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Abstract

Multimodal Sentiment Analysis (MSA) is an important research area that aims to
understand and recognize human sentiment through multiple modalities. The com-
plementary information provided by multimodal fusion promotes better sentiment
analysis compared to utilizing only a single modality. Nevertheless, in real-world
applications, many unavoidable factors may lead to situations of uncertain modality
missing, thus hindering the effectiveness of multimodal modeling and degrading
the model’s performance. To this end, we propose a Hierarchical Representation
Learning Framework (HRLF) for the MSA task under uncertain missing modali-
ties. Specifically, we propose a fine-grained representation factorization module
that sufficiently extracts valuable sentiment information by factorizing modality
into sentiment-relevant and modality-specific representations through crossmodal
translation and sentiment semantic reconstruction. Moreover, a hierarchical mutual
information maximization mechanism is introduced to incrementally maximize the
mutual information between multi-scale representations to align and reconstruct the
high-level semantics in the representations. Ultimately, we propose a hierarchical
adversarial learning mechanism that further aligns and adapts the latent distribution
of sentiment-relevant representations to produce robust joint multimodal repre-
sentations. Comprehensive experiments on three datasets demonstrate that HRLF
significantly improves MSA performance under uncertain modality missing cases.

1 Introduction

Multimodal sentiment analysis (MSA) has attracted wide attention in recent years. Unlike unimodal
emotion recognition tasks [9, 63, 64, 53, 56], MSA understands and recognizes human emotions
through multiple modalities, including language, audio, and visual [31, 58]. Previous studies have
shown that combining complementary information among different modalities facilitates valuable
semantic generation [41, 40, 61, 55, 62]. MSA has been well studied so far under the assumption
that all modalities are available in the training and inference phases [12, 66, 54, 57, 56, 25, 59,
60]. Nevertheless, in real-world applications, modalities may be missing due to security concerns,
background noises, sensor limitations and so on. Ultimately, these incomplete multimodal data
significantly hinder the performance of MSA. For instance, as shown in Figure 1, the entire visual
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modality and some frame-level features in the language and audio modalities are missing, leading to
an incorrect prediction.

In recent years, many studies [8, 28, 26, 49, 37, 50, 76, 74, 68, 27, 23, 22] attempt to address the
problem of missing modalities in MSA. For example, SMIL [29] estimates the latent features of
the missing modality data via Bayesian Meta-Learning. However, these methods are constrained
by the following factors: (i) Implementing complex feature interactions for incomplete modalities
leads to a large amount of information redundancy and cumulative errors, resulting in ineffective
extraction of sentiment semantics. (ii) Lacking consideration of semantic and distributional alignment
of representations, causing imprecise feature reconstruction and nonrobust joint representations.

To address the above issues, we propose a Hi-
erarchical Representation Learning Framework
(HRLF) for the MSA task under uncertain miss-

ing modalities. HRLF has three core contribu- 1 o
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chical mutual information maximization mech-
anism is introduced to incrementally align the
high-level semantics by maximizing the mutual
information of the multi-scale representations
of both networks in knowledge distillation. (iii)
Eventually, we propose a hierarchical adversar-
ial learning mechanism to progressively align
the latent distributions of representations leveraging multi-scale adversarial learning. Based on these
components, HRLF significantly improves MSA performance under uncertain modality missing cases
on three multimodal benchmarks.

Figure 1: A case of incorrect prediction by the tra-
ditional model with missing modalities. The pink
and yellow areas indicate intra- and inter-modality
missingness, respectively.

2 Related Work

2.1 Multimodal Sentiment Analysis

Multimodal Sentiment Analysis (MSA) seeks to comprehend and analyze human sentiment by
utilizing diverse modalities. Unlike conventional single-modality sentiment recognition, MSA poses
greater challenges owing to the intricate nature of processing and analyzing heterogeneous data
across modalities. Mainstream studies in MSA [69, 70, 44, 12, 11, 42, 25] focus on designing
complex fusion paradigms and interaction mechanisms to improve MSA performance. For instance,
CubeMLP [42] employes three distinct multi-layer perceptron units for feature amalgamation along
three axes. However, these methods rely on complete modalities and thus are impractical for real-
world deployment. There are two primary approaches for addressing the missing modality problem
in MSA: (1) Generative methods [8, 28, 26, 49] and (2) joint learning methods [37, 50, 76, 74, 68,
27]. Generative methods aim to regenerate missing features and semantics within modalities by
leveraging the distributions of available modalities. For example, TFR-Net [67] employes a feature
reconstruction module to guide the extractor to reconstruct missing semantics. Joint learning methods
focus on deriving cohesive joint multimodal representations based on inter-modality correlations.
For instance, MMIN [76] produces robust joint multimodal representations via cross-modality
imagination. However, these methods cannot extract rich sentiment information from incomplete
modalities due to their inefficient interaction. In contrast, our learning paradigm achieves effective
extraction and precise reconstruction of sentiment semantics through complete modality factorization.

