
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

METAGEN: A DSL, DATABASE, AND BENCHMARK FOR
VLM-ASSISTED METAMATERIAL GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Metamaterials are micro-architected structures whose geometry imparts highly
tunable—often counter-intuitive—bulk properties. Yet their design is difficult
because of geometric complexity and a non-trivial mapping from architecture to
behaviour. We address these challenges with three complementary contributions.
(i) MetaDSL: a compact, semantically rich domain-specific language that captures
diverse metamaterial designs in a form that is both human-readable and machine-
parsable. (ii) MetaDB: a curated repository of more than 150 000 parameterized
MetaDSL programs together with their derivatives—three-dimensional geometry,
multi-view renderings, and simulated elastic properties. (iii) MetaBench: bench-
mark suites that test three core capabilities of vision–language metamaterial assis-
tants—structure reconstruction, property-driven inverse design, and performance
prediction. We establish baselines by fine-tuning state-of-the-art vision–language
models and deploy an omni-model within an interactive, CAD-like interface. Case
studies show that our framework provides a strong first step toward integrated
design and understanding of structure–representation–property relationships.

1 INTRODUCTION

Metamaterials represent a key frontier in materials science: by exploiting small, patterned geometries,
they endow bulk materials with properties beyond those of the constituent substance. Careful
geometric tuning yields extraordinary behaviours such as programmable deformation (Jenett et al.,
2020; Babaee et al., 2013), extreme strength-to-weight ratios (Qin et al., 2017), and materials that
are both stiff and stretchy (Surjadi et al., 2025). The design space is effectively limitless, with
exciting applications ranging from thermal management (Fan et al., 2022; Attarzadeh et al., 2022) to
biomedical implants (Ataee et al., 2018; Ambu & Morabito, 2019).

Despite this promise, neither the design nor the downstream adoption of metamaterials have realized
their full potential. This is largely due to three long-standing hurdles: (i) navigating the immense
geometric diversity of candidate architectures; (ii) characterizing the intricate structure–property
relationship; and (iii) collating information and assets from the highly-fragmented literature base,
which spans several fields and contains considerable variation in terminology, assumptions, geometry
descriptors, and evaluation protocols (Makatura et al., 2023; Lee et al., 2024; Xue et al., 2025). These
hurdles create a consistently high barrier to entry, whether your goal is to generate a new structure or
simply identify an existing one that is suitable for some application.

Vision–language models (VLMs) are poised to address this, as they excel at the cross-modal reasoning,
retrieval, and generation required for effective metamaterial design – spanning text, images, 3-D
geometry, and numerical property vectors. VLMs could also democratize metamaterial design by
exposing a unified knowledge base via natural-language, complete with iterative conversational
formats that foster human-in-the-loop material design over a shared context. Unfortunately, high-
quality data curation presents a significant barrier for VLM training and more general data-driven
metamaterial design approaches, due to the three hurdles discussed above (Lee et al., 2024).

To address this issue, we introduce a general, extensible ecosystem for AI-assisted metamaterial
design, anchored by 3 components:

1. MetaDSL: a domain-specific language that captures metamaterials in a structured, compact,
and expressive form accessible to both humans and large language models.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2. MetaDB: a database of more than 150 000 metamaterials, each of which pairs a MetaDSL
program with the derived 3-D geometry, rendered images, and simulated properties.

3. MetaBench: benchmark suites that probe three fundamental metamaterial design tasks –
structure reconstruction, property-driven inverse design, and performance prediction – using
data sampled from MetaDB.

To complete our vision, we use MetaBench to train and evaluate MetaAssist, a VLM assistant baseline
and interactive CAD environment that facilitates multi-modal design interactions including language,
images, geometry, and MetaDSL code.

All four components are designed for extensibility and community contribution, such that they can
evolve seamlessly alongside the state of the art in materials science and agentic design. Collectively,
our ecosystem provides a coherent, extensible knowledge base for metamaterial design, while laying
the foundation for intuitive, efficient human–AI collaboration in architected materials.

2 BACKGROUND

Metamaterials Experts commonly use forward design to craft parameterized structures for specific
targets (Muhammad & Lim, 2021; Frenzel et al., 2017; Meier et al., 2025). Inverse design approaches
(Lee et al., 2024) are often driven by data-informed search over particular shape representation
sweeps. Panetta et al. (2015) analysed 1205 families of cubic truss lattices, while Abu-Mualla &
Huang (2024) expanded to 17 000 truss structures spanning six crystal lattices. High-throughput
workflows also consider thousands of thin-shell architectures including plate lattices (Sun et al., 2023a)
and TPMS-inspired surfaces (Xu et al., 2023; Liu et al., 2022; Yang & Buehler, 2022; Chan et al.,
2020). Because many datasets target a single architecture class (e.g. beams or shells) and a narrow
performance metric, they restrict the attainable property gamut and thus the capability of downstream
models (Berger et al., 2017; Lee et al., 2024). Recent designs also increasingly blend classes in hybrid
or hierarchical forms (Surjadi et al., 2025; Chen et al., 2019; White et al., 2021), emphasizing the
need for representations that span such boundaries. The procedural-graph approach of Makatura et al.
(2023) captures diverse geometries but is demonstrated primarily for human-in-the-loop workflows.
Voxel and hybrid encodings scale to 140 k–180 k diverse structures (Yang et al., 2024a; Xue et al.,
2025), but they sacrifice semantic clarity and compactness, which complicates human or agent editing.
Such tradeoffs – along with inconsistencies in geometry descriptors, vocabularies, and evaluation
protocols – continue to impede dataset reuse and extensibility (Lee et al., 2024). We close these gaps
with a universal metamaterial descriptor (MetaDSL) along with a reconfigurable database of 150 000
metamaterials (MetaDB). Each MetaDB entry couples a succinct, semantically rich program with
derived 3-D geometry, renderings, and simulated properties, enabling consistent comparison and
seamless expansion. Programmatic templating further enlarges the design space, and community
contributions can grow both MetaDB and the accompanying benchmark suite.

