
Published as a conference paper at COLM 2024

What Are Tools Anyway?
A Survey from the Language Model Perspective

Zora Zhiruo Wang♠ Zhoujun Cheng♦ Hao Zhu♠ Daniel Fried♠ Graham Neubig♠

♠Carnegie Mellon University ♦Shanghai Jiao Tong University
{zhiruow,dfried,gneubig}@cs.cmu.edu

Abstract

Language models (LMs) are powerful yet mostly for text generation tasks.
Tools have substantially enhanced their performance for tasks that require
complex skills. However, many works adopt the term “tool” in different
ways, raising the question: What is a tool anyway? Subsequently, where and
how do tools help LMs? In this survey, we provide a unified definition of
tools as external programs used by LMs, and perform a systematic review
of LM tooling scenarios and approaches. Grounded on this review, we
empirically study the efficiency of various tooling methods by measuring
their required compute and performance gains on various benchmarks,
and highlight some challenges and potential future research in the field.1

1 Introduction

Language Models (LMs) have become increasingly effective in solving text-generation tasks,
by taking in natural language (NL) instructions from users and outputting NL responses,
such as answering the “What is the capital of the US?” with “Washington D.C.”. However,
LMs often struggle to perform tasks that require complex skills (e.g., math or complex rea-
soning), and are fundamentally unable to solve other tasks that require access to information
not in their training data or parametric knowledge (e.g., the current weather or date).

check weatherquery external data

return query result

extend

numeracy
35223 x 186 / 77 = ?

facilitate

check_weather

real
world cloudy

extend

basic
textgen

(35.223 x 1.6)² / 7 = ?

① multiply 1.6 to
35.223 yields ..

② square the number

③ we then divide
the number by 7 ..

④ result is 453.7

① 453.7facilitate
calculator

get_time()

real
world 3

pm
extend

basic
textgen

(35.223 x 1.6)² / 7 = ?

① multiply 1.6 to
35.223 yields ..

② square the number

③ we then divide
the number by 7 ..

④ result is 453.7

① 453.7facilitate
calculator

Figure 1: Illustration of tools extending
and facilitating LM task-solving.

To solve this problem, researchers and practition-
ers are turning to LMs enhanced with tools, which
help facilitate the task-solving process of LMs, or
extend LMs with new abilities that the LM does not
possess otherwise (Qin et al., 2023; Mialon et al.,
2023). For example, a calculator tool can facilitate
math calculations, or a get time() tool can enable
LMs to obtain time. Inspired by the tools used by
humans (Shumaker et al., 2011), some works intro-
duce application-specific software as tools, such as
a search engine to obtain knowledge (Lazaridou
et al., 2022; Komeili et al., 2022) or a translator to
process unknown languages (Schick et al., 2023).
With the development of numerous application programming interfaces (APIs) on the web,
many works collect APIs as tools to access world data in real-time (Balog et al., 2016; Xu et al.,
2023; Qin et al., 2024) and via multiple modalities (Tang et al., 2023). Instead of black-box
APIs, other works use crafted functions to query over structured tables (Wang et al., 2024a;
Cao et al., 2023) or images (Surı́s et al., 2023), where tools can be created by human (Gupta
& Kembhavi, 2022) or model experts (Wang et al., 2023a; Cai et al., 2023; Wang et al., 2024b).

However, despite this broad and burgeoning area of tool use in LMs, existing surveys only
cover certain tool categories such as software (Mialon et al., 2023) or APIs (Qin et al., 2023).
In this paper, we provide a unified view of tool use across a broad range of scenarios.

1https://github.com/zorazrw/awesome-tool-llm

1

https://github.com/zorazrw/awesome-tool-llm

Published as a conference paper at COLM 2024

We start with proposing a unified definition of tools and explain why tools help task-solving
(§2). We present the basic tool-use paradigm (§3) and study a variety of tool-using scenarios
by enumerating which tools exist and to which tasks they apply (§4). Next, we study advanced
approaches for complex tool usage and even make new tools if they are unavailable for the
task (§5). We then summarize existing testbeds and evaluation metrics across LM tooling
works, and highlight several missing aspects with concrete metric suggestions (§6). Lastly,
grounding on our empirical analysis about when tools are effective, we identify the most
efficient tooling approaches and the tasks that benefit most from tools (§7).

2 Background

2.1 What are tools?

Because LMs are products of the digital world, tools employed by LMs are often computer
programs that are executable in corresponding environments. Referring back to animal-used
tools Shumaker et al. (2011) defined as “the external employment of an unattached or manipulable
attached environmental object.” Similar to human-used physical tools, LM-used program tools
should also be external to the employer (i.e., the LM) and are part of the environment. Also,
instead of arbitrary program snippets, a tool is a function (e.g., plus one), meaning that it
can be applied to other objects (e.g., data) and yield an output (e.g. plus one(1) → 2).

Existing definitions of LM-used tools touch on some of these aspects. Qin et al. (2023) appeal
to the similarity to human tool use, but do not define what entails a tool. Mialon et al. (2023)
define a tool as “an external module that is typically called using a rule or a special token and whose
output is included in the augmented LM’s context.” We argue for a somewhat broader definition
than this, which encompasses a wide variety of more recent works on tool usage:
Definition 1. An LM-used tool is a function interface to a computer program that runs externally
to the LM, where the LM generates the function calls and input arguments in order to use the tool.

2.2 Why are tools helpful?

Tools can help task-solving in mainly three ways, as reflected by their functions: perception,
action, and computation. A tool may belong to one or more of these three categories.

Perception Perception tools provide or collect information from the environment. An
example is using a get time() API to obtain the current time, which is not included in the
LM’s parametric knowledge learned from training.

Action Action tools can exert actions on the environment and change its state. For
example, executing make post(website, post) can change the content on a website.

Computation Computation tools do not perceive or modify the external environment,
but use programs to tackle complex computational tasks. For example, a calculator is a
computation tool for mathematical calculation. Note that the computation also includes
more general acts of computing beyond numerical calculation. Therefore, a translator is
also a computation tool that can be used to translate between languages.

A tool can fall into multiple categories. For instance, a search tool can perform both
computation and perception: it computes document similarity to find relevant ones, but
also perceives the environment (the web) and fetches data (returned documents) from it. In
a similar spirit, SQL queries can be used as computation tools (e.g., SELECT SQRT(16) / 10
AS result), perception tools for viewing data (e.g., SELECT name FROM data), action tools
to modify data (e.g., INSERT INTO data VALUES name), or all of the above (e.g., INSERT INTO
counts (grp id, grp cnt) SELECT grp id, COUNT(*) FROM data GROUP BY grp id).

2.3 Tools and “Agents”

There has recently been a burgeoning of work on LM-powered agents (Xi et al., 2023;
Sumers et al., 2024). Russell & Norvig (2010) define agents as “anything that can be viewed as
perceiving its environment through sensors and acting upon that environment through actuators.”
According to this definition, agents are programs that use perception tools to perceive the

2

Published as a conference paper at COLM 2024

situated environment, or action tools to interact with the environment. Models that only
use computation tools and do not interact with their environments through perception or
action tools arguably do not fall under the category of “agents” according to this definition.

3 The basic tool use paradigm

How is the weather today?

It is check_weather()

It is sunny today

It is check_weather()
replacecall remote

server

return API
outputw

ea
th

er

se
rv

er

Figure 2: The basic tool use paradigm.
LM calls check weather tool by gen-
erating text tokens. This call triggers
the server to execute the call and re-
turn the output sunny , using which
the LM replaces the API call tokens in
the response to the user.

We show an illustrative example of a basic tool-use
paradigm introduced by Schick et al. (2023), which
many tool-related works adopt (Figure 2).

Assuming an LM communicates with users mainly
in NL, upon receiving a user query such as “How
is the weather today?”, the LM then proceeds to
generate either text or tool calls. In the exam-
ple, the LM starts with generating a few tokens
of text “It is ...”. When the LM needs to seek
external tools to complete the task, e.g., get real-
time weather information, it generates tokens of
the tool name and corresponding input arguments
check weather() to construct a complete tool call-
ing expression. This expression will trigger a shift
from text-generation mode to tool-execution mode.
The tool-hosting server executes the expression and
returns the execution output “sunny” to the LM. The returned output replaces the tool call
in the LM-generated tokens (from “It is check weather()” to “It is sunny”). Accordingly, LM
shifts back to the text generation mode and continues to finish the response by generating
new text tokens, e.g., adding “today.” Finally, the LM returns the response to the user.