2.2 Factorized Representation Learning

The fundamental goal of learning factorized representations is to disentangle representations that have
different semantics and distributions. This separation enables the model to more effectively capture
intrinsic information and yield favorable modality representations. Previous methods of factorized



{ = Training Data Flow |
i/ Teacher Branch {==> Inference Data Fiow

‘
1 :CL\

: ‘CA‘-’®_’@ I_.I

1 LCV\

[

Complete Sample (Original)
(mmmmmmmm e ) )
1 Butfor me | was just a it bored. |
i i

Gross |
Livans)

YRRy

i \ Hs Classifier
/ Student Branch

{
I ‘C,_\ |

1 1
! | 1 ‘CA\::® @--»C_: ->!->c--»@ % !
i .\ Licy 1
=) [ 02 1
Incomplete sample / ’

Figure 2: The structure of our HRLF, which consists of three core components: Fine-grained
Representation Factorization (FRF) module, Hierarchical Mutual Information (HMI) maximization
mechanism, and Hierarchical Adversarial Learning (HAL) mechanism.

representation learning primarily rely on auto-encoders [3] and generative adversarial networks [32].
For example, FactorVA [18] is introduced to achieve factorization by leveraging the characteristic that
representations are both factorial and independent in dimension. Recently, factorization learning has
been progressively utilized in MSA tasks [54, 25, 57]. For instance, FDMER [54] utilizes consistency
and discreteness constraints between modalities to disentangle modalities into modality-invariant
and modality-private features. DMD [25] disentangles each modality into modality-independent and
modality-exclusive representations and then implements a knowledge distillation strategy among
the representations with dynamic graphs. MFSA [57] refines multimodal representations and learns
complementary representations across modalities by learning modality-specific and modality-agnostic
representations. Despite the progress these studies have brought to MSA, certain limitations persist:
(i) The supervision of the factorization process is coarse-grained and insufficient. (ii) Focusing solely
on factorizing distinct representations at the modality level, without taking into account sentimentally
beneficial and relevant representations. By contrast, the proposed method decomposes sentiment-
relevant representations precisely through intra- and inter-modality translation and sentiment semantic
reconstruction. Furthermore, hierarchical mutual information maximization and adversarial learning
paradigms are employed to refine and optimize the representation of factorization at the semantic
level and the distributional level, respectively, thus yielding robust joint multimodal representations.

2.3 Knowledge Distillation

Knowledge distillation leverages additional supervisory signals from a pre-trained teacher network to
aid in training a student network [15]. There are generally two categories of knowledge distillation
methods: distillation from intermediate features [13, 14, 19, 33, 35, 39, 45, 43, 65, 73] and distillation
from logits [6, 10, 30, 52, 75]. Many studies [5, 17, 38, 21, 47, 51] utilize knowledge distillation
for MSA tasks with missing modalities. These approaches aim to transfer dark knowledge from
teacher networks trained on complete modalities to student networks trained by missing modalities.
The teacher network typically provides richer and more comprehensive feature representations
than the student network. For instance, KD-Net [17] utilizes a teacher network with complete
modalities to supervise the unimodal student network at both the feature and logits levels. Despite
their promising results, these methods neglect precise supervision of representations, resulting in
low-quality knowledge transfer. To this end, we implement hierarchical semantic and distributional
alignment of the multi-scale representations of both networks to transfer knowledge effectively.