Vision–Language Models for Design Vision–language models (VLMs) have permeated design
tasks, including procedural textures (Li et al., 2025), 3-D scenes (Yang et al., 2024b; Kumaran
et al., 2023), mesh generation and editing (Sun et al., 2023b; Wang et al., 2024; Jones et al., 2025;
Huang et al., 2024; Yamada et al., 2024), interior layouts (Çelen et al., 2024), sewing-pattern synthe-
sis (Nakayama et al., 2025; Bian et al., 2025), and computer-aided engineering and manufacturing
(Makatura et al., 2024a;b; Choi et al., 2025; Yuan et al., 2024). In most cases, code serves as the
medium: pretrained models follow instructions, reuse standard patterns, and emit domain-specific
scripts (e.g. Blender Python). When tasks demand novel grammars or specialist knowledge, fine-
tuning further elevates performance (Zhou et al., 2025). Our work adopts this code-centric philosophy
but tailors it to metamaterials, whose design demands rich geometric semantics, physical constraints,
and fluid translation among text, images, programs, and numerical property vectors. By grounding
the interface in a purpose-built DSL and a physically validated database, we lay a robust foundation
for future VLMs to reason about, generate, and refine architected materials at scale.

3 DOMAIN-SPECIFIC LANGUAGE

Metamaterial design hinges on precise, expressive geometry representation, but the representational
demands (RD) increase dramatically in service of a unified, extensible ecosystem. To be usable

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: A MetaDSL program (a) and illustrations of each construction stage (clockwise): (b) build
a 1D skeleton relative to an abstract convex polytope Πabs – here, a cuboid; (c) specify a lifting
procedure from 1D to 3D; (d) embed Πabs in R3 to create a tile, and execute the lifting procedure to
create our final geometry; and finally, (e) tessellate the tile according to the specified pattern.

Figure 2: We illustrate the expressive power of MetaDSL by showing six different structures that all
stem from the program shown in Figure 1(a). Each one is produced by changing a single aspect of
the original program, as detailed below each structure.

and developable by both humans and computational agents, our representation must be: (RD1)
expressive enough to support the full range of metamaterial architectures; (RD2) modular and
reconfigurable; (RD3) compact, semantically meaningful, and easy to use; (RD4) amenable to and
robust under generative design; (RD5) verifiable and valid-by-construction and (RD6) flexible, to
support experimentation and extensions. MetaDSL lays out a long-term design philosophy uniquely
amenable to these goals. While our current implementation tackles a core subset (Section 3.2), our
infrastructure is built extensibly. This will facilitate the evolution of MetaDSL, such that new design
paradigms can be added as metamaterial research matures, without invalidating existing programs.

3.1 LANGUAGE DESIGN PHILOSOPHY

MetaDSL uses a modular, compositional approach supported by a rich type system that determines
compatibility between components. This promotes flexibility while ensuring verifiable outcomes. As
shown in Figure 1, our highest-level decomposition mimics a hierarchical approach that is common
in metamaterial design: tiles are used to describe small representative units of a structure’s geometry,
while patterns propagate the tiles into a space-filling structure. These levels are independent and
polymorphic, such that a pattern can be applied to any number of tiles, and vice-versa.

Tiles Tiles serve two purposes in MetaDSL: (1) representing structural geometry within some
finite, embedded convex polytope (CP), Πemb ⊂ R3; and (2) maintaining structured information
about their contents, which can be queried to determine validity and/or compatibility. To facil-
itate these goals, tile contents are defined using local coordinates relative to Πabs, which is an
abstract (non-embedded) CP (e.g., cuboid, tetrahedron) of the same type as Πemb. For example, the
MetaDSL snippet v0=vertex(cuboid.edges.TOP LEFT, [0.5]) instantiates a vertex of
type PointOnCPEdge at the midway point of the cuboid edge; similarly, an edge between v0 and

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 3: MetaDSL structures that would be impractical or impossible to generate using our default
geometry kernel, ProcMeta. (a-d) Structures extracted from implicit functions using our Implicit
and CartesianVolume language extensions: (a) Sheet Gyroid TPMS; (b) Sheet Gyroid TPMS with
a 1:2:4 aspect ratio, made possible by selecting a non-uniform embedding for the containing Tile;
(c) exo-network of the Schwarz P TPMS; (d) endo-network of the Schwarz P. (e,f): An example of
a multi-tile pattern, which composes structures from Figure 1(e) and Figure 2(b,c) to form a larger
triply-periodic cell; (e) shows a single multi-tile unit, while (f) shows two views of a 4x4x4 block.

v1=vertex(cuboid.faces.TOP) would return an EdgeContainedWithinCPFace. As
typed vertices and edges are combined into larger structures such as a skeleton, their classifica-
tions are used to deduce and record broader structural relationships. For example, simple queries
on the skeleton in Figure 1(b) would reveal that it comprises a single connected component of type
SIMPLE CLOSED LOOP, and it has 1-dimensional incidence on every face of Πabs. This classifi-
cation is used to judge a skeleton’s suitability for a given lifting function, which is the procedure
used to promote a skeleton into volumetric geometry, or LiftedSkeleton. To embed our lifted
skeleton, we need only assign a set of corner positions that maps Πabs → Πemb ⊆ R3, then instantiate
the relative vertices of the lifted skeleton accordingly. The proposed embedding is validated by Πabs
to ensure that it preserves convexity and any angle or length constraints specific to Πabs.

There are many approaches to populate a tile using these primitive elements (see Section 3.2).
However, the primary contribution is the Tile itself: although many works rely on the concept of a tile
(Makatura et al., 2023; Panetta et al., 2015; Abu-Mualla & Huang, 2024; Mirramezani et al., 2025),
no previous works instantiate tiles as entities against which structural elements can be referenced,
analyzed, and queried in the service of verifiable composition (RD5). Our distinction between Πabs
and Πemb also improves modularity (RD2) by seamlessly changing tile embeddings, as shown in
Figure 2(d,e). Our relative position specifiers also increase semantic meaning and readability (RD3),
facilitate robust exploration (RD4), and circumvent the numerical values and computations that often
prove challenging for VLMs (RD3, RD4) (Makatura et al., 2024a;b).