In order for LMs to use this basic paradigm of using tools, current works mainly leverage
inference-time prompting and training-time learning methods.

Inference-time prompting Leveraging the ability of LMs to learn in-context (Brown et al.,
2020), many works provide tool information through a prompt and expect LMs to acquire
abilities to use these tools from input contexts. This is achieved by providing instructions
about the task, example pairs of queries and solutions that use tools (Gupta & Kembhavi,
2022; Lu et al., 2023a; Paranjape et al., 2023; Shen et al., 2023a; Yang et al., 2023), and/or
documentation of the tools’ functionality (Hsieh et al., 2023).

Learning by training Beyond learning tools from test-time contexts, LMs can learn from
examples that use these tools during training. LMs can simply be trained to generate tool-
using solutions, where the examples can be manually annotated by humans (Li et al., 2023),
synthesized by larger teacher LMs (Tang et al., 2023; Qin et al., 2024; Huang et al., 2024), or
bootstrapped by the test-time LM itself (Schick et al., 2023).

4 Scenarios where tools are useful

While LMs may easily solve many tasks without tools, many other tasks greatly benefit from
tool use. In this section, we study a broad range of scenarios where tools have been used to
assist agents. We discuss tasks where human-created, task-specific tools can improve their
performance (§4.1), as well as scenarios where tools may not be as useful (§4.2).

4.1 Utilizing existing tools for specific applications

While it is difficult to exhaustively enumerate every scenario where tools could be useful,
we summarize some major categories of tool use in Table 1 and below.

Knowledge access LMs store limited knowledge during training due to both limits
in (i) the data that they are trained on and (ii) the ability of LMs to accurately memorize
and utilize their training data. Knowledge-accessing tools can help alleviate this issue. SQL
and SPARL executors can provide access to data in structured knowledge bases (Thoppilan
et al., 2022; Hao et al., 2023) or graphs (Zhuang et al., 2023). An search engine over the

3

Published as a conference paper at COLM 2024

Category Example Tools

Knowledge access
sql executor(query: str) -> answer: any
search engine(query: str) -> document: str

Computation activities
calculator(formula: str) -> value: int | float
python interpreter(program: str) -> result: any
worksheet.insert row(row: list, index: int) -> None

Interaction w/ the world
get weather(city name: str) -> weather: str
get location(ip: str) -> location: str
calendar.fetch events(date: str) -> events: list

Non-textual modalities
cat image.delete(image id: str) -> None
spotify.play music(name: str) -> None
visual qa(query: str, image: Image) -> answer: str

Special-skilled LMs
QA(question: str) -> answer: str
translation(text: str, language: str) -> text: str

Table 1: Exemplar tools for each scenario. A tool may fall into one or more categories.

web (Yao et al., 2023; Schick et al., 2023; Paranjape et al., 2023) can enable LMs to access
more up-to-date information (Komeili et al., 2022; Lazaridou et al., 2022). More generally,
retrieval-augmented systems (Asai et al., 2023) can be seen as using a retriever tool.

Computation activities Complex computing activities such as math calculations are
known to be challenging for neural LMs (Schick et al., 2023). While even a calculator can
enhance LMs’ numeracy abilities (Parisi et al., 2022; Hao et al., 2023), more generic Python
programs are also employed to aid reasoning tasks (Gao et al., 2023b; Chen et al., 2023; Wang
et al., 2023b). For more complex professional jobs, business tools are also applied, such as
using worksheet to manipulate Google Sheets (Xu et al., 2023), or even tools for financial,
medical, education, or advertising domains (Tang et al., 2023; Huang et al., 2024).

Interaction with the world LMs without tools are fundamentally unable to perceive
and act in the world around them, necessitating tools that can interact with the world. For
instance, tools can help LMs access real-time information such as weather (Xu et al., 2023;
Tang et al., 2023), or positional knowledge such as location (Qin et al., 2024). Meanwhile,
tools can enable LMs to take actions on the world such as managing calendars (Schick et al.,
2023) and emails (Qin et al., 2024). Beyond web-based activities, tool-augmented LMs can
engage in physical activities in embodied environments, such as fishing with rods or mining
with axes in the Minecraft world (Wang et al., 2023a); further propagate to the real-world
tasks to perform cooking (Singh et al., 2022; Shridhar et al., 2020), plotting (Liang et al.,
2023), and even conducting chemical research (Boiko et al., 2023).

Non-textual modalities While many LMs only consume and generate texts, some
works bring in access to visual (Gupta & Kembhavi, 2022; Surı́s et al., 2023), audio (Yang
et al., 2023; Gao et al., 2023a), or other modalities. For example, LMs can access images with
cat image APIs (Xu et al., 2023; Tang et al., 2023) or songs (Huang et al., 2024) provided by
spotify, even answer questions about them (Gupta & Kembhavi, 2022; Gao et al., 2023a).

Special-skilled LMs Some works propose to use specialized LMs as tools, essentially
using the main LM as a task planner to dispatch requests to other LMs. Schick et al. (2023)
propose QA models to fill in factoid details in responses, Thoppilan et al. (2022); Schick
et al. (2023); Paranjape et al. (2023) use machine translation models to assist multilingual
tasks. Beyond specific tasks, some works adopt multiple neural models from Hugginface or
similar platforms (Patil et al., 2023; Shen et al., 2023a), or further fine-tune them on various
data (Viswanathan et al., 2023). Compared to the base LM, these tool models mainly vary in
their specialized skills, and may or may not have architectural differences to the base LM.

4.2 Where are tools not useful?

Despite that tools can be helpful under many scenarios discussed above, it is also important
to note scenarios where tools are arguably not very helpful. Some example tasks where
tools have not (yet) been used to great effect include machine translation, summarization,

4

Published as a conference paper at COLM 2024

and sentiment analysis (among others). These are tasks that are not easy to perform using
non-ML methods (c.f. accessing databases can be done using SQL), and can be performed
with high accuracy by a powerful LM alone. One intuitive reason is that the tools currently
leveraged for these tasks are neural networks and have limited advantages over the base LM.

5 Advanced tool-use methods

Given this understanding of the basic tooling paradigm and the scenarios in which tools
are useful, we now discuss more advanced approaches for tools. Concretely, we study
multi-tool selection and complex usage (§5.1), tooling under programmatic contexts (§5.2),
and creation of tools when they are not available a-priori (§5.3).

5.1 Complex tool selection and usage

Depending on the number of tools available, the system may include an implicit or explicit
tool selection module. If tools are already designated for the task (Lazaridou et al., 2022;
Thoppilan et al., 2022), then no tool selection is needed. If a small number (e.g., 5–10) of tools
are available, metadata and use cases of these tools can be provided as input contexts along
with the user query (Schick et al., 2023; Paranjape et al., 2023), and LMs can directly select
tools from contexts via a standard generation process. If the toolbox size further grows (e.g.,
to hundreds), fitting all tools into model inputs is not feasible. Thus an extra retrieval step
is often incorporated: a retriever model short-lists the most relevant tools and feeds their
metadata to the solution-generation LM. Specifically, Zhou et al. (2023); Qin et al. (2024) train
retriever models that map NL to tool documentation. Yuan et al. (2023) ask LMs to write
hypothetical descriptions then find similar tools. More easily, some directly use off-the-shelf
embeddings (Meng et al., 2024; OpenAI) or training-free retrievers (Robertson et al., 2009).

For complex queries that require multiple tools to solve, the common approach so far is
to break down the task and sequentially tackle each step by using a single tool (Paran-
jape et al., 2023). However, this sequential multi-step paradigm may not be reflective of
more complex or realistic tool usage. For example, a user may prefer nested function calls
check weather(get local time(‘Pittsburgh’)) to allow information hiding or encapsula-
tion (Rogers, 2001), parallel calls to reduce round trips with the API (Eleti et al., 2023), or
iterative calls of buy ticket(event) until it returns True to indicate a successful transaction.