3 Methodology

3.1 Problem Formulation

Given a multimodal video segment with three modalities as S = [X, X4, Xv], where X €
RTexde X, € RTaxda and Xy, € RTVX9v denote language, audio, and visual modalities,



respectively. p = {L, A, V'} denotes the set of modality types. T,,,(-) is the sequence length and
dp,(+) is the embedding dimension, where m € p. We define two missing modality cases to simulate
the most natural and holistic challenges in real-world scenarios: (1) intra-modality missingness,
which indicates some frame-level features in the modality sequences are missing. (2) inter-modality
missingness, which denotes some modalities are entirely missing. We aim to recognize the utterance-
level sentiments using incomplete multimodal data.

3.2 Overall Framework

Figure 2 illustrates the main workflow of HRLF. The teacher and student networks adopt a consistent
structure but have different parameters. During the training phase, the workflow of our HRLF is as
follows: (i) We first train the teacher network with complete-modality samples and their sentiment

labels. (ii) Given a video segment sample S, we generate a missing-modality sample S with
the Modality Stochastic Missing (MSM) strategy. MSM simultaneously performs intra-modality
missingness and inter-modality missingness. S and S are fed into the pre-trained teacher network
and the initialized student network, respectively. (iii) We input each sample into the FRF module,
to factorize each modality into a sentiment-relevant representation @, and a modality-specific
representation U,,,, where m € p. (iv) Sequences [Cr,, C 4, Cy] and [C}, Cy, C},] are generated
by concatenating @,,, and U,,, from all modalities in the teacher and student networks. Each element
of the sequences is concatenated to yield the joint multimodal representations H! and H*. (v)
The multi-scale representations of both networks are obtained by passing H* and H* through the
fully-connected layers. The proposed HMI and HAL are used to align the semantics and distribution
between the multiscale representations. (vi) The outputs H? and H* of the fully-connected layers
are fed into the task-specific classifier to get logits L' and L*. We constrain the consistency between
logits and utilize L® to implement the sentiment prediction. In the inference phase, testing samples
are only fed into the student network for downstream tasks.

3.3 Fine-grained Representation Factorization

Modality missing leads to ambiguous sentiment cues in the modality and information redundancy in
multimodal fusion. It hinders the model from capturing valuable sentiment semantics and filtering
sentiment irrelevant information. Although previous studies in MSA [12, 54] decompose the task-
relevant semantics contained in the modality to some extent via simple auto-encoder networks with
reconstruction constraints, their purification of sentiment semantics is inadequate, and they cannot
be applied to modality missing scenarios. Therefore, we propose a Fine-grained Representation
Factorization (FRF) module to capture sentiment semantics in modalities. The core idea is to factorize
each modality representation into two types of representations: (1) sentiment-relevant representation,
which contains the holistic sentiment semantics of the sample. It is modality-independent, shared
across all modalities of the same subject, and robust to modality missing situations. (2) modality-
specific representation, which represents modality-specific task-independent information.

As shown in Figure 2, FRF receives the multimodal sequences [ X1, X 4, X /| with modality number
n = 3. The modality X, with a € p passes through a 1D temporal convolutional layer with kernel
size 3 x 3 and adds the positional embedding [46] to obtain the preliminary representations, denoted
as Ry, = Wsy3(X,) + PE(T,,d) € RT«*4 The R, is fed into a Transformer [46] encoder
Fo(+), and the last element of its output is denoted as Z,, = F,(R,) € R%. The Z,, € Z, is the
low-level modality representation of the modality a.. We aim to factorize modality representation Z,,
into a sentiment-relevant representation Q,, by a sentiment encoder Q,, = £3(Z,,) and a modality-
specific representation U,, by a modality encoder U, = EM(Z,,). £5(-) and EM(-) are composed
of multi-layer perceptrons with the ReLU activation. The following two processes ensure adequate
factorization and semantic reinforcement of the above two representations.