Patterns To promote a tile into a space-filling object, MetaDSL applies a pattern composed of
spatial repetition procedures such as mirrors and rotations. Patterns can only be applied to embedded
tiles, because the admissible pattern operations are influenced by extrinsic geometric measures such as
the dihedral angles between planes of Πemb. However, our pattern operations use lazy evaluation, such
that they can be pre-composed over a generic Πabs. As before, each pattern operation is specified using
local coordinates relative to Πabs, such as a mirror across cuboid.faces.TOP. By composing
these patterns, tiles can be propagated according to e.g. periodic tilings given by crystallographic
space groups (Adams & Orbanz, 2023), or perhaps even aperiodic tilings given by a procedural
pattern generator. The tile’s structured information allows us to verify local pattern compatibility
based on boundary adjacency, so even complex patterns can yield coherent metamaterials.

The combination of a Tile and a Pattern yields a Structure, which is a complete representation of
the metamaterial. In a final layer, we provide standard constructive solid geometry (CSG) Boolean
operations to combine multiple Structures. This makes it easy to define metamaterials with mixed
scales, interpenetrating lattices (White et al., 2021), or multi-tile patterns, as shown in Figure 3(e,f).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(i) (ii) (iii) (iv)

Figure 4: Assortment of metamaterials in MetaDB, illustrating four creation modes: (i) hand-authored
seeds, (ii) generated models, (iii) type-enabled mutations, and (iv) LLM-augmented hybrids.

3.2 IMPLEMENTATION

We implement MetaDSL as an embedded DSL in Python, which provides a familiar, flexible interface
with support for comments, descriptive identifiers, and programmatic constructs such as loops,
modules, and parameterization (RD2, RD3, RD5). MetaDSL does not include a geometry kernel, but
our Structure objects can be transpiled to any number of existing representations. We target the graph
format of Procedural Metamaterials (ProcMeta) (Makatura et al., 2023), as their skeletal design space
is specifically designed to support a variety of metamaterial classes (RD1), and their approach directly
inspired the initial set of abstract CPs and lifting functions implemented in MetaDSL. For a detailed
description of the current language design, implementation, system design insights, and a comparison
to ProcMeta, please see Section C. The complete MetaDSL documentation is in Section I.2.

The limitations imposed by our ProcMeta backend also influenced the core functionality we imple-
mented. For example, MetaDSL currently prioritizes patterns that yield translationally-tileable unit
cubes, as ProcMeta only produces geometries in that scope. However, as MetaDSL can be transpiled
to any kernel, it is not inherently bound by these limitations. As a proof-of-concept, we extended
MetaDSL to support implicit function-based skeleton generators and SDF-based lifting functions. To
do this, we introduced a CartesianVolume object, which anchors a Cartesian grid to the entities
of Πabs, such that local Cartesian coordinates can automatically be transformed into CP-referenced
entities. We also wrote a basic geometry kernel and an accompanying translation layer to go from
a MetaDSL structure to our kernel input format. As shown in Figure 3(a-d), these constructs allow
MetaDSL to capture myriad structures that are common in metamaterial literature (Fisher et al.,
2023), yet impractical or impossible to represent in ProcMeta. Our separate geometry kernel also
relaxes the limitations of ProcMeta, by allowing e.g. translational units that reside in something other
than a unit cube. This highlights the flexibility of MetaDSL’s design philosophy and its ability to
expand without invalidating existing examples.

4 DATABASE GENERATION

MetaDSL represents metamaterials in a consistent, concise manner, which permits a single pipeline
that produces code, watertight geometry, renderings, and simulated properties for every entry. To
ensure the quality of MetaDB, we only add validated models that pass basic checks (see Section D.6).

4.1 CONSTRUCTING METAMATERIAL MODELS

Each metamaterial is a DSL program, or model, that may optionally expose a set of design parameters
(with default values). Our metadata block also allows program authors to include details such as
bounds, dependencies, or recommended ranges for each parameter. This clarifies design freedom,
enables continuous exploration, and provides hooks for optimisation schemes. The metadata is stored
in a machine-parsable format (YAML) with a prepopulated scheme for tracking e.g. provenance,
versioning, and notable traits about the structure, including symmetries, architecture type (beams,
shells, etc.), and related structures. Our metadata also permits custom fields.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Direct Construction Authored models are human-written, with provenance records tracking the
model author and the original design source(s), and editable semantic parameters to encode families of
models. We also provide a programmatic generator interface to create families of models. As a proof
of concept, we implemented a generator following Panetta et al. (2015); this generates parametrized
models for all 1,205 truss topologies using a few hundred lines of Python. Our type-checked DSL
allows us to specify and evaluate validity constraints on the small tile, without needing to generate
the fully-patterned beam network. Moreover, because our generator is exposed and editable, we can
easily modify the high-level generator parameters (e.g. maximum vertex valence) to output different
sub- or supersets of interest. For each generated model, the provenance metadata stores the generator
script, its settings, and per-instance parameters; generator parameters may be substituted for specific
values or passed through to remain exposed in the resulting programs.

Augmentation We propose two orthogonal protocols to enlarge MetaDB based on existing models.
Our first strategy, Hybridization (crossover), is motivated by works that offer unique, extremal
mechanical properties by hybridizing common structures such as trusses+woven beams (Surjadi
et al., 2025), nested trusses (Boda et al., 2025), TPMS shells+planar shells (Chen et al., 2019),
and trusses+solids (White et al., 2021). We emulate this process by prompting an LLM with pairs
or triplets of parent programs, then requesting hybrid code. Our prompting strategy (detailed in
Section D.3) follows insights from recent works in LLM-mediated program search (Li et al., 2025;
Romera-Paredes et al., 2024). The resulting hybridized model stores its parent IDs, prompt details,
and LLM details as provenance information.

Our second strategy, mutation, leverages MetaDSL’s type system to apply targeted edits—such as
skeleton reconfiguration, pattern adjustment, and lift procedure changes—while guaranteeing validity.
The operators are described in Section D.4. These operations are motivated by works such as Akbari
et al. (2022), which posits beam approximations of TPMS shells. Each mutation stores its parent and
details about the mutator function.