5.2 Tools in programmatic contexts

Unlike text-based tasks where tools are auxiliary modules to LMs, on programmatic tasks,
where code LMs can solve the problem by generating programs, tools can be seen as
compositions of basic functions. In this part, we discuss tools in programmatic tasks for
domain-specific (§5.2.1) and general-purpose problems (§5.2.2).

Focus on varied tools Depending on the tasks of interest, existing works focus on different
types of tools under programmatic contexts. With the increasing complexity of these tools
and presumably a decreasing familiarity of LMs about them, there are works that adopt (i)
built-in functions of a programming language (PL) to augment LMs in symbolic reasoning,
(ii) external libraries in pre-designed packages to tackle complex open-domain coding queries
(Wang et al., 2023c), and (iii) utility functions unseen at training time to solve specific tasks.

Q: The bakers baked 200 loaves of bread ...
How many loaves of bread did they have left?

The bakers started with 200 loaves. They
sold 93 in the morning …The answer is 62.LM

loaves_baked, loaves_returned = 200, 6
sold_morning, sold_afternoon = 93, 39
answer = loaves_baked - loaves_sold_morning
 - loaves_sold_afternoon + loaves_returned

CodeLM

import pandas as pd
df = pd.DataFrame({“Year”: [2013, 2014, 2015],
“Vacation days”: [23, 18, 11]})
max_days = df[“Vacation days”].max()

CodeLM

Q: The table shows how many... What is the
max number of vacation days across years? Q: Who is wearing the dress?

dress_box = locate_objects(image, “dress”)
dress_region = crop_region(image, dress_box)
answer = visual_qa(dress_region,
question=”Who is wearing the dress?”)

CodeLM

build-in functions → tools external libraries → tools utility functions → tools

Figure 3: Tools involve built-in functions, external libraries, or task-specific utility functions.

5

Published as a conference paper at COLM 2024

5.2.1 Domain-specific semantic parsing

NL-to-code generation systems have been studied for many years on special-domain tasks
such as querying databases (Zelle & Mooney, 1996; Zettlemoyer & Collins, 2012) or knowl-
edge graphs (Berant et al., 2013). Code produced by these systems is often domain-specific
logical forms (DSL) designed by experts, such as lambda expressions (Liang, 2013), SQL
queries (Yu et al., 2018), or the recent QDMR grammar (Wolfson et al., 2020). Many agentic
tasks also adopt DSL to operate in task-specific environments, such as click or type in web
navigation (Liu et al., 2018; Yao et al., 2022; Zhou et al., 2024), placeItem in the embodied
Minecraft world (Wang et al., 2023a), or set joint target for robots (Yu et al., 2023). While
DSL built-in actions can be directly used, for complex queries, solution programs with basic
DSLs alone can be hard to interpret or cumbersome to use.

5.2.2 General-purpose code generation

Recent code generation systems have expanded from using DSL to more general-purpose
PLs such as Python or Java (Yin & Neubig, 2017; Chen et al., 2021). These languages
enable more programming flexibility and readily apply to versatile scenarios. As we have
introduced using built-in actions as tools in §4.1, we discuss more on two other common
categories of tools for code LMs, namely external libraries and task-specific utility functions.

External libraries From the usage of PLs, built-in functions are internal to whichever
environment, whereas third-party libraries lie externally and need to be imported to tackle
specific contexts, such as Figure 3 (middle). Aligning with this conception, Zhang et al.
(2023) use Python libraries such as matplotlib to plot figures and pandas to manage data.

Utility functions Expert-crafted utility functions, usually unseen at training time, can
also be used as tools. E.g., in Figure 3 (right), the highlighted locate objects (Gupta &
Kembhavi, 2022) loads neural models to detect object regions in images. Also, Cheng et al.
(2023) use GPT as a tool to query world facts external to table contents, Cao et al. (2023)
further design macro APIs for advanced tabular operations. However, because human tool
creation requires expertise and effort, some works explore using LMs to create new tools.

5.3 Tool creation and reuse

How is the weather today?

It is sunny today

It is check_weather()
replacecall remote

server

return API
outputw

ea
th

er

se
rv

er

what’s the
time now?can use

existing tools

find_max(values) what’s the
max value?

no tools apply
make new tools

vqa(q: str)
… … …

get_time()
pick it

av
ai

la
bl

e
to

ol
s

Figure 4: LM makes tools when no
tools readily apply to the task.

While one can readily use tools for tasks equipped
with pre-designed tools, for tasks that do not have
readily-applicable, human-created tools, some works
explore using LMs to make tools and use them.

Domain-specific library abstraction Works using
DSLs often compose frequently-used-together ac-
tions as shortcut tools. Ellis et al. (2023) learn func-
tion abstractions such as length from lambda primitives (e.g., 0, +) for list or string tasks.
Wong et al. (2021); Bowers et al. (2023) build libraries bottom-up from a corpus of DSL
programs. Grand et al. (2023) use LLMs to abstract libraries with auto-documentation. For
agentic tasks, Liu et al. (2018) learn common workflows to guide web navigation, e.g., com-
posing basic {click, like} actions to form a higher-level login action click(like(‘login’)).

General-purpose tool making On general-purpose PLs, the DSL-oriented methods above
may explode the search space and have limited utility. Instead, recent works leverage LMs’
procedural knowledge to guide search. To start, Wang et al. (2023a) design an automatic
curriculum in Minecraft to make and use Java program tools. LATM (Cai et al., 2023) use
LMs to build, verify, and use Python tools on BigBench (bench authors, 2023). CREATOR
(Qian et al., 2023) extend tool-making to math and table tasks, and improves task success
by creating tools yet repetitively for every example, thus CRAFT (Yuan et al., 2023) add
heuristic-based training to reduce tool repetition. Towards more efficient pipelines, ReGAL
(Stengel-Eskin et al., 2024) learns from refactoring existing programs, while TroVE (Wang
et al., 2024b) utilize inference-time execution signal and induces reusable tools on-the-fly.

6

Published as a conference paper at COLM 2024

6 How to evaluate tool use?

In this section, we study existing LM-tooling benchmarks (§6.1) and their evaluation metrics
(§6.2), lastly, we discuss the missing yet important evaluation aspects of tools (§6.3).

6.1 Testbeds for evaluating tools

LM tool use can be evaluated on (i) repurposed existing datasets that can additionally benefit
from tools (§6.1.1), and (ii) newly crafted benchmarks that necessitate tool use (§6.1.2).

6.1.1 Repurposed Existing Datasets

Many tasks are solvable by using LMs, yet often with great difficulty or inefficiency. There-
fore, some works use tool-augmented LMs as an alternative approach to solve these tasks.

Most of these datasets require reasoning. Starting from NL questions that demand com-
plex reasoning with Big-bench (bench authors, 2023), mathematical problems with MATH
(Hendrycks et al., 2021), to answering world facts in NaturalQuestions (Kwiatkowski et al.,
2019) and TriviaQA (Joshi et al., 2017). Beyond free-form texts, datasets with structured data
also benefit from tools, particularly table-based QA with tabular math world problems in
TabMWP (Lu et al., 2023b), Wikipedia tables in WTQ (Pasupat & Liang, 2015), and complex-
structured tables in HiTab (Cheng et al., 2022). Beyond text modality, datasets involve other
modalities benefit from modality-extending tools, e.g., answering questions about an image
in GQA (Hudson & Manning, 2019), or image pairs in NLVR2 (Suhr et al., 2019).

Because tool use is an alternative method to solve these datasets, evaluations of these tool-
augmented systems follow the standard evaluation process of these datasets, i.e., answer
exact match. Note that to obtain the answers, all tool calls need to be executed, since the
execution outputs are integrated into the final answers, as introduced in §3.

6.1.2 Aggregated API Benchmarks

Existing benchmarks can only benefit from a limited set of tools, yet there are far more
tools we can utilize to perform versatile tasks, particularly the web APIs created by human
developers. In Table 2, we list recent benchmarks for using APIs from various sources.

Benchmark Tool Source Example Curation Domain (§4.1) Executable

ToolBench1 existing dataset adopted, human annotated , ✓

ToolBench2 RapidAPI model synthesized , ✓

ToolQA existing dataset model synthesized , ✓

ToolAlpaca PublicAPIs model synthesized , , , ✗

API-Bank PublicAPIs human annotated , ✓

MetaTool OpenAI Plugins model synthesized , , ✗

Gorilla HF, Torch, TF model synthesized ✗

HuggingGPT HF human annotated ✗

Task Bench HF, PublicAPIs model synthesized , , ✗

Table 2: Benchmarks that use API tools to solve tasks. HF is short for HuggingFace.