Intra- and Inter-modality Translation. The proposed FRF effectively decouples sentiment-relevant
and modality-specific representations by simultaneously performing intra- and inter-modality transla-
tions. Given a pair of representations @, and Ug factorized by Z, and Z with o, 5 € p, the decoder
D,.(+) is supposed to translate and synthesize the representation Z .3, whose reconstructed domain
corresponds to the modality representation Zg € Zg. The D,.(-) consists of feed-forward neural
layers. The modality translations include intra-modality translation (i.e., « = [3) and inter-modality
translation (i.e., « # (3), whose losses are respectively denoted as:
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Sentiment Semantic Reconstruction. To ensure that the reconstructed modality still contains the
sentiment semantics from the original modality, we encourage both to maintain the consistency of
sentiment-relevant semantics and utilize the following loss for constraints, denoted as:
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where Qg,, = €5 (D,« (6’ 5 (Zp), N (Za))) is the sentiment-relevant representation derived from
the reconstructed modality representation. Consequently, the final loss of the FRF is denoted as:

EFRF = £trans + £7‘econ~ (4)

3.4 Hierarchical Mutual Information Maximization

The underlying assumption of knowledge distillation is that layers in the pre-trained teacher network
can represent certain attributes of given inputs that exist in the task [15]. For successful knowledge
transfer, the student network must learn to incorporate such attributes into its own learning. Neverthe-
less, previous studies [17, 38, 21] based on knowledge distillation simply constrain the consistency
between the features of both networks and lack consideration of the intrinsic semantics and inherent
properties of the features, leading to semantic misalignment. From the perspective of information
theory [1], semantic alignment and attribute mining of representations can be characterized as main-
taining high mutual information among the layers of the teacher and student networks. We construct
a Hierarchical Mutual Information (HMI) maximization mechanism to implement sufficient semantic
alignment and maximize mutual information. The core idea is to progressively align the semantics of
representations through a hierarchical learning paradigm.

Specifically, the sentiment-relevant and modality-specific representations Q,,, and U, of all modal-
ities for teacher and student networks are concatenated to obtain the sequences [Cf,C4,Cy|
and [C},C’;, C{,/]. Each element of the sequences is concatenated to yield the joint multimodal
representations H*® and H*. The fully-connected layers are utilized to refine the representation
HY € R3 with w € {t, s}, yielding H* € R3?. Moreover, we obtain the intermediate multi-scale
representations of all layers, denoted as I}¥ € R2d, Iy € R4, and I 3 € R24, For the above five
representations, we concatenate features of the same scale to obtain multi-scale representations
EY e R¥ EY € R?*, and E¥ € R?, which are utilized in the subsequent computation.

To estimate and compute the mutual information between representations, we define two random
variables X and Y. The P(X) and P(Y") are the marginal probability density function of X and Y.
The joint probability density function of X and Y is denoted as P(X,Y"). The mutual information
of the random variables X and Y is represented as:

V) — p(z,y) ]
06Y) = By 08 G50 ®
We only need to obtain the maximum value of the mutual information, without focusing on its exact
value. Referring to Deep InfoMax [16], we estimate the mutual information between variables based
on the Jensen-Shannon Divergence (JSD). The mutual information maximization issue translates into
minimizing the JSD between the joint distribution p(«, y) and the marginal distribution p(x)p(y).

1
TSD(p(@, y)p()p(y)) = 5 (Dxrp(@,y)llm) + Drr(p(@)p(y)[m)), ©)
where m = 1 (p(z, y) + p(x)p(y)) and D, is Kullback-Leibler divergence. Mutual information
maximization is achieved by maximizing the dyadic lower bound of JSD, denoted as:

MI(.’I}, y) = IEP(a:,'y) [—Sp(—’ﬁg(.’]), y)] + ]EP(:::)P(y) [—Sp(% (.’13, y)L @)



where sp(w) = log(1 + €“) and Ty(x, y) is the statistics network which is a neural network with
parameters . HMI maximizes the mutual information between hierarchical representations in
knowledge distillation, whose optimization loss is expressed as:

3
Luyvi=—Y MI(E} E). (8)
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3.5 Hierarchical Adversarial Learning

Considering that the teacher network has more robust and stable representation distributions, we
also need to encourage the alignment of representation distributions in the latent space. Traditional
methods [38, 17, 21] simply minimize the KL divergence between both networks, which easily
disturbs the underlying learning of the student network in the deep layers, leading to confounded
distributions and unrobust joint multimodal representations.