4.2 AUXILIARY DATA GENERATION

For every model we generate three auxiliary artifacts: geometry, renderings, and physical property pre-
dictions. To obtain the geometry, we transpile our MetaDSL model into a ProcMeta graph (Makatura
et al., 2023) and use their geometry kernel to export a watertight .obj. Using the exported mesh, our
custom PYRENDER scene produces orthographic images from the front, top, right, and front-top-right
viewpoints. Finally, we use the integrated simulations of ProcMeta to voxelize the mesh on a 1003

grid and perform periodic homogenisation using a base material with E=1, ρ=1, ν=0.45. The
resulting 6×6 stiffness matrix C is reduced to 18 scalars: six global metrics—Young’s modulus
E, shear modulus G, Poisson ratio ν, bulk modulus K, anisotropy A, volume fraction V —plus
directional values for E (3), G (3), and ν (6). More details are available in Section D.5. MetaDB
therefore combines code, geometry, simulation, imagery, and rich provenance—providing a unified
benchmark and a data-efficient training ground for vision–language metamaterial assistants.

5 BENCHMARK CURATION

From MetaDB we derive a benchmark that covers three fundamental metamaterial tasks: (1) recon-
struction—produce a DSL program that reproduces a target structure (for example, from images);
(2) material understanding—predict the property profile of a given structure description; and (3)
inverse design—generate a DSL program that satisfies a requested property profile. Each task
supports multiple query types based on the inputs available. For instance, material understanding may
be invoked with a single image (“1-view”) or with four images plus code (“multiview and code”).
The benchmark suite ships a dataset for every query type.

5.1 TASK-BASED DATASET CONSTRUCTION

We start with a designated pool of active models and partition them into train, validation, and test
splits that remain fixed for all tasks. The relevant information for each query type is as follows.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: MetaAssist baselines evaluated on MetaBench. LLaVABase is not reported because it failed
to produce any valid output. See Figures 15 to 17 for qualitative evaluation.

Category Inverse Design Material Understanding Reconstruction
Metric Error ↓ Valid ↑ Error ↓ CD ↓ IoU ↑ Valid ↑
Model

LLaVA .021 ± .002 98.1% .030 ± .004 .032 ± .001 .493 ± .008 94.2%
Nova .018 ± .002 89.5% .021 ± .003 .035 ± .001 .449 ± .007 97.5%

NovaBase .056 ± .023 2.6% .199 ± .005 .119 ± .003 .051 ± .003 19.3%
OpenAIO3 .028 ± .004 37.3% .077 ± .005 .053 ± .001 .147 ± .004 54.6%

Reconstruction. Given n∈{1, . . . , 4} orthographic images, the desired output is a DSL program
whose rendered geometry matches the target. Because every model has four views (Section 4.2), each
model contributes

(
4
n

)
examples to the n-view dataset.

Material understanding. Given a structure description, the desired output predicts six global
properties: Young’s modulus E, shear modulus G, bulk modulus K, Poisson ratio ν, anisotropy A,
and volume fraction V . Values are rounded to two significant figures. Our benchmark supports two
query types: multiview and code (four images + DSL code) and single image (one image). The
relative performance on each type indicates whether additional context helps or hinders a given VLM.

Inverse design. Given a target property profile, the desired output is a DSL program whose
simulated properties satisfy the profile. We generate datasets for six query types, where the length-n
query requests n∈{1, . . . , 6} property targets per profile. Targets may be exact values, ranges, or
upper/lower bounds—e.g., “auxetic (ν < 0)” or “volume fraction V ≈ 0.6.” To construct target
profiles from a model, we (1) sample n active properties from the model, (2) choose bounds for
each, and (3) render a natural-language prompt using a grammar conditioned on each property’s
part-of-speech tag (adjective, verb, etc.). This process is detailed in Section G.2. Both the prompt and
the underlying numeric targets are stored, so users can rephrase questions or bypass NLP entirely.

5.2 TASK-BASED EXAMPLE FORMAT

The query/response pairs are constructed using prompt templates that are specific to each task type
(listed in Section I). For a metamaterial and a task type, we gather the data that will be used to construct
the query/ground truth response, and the information required to evaluate the predicted response.
The intermediate format used to organize this information is detailed in Section G.1. In addition
to being model agnostic, this intermediate format allows researchers to reframe prompts without
regenerating or deviating from the core content of the inquiry. The intermediate representation also
makes MetaBench applicable to traditional non-AI methods. However, since no traditional methods
cover the full breadth of MetaBench, we do not include traditional baselines in our evaluations.

6 RESULTS

6.1 DATABASE

MetaDB is, to our knowledge, one of the largest metamaterial databases ever collected, comprising
153, 263 materials. Our dataset features 36,997 expert material designs, including 1,588 variations of
50 hand-authored programs, 1,205 generations, and 34,204 generation parameter variations. These
are augmented by 12,029 hybrids and 141,234 mutations. Figure 5 (left) shows that augmentation im-
proves MetaDB’s property coverage and gamut, including roughly doubling the range of anisotropies
and up to quadrupling directional Poisson ratios.

6.2 BENCHMARK & BASELINE

The 13,282 authored, generated, and hybrid models form the core set from which MetaBench is
sampled. We randomly split these models into 500 test, 50 validation, and 12,732 training materials,
and generated benchmark tasks for each as described in Section 5 (Figure 5, center). We measured
5 baselines methods on MetaBench: two MetaAssist models, Nova and LLaVA, named after the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 5: Diversity and Coverage relative to MetaDB. Each image plots the materials properties
and their convex hull of MetaDB subsets or MetaAssist generations relative to MetaDB, in MetaDB
material property 2D PCA space. Left: MetaDB has a larger gamut (hull) and more dense areas than
its expert subset, validating that augmentations extend property range and coverage. Center: Range
and coverage of the MetaBench splits. Right: Diversity of MetaAssist generations with the Nova and
LLaVA models; both generate materials with a wide gamut of properties.

