,t), (5)

where Lcos is a negative cosine similarity, and λ is a hyperparameter for controlling the guidance
strength. The equation is designed to maximize the cosine similarity between the source and target
STR scores, encouraging the spatiotemporal pixel relevances in the target video to align with those of
source video to promote preservation of spatiotemporal information.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 STR-Match

1: Input: zsrc
0 (source video), psrc (source prompt embedding), ptgt (target prompt embedding), Φ(·)

(ODE solver), M (foreground binary mask, optional)
2: Hyperparameter: λ (coefficient of negative cosine similarity)
3: for t = 0 to T − 1 do
4: εsrc

t ← εθ(z
src
t , t, p

src)
5: Compute and save Ωsrc

STR,t from εθ(·)
6: zsrc

t+1 ← Φ(zsrc
t , ε

src
t , t→ t+ 1)

7: end for
8: ztgt

T ← zsrc
T

9: for t = T to 1 do
10: Compute Ωtgt

STR,t from εθ(z
tgt
t , t, [p

tgt; psrc])

11: ztgt
t ← ztgt

t − λ∇ztgt
t
Lcos(Ωsrc

STR,t,Ω
tgt
STR,t)

12: εtgt
t ← εθ(z

tgt
t , t, [p

tgt; psrc])

13: ztgt
t−1 ← Φ(ztgt

t , ε
tgt
t , t→ t− 1)

14: if M exists then
15: ztgt

t−1 ← (1− dilate(M))� zsrc
t−1 + dilate(M)� ztgt

t−1
16: end if
17: end for
18: Result: ztgt

0 (target video)

Since the optimization process preserves the computational graph of the pretrained model, it enables
the generation of smooth, high-quality videos while maintaining key visual information from the
source. Moreover, since ΩSTR is conceptually defined as the element-wise product of self- and
temporal-attention maps, it enables more flexible optimization compared to using them independently,
thereby further enhancing video quality.

Latent mask strategy To better preserve regions that are not intended to be edited (e.g., back-
grounds), we mix the optimized latent with the latent obtained during the forward process at the same
timestep. For a binary mask M , where values are 1 for regions to be edited and 0 otherwise, and
latents zsrc

t obtained during the forward diffusion process of source video, the final target latents are
updated as

ztgt
t ← (1− dilate(M))� zsrc

t + dilate(M)� ztgt
t . (6)

This masking strategy ensures to preserve non-target regions in the source video during editing. The
latent binary mask is resized and dilated version of segmentation map of editing region of the source
video. The dilate function is applied to help flexible shape modification.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

For U-Net based experiments, STR-Match is implemented using LaVie (Wang et al., 2024) as the
pretrained T2V model. For efficient inference, we extract the STR score based on self- and temporal-
attention maps, excluding those from the finest resolution. We compare our method against recent
training-free video editing algorithms: FateZero (Qi et al., 2023), Ground-A-Video (GAV) (Jeong &
Ye, 2024), FLATTEN (Cong et al., 2024), VideoGrain (Yang et al., 2025a), DMT (Yatim et al., 2024),
and UniEdit (Bai et al., 2024). For T2I-based methods (FateZero, Ground-A-Video, FLATTEN,
VideoGrain), we follow their official implementations. For T2V-based baselines (DMT, UniEdit),
we adopt LaVie (Wang et al., 2024) as the pretrained T2V model to ensure a fair comparison. We
employ a video segmentation model SAM-Track (Cheng et al., 2023) to obtain binary mask M ,
and OWL-ViT (Minderer et al., 2022), an object detection model to obtain bounding boxes for
Ground-A-Video.

For DiT-based experiments, we implement STR-Match using the pretrained CogVideoX-2B (Yang
et al., 2025b). To improve computational efficiency during optimization, STR scores are com-
puted using only the first two attention blocks of CogVideoX-2B. We compare our approach with
CogVideoX-V2V, a recent training-free video editing method built on the same backbone.
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Figure 4: Qualitative comparisons between STR-Match with LaVie and existing methods. In
each example, STR-Match demonstrates stronger foreground–background texture alignment, higher
visual fidelity, better motion alignment, and more flexible shape transformation compared to recent
existing methods. Please refer to our HTML-based supplementary material for the edited video
results.

All experiments are conducted on a single NVIDIA L40S GPU with 48 GB of memory. We use
a fixed hyperparameter λ = 0.01 and optimize with SGD. For extreme qualitative scenarios (e.g.,
cat→ basketball) in the U-Net based setting, we select λ from the range [0.005, 0.015]. We set the
number of diffusion timesteps to 50 and apply classifier-free guidance (Ho & Salimans, 2021) with
a scale of 7.5. A detailed description of the pretrained base models and external models used in
implementation is provided in Table 1 of Appendix A.1. Additionally, we provide the results of object
deletion/addition and the ablation studies of STR-Match in Appendix D and Appendix E, respectively.