Tool sources Tools are mainly aggregated from existing datasets or public APIs. Bench-
marks aggregating existing datasets (Xu et al., 2023; Zhuang et al., 2023) are often limited
in domains. Other works scrape APIs from online sources such as Public APIs (Tang et al.,
2023), RESTful APIs (Tang et al., 2023), or the OpenAI plugin list (Huang et al., 2024).
Beyond human-written APIs (Li et al., 2023), neural models from ML platforms can be
similarly formatted as APIs (Patil et al., 2023; Shen et al., 2023a;b). However, as tools come
from heterogeneous sources, it is hard to select the best from or unify all these benchmarks.

Example curation While most examples adopted from existing datasets are human
annotated (Xu et al., 2023), only Li et al. (2023) do so for scraped APIs, by surveying 500
people and creating 314 dialogues manually. Most other works prompt GPT models to

7

Published as a conference paper at COLM 2024

synthesize examples (Qin et al., 2024; Tang et al., 2023; Shen et al., 2023b; Zhuang et al., 2023;
Huang et al., 2024), however, leading to issues of naturalness and executability.

First, LMs are used to create examples given a heuristically selected set of tools, leading
to two issues: (i) users may not use the selected tools together in practice, and (ii) the
synthesized examples may not reflect the natural use cases of these tools. Second, 5 out of 9
benchmarks in Table 2 do not support tool execution, often to alleviate the cost of hosting
unstable APIs, which cause issues in evaluation. Instead of matching final responses using
lexical- (Li et al., 2023) or neural-based metrics (Tang et al., 2023; Qin et al., 2024), works
resort to pseudo matching of API calling expressions with lexical (Tang et al., 2023; Shen
et al., 2023a; Huang et al., 2024) and syntactical (Patil et al., 2023; Shen et al., 2023b) means.

6.2 What metrics are measured now?

Task completion Tools are used to assist task solving. Most works that allow tool execu-
tion evaluate the task completion score to quantify the effectiveness of utilizing tools.

Tool selection Another common metric is the accuracy of selecting the correct tools. More
concretely, it can serve as a measure of LM planning abilities — the process of breaking
down a task into multiple steps and selecting tools to complete individual steps.

Tool reusability While tool reusability is often deemed important in took-making ap-
proaches (Cai et al., 2023; Yuan et al., 2023), only Wang et al. (2024b) evaluates it by the size
of toolboxes. Reusable tools have generic functions, can be efficiently (re)used multiple
times, and facilitate human verification in speed and accuracy aspects (Wang et al., 2024b).

6.3 What properties are missing?

Efficiency of tool integration The benefits of tools come with the cost of extra computation,
particularly for teaching LMs to use tools via training or prompting. Besides performance
gain, reporting the computation overhead can enable fairer comparisons of different works.

Quality of tools Beyond task accuracy, the performance of tools themselves is also important.
Tool performance covers multiple aspects such as returning results quickly, using less
compute, and not failing unexpectedly. One way to measure these aspects is to conduct API
testing (Yasar, 2022; Ehsan et al., 2022) on their runtime, memory usage, and success rate.

Reliability of unstable tools Particularly for tools that involve neural models or randomized
components, their output quality may be unstable and unpredictable. For example, the VQA
tool (Gupta & Kembhavi, 2022) may answer some questions correctly but others incorrectly.
It is essential to be aware of and reduce this uncertainty in contrast to stable, rule-based tools.

Reproducible testing Many world-interacting tools may return different results at dif-
ferent times. E.g., check weather may return “sunny” today but “cloudy” tomorrow. This
irreproducible behavior poses great challenges to create static evaluation benchmarks with
reference answers. While some works alleviate this by evaluating API calls without execut-
ing them, a more rigorous method could be parallel testing (Sharma et al., 2018) — executing
model-generated and reference programs in parallel and matching their final outputs.

Safe usage Many systems may only opt to use tools if they are trusted to be secure (Barbir
et al., 2007). At the very least, users favor tools that can be easily understood and verified.
Yet there may be more security issues such as authentication and data integrity (Ehsan et al.,
2022). We encourage readers to peruse the referenced works above for thorough studies.

7 Trade-offs in tool usage

Using tools often brings better performance, however, should we always use tools? More
concretely, is the performance gain from using tools worthy of the computation cost spent
for LMs to learn tools? In Table 3, we empirically study the performance gain and learning
cost of various methods on their tested datasets, from which we discover more efficient (i.e.,
achieve greater gains with less compute) methods and tasks that benefit more from tools.

8

Published as a conference paper at COLM 2024

For each work and each dataset they experimented with,2 we measure the performance gain
after LM learned or made tools to solve tasks, against baseline LMs with no prior exposure
to tool-related information. We also quantify the computation cost of these methods in
token-consuming training and inference processes. More computation details in §A.

Type Method Task ∆ Perf. # Params (B) # Tokens (M)
train test

tool
use

ToolFormer

cloze + 14.7 6.7 642.1 269.0
math + 30.4 6.7 3864.2 421.0
QA + 5.8 6.7 1101.2 189.0

multilingual - 0.2 6.7 606.0 274.0
temporal + 13.0 6.7 508.8 202.0

API-Bank API + 24.4 7 190414.6 0.0

ToolAlpaca API + 45.2 7 241889.3 0.0

Chameleon science + 2.6 - 0.0 88.3
table + 1.9 - 0.0 325.9

tool
making

LATM BigBench + 29.1 - 28.5 4720.0

CREATOR math + 4.5 - 0.0 5113.6
table + 0.0 - 0.0 6827.6

CRAFT math + 13.2 - 4126.6 4098.5
table + 17.2 - 2750.6 5018.2

TroVE math + 21.0 - 0.0 1825.2
table + 12.0 - 0.0 1358.8

Table 3: Computation cost (number of tokens in M and parameters in B) of tooling methods
and their performance gain on experimented datasets. To fairly compare costs on datasets
with different sizes, we report the average number of tokens spent on a testing example.

What tasks benefit the most from tools? In general, tasks that cover multiple domains
experience the highest increase, such as ToolAlpaca in tool-using and BigBench in tool-
making scenarios. Substantial gains may be expected on API benchmarks, because all
examples are synthesized use cases for designated tools (§4.1), no-tool baselines are deprived
of necessary components (i.e., tools) to solve the task, thus achieving much lower accuracy.

Pe
rf

or
m

an
ce

 G
ai

n

Computation Cost (M x B)

Pe
rf

or
m

an
ce

 G
ai

n

Computation Cost (M x B)

multilingual

question
answering

temporal

Cloze MathQAMultilingual

math

Math Table Creator
CRAFT
TroVE

Pe
rf

or
m

an
ce

 G
ai

n

Computation Cost (M x B)

Math Table

TroVE CRAFT

CREATOR

cloze

Figure 5: ToolFormer method
on various tasks.

On existing datasets, the ToolFormer method in Figure 5 is
the most efficient on MATH problems, showing the biggest
30.4 increase with little computation. While other tasks im-
prove less, multilingual tasks even degrade by −0.2 points,
despite using a similar amount of compute. This variance
across tasks aligns with our discussion in §4: tasks neces-
sitating ML-based tools benefit less from them.

What methods are efficient in tool-making? While it is
hard to fairly compare works testing on different datasets,
the three tool-making methods (Creator, CRAFT, TROVE),
experiment on the same MATH and TabMWP datasets in
Figure 6 thus enable fair comparisons. TROVE is the most
efficient method, costing only 1.2–1.4K tokens while increas-
ing the accuracy by 12.0–21.0 points. In contrast, CREATOR and CRAFT are less efficient,
costing 3.8–6.0 times of compute, yet achieve only minimal (0.0–4.5%) or comparable (4.1–
5.0%) accuracy increases.

Training-time vs inference-time cost Training-time and inference-time costs may not
be equally important to many practitioners, since inference may be run many times but
training often only needs to be done once. If we only consider inference-time cost in Table 3,

2We did not measure some works due to insufficient resources.