To this end, we propose a Hierarchical Adversarial Learning (HAL) mechanism for incrementally
aligning the latent distributions between representations of student and teacher networks. The central
principle is that the student network tries to generate representations to mislead the discriminator
De(-), while D (-) discriminates between the representations of the student and teacher networks.
In practice, D, () is the fully-connected layers. Specifically, given multi-scale representations of
EY € R, EY € R?! and EY € R? with w € {t, s}, we implement adversarial learning on the
same-scale representations of the teacher and student networks to hierarchically supervise consistency.
The objective function of HAL is formatted as:

3
Lyar =Y log(l—De(E;)) +log(De(EY))). ©)

i=1
3.6 Optimization Objectives

The H? and H? of the teacher and student networks are fed into their task-specific classifiers to
produce logits L* and L*, respectively, and the consistency of both is constrained with KL divergence
loss, denoted as L, = KL(L', L*). The L* is used for sentiment recognition and supervised with
task loss, represented as L,sx. For the classification and regression tasks, we use cross-entropy
and MSE loss as the task losses, respectively. The overall training objective L4 is expressed as
Liotat = Liask + Lrrr + Lyt + Luar + Lxr.

4 Experiments

4.1 Datasets and Evaluation Metrics

We conduct our experiments on three MSA benchmarks, including MOSI [71], MOSEI [72], and
IEMOCAP [4]. The experiments are performed under the word-aligned setting. MOSI is a realistic
dataset for MSA. It comprises 2,199 short monologue video clips taken from 93 YouTube movie
review videos. There are 1,284, 229, and 686 video clips in train, valid, and test data, respectively.
MOSETI is a dataset consisting of 22,856 movie review video clips, which has 16,326, 1,871, and
4,659 samples in train, valid, and test data. Each sample of MOSI and MOSETI is labelled by human
annotators with a sentiment score of -3 (strongly negative) to +3 (strongly positive). On the MOSI
and MOSEI datasets, we utilize two evaluation metrics, including the Mean Absolute Error (MAE)
and F1 score computed for positive/negative classification results. The IEMOCAP dataset consists
of 4,453 samples of video clips. Its predetermined data partition has 2,717, 798, and 938 samples
in train, valid, and test data. As recommended by [48], four emotions (i.e., happy, sad, angry, and
neutral) are selected for emotion recognition. The F1 score is used as the metric.

4.2 TImplementation Details

Feature Extraction. The Glove embedding [36] is used to convert the video transcripts to obtain a
300-dimensional vector for the language modality. For the audio modality, we employ the COVAREP
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Figure 3: Comparison results of intra-modality missingness on [IEMOCAP. We report on the F1
score metric for the happy, sad, angry, and neutral categories.

toolkit [7] to extract 74-dimensional acoustic features, including 12 Mel-frequency cepstral coeffi-
cients, voiced/unvoiced segmenting features, and glottal source parameters. For the visual modality,
we utilize the Facet [2] to indicate 35 facial action units that record facial movement.

Experimental Setup. Regarding the MOSI [71] and MOSEI [72] datasets, we use the aligned
multimodal sequences therein (e.g., all sequences of modalities have length 300) as the original input
for the HRLF. All models are built on the Pytorch [34] toolbox with four NVIDIA Tesla V100 GPUs.
The Adam optimizer [20] is employed for network optimization. For MOSI, MOSEI, and IEMOCAP,
the detailed hyper-parameter settings are as follows: the learning rates are {le — 3,2e — 3,4e — 3},
the batch sizes are {128, 16, 32}, the epoch numbers are {50, 20,30}, and the attention heads are
{10, 8, 10}. The embedding dimension is 40 on all three datasets. The raw features at the modality
missing positions are replaced by zero vectors. For a fair comparison, we re-implement the State-
Of-The-Art (SOTA) methods and combine them with our experimental paradigms. All experimental
results are averaged over multiple experiments using five different random seeds.

4.3 Comparison with State-of-the-art Methods

We conduct a comparison between HRLF and eight representative, reproducible state-of-the-art
(SOTA) methods, including complete-modality methods: Self-MM [66], CubeMLP [42], and DMD
[25], and missing-modality methods: 1) joint learning methods (i.e., MCTN [37], TransM [50],
and CorrKD [24]), and 2) generative methods (i.e., SMIL [29] and GCNet [26]). The extensive
experiments are designed to comprehensively assess the robustness and effectiveness of HRLF in
scenarios involving both intra-modality and inter-modality missingness.