Quantitative evaluation protocol For quantitative evaluation in the U-Net based setting, we collect
a total of 54 videos, each consisting of 16 frames, comprising samples from the TGVE dataset (Wu
et al., 2023) and additional videos sourced from the Internet 1. We utilize VideoLLaMA3-7B (Zhang
et al., 2025a), a pretrained video captioning model, to obtain concise prompts of source videos
automatically, and randomly change nouns to construct the corresponding target prompt. We measure
four metrics to evaluate the fidelity and fatihfulness of the edited videos to source video and target
prompt. Frame Consistency (FC) suggested in VBench (Huang et al., 2024) measures the smoothness
of videos, leveraging motion priors in the frame interpolation model (Li et al., 2023b). CLIP
Similarity (CS) computes the average CLIP score (Hessel et al., 2021) between the target prompt
and edited video. BG-LPIPS (BL) calculates the Learned Perceptual Image Patch Similarity (LPIPS)
score (Zhang et al., 2018) between maksed frames of the source and generated videos, where the mask
is 1 for regions to preserve. Motion Error (ME) quantifies the average motion difference between the
source and generated videos. It is calculated as the pixel-wise differences of optical flows between
each video pair, where the optical flows are obtained using RAFT-Large (Teed & Deng, 2020).

For the DiT-based setting, we use 31 synthesized videos, each containing 17 frames. We compare
STR-Match against CogVideoX-V2V using the VE-Bench score (Sun et al., 2025), a comprehensive

1https://www.pexels.com
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Figure 5: Qualitative comparisons between STR-Match with CogVideoX and CogVideoX-
V2V. STR-Match demonstrates strong editing capability even in DiT-based settings, outperforming
CogVideoX-V2V. In each example, STR-Match performs flexible and effective domain transforma-
tion, generating target objects that are natural and faithful to the prompt. In contrast, CogVideoX-V2V
either fails to replace the source object or produces results anchored to the source object’s shape,
resulting in less realistic outcomes.

metric that assesses video editing quality across multiple dimensions, including frame consistency,
text alignment, and fidelity to the source video. In addition, we report VE-Bench results in the U-Net
based setting to further validate the effectiveness of our approach.

5.2 QUALITATIVE RESULTS

Key features of STR-Match Figure 1 demonstrates STR-Match’s robust editing performance,
highlighting its flexibility in challenging scenarios—such as transforming objects into entirely differ-
ent categories, handling large motion, performing multi-object editing, and modifying background.
For instance, transforming a cat into a basketball or a giraffe demonstrates STR-Match’s ability
to faithfully adapt object shapes to target prompts without being overly anchored to the original
shape. Moreover, changing a cat into a dragon or a robot dog—objects unlikely to appear in the
original scene—illustrates STR-Match’s effective integration of edited elements with the background.
These examples emphasize how STR-Match manages domain-shifted objects and significant shape
changes, while ensuring the edited elements blend naturally with the background. This combination
of flexibility, visual quality, and motion preservation makes STR-Match a powerful tool for diverse
video editing tasks.

Comparison to other editing methods Figure 4 compares STR-Match with LaVie to recent
video editing baselines, showing that our method achieves sharper visual fidelity, tighter fore-
ground–background texture alignment, and more faithful shape transformations. In the ‘baby→
sleeping baby’ case, DMT, UniEdit, and VideoGrain tint the infant while leaving the background gray,
whereas STR-Match maintains consistent tonality across the entire frame by capturing spatiotemporal
pixel relevance through the STR score. In the ‘lotus→ daisy’ example, several baselines either fail to
replace the lotus at all or succeed only by unintentionally changing the background. On the other
hand, STR-Match successfully replaces the lotus with high fidelity while preserving the background
intact. The same trend holds on more dynamic contents. In the ‘zebra → horse’ example, most
prior methods either fail to capture the horse’s leg motion (e.g., lifting its leg) or degrade appearance
quality, while Ground-A-Video further disrupts scene consistency. In contrast, STR-Match faithfully
reproduces the motion with high visual fidelity.

Furthermore, STR-Match demonstrates strong performance even in extreme video editing scenarios.
In the ‘cat→ basketball’ example, most existing methods fail to transform the cat into a basketball,
while DMT generates a basketball at the cost of undesired background changes. Similarly, in the ‘fish
→ sweet potato’ case, DMT and FLATTEN partially modify the object but suffer from background
distortion or low fidelity, and other methods fail to perform the edit. In contrast, STR-Match
successfully transforms the object with high visual fidelity while preserving the background. In
summary, STR-Match enables high-fidelity, and flexible shape transformation in video editing while
preserving spatiotemporal information.
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Figure 5 presents a qualitative comparison between STR-Match and CogVideoX-V2V in the DiT-
based setting. In the ‘bear→ lion’ example, CogVideoX-V2V generates a lion that remains anchored
to the shape of the bear, resulting in an unnatural appearance. In contrast, STR-Match produces a
lion with a more natural shape and pose. In the ‘book→ soccer ball’ and ‘swan→ lamp’ cases,
CogVideoX-V2V either fails to apply the transformation or yields low-fidelity results, whereas
STR-Match successfully performs high-fidelity object transformations. These results demonstrate
that STR-Match effectively edits source videos even under the DiT-based setting.