Base models from which they are tuned on MetaBench (NovaBase and LLaVABase), and Open AI’s
o3 reasoning model. Training and inference details including full prompt templates are given in
Sections H and I. Table 1 summarizes these benchmarks in three categories:

Material Reconstruction 3D structure similarity, measured by intersection over union (IoU) and
volumetric chamfer distance of the voxelized unit cells.

Material Understanding Averaged Normalized Error across six properties: anisotropy, Young’s
modulus (VRH), Bulk Modulus (VRH), Shear Modulus (VRH), Poisson’s Ratio, and Volume Fraction,
normalized to the typical range of that property across the core material set.

Inverse Design Inverse design is measured by a clipped Averaged Normalized Error. For specific
value targets, normalized error is computed as in material understanding. For bounds targets,
normalized error is taken relative to the bound (and is zero if the bound is respected).

Both LLaVA- and Nova-based MetaAssist models achieve high material validity rates in generative
tasks (reconstruction and inverse design), and low errors. Qualitative understanding of these errors
is illustrated by results galleries in Section F. Perhaps suprisingly, the LLaVa model occasionally
outperforms the significantly larger Nova model. This is likely to due a post-training step for
maintaining general task capabilities (Section J). Ablations (Section F.1) show that general models
trained on all tasks outperform task-specific models.

6.3 INTERACTIVE CASE STUDIES

We built a metamaterial copilot interface to explore practical scenarios and conducted a series of case
studies, using the Nova-variant of MetaAssist as our interactive model due to its large context window
and stronger conversational abilities. We experimented with a variety of prompts, and present here a
scenario that illustrate the potential of a metamaterial design copilot. Images are compelling input for
material design because they cover trying a new material described pictorially in literature, sketching
an idea for a design, or taking inspiration from a structure in nature. We prototyped this functionality
with a material from the MetaBench test set; even though we presented our request conversationally
rather than in structured form, we were still able to obtain and fabricate a perfect reconstruction. A
second case study in Section E demonstrates multi-turn editing in an inverse design context.

7 DISCUSSION, LIMITATIONS, AND FUTURE WORK

Metamaterial design is an inherently multimodal, high-impact problem that requires complex reason-
ing and preference consideration, which makes it a natural test bed for AI development. Conversely,
metamaterial researchers have called for better data sets and AI-powered tools. MetaDSL and MetaDB
provide a common, traceable descriptor that both communities can adopt. As researchers contribute

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 6: Reconstruction: (Left) Generating a metamaterial program from an input image enables
incorporating designs from literature, sketches, and nature. (Right) 3D printed design.

new designs in this format, the database will grow organically, giving machine-learning practitioners
richer training data while delivering state-of-the-art design assistants to materials scientists.

Our work provides a comprehensive framework toward these goals, offering myriad opportunities
for improvement. We deliberately restricted our MetaAssist implementation to simple supervised
fine tuning to provide a bedrock baseline for this new task. This provides common metric for
techniques such as RAG to read papers and retrieve patterns, chain-of-thought reasoning to connect
design intent to property profiles, and RL training with curriculum learning to generalize to novel
inverse design profiles.MetaDSL is designed to be retargetable (Section B), as evidenced by our
proof-of-concept extensions. A more flexible geometry kernel would unlock robust non-cubic and
aperiodic tilings. Targeting a faster kernel would enable larger and more interactive workflows (e.g.
interactive output simulation – we currently often need multiple attempts to get a verifiably correct
output), simulation-in-the-loop optimization, and an even-wider data-set scale.

MetaDB also has ample opportunities for growth as a community project, including the implemen-
tation of additional generators (Sun et al., 2023a; Liu et al., 2022; Abu-Mualla & Huang, 2024;
Makatura et al., 2023), systematic inclusion of singular design templates from metamaterial lit-
erature, and diversity-guided synthesis. Our program’s explicit semantic structure could support
taxonomy construction and intelligent exploration of large design spaces. With broad participation,
MetaDB could become the primary resource for tracking metamaterial lineages, structure–property
relationships, and mechanistic insights—paralleling the role ImageNet played in computer vision.

At the same time, our framework may encounter misguided application, as our multilayer
stack—simulation, code generation, and VLM reasoning—can introduce errors. This deserves
particular attention in a domain like metamaterials, which is difficult to intuit about, and an active
frontier of science with rapidly changing understanding. The resulting materials may also be de-
ployed in scenarios where inaccurate results may lead to catastrophic failure of engineered products
or infrastructure. Thus, results must be validated before deployment, and communications should
avoid overstating reliability. Our format already takes small strides toward ensuring the accuracy
and traceability of information by including detailed provenance records in each of our models. To
further improve transparency, we also release our artifacts and the pipelines used to generate them.
Moving forward, it would be prudent to include additional safeguards such as automated validity
checks, uncertainty estimates, and safety factors.

8 CONCLUSION

We introduced MetaGen, a unified ecosystem for vision–language metamaterial design that combines
(i) MetaDSL, a compact yet expressive domain-specific language; (ii) MetaDB, an over 150 000-entry
database with paired geometry, renderings, and physics; (iii) MetaBench, a task-oriented benchmark
that probes reconstruction, material understanding, and inverse design; and (iv) MetaAssist, the
first VLM-driven CAD interface for architected materials. Our baseline experiments illustrate
that large vision–language models offer promising performance for multi-modal translation and
design generation. Moreover, we provide a holistic vision for accelerated, symbiotic research at the
intersection of machine learning and architected materials. With the introduction of MetaGen as both
a challenging benchmark for multimodal models and a practical toolkit for materials scientists, our
paper lays the foundation to bring this vision to life.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Mohammad Abu-Mualla and Jida Huang. A dataset generation framework for symmetry-induced
mechanical metamaterials. Journal of Mechanical Design, 147(4):041705, 12 2024. ISSN 1050-
0472. doi: 10.1115/1.4066169.

Ryan P. Adams and Peter Orbanz. Representing and learning functions invariant under crystallo-
graphic groups, 2023. URL https://arxiv.org/abs/2306.05261.