Robustness to Intra-modality Missingness. We simulate intra-modality missingness by ran-
domly discarding frame-level features in sequences with ratio p € {0.1,0.2,---,1.0}. To vi-
sualize the robustness of all models, Figure 3 and 4 show the performance curves of the mod-
els for different ratios p. We have the following important observations. (i) As the ratio p in-
creases, the performance of all models declines. This phenomenon demonstrates that intra-modality
missingness leads to significant sentiment semantic loss and fragile multimodal representations.
(ii) Compared to complete-modality meth-

ods, our HRLF demonstrates notable per- o Self-MM CubeMLP DMD - MCTN TransM
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reconstructing valuable sentiment seman-
tics from incomplete multimodal data. (iii)
In contrast to the missing-modality meth-
ods, our HRLF demonstrates the highest
level of robustness. Through the purification of sentiment semantics and the dual alignment of repre-
sentations, the student network masters the core competencies of precisely reconstructing missing
semantics and generating robust multimodal representations.

Figure 4: Comparison results of intra-modality miss-
ingness on (a) MOSI and (b) MOSEI.

Robustness to Inter-modality Missingness. To simulate the case of inter-modality missingness, we
remove certain entire modalities from the samples. Tables 1 and 2 contrast the models’ resilience to
inter-modality missingness. The notation “{l}” signifies that only the language modality is available,



Table 1: Comparison of performance under six possible testing conditions of inter-modality miss-
ingness and the complete-modality testing condition on the MOSI and MOSETI datasets. T-test is
conducted on “Avg.” column. * indicates that p < 0.05 (compared with the SOTA CorrKD).

Testing Conditions

Datasets Models
{1} {a} {v} {l,a} {l,v} {a,v} Avg. {l,a,v}
Self-MM [66] 67.80 40.95 38.52 69.81 74.97 47.12 56.53 84.64
CubeMLP [42] 64.15 38.91 43.24 63.76 65.12 47.92 53.85 84.57
DMD [25] 68.97 43.33 42.26 70.51 68.45 50.47 57.33 84.50
MCTN [37] 75.21 59.25 58.57 77.81 74.82 64.21 68.31 80.12
MOSI TransM [50] 77.64 63.57 56.48 82.07 80.90 67.24 71.32 82.57
SMIL [29] 78.26 67.69 59.67 79.82 79.15 71.24 72.64 82.85
GCNet [26] 80.91 65.07 58.70 84.73 83.58 70.02 73.84 83.20
CorrKD [24] 81.20 66.52 60.72 83.56 82.41 73.74 74.69 83.94
HRLF (Ours) 83.36 69.47 64.59 83.82 83.56 75.62 76.74* 84.15
Self-MM [66] 71.53 43.57 37.61 7591 74.62 49.52 58.79 83.69
CubeMLP [42] 67.52 39.54 32.58 71.69 70.06 48.54 54.99 83.17
DMD [25] 70.26 46.18 39.84 74.78 72.45 52.70 59.37 84.78
MCTN [37] 75.50 62.72 59.46 76.64 77.13 64.84 69.38 81.75
MOSEI TransM [50] 77.98 63.68 58.67 80.46 78.61 62.24 70.27 81.48
SMIL [29] 76.57 65.96 60.57 77.68 76.24 66.87 70.65 80.74
GCNet [26] 80.52 66.54 61.83 81.96 81.15 69.21 73.54 82.35
CorrKD [24] 80.76 66.09 62.30 81.74 81.28 71.92 74.02 82.16

HRLF (Ours) 82.05 69.32 64.90 82.62 81.09 73.80 75.63* 82.93

while the audio and visual modalities are missing. “{l, a, v}” denotes the complete-modality testing
condition where all modalities are available. “Avg.” indicates the average performance across six
missing-modality testing conditions. We have the following key findings: (i) The inter-modality miss-
ingness leads to a decline in performance for all models, indicating that integrating complementary
information from diverse modalities enhances the sentiment semantics within joint representations.
(ii) Across all six testing conditions involving inter-modality missingness, our HRLF consistently
demonstrates superior performance among the majority of metrics, affirming its robustness. For
example, on the MOSI dataset, HRLF’s average F1 score is improved by 2.05% compared to CorrKD,
and in particular by 3.87% in the testing condition where only visual modality is available (i.e.,
{v}). The advantage comes from its learning of fine-grained representation factorization and the
hierarchical semantic alignment and distributional alignment. (iii) In unimodal testing scenarios,
HRLF’s performance using only the language modality significantly exceeds other configurations,
showing performance similar to that of the complete-modality setup. In bimodal testing scenarios,
configurations involving the language modality exhibit superior performance, even outperforming
the complete-modality setup in specific metrics. This phenomenon underscores the richness of
sentiment semantics within the language modality and its dominance in sentiment inference and
missing semantic reconstruction processes.