9

Published as a conference paper at COLM 2024

Pe
rf

or
m

an
ce

 G
ai

n

Computation Cost (M x B)

Pe
rf

or
m

an
ce

 G
ai

n

Computation Cost (M x B)

multilingual

question
answering

cloze

Cloze MathQAMultilingual

math

Math Table Creator
CRAFT
TroVE

Pe
rf

or
m

an
ce

 G
ai

n

Computation Cost (M x B)

Math Table

TroVE CRAFT

CREATOR

Figure 6: Comparing different
tool-making methods.

the efficiency ranking of tool-using methods changes: Tool-
Former requires more compute than API-Bank and ToolAl-
paca. If the user has sufficient budgets for training and
higher demand on inference-time efficiency, the training
approaches proposed by API-Bank and ToolAlpaca could
be more suitable.

8 Final Remarks
Our survey presents a definition for LM-used tools, various
scenarios to apply tools, systematic summaries of existing
methods, and an empirical analysis to guide when (on what
tasks) and how (use what methods) one should use tools.
We believe tools can greatly extend and facilitate LM abilities, and hope our work elicits more
discussions and research developments in (i) curating benchmarks with natural use cases
and executable tools, (ii) using multi-faceted evaluation metrics as in §6, and (iii) exploring
more realistic and challenging scenarios for tool-using and tool-making techniques.

Acknowledgments

We thank Saujas Vaduguru, Sherry Tongshuang Wu, Jiawei Liu, Shihao Liang, Pengfei
Liu for the helpful discussions. Zora Zhiruo Wang is supported by the CMU Teng Family
Presidential Fellowship. Hao Zhu is supported by NSF EAGER Award #2141751.

References
Akari Asai, Sewon Min, Zexuan Zhong, and Danqi Chen. Retrieval-based language models

and applications. In Proceedings of the 61st Annual Meeting of the Association for Computa-
tional Linguistics (Volume 6: Tutorial Abstracts). Association for Computational Linguistics,
2023. URL https://aclanthology.org/2023.acl-tutorials.6.

Matej Balog, Alexander L Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel
Tarlow. Deepcoder: Learning to write programs. arXiv preprint arXiv:1611.01989, 2016.

Abbie Barbir, Chris Hobbs, Elisa Bertino, Frederick Hirsch, and Lorenzo Martino. Challenges
of testing web services and security in soa implementations. Test and Analysis of Web
Services, pp. 395–440, 2007.

BIG bench authors. Beyond the imitation game: Quantifying and extrapolating the ca-
pabilities of language models. Transactions on Machine Learning Research, 2023. URL
https://openreview.net/forum?id=uyTL5Bvosj.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on freebase
from question-answer pairs. In Proceedings of the 2013 conference on empirical methods in
natural language processing, pp. 1533–1544, 2013.

Daniil A Boiko, Robert MacKnight, Ben Kline, and Gabe Gomes. Autonomous chemical
research with large language models. Nature, 624(7992):570–578, 2023.

Matthew Bowers, Theo X. Olausson, Lionel Wong, Gabriel Grand, Joshua B. Tenenbaum,
Kevin Ellis, and Armando Solar-Lezama. Top-down synthesis for library learning. Proc.
ACM Program. Lang., 2023. URL https://doi.org/10.1145/3571234.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In
Advances in Neural Information Processing Systems, 2020. URL https://proceedings.neurips.
cc/paper files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

10

https://aclanthology.org/2023.acl-tutorials.6
https://openreview.net/forum?id=uyTL5Bvosj
https://doi.org/10.1145/3571234
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

Published as a conference paper at COLM 2024

Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen, and Denny Zhou. Large language
models as tool makers. arXiv preprint arXiv:2305.17126, 2023. URL https://arxiv.org/pdf/
2305.17126.

Yihan Cao, Shuyi Chen, Ryan Liu, Zhiruo Wang, and Daniel Fried. Api-assisted code
generation for question answering on varied table structures. In Proceedings of the
2023 Conference on Empirical Methods in Natural Language Processing, 2023. URL https:
//aclanthology.org/2023.emnlp-main.897.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evalu-
ating large language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts
prompting: Disentangling computation from reasoning for numerical reasoning tasks.
Transactions on Machine Learning Research, 2023. URL https://openreview.net/forum?id=
YfZ4ZPt8zd.

Zhoujun Cheng, Haoyu Dong, Zhiruo Wang, Ran Jia, Jiaqi Guo, Yan Gao, Shi Han, Jian-
Guang Lou, and Dongmei Zhang. Hitab: A hierarchical table dataset for question
answering and natural language generation. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), May 2022.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu Li, Rahul Nadkarni, Yushi Hu, Caiming
Xiong, Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer, Noah A. Smith, and Tao Yu.
Binding language models in symbolic languages. In The Eleventh International Conference
on Learning Representations, 2023. URL https://openreview.net/forum?id=lH1PV42cbF.

Adeel Ehsan, Mohammed Ahmad M. E. Abuhaliqa, Cagatay Catal, and Deepti Mishra.
Restful api testing methodologies: Rationale, challenges, and solution directions. Applied
Sciences, 2022. URL https://www.mdpi.com/2076-3417/12/9/4369.

Atty Eleti, Jeff Harris, and Logan Kilpatrick. Function calling and other api updates, 2023.
URL https://openai.com/blog/function-calling-and-other-api-updates.

Kevin Ellis, Lionel Wong, Maxwell Nye, Mathias Sable-Meyer, Luc Cary, Lore Anaya Pozo,
Luke Hewitt, Armando Solar-Lezama, and Joshua B Tenenbaum. Dreamcoder: growing
generalizable, interpretable knowledge with wake–sleep bayesian program learning.
Philosophical Transactions of the Royal Society A, 2023.

Difei Gao, Lei Ji, Luowei Zhou, Kevin Qinghong Lin, Joya Chen, Zihan Fan, and Mike Zheng
Shou. Assistgpt: A general multi-modal assistant that can plan, execute, inspect, and
learn. arXiv preprint arXiv:2306.08640, 2023a.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan,
and Graham Neubig. Pal: Program-aided language models. In International Conference on
Machine Learning, pp. 10764–10799. PMLR, 2023b.

Gabriel Grand, Lionel Wong, Matthew Bowers, Theo X Olausson, Muxin Liu, Joshua B
Tenenbaum, and Jacob Andreas. Lilo: Learning interpretable libraries by compressing
and documenting code. arXiv preprint arXiv:2310.19791, 2023.

Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual
reasoning without training. arXiv preprint arXiv:2211.11559, 2022. URL https://arxiv.org/
pdf/2211.11559.

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting Hu. Toolkengpt: Augmenting frozen
language models with massive tools via tool embeddings. In Thirty-seventh Conference
on Neural Information Processing Systems, 2023. URL https://openreview.net/forum?id=
BHXsb69bSx.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math
dataset. arXiv preprint arXiv:2103.03874, 2021. URL https://arxiv.org/pdf/2103.03874.

11

https://arxiv.org/pdf/2305.17126
https://arxiv.org/pdf/2305.17126
https://aclanthology.org/2023.emnlp-main.897
https://aclanthology.org/2023.emnlp-main.897
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=lH1PV42cbF
https://www.mdpi.com/2076-3417/12/9/4369
https://openai.com/blog/function-calling-and-other-api-updates
https://arxiv.org/pdf/2211.11559
https://arxiv.org/pdf/2211.11559
https://openreview.net/forum?id=BHXsb69bSx
https://openreview.net/forum?id=BHXsb69bSx
https://arxiv.org/pdf/2103.03874

Published as a conference paper at COLM 2024

Cheng-Yu Hsieh, Si-An Chen, Chun-Liang Li, Yasuhisa Fujii, Alexander Ratner, Chen-Yu
Lee, Ranjay Krishna, and Tomas Pfister. Tool documentation enables zero-shot tool-usage
with large language models. arXiv preprint arXiv:2308.00675, 2023.

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan Wu, Qihui Zhang, Yixin Liu, Pan Zhou,
Yao Wan, Neil Zhenqiang Gong, and Lichao Sun. Metatool benchmark for large language
models: Deciding whether to use tools and which to use. arXiv preprint arXiv:2310.03128,
2024.

Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual
reasoning and compositional question answering. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 6700–6709, 2019.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. Triviaqa: A large scale
distantly supervised challenge dataset for reading comprehension. In Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
2017. URL https://aclanthology.org/P17-1147.

Mojtaba Komeili, Kurt Shuster, and Jason Weston. Internet-augmented dialogue generation.
In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), 2022. URL https://aclanthology.org/2022.acl-long.579.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh,
Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina
Toutanova, Llion Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszko-
reit, Quoc Le, and Slav Petrov. Natural questions: A benchmark for question answer-
ing research. Transactions of the Association for Computational Linguistics, 2019. URL
https://aclanthology.org/Q19-1026.

Angeliki Lazaridou, Elena Gribovskaya, Wojciech Stokowiec, and Nikolai Grigorev. Internet-
augmented language models through few-shot prompting for open-domain question
answering. arXiv preprint arXiv:2203.05115, 2022. URL https://arxiv.org/abs/2203.05115.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, Hangyu Li, Haiyang Yu, Zhoujun Li, Fei
Huang, and Yongbin Li. Api-bank: A comprehensive benchmark for tool-augmented llms.
In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing,
2023. URL https://aclanthology.org/2023.emnlp-main.187.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence,
and Andy Zeng. Code as policies: Language model programs for embodied control. In
2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 9493–9500. IEEE,
2023.

Percy Liang. Lambda dependency-based compositional semantics. arXiv preprint
arXiv:1309.4408, 2013.

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, and Percy Liang. Reinforcement learning
on web interfaces using workflow-guided exploration. In International Conference on
Learning Representations, 2018. URL https://openreview.net/forum?id=ryTp3f-0-.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu, Song-Chun
Zhu, and Jianfeng Gao. Chameleon: Plug-and-play compositional reasoning with large
language models. In Thirty-seventh Conference on Neural Information Processing Systems,
2023a. URL https://openreview.net/forum?id=HtqnVSCj3q.

Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu, Tanmay Rajpurohit,
Peter Clark, and Ashwin Kalyan. Dynamic prompt learning via policy gradient for
semi-structured mathematical reasoning. arXiv preprint arXiv:2209.14610, 2023b. URL
https://arxiv.org/pdf/2209.14610.

Rui Meng, Ye Liu, Shafiq Rayhan Joty, Caiming Xiong, Yingbo Zhou, and Semih Yavuz. Sfr-
embedding-mistral:enhance text retrieval with transfer learning. Salesforce AI Research
Blog, 2024. URL https://blog.salesforceairesearch.com/sfr-embedded-mistral/.

12

https://aclanthology.org/P17-1147
https://aclanthology.org/2022.acl-long.579
https://aclanthology.org/Q19-1026
https://arxiv.org/abs/2203.05115
https://aclanthology.org/2023.emnlp-main.187
https://openreview.net/forum?id=ryTp3f-0-
https://openreview.net/forum?id=HtqnVSCj3q
https://arxiv.org/pdf/2209.14610
https://blog.salesforceairesearch.com/sfr-embedded-mistral/

Published as a conference paper at COLM 2024

Grégoire Mialon, Roberto Dessi, Maria Lomeli, Christoforos Nalmpantis, Ramakanth Pa-
sunuru, Roberta Raileanu, Baptiste Roziere, Timo Schick, Jane Dwivedi-Yu, Asli Ce-
likyilmaz, Edouard Grave, Yann LeCun, and Thomas Scialom. Augmented language
models: a survey. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL
https://openreview.net/forum?id=jh7wH2AzKK.

OpenAI. New embeddings models and api updates. URL https://openai.com/blog/
new-embedding-models-and-api-updates.

Bhargavi Paranjape, Scott Lundberg, Sameer Singh, Hannaneh Hajishirzi, Luke Zettlemoyer,
and Marco Tulio Ribeiro. Art: Automatic multi-step reasoning and tool-use for large
language models. arXiv preprint arXiv:2303.09014, 2023. URL https://arxiv.org/abs/2303.
09014.

Aaron Parisi, Yao Zhao, and Noah Fiedel. Talm: Tool augmented language models. arXiv
preprint arXiv:2205.12255, 2022. URL https://arxiv.org/abs/2205.12255.

Panupong Pasupat and Percy Liang. Compositional semantic parsing on semi-structured
tables. In Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language Processing (Vol-
ume 1: Long Papers). Association for Computational Linguistics, July 2015. URL
https://aclanthology.org/P15-1142.

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language
model connected with massive apis. arXiv preprint arXiv:2305.15334, 2023.

Cheng Qian, Chi Han, Yi R. Fung, Yujia Qin, Zhiyuan Liu, and Heng Ji. Creator: Disentan-
gling abstract and concrete reasonings of large language models through tool creation.
arXiv preprint arXiv:2305.14318, 2023. URL https://arxiv.org/pdf/2305.14318.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni Zeng,
Yufei Huang, Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su, Huadong Wang, Cheng
Qian, Runchu Tian, Kunlun Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen Zhang,
Yining Ye, Bowen Li, Ziwei Tang, Jing Yi, Yuzhang Zhu, Zhenning Dai, Lan Yan, Xin
Cong, Yaxi Lu, Weilin Zhao, Yuxiang Huang, Junxi Yan, Xu Han, Xian Sun, Dahai Li,
Jason Phang, Cheng Yang, Tongshuang Wu, Heng Ji, Zhiyuan Liu, and Maosong Sun.
Tool learning with foundation models. arXiv preprint arXiv:2304.08354, 2023.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong,
Xiangru Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou,
Mark Gerstein, Dahai Li, Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large
language models to master 16000+ real-world apis. In The Twelfth International Conference
on Learning Representations, 2024. URL https://openreview.net/forum?id=dHng2O0Jjr.

Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: Bm25
and beyond. Foundations and Trends® in Information Retrieval, 3(4):333–389, 2009.

Wm. Paul Rogers. Encapsulation is not information hiding. JavaWorld, 2001. URL https://
www.infoworld.com/article/2075271/encapsulation-is-not-information-hiding.html.

Stuart J Russell and Peter Norvig. Artificial intelligence a modern approach. London, 2010.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Luke
Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models
can teach themselves to use tools. arXiv preprint arXiv:2302.04761, 2023. URL https:
//arxiv.org/abs/2302.04761.

Abhinav Sharma, M Revathi, et al. Automated api testing. In 2018 3rd International Conference
on Inventive Computation Technologies (ICICT), pp. 788–791. IEEE, 2018.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang.
Hugginggpt: Solving ai tasks with chatgpt and its friends in hugging face. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023a. URL https://openreview.net/
forum?id=yHdTscY6Ci.

13

https://openreview.net/forum?id=jh7wH2AzKK
https://openai.com/blog/new-embedding-models-and-api-updates
https://openai.com/blog/new-embedding-models-and-api-updates
https://arxiv.org/abs/2303.09014
https://arxiv.org/abs/2303.09014
https://arxiv.org/abs/2205.12255
https://aclanthology.org/P15-1142
https://arxiv.org/pdf/2305.14318
https://openreview.net/forum?id=dHng2O0Jjr
https://www.infoworld.com/article/2075271/encapsulation-is-not-information-hiding.html
https://www.infoworld.com/article/2075271/encapsulation-is-not-information-hiding.html
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761
https://openreview.net/forum?id=yHdTscY6Ci
https://openreview.net/forum?id=yHdTscY6Ci

Published as a conference paper at COLM 2024

Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang, Kan Ren, Siyu Yuan, Weiming Lu,
Dongsheng Li, and Yueting Zhuang. Taskbench: Benchmarking large language models
for task automation. arXiv preprint arXiv:2311.18760, 2023b.

Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh
Mottaghi, Luke Zettlemoyer, and Dieter Fox. Alfred: A benchmark for interpreting
grounded instructions for everyday tasks. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 10740–10749, 2020.

Robert W Shumaker, Kristina R Walkup, and Benjamin B Beck. Animal tool behavior: the use
and manufacture of tools by animals. JHU Press, 2011.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay,
Dieter Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot
task plans using large language models. In Workshop on Language and Robotics at CoRL
2022, 2022. URL https://openreview.net/forum?id=3K4-U 5cRw.