Mostafa Akbari, Armin Mirabolghasemi, Mohammad Bolhassani, Abdolhamid Akbarzadeh, and
Masoud Akbarzadeh. Strut-based cellular to shellular funicular materials. Advanced Functional
Materials, 32(14):2109725, 2022. doi: https://doi.org/10.1002/adfm.202109725. URL https://
advanced.onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202109725.

Rita Ambu and Anna Eva Morabito. Modeling, assessment, and design of porous cells based on
schwartz primitive surface for bone scaffolds. The Scientific World Journal, 2019, 2019.

Arash Ataee, Yuncang Li, Darren Fraser, Guangsheng Song, and Cuie Wen. Anisotropic ti-6al-4v
gyroid scaffolds manufactured by electron beam melting (ebm) for bone implant applications.
Materials & Design, 137, 2018.

Reza Attarzadeh, Seyed-Hosein Attarzadeh-Niaki, and Christophe Duwig. Multi-objective optimiza-
tion of tpms-based heat exchangers for low-temperature waste heat recovery. Applied Thermal
Engineering, 212, 2022.

Sahab Babaee, Jongmin Shim, James C Weaver, Elizabeth R Chen, Nikita Patel, and Katia Bertoldi.
3d soft metamaterials with negative poisson’s ratio. Advanced Materials, 25(36), 2013.

J. B. Berger, H. N. G. Wadley, and R. M. McMeeking. Mechanical metamaterials at the theoretical
limit of isotropic elastic stiffness. Nature, 543(7646):533–537, Mar 2017. ISSN 1476-4687. doi:
10.1038/nature21075. URL https://doi.org/10.1038/nature21075.

Siyuan Bian, Chenghao Xu, Yuliang Xiu, Artur Grigorev, Zhen Liu, Cewu Lu, Michael J Black, and
Yao Feng. Chatgarment: Garment estimation, generation and editing via large language models.
2025.

Ramalingaiah Boda, Biranchi Panda, and Shanmugam Kumar. Bioinspired design of isotropic lattices
with tunable and controllable anisotropy. Advanced Engineering Materials, 27(11):2401881, 2025.
doi: https://doi.org/10.1002/adem.202401881. URL https://advanced.onlinelibrary.
wiley.com/doi/abs/10.1002/adem.202401881.

Yu-Chin Chan, Faez Ahmed, Liwei Wang, and Wei Chen. METASET: Exploring Shape and Property
Spaces for Data-Driven Metamaterials Design. Journal of Mechanical Design, 143(3), 2020.

Zeyao Chen, Yi Min Xie, Xian Wu, Zhe Wang, Qing Li, and Shiwei Zhou. On hybrid cellular
materials based on triply periodic minimal surfaces with extreme mechanical properties. Ma-
terials & Design, 183:108109, 2019. ISSN 0264-1275. doi: https://doi.org/10.1016/j.matdes.
2019.108109. URL https://www.sciencedirect.com/science/article/pii/
S0264127519305477.

Jiin Choi, Seung Won Lee, and Kyung Hoon Hyun. Genpara: Enhancing the 3d design editing process
by inferring users’ regions of interest with text-conditional shape parameters. In Proceedings of
the 2025 CHI Conference on Human Factors in Computing Systems, CHI ’25, New York, NY,
USA, 2025. Association for Computing Machinery. ISBN 9798400713941. doi: 10.1145/3706598.
3713502. URL https://doi.org/10.1145/3706598.3713502.

Zhaohui Fan, Renjing Gao, and Shutian Liu. Thermal conductivity enhancement and thermal
saturation elimination designs of battery thermal management system for phase change materials
based on triply periodic minimal surface. Energy, 259, 2022.

Joseph W. Fisher, Simon W. Miller, Joseph Bartolai, Timothy W. Simpson, and Michael A.
Yukish. Catalog of triply periodic minimal surfaces, equation-based lattice structures, and
their homogenized property data. Data in Brief, 49:109311, 2023. ISSN 2352-3409. doi:
https://doi.org/10.1016/j.dib.2023.109311. URL https://www.sciencedirect.com/
science/article/pii/S2352340923004298.

10

https://arxiv.org/abs/2306.05261
https://advanced.onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202109725
https://advanced.onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202109725
https://doi.org/10.1038/nature21075
https://advanced.onlinelibrary.wiley.com/doi/abs/10.1002/adem.202401881
https://advanced.onlinelibrary.wiley.com/doi/abs/10.1002/adem.202401881
https://www.sciencedirect.com/science/article/pii/S0264127519305477
https://www.sciencedirect.com/science/article/pii/S0264127519305477
https://doi.org/10.1145/3706598.3713502
https://www.sciencedirect.com/science/article/pii/S2352340923004298
https://www.sciencedirect.com/science/article/pii/S2352340923004298

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tobias Frenzel, Muamer Kadic, and Martin Wegener. Three-dimensional mechanical metamaterials
with a twist. Science, 358(6366):1072–1074, 2017. doi: 10.1126/science.aao4640. URL https:
//www.science.org/doi/abs/10.1126/science.aao4640.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Ian Huang, Guandao Yang, and Leonidas Guibas. Blenderalchemy: Editing 3d graphics with
vision-language models. In European Conference on Computer Vision, pp. 297–314. Springer,
2024.

Benjamin Jenett, Christopher Cameron, Filippos Tourlomousis, Alfonso Parra Rubio, Megan Ochalek,
and Neil Gershenfeld. Discretely assembled mechanical metamaterials. Science Advances, 6(47),
2020.

R Kenny Jones, Paul Guerrero, Niloy J Mitra, and Daniel Ritchie. Shapelib: designing a library of
procedural 3d shape abstractions with large language models. arXiv preprint arXiv:2502.08884,
2025.

Vikram Kumaran, Jonathan Rowe, Bradford Mott, and James Lester. Scenecraft: automating
interactive narrative scene generation in digital games with large language models. In Proceedings
of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, volume 19,
pp. 86–96, 2023.

Doksoo Lee, Wei (Wayne) Chen, Liwei Wang, Yu-Chin Chan, and Wei Chen. Data-driven design
for metamaterials and multiscale systems: A review. Advanced Materials, 36(8):2305254, 2024.
doi: https://doi.org/10.1002/adma.202305254. URL https://advanced.onlinelibrary.
wiley.com/doi/abs/10.1002/adma.202305254.