5.3 QUANTITATIVE COMPARISON

0.30

0.75

1.0

FC( )

CS( )

BL( )

ME( )
Methods

FateZero
Ground-A-Video
FLATTEN

VideoGrain
DMT
UniEdit

STR-Match (ours, w/o mask)
STR-Match (ours, w/ mask)

Figure 6: Quantitative comparison between
STR-Match with LaVie and existing meth-
ods. The solid red line is STR-Match with
the binary mask, and the dashed red line
is STR-Match without binary mask. The
solid lines are T2V-based editing methods,
while dotted lines are T2I-based methods.
We provide exact metric numbers and anal-
ysis in Table 1 of Appendix A.1.

We quantitatively evaluate STR-Match with LaVie
against existing training-free video editing methods
for four metrics: temporal consistency (FC), fidelity to
the target prompt (CS), background preservation (BL),
and motion preservation from the source video (ME).
STR-Match, with and without binary masks, achieves
strong performance, as evidenced by its large area in the
radar graph shown in Figure 6. Notably, compared to
T2I-based editing methods, STR-Match demonstrates
superior frame consistency, indicating that the proposed
STR score effectively captures spatiotemporal pixel rel-
evances from the T2V model.

Furthermore, when comparing STR-Match with masks
to UniEdit (red solid and orange lines), both of which
utilize SAM-Track, STR-Match outperforms in all eval-
uated metrics. In the comparison between STR-Match
without masks and DMT (red dashed and green lines),
the scores reveal that STR-Match more effectively cap-
tures key information from the source video, such as
background and motion, while maintaining comparable
fidelity. This suggests that the STR score achieves a
goldilocks balance—preserving essential details from
the source video while maintaining the flexibility re-
quired for high-fidelity editing—unlike methods that ei-
ther over-preserve, reducing fidelity, or under-preserve,
diminishing faithfulness.

We further evaluate its performance in both U-Net and DiT-based settings using VE-Bench. STR-
Match achieves the highest VE-Bench scores across all compared methods in both settings. Detailed
results are provided in Table 2 of Appendix A.1.

6 CONCLUSION

In this work, we propose a novel spatiotemporal modeling approach that relates to key limitations
in existing video editing methods—such as frame inconsistency, motion distortion, visual artifacts,
and notably, limited performance in challenging settings like large-gap domain shifts. To overcome
these challenges, we propose the STR score, a spatiotemporal pixel relevance score that captures
essential video attributes. Notably, it is computed solely from the self- and temporal-attention maps of
a pretrained text-to-video (T2V) diffusion model, requiring no additional training or external models.
By integrating the STR score into a latent optimization framework alongside a latent mask strategy,
we introduce STR-Match, a zero-shot, training-free video editing algorithm that is compatible with
any T2V model. Extensive experiments show that STR-Match consistently outperforms existing
training-free methods across all quantitative metrics. Moreover, it generates videos with substantially
improved visual quality, supporting realistic and flexible domain transformation, preserved motion
dynamics, and strong temporal consistency. These results demonstrate both the effectiveness and
generalizability of STR-Match, establishing it as a new state-of-the-art baseline for training-free
text-guided video editing.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Jianhong Bai, Tianyu He, Yuchi Wang, Junliang Guo, Haoji Hu, Zuozhu Liu, and Jiang Bian.
Uniedit: A unified tuning-free framework for video motion and appearance editing. arXiv preprint
arXiv:2402.13185, 2024.

Shariq Farooq Bhat, Reiner Birkl, Diana Wofk, Peter Wonka, and Matthias Müller. Zoedepth:
Zero-shot transfer by combining relative and metric depth. arXiv preprint arXiv:2302.12288, 2023.

Mingdeng Cao, Xintao Wang, Zhongang Qi, Ying Shan, Xiaohu Qie, and Yinqiang Zheng. Masactrl:
Tuning-free mutual self-attention control for consistent image synthesis and editing. In ICCV,
2023.

Haoxin Chen, Yong Zhang, Xiaodong Cun, Menghan Xia, Xintao Wang, Chao Weng, and Ying Shan.
Videocrafter2: Overcoming data limitations for high-quality video diffusion models. In CVPR,
2024.

Yangming Cheng, Liulei Li, Yuanyou Xu, Xiaodi Li, Zongxin Yang, Wenguan Wang, and Yi Yang.
Segment and track anything. arXiv preprint arXiv:2305.06558, 2023.

Yuren Cong, Mengmeng Xu, Christian Simon, Shoufa Chen, Jiawei Ren, Yanping Xie, Juan-Manuel
Perez-Rua, Bodo Rosenhahn, Tao Xiang, and Sen He. Flatten: Optical flow-guided attention for
consistent text-to-video editing. In ICLR, 2024.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
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