Elias Stengel-Eskin, Archiki Prasad, and Mohit Bansal. Regal: Refactoring programs to
discover generalizable abstractions. arXiv preprint arXiv:2401.16467, 2024.

Alane Suhr, Stephanie Zhou, Ally Zhang, Iris Zhang, Huajun Bai, and Yoav Artzi. A
corpus for reasoning about natural language grounded in photographs. In Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics. Association for
Computational Linguistics, 2019. URL https://aclanthology.org/P19-1644.

Theodore Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas Griffiths. Cognitive
architectures for language agents. Transactions on Machine Learning Research, 2024. ISSN
2835-8856. URL https://openreview.net/forum?id=1i6ZCvflQJ. Survey Certification.

Dı́dac Surı́s, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python
execution for reasoning. arXiv preprint arXiv:2303.08128, 2023.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, Qiao Liang, Boxi Cao, and Le Sun.
Toolalpaca: Generalized tool learning for language models with 3000 simulated cases.
arXiv preprint arXiv:2306.05301, 2023.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha,
Heng-Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, YaGuang Li, Hongrae Lee,
Huaixiu Steven Zheng, Amin Ghafouri, Marcelo Menegali, Yanping Huang, Maxim
Krikun, Dmitry Lepikhin, James Qin, Dehao Chen, Yuanzhong Xu, Zhifeng Chen, Adam
Roberts, Maarten Bosma, Vincent Zhao, Yanqi Zhou, Chung-Ching Chang, Igor Krivokon,
Will Rusch, Marc Pickett, Pranesh Srinivasan, Laichee Man, Kathleen Meier-Hellstern,
Meredith Ringel Morris, Tulsee Doshi, Renelito Delos Santos, Toju Duke, Johnny Soraker,
Ben Zevenbergen, Vinodkumar Prabhakaran, Mark Diaz, Ben Hutchinson, Kristen Olson,
Alejandra Molina, Erin Hoffman-John, Josh Lee, Lora Aroyo, Ravi Rajakumar, Alena
Butryna, Matthew Lamm, Viktoriya Kuzmina, Joe Fenton, Aaron Cohen, Rachel Bernstein,
Ray Kurzweil, Blaise Aguera-Arcas, Claire Cui, Marian Croak, Ed Chi, and Quoc Le.
Lamda: Language models for dialog applications. arXiv preprint arXiv:2201.08239, 2022.
URL https://arxiv.org/abs/2201.08239.

Vijay Viswanathan, Chenyang Zhao, Amanda Bertsch, Tongshuang Wu, and Graham
Neubig. Prompt2model: Generating deployable models from natural language instruc-
tions. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations. Association for Computational Linguistics, 2023. URL
https://aclanthology.org/2023.emnlp-demo.38.

Ben Wang and Aran Komatsuzaki. Gpt-j-6b: A 6 billion parameter autoregressive language
model, 2021. URL https://github.com/kingoflolz/mesh-transformer-jax.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi
Fan, and Anima Anandkumar. Voyager: An open-ended embodied agent with large
language models. In NeurIPS 2023 Foundation Models for Decision Making Workshop, 2023a.
URL https://openreview.net/forum?id=P8E4Br72j3.

14

https://openreview.net/forum?id=3K4-U_5cRw
https://aclanthology.org/P19-1644
https://openreview.net/forum?id=1i6ZCvflQJ
https://arxiv.org/abs/2201.08239
https://aclanthology.org/2023.emnlp-demo.38
https://github.com/kingoflolz/mesh-transformer-jax
https://openreview.net/forum?id=P8E4Br72j3

Published as a conference paper at COLM 2024

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen, Lifan Yuan, Hao Peng, and Heng Ji.
Mint: Evaluating llms in multi-turn interaction with tools and language feedback. arXiv
preprint arXiv:2309.10691, 2023b.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji.
Executable code actions elicit better llm agents. arXiv preprint arXiv:2402.01030, 2024a.

Zhiruo Wang, Shuyan Zhou, Daniel Fried, and Graham Neubig. Execution-based evaluation
for open-domain code generation. In Findings of the Association for Computational Linguistics:
EMNLP 2023, pp. 1271–1290. Association for Computational Linguistics, December 2023c.
URL https://aclanthology.org/2023.findings-emnlp.89.

Zhiruo Wang, Daniel Fried, and Graham Neubig. Trove: Inducing verifiable and efficient
toolboxes for solving programmatic tasks. arXiv preprint arXiv:2401.12869, 2024b. URL
https://arxiv.org/abs/2401.12869.

Guillaume Wenzek, Marie-Anne Lachaux, Alexis Conneau, Vishrav Chaudhary, Francisco
Guzmán, Armand Joulin, and Edouard Grave. Ccnet: Extracting high quality monolingual
datasets from web crawl data. In Proceedings of the Twelfth Language Resources and Evaluation
Conference, 2020. URL https://aclanthology.org/2020.lrec-1.494.

Tomer Wolfson, Mor Geva, Ankit Gupta, Matt Gardner, Yoav Goldberg, Daniel Deutch, and
Jonathan Berant. Break it down: A question understanding benchmark. Transactions of the
Association for Computational Linguistics, 2020. URL https://doi.org/10.1162/tacl a 00309.

Catherine Wong, Kevin M Ellis, Joshua Tenenbaum, and Jacob Andreas. Leveraging lan-
guage to learn program abstractions and search heuristics. In Proceedings of the 38th
International Conference on Machine Learning, Proceedings of Machine Learning Research,
2021. URL https://proceedings.mlr.press/v139/wong21a.html.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang,
Junzhe Wang, Senjie Jin, Enyu Zhou, et al. The rise and potential of large language model
based agents: A survey. arXiv preprint arXiv:2309.07864, 2023.

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu, Zhengyu Chen, and Jian Zhang. On
the tool manipulation capability of open-source large language models. arXiv preprint
arXiv:2305.16504, 2023.

Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Ehsan Azarnasab, Faisal Ahmed,
Zicheng Liu, Ce Liu, Michael Zeng, and Lijuan Wang. Mm-react: Prompting chatgpt for
multimodal reasoning and action. arXiv preprint arXiv:2303.11381, 2023.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Web-
shop: Towards scalable real-world web interaction with grounded language
agents. In Advances in Neural Information Processing Systems. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper files/paper/2022/file/
82ad13ec01f9fe44c01cb91814fd7b8c-Paper-Conference.pdf.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and
Yuan Cao. React: Synergizing reasoning and acting in language models. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.net/
forum?id=WE vluYUL-X.

Kinza Yasar. Software testing, 2022. URL https://www.techtarget.com/whatis/definition/
software-testing.

Pengcheng Yin and Graham Neubig. A syntactic neural model for general-purpose code
generation. In Regina Barzilay and Min-Yen Kan (eds.), Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 440–
450, Vancouver, Canada, July 2017. Association for Computational Linguistics. doi:
10.18653/v1/P17-1041. URL https://aclanthology.org/P17-1041.

15

https://aclanthology.org/2023.findings-emnlp.89
https://arxiv.org/abs/2401.12869
https://aclanthology.org/2020.lrec-1.494
https://doi.org/10.1162/tacl_a_00309
https://proceedings.mlr.press/v139/wong21a.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/82ad13ec01f9fe44c01cb91814fd7b8c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/82ad13ec01f9fe44c01cb91814fd7b8c-Paper-Conference.pdf
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://www.techtarget.com/whatis/definition/software-testing
https://www.techtarget.com/whatis/definition/software-testing
https://aclanthology.org/P17-1041

Published as a conference paper at COLM 2024

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma,
Irene Li, Qingning Yao, Shanelle Roman, et al. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic parsing and text-to-sql task. arXiv preprint
arXiv:1809.08887, 2018.

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montse Gonza-
lez Arenas, Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, et al.
Language to rewards for robotic skill synthesis. arXiv preprint arXiv:2306.08647, 2023.

Lifan Yuan, Yangyi Chen, Xingyao Wang, Yi R. Fung, Hao Peng, and Heng Ji. Craft:
Customizing llms by creating and retrieving from specialized toolsets. arXiv preprint
arXiv:2309.17428, 2023.

John M Zelle and Raymond J Mooney. Learning to parse database queries using inductive
logic programming. In Proceedings of the national conference on artificial intelligence, pp.
1050–1055, 1996.