Beichen Li, Rundi Wu, Armando Solar-Lezama, Liang Shi, Changxi Zheng, Bernd Bickel, and
Wojciech Matusik. VLMaterial: Procedural material generation with large vision-language
models. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=wHebuIb6IH.

Feng Li, Renrui Zhang, Hao Zhang, Yuanhan Zhang, Bo Li, Wei Li, Zejun Ma, and Chunyuan Li.
Llava-next-interleave: Tackling multi-image, video, and 3d in large multimodal models. arXiv
preprint arXiv:2407.07895, 2024.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
Llava-next: Improved reasoning, ocr, and world knowledge, January 2024. URL https://
llava-vl.github.io/blog/2024-01-30-llava-next/.

Peiqing Liu, Bingteng Sun, Jikai Liu, and Lin Lu. Parametric shell lattice with tailored mechanical
properties. Additive Manufacturing, 60:103258, 2022. ISSN 2214-8604. doi: https://doi.org/10.
1016/j.addma.2022.103258.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Liane Makatura, Bohan Wang, Yi-Lu Chen, Bolei Deng, Chris Wojtan, Bernd Bickel, and Wojciech
Matusik. Procedural metamaterials: A unified procedural graph for metamaterial design. ACM
Trans. Graph., 42(5), July 2023. ISSN 0730-0301. doi: 10.1145/3605389.

Liane Makatura, Michael Foshey, Bohan Wang, Felix Hähnlein, Pingchuan Ma, Bolei Deng, Megan
Tjandrasuwita, Andrew Spielberg, Crystal Owens, Peter Yichen Chen, Allan Zhao, Amy Zhu, Wil
Norton, Edward Gu, Joshua Jacob, Yifei Li, Adriana Schulz, and Wojciech Matusik. How Can
Large Language Models Help Humans in Design and Manufacturing? Part 1: Elements of the
LLM-Enabled Computational Design and Manufacturing Pipeline. Harvard Data Science Review,
(Special Issue 5), dec 23 2024a. https://hdsr.mitpress.mit.edu/pub/15nqmdzl.

11

https://www.science.org/doi/abs/10.1126/science.aao4640
https://www.science.org/doi/abs/10.1126/science.aao4640
https://advanced.onlinelibrary.wiley.com/doi/abs/10.1002/adma.202305254
https://advanced.onlinelibrary.wiley.com/doi/abs/10.1002/adma.202305254
https://openreview.net/forum?id=wHebuIb6IH
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Liane Makatura, Michael Foshey, Bohan Wang, Felix Hähnlein, Pingchuan Ma, Bolei Deng, Megan
Tjandrasuwita, Andrew Spielberg, Crystal Owens, Peter Yichen Chen, Allan Zhao, Amy Zhu, Wil
Norton, Edward Gu, Joshua Jacob, Yifei Li, Adriana Schulz, and Wojciech Matusik. How Can
Large Language Models Help Humans in Design And Manufacturing? Part 2: Synthesizing an
End-to-End LLM-Enabled Design and Manufacturing Workflow. Harvard Data Science Review,
(Special Issue 5), dec 23 2024b. https://hdsr.mitpress.mit.edu/pub/hiii8fyn.

Timon Meier, Vasileios Korakis, Brian W. Blankenship, Haotian Lu, Eudokia Kyriakou, Savvas
Papamakarios, Zacharias Vangelatos, M. Erden Yildizdag, Gordon Zyla, Xiaoxing Xia, Xiaoyu
Zheng, Yoonsoo Rho, Maria Farsari, and Costas P. Grigoropoulos. Scalable phononic metamateri-
als: Tunable bandgap design and multi-scale experimental validation. Materials & Design, 252:
113778, 2025. ISSN 0264-1275. doi: https://doi.org/10.1016/j.matdes.2025.113778. URL https:
//www.sciencedirect.com/science/article/pii/S0264127525001984.

Mehran Mirramezani, Anne S. Meeussen, Katia Bertoldi, Peter Orbanz, and Ryan P Adams. De-
signing mechanical meta-materials by learning equivariant flows. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
id=VMurwgAFWP.

Muhammad and C. W. Lim. Phononic metastructures with ultrawide low frequency three-dimensional
bandgaps as broadband low frequency filter. Scientific Reports, 11(1), 2021.

Kiyohiro Nakayama, Jan Ackermann, Timur Levent Kesdogan, Yang Zheng, Maria Korosteleva,
Olga Sorkine-Hornung, Leonidas Guibas, Guandao Yang, and Gordon Wetzstein. Aipparel: A
large multimodal generative model for digital garments. Computer Vision and Pattern Recognition
(CVPR), 2025.

Julian Panetta, Qingnan Zhou, Luigi Malomo, Nico Pietroni, Paolo Cignoni, and Denis Zorin. Elastic
textures for additive fabrication. ACM Trans. Graph., 34(4), July 2015. ISSN 0730-0301. doi:
10.1145/2766937.

Zhao Qin, Gang Seob Jung, Min Jeong Kang, and Markus J. Buehler. The mechanics and design of a
lightweight three-dimensional graphene assembly. Science Advances, 3(1), 2017.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M. Pawan Kumar, Emilien Dupont, Francisco J. R. Ruiz, Jordan S. Ellenberg, Pengming Wang,
Omar Fawzi, Pushmeet Kohli, and Alhussein Fawzi. Mathematical discoveries from program search
with large language models. Nature, 625(7995):468–475, Jan 2024. ISSN 1476-4687. doi: 10.1038/
s41586-023-06924-6. URL https://doi.org/10.1038/s41586-023-06924-6.

Bingteng Sun, Xin Yan, Peiqing Liu, Yang Xia, and Lin Lu. Parametric plate lattices: Modeling and
optimization of plate lattices with superior mechanical properties. Additive Manufacturing, 72:
103626, 2023a. ISSN 2214-8604. doi: https://doi.org/10.1016/j.addma.2023.103626.