4.4 Ablation Studies

To affirm the effectiveness and indispensability of the —- w/o FRF - w/o HMI wio HAL - HRLF
module and mechanisms and strategies proposed in
HRLF, we perform ablation experiments under two ®
missing-modality scenarios on the MOSI dataset, as ™
shown in Table 3 and Figure 5. We have the fol-
lowing important observations: (i) First, when the
FRF is removed, sentiment-relevant and modality-
specific information in the modalities are confused,
hindering sentiment recognition and leading to sig-
nificant performance degradation. This phenomenon R A D
demonstrates the effectiveness of the proposed repre- Missing Ratio

sentation factorization paradigm for adequate capture Figure 5: Ablation results of intra-modality
of valuable sentiment semantics. (ii) When our HMI ~missingness case on the MOSI dataset.

F1 Score




Table 2: Comparison of performance under six possible testing conditions of inter-modality missing-
ness and the complete-modality testing condition on the IEMOCAP dataset. T-test is conducted on
“Avg.” column. * indicates that p < 0.05 (compared with the SOTA CorrKD).

Testing Conditions

Models Metrics
{1} {a} {v} {l,a} {l,v} {a,v} Avg. {l,a,v}
Happy 669 522 501 699 683 56.3 60.6 90.8
Sad 687 519 548 713 69.5 57.5 62.3 86.7
SlEMMIGS]  \jery 654 530 519 695 677 56.6 60.7 88.4
Neutral 558 482 504 581 565 52.8 53.6 72.7
Happy 689 543 514 721 698 60.6 62.9 89.0
Sad 653 548 532 703 687 58.1 61.7 88.5
CubeMLP[42] 410y 658 530 504  69.5 69.0 54.8 60.4 87.2
Neutral ~ 53.5 508 487 573 545 51.8 52.8 71.8
Happy 695 554 519 732 703 61.3 63.6 91.1
Sad 650 549 535 707 692 6Ll 62.4 88.4
DMD [25] Angry 648 537 512 708 699 572 61.3 88.6
Neutral 540 512 480 569 556 534 532 722
Happy 769 634 608 796 716 669 70.9 83.1
Sad 767 644 604 789 711 68.6 71.0 82.8
MCIN37] Angry 771 610 567 816 804 589 69.3 84.6
Neutral ~ 60.1 519 504 647 624 549 57.4 67.7
Happy 784 645 611 816 802  66.5 72.1 85.5
TransM [50] Sad 795 632 589 824 805 64.4 715 84.0
‘ Angry 810 650 607 839 817 669 73.2 86.1
Neutral 602 499 507 652 624 524 56.8 67.1
Happy 805 665 638 831 818 68.2 74.0 86.8
Sad 789 652 622 824 796 682 72.8 85.2
SMIL 29] Angry 796 672 618 831 80 678 736 84.9
Neutral 602 504 488 654 622 526 56.6 68.9
Happy 819 673 666 837 825 69.8 75.3 87.7
Sad 80.5 694 661 838 819 704 75.4 86.9
GCNet [26] Angry 801 662 642 825 816 681 738 85.2
Neutral ~ 61.8 511 496 662  63.5 53.3 57.6 71.1
Happy 826 69.6 680 841 80 700 76.1 87.5
Sad 827 713 676 834 822 725 76.6 85.9
CorrKD [24] Angry 822 670 658 839 828 67.3 74.8 86.1
Neutral ~ 63.1 542 523 685 643 572 59.9 715
Happy 849 718 697 864 856 723 78.5* 88.1
Sad 837 711 690 853 839 736 77.8* 86.4
HRLF (Qurs) |0y 834 691 672 845 835 70.9 76.4* 86.7
Neutral 668 561 545 689  67.0 569 61.7* 713

is eliminated, the worse performance demonstrates that aligning the high-level semantics in the
representation by maximizing mutual information can generate favorable joint representations for the
student network. (iii) Finally, we remove HAL, and the declined results illustrate that multi-scale
adversarial learning can effectively align the representation distributions of student and teacher net-
works, thus effectively constraining the consistency across representations. This paradigm facilitates
the recovery of missing semantics.