Luke S Zettlemoyer and Michael Collins. Learning to map sentences to logical form: Struc-
tured classification with probabilistic categorial grammars. arXiv preprint arXiv:1207.1420,
2012.

Kechi Zhang, Huangzhao Zhang, Ge Li, Jia Li, Zhuo Li, and Zhi Jin. Toolcoder: Teach code
generation models to use api search tools. arXiv preprint arXiv:2305.04032, 2023. URL
https://arxiv.org/abs/2305.04032.

Shuyan Zhou, Uri Alon, Frank F. Xu, Zhiruo Wang, Zhengbao Jiang, and Graham Neubig.
Docprompting: Generating code by retrieving the docs. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=
ZTCxT2t2Ru.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A
realistic web environment for building autonomous agents. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=
oKn9c6ytLx.

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, and Chao Zhang. Toolqa: A dataset for
llm question answering with external tools. arXiv preprint arXiv:2306.13304, 2023.

16

https://arxiv.org/abs/2305.04032
https://openreview.net/forum?id=ZTCxT2t2Ru
https://openreview.net/forum?id=ZTCxT2t2Ru
https://openreview.net/forum?id=oKn9c6ytLx
https://openreview.net/forum?id=oKn9c6ytLx

Published as a conference paper at COLM 2024

A Detailed computation process for tooling trade-offs

For each method measured in §7, we describe the detailed processes in estimating their
computation cost and performance improvement. For open-source models, we estimate
cost C = 6ND, where N is the number of tokens and D is the parameter size (Figure 7,
left). Because the parameter size D of closed-source GPT is unknown, we only measure the
number of extra tokens N per example (Figure 7, right).

ToolFormer API-Bank

ToolAlpaca

Pe
rf

or
m

an
ce

 G
ai

n

Computation Cost (M x B)

Cloze Math QA MultilingualAPI

Creator

TroVE
CRAFT

LATM

TableMath BigBench

Number of Tokens (K)

ToolFormer

API-Bank

ToolAlpaca
Chameleon

Science

Creator
LATM

CRAFT
TroVE

Chameleon

Figure 7: Computation cost of different approaches using open-source (left) and closed-
source (right) models, and their performance gain on experimented datasets. We use
different colors to represent tasks and different shapes to represent methods.

A.1 Methods using known-sized models

For methods using models whose parameter sizes are known, we estimate the computation
cost by the FLOPs during any additional modules such as training and inference with
additional context. In general, the computation cost is majorly affected by (1) the number of
tokens processed, and (2) the parameter size of models.

API-Bank (Li et al., 2023) This work trains the Lynx model that uses tools to solve
problems in the proposed API-Bank dataset. The Lynx model is initialized by Alpaca 7B
parameters, and trained on the API-Bank training set with 3 epochs. Therefore, we adopt
the Alpaca 7B as the baseline and Lynx as the tool-using model, where the 3-epoch training
is the additional computation cost introduced to enable tool use. We calculate the total
number of tokens involved in the training process, including the example i/o and additional
instructions. Because the baseline and proposed method use the same prompt at inference
time, no additional computation is required. Regarding task performance, we adopt the total
correctness across all evaluation systems, as reported in Table 3. We report the difference
between the fine-tuned Lynx-7B and the zero-shot Alpaca-7B.

ToolAlpaca (Tang et al., 2023) This work proposes the ToolAlpaca dataset and trains
Vicuna models to use tools. The baseline models are Vicuna-7B and Vicuna-13B models.
The trained tool-using models are called ToolAlpaca-7B and ToolAlpaca-13B models. All
ToolAlpaca models are trained on the training split for 3 epochs, so we estimate the cost
during this training process for 7B and 13B models, respectively. We adopt the ‘overall’
results reported in Table 3, on examples with both simulated tools and real-world APIs, and
report their average results. We measure the performance gain by the difference between
the ToolAlpaca-7/13B and Vicuna-7/13B.

Toolformer (Schick et al., 2023) This work integrates five tools — question answering
system, calculator, Wikipedia search, machine translation system, and calendar — respec-
tively for five tasks transformed from a subset of CCNet (Wenzek et al., 2020). Starting
with GPT-J models (Wang & Komatsuzaki, 2021) as the no-tool baseline, they train on 25k
model-synthesized examples for each tool and obtain the Toolformer models, causing a total
of 1M FLOPs for each task. At inference time, they add special instruction and in-context
examples to prompt tool using, resulting in extra compute. Because each task contains
multiple datasets, we report the average results to represent the general task performance.

17

Published as a conference paper at COLM 2024

A.2 Models with unknown size

While many of the works use GPT-3.5 or GPT-4 models that do not release their parameter
size, we estimate the cost by using the number of tokens processed in extra modules.

Chameleon (Lu et al., 2023a) This work proposes to take a tool-augmented approach
to improve on two existing datasets — ScienceQA and TabMWP. Because all experiments
use ChatGPT and GPT-4 models, whose parameter sizes are unknown, we only examine
results with (the better) GPT-4 model to fairly compare with other methods using GPT-
4. Specifically for the ScienceQA dataset, we adopt the Chain-of-Thought (CoT) baseline
reported in the paper, and report task accuracy as in the ALL column in Table 3. We calculate
the difference in number of tokens between the proposed Chameleon methods against the
CoT baseline. For the TabMWP dataset, we adopt the Program-of-Thought (PoT) baseline
and similarly calculate the token number difference using the provided results.3 We adopt
numbers in the ALL column in Table 4 as the TabMWP accuracy.

LATM (Cai et al., 2023) This work proposes to use LMs to make tools for individual tasks
in BigBench. Compared to the chain-of-thought (CoT) baseline, the proposed LATM method
integrates training, validation, and inference stages to make tools and solve questions. We
estimate the compute cost by the additional number of tokens used for LATM than for CoT.
We measure each method by averaging its accuracy across all six selected tasks.

CRAFT (Yuan et al., 2023) This work uses LMs to make tools for math, table, and image
reasoning tasks. We calculate the number of tokens used during training and inference,
using its released code and data.4 CRAFT similarly implements CoT as the baseline, and
proposes further training, verification, and finally testing in the CRAFT method. We report
its task accuracy on the representative datasets from each task — MATH, TabMWP, and
GQA — to enable fairer comparison with other works having overlapping datasets.

CREATOR (Qian et al., 2023) As a prior work for CRAFT, CREATOR similarly tests
on MATH and table tasks, but designs its methods differently. In addition to CoT, this
work implements a stronger program-oriented baseline called Program-of-Thought (PoT).
We also adopt PoT as the main baseline without tool making or using. The CREATOR
method operates at test time, with multiple steps through tool making, solution generation,
verification, rectification, etc. We calculate the difference in number of tokens between the
CREATOR approach and the baseline PoT setting. We adopt the task accuracy reported in
Table 2 (MATH) and Table 3 (TabMWP) from the original paper.

TroVE (Wang et al., 2024b) TroVE also induces tools without training supervision. This
work adopts the primitive baseline, a presumably stronger version of PoT yet without
much textual explanation. The main implementation change in TroVE is the three-mode
generation and multi-candidate sampling. We calculate the additional tokens used in TroVE
compared to the primitive baseline. The dataset reports task accuracy, solution complexity,
and toolbox size, we only adopt the task accuracy to fairly compare with other works.

3https://github.com/lupantech/chameleon-llm
4https://github.com/lifan-yuan/CRAFT

18

https://github.com/lupantech/chameleon-llm
https://github.com/lifan-yuan/CRAFT

	Introduction
	Background
	What are tools?
	Why are tools helpful?
	Tools and ``Agents''

	The basic tool use paradigm
	Scenarios where tools are useful
	Utilizing existing tools for specific applications
	Where are tools not useful?

	Advanced tool-use methods
	Complex tool selection and usage
	Tools in programmatic contexts
	Domain-specific semantic parsing
	General-purpose code generation

	Tool creation and reuse

	How to evaluate tool use?
	Testbeds for evaluating tools
	Repurposed Existing Datasets
	Aggregated API Benchmarks

	What metrics are measured now?
	What properties are missing?

	Trade-offs in tool usage
	Final Remarks
	Detailed computation process for tooling trade-offs
	Methods using known-sized models
	Models with unknown size