4.5 Qualitative Analysis

To intuitively show the robustness of the proposed framework against modality missingness, we
randomly select 100 samples in each emotion category on the IEMOCAP testing set to perform
the visualization evaluation. The comparison models include CubeMLP [42] (complete-modality
method), TransM [50] (joint learning-based missing-modality method), and GCNet [26] (generation-
based missing-modality method). (i) As shown in Figure 6, CubeMLP fails to cope with the missing
modality challenge because representations with different emotion categories are heavily confounded,



Table 3: Ablation results of inter-modality missingness case on the MOSI dataset.

Testing Conditions

Models
{1} {a} {v} {l,a} {l,v} {a,v} Avg. {l,a,v}
HRLF (Full) 83.36 69.47 64.59 83.82 83.56 75.62 76.74 84.15
w/o FRF 80.85 67.06 61.78 81.94 81.38 73.58 74.43 82.76
w/o HMI 81.54 67.72 62.70 82.45 81.90 74.22 75.09 83.25
w/o HAL 82.03 68.09 63.11 83.12 82.67 74.59 75.60 83.67

(a) CubeMLP (b) TransM (c) GCNet (d) HRLF

Figure 6: Visualization of representations from different methods with four emotion categories on
the IEMOCAP testing set. The default testing conditions contain intra-modality missingness (i.e.,
missing rate p = 0.5 ) and inter-modality missingness (i.e., only the language modality is available).

leading to the worst results. (ii) Although TransM and GCNet mitigate the indistinguishable emotion
semantics to some extent, their performance is sub-optimal since the distribution boundaries of the
different emotion representations are generally ambiguous and coupled. (iii) In comparison, our HRLF
enables representations belonging to the same emotion category to form compact clusters, while
representations of different categories are well separated. The above phenomenon benefits from the
effective extraction of sentiment semantics and the precise filtering of task redundant information by
the proposed hierarchical representation learning framework, which results in better joint multimodal
representations. This further confirms the robustness and superiority of our framework.

5 Conclusion and Discussion

In this paper, we present a Hierarchical Representation Learning Framework (HRLF) to address
diverse missing modality dilemmas in the MSA task. Specifically, we mine sentiment-relevant repre-
sentations through a fine-grained representation factorization module. Additionally, the hierarchical
mutual information maximization mechanism and the hierarchical adversarial learning mechanism are
proposed for semantic and distributional alignment of representations of student and teacher networks
to accurately reconstruct missing semantics and produce robust joint multimodal representations.
Comprehensive experiments validate the superiority of our framework.

Discussion of Limitation and Future Work. The current method defines the modality missing
cases as both inter-modality missingness and intra-modality missingness. Nevertheless, in real-world
applications, modality missing cases may be very intricate and difficult to simulate. Consequently,
the proposed method may suffer some minor performance loss when applied to real-world scenarios.
In the future, we will explore more intricate modality missing cases and design suitable algorithms to
compensate for this deficiency.

Discussion of Broad Impacts. The positive impact of our approach lies in the ability to significantly
improve the robustness and stability of multimodal sentiment analysis systems against heterogeneous
modality missingness in real-world applications. Nevertheless, this technology may have a negative
impact when it falls into the wrong hands, e.g., the proposed model is used for malicious purposes by
injecting biased priors to recognize the emotions of specific groups.
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* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: No theory assumptions and proofs are provided in the paper.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The “4.2 Implementation Details” section of the paper describes all the
information needed to reproduce the main experimental results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

17



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: The paper does not provide open access to the data and code.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The “4.2 Implementation Details” section of the paper specify all the training
and testing details.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In Tables 1 and 2 of the paper, we conducted significance tests on the experi-
mental results to demonstrate the superior performance of the proposed framework.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The “4.2 Implementation Details” section of the paper explains that all experi-
ments are conducted on four NVIDIA Tesla V100 GPUs.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please refer to the “S Conclusion and Discussion” sections for the broader
impacts of our work

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The MOSI, MOSEI and IEMOCAP datasets and the Pytorch toolbox in this
paper are existing assets and we cite the references.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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