Chunyi Sun, Junlin Han, Weijian Deng, Xinlong Wang, Zishan Qin, and Stephen Gould. 3d-gpt:
Procedural 3d modeling with large language models. arXiv preprint arXiv:2310.12945, 2023b.

James Utama Surjadi, Bastien F G Aymon, Molly Carton, and Carlos M Portela. Double-network-
inspired mechanical metamaterials. Nat Mater, April 2025.

Zhengyi Wang, Jonathan Lorraine, Yikai Wang, Hang Su, Jun Zhu, Sanja Fidler, and Xiaohui
Zeng. Llama-mesh: Unifying 3d mesh generation with language models. arXiv preprint
arXiv:2411.09595, 2024.

Benjamin C. White, Anthony Garland, Ryan Alberdi, and Brad L. Boyce. Interpenetrating lattices with
enhanced mechanical functionality. Additive Manufacturing, 38:101741, 2021. ISSN 2214-8604.
doi: https://doi.org/10.1016/j.addma.2020.101741. URL https://www.sciencedirect.
com/science/article/pii/S2214860420311131.

Yonglai Xu, Hao Pan, Ruonan Wang, Qiang Du, and Lin Lu. New families of triply periodic minimal
surface-like shell lattices. Additive Manufacturing, 77:103779, 2023. ISSN 2214-8604. doi:
https://doi.org/10.1016/j.addma.2023.103779.

12

https://www.sciencedirect.com/science/article/pii/S0264127525001984
https://www.sciencedirect.com/science/article/pii/S0264127525001984
https://openreview.net/forum?id=VMurwgAFWP
https://openreview.net/forum?id=VMurwgAFWP
https://doi.org/10.1038/s41586-023-06924-6
https://www.sciencedirect.com/science/article/pii/S2214860420311131
https://www.sciencedirect.com/science/article/pii/S2214860420311131

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Tianyang Xue, Haochen Li, Longdu Liu, Paul Henderson, Pengbin Tang, Lin Lu, Jikai Liu, Haisen
Zhao, Hao Peng, and Bernd Bickel. Mind: Microstructure inverse design with generative hybrid
neural representation, 2025. URL https://arxiv.org/abs/2502.02607.

Yutaro Yamada, Khyathi Chandu, Yuchen Lin, Jack Hessel, Ilker Yildirim, and Yejin Choi. L3go:
Language agents with chain-of-3d-thoughts for generating unconventional objects. arXiv preprint
arXiv:2402.09052, 2024.

Yanyan Yang, Lili Wang, Xiaoya Zhai, Kai Chen, Wenming Wu, Yunkai Zhao, Ligang Liu, and
Xiao-Ming Fu. Guided diffusion for fast inverse design of density-based mechanical metamaterials,
2024a. URL https://arxiv.org/abs/2401.13570.

Yue Yang, Fan-Yun Sun, Luca Weihs, Eli VanderBilt, Alvaro Herrasti, Winson Han, Jiajun Wu, Nick
Haber, Ranjay Krishna, Lingjie Liu, et al. Holodeck: Language guided generation of 3d embodied
ai environments. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 16227–16237, 2024b.

Zhenze Yang and Markus J. Buehler. High-throughput generation of 3d graphene metamaterials
and property quantification using machine learning. Small Methods, 6(9):2200537, 2022. doi:
https://doi.org/10.1002/smtd.202200537.

Haocheng Yuan, Jing Xu, Hao Pan, Adrien Bousseau, Niloy J. Mitra, and Changjian Li. Cadtalk:
An algorithm and benchmark for semantic commenting of cad programs. In 2024 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3753–3762, 2024. doi:
10.1109/CVPR52733.2024.00360.

Feng Zhou, Ruiyang Liu, Chen Liu, Gaofeng He, Yong-Lu Li, Xiaogang Jin, and Huamin Wang.
Design2garmentcode: Turning design concepts to tangible garments through program synthesis.
2025.

Ata Çelen, Guo Han, Konrad Schindler, Luc Van Gool, Iro Armeni, Anton Obukhov, and Xi Wang.
I-design: Personalized llm interior designer, 2024.

A APPENDIX

B ECOSYSTEM DESIGN

The four components of the MetaGen ecosystem work together to achieve our design goals. We
outline these goals and the design and organization decisions that achieve them here:

• MetaDB
– Design Goals: Collect existing knowledge in a reconfigurable, reusable, and task

independent manner
– Organization

* Primary Elements: Material Definitions; Provenance
* Derived Elements: Geometry; Computed Properties

• MetaBench
– Design Goals:
– Organization:

* Primary Elements: Structured Task Definitions; Target Data; References, Evalua-
tion Procedures

* Derived Elements: Query Strings; Example Responses
• MetaDSL

– Design Goals: Eventual Comprehensiveness via Extensibility; Supports Hybrid Struc-
tures Easily; Ease of Use

– Design Decisions: Extensible Embedded Python DSL for extensibility and Ease-of-Us;
Separation of Front-End Language from Geometry Kernel

13

https://arxiv.org/abs/2502.02607
https://arxiv.org/abs/2401.13570

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

• MetaAssist

– Design Goals: Usable for general engineers; single interface across design silos;
possibility of integrating unstructured data (literature, sketches, etc.)

– Elements: Interactive Interface; Trained Baseline Models

Each component supports the others, as illustrated in Figure 7

MetaDB MetaBench

MetaDSL MetaAssist

Generates

Tr
ai
ns

Outputs

Interprets

Ev
al
ua

te
s

References

Re
pr
es

en
ts

G
en

er
at
es

Figure 7: Relationships between MetaGen ecosystem components.

B.1 ECOSYSTEM DEVELOPMENT AND INSIGHTS

The elements of this ecosystem were developed in concert with one another, going through 3 major
iterations before arriving at their current state. MetaDSL was at the heart of each iteration, as the
representation has a direct impact on the efficacy of the other three components:

• MetaDB needs a representation that captures diverse structures, but also offers robust
pathways for scalable (and, in this case, VLM-driven) structure generation, hybridization,
mutation, sampling, etc.

• MetaBench can only be used for training and evaluation if it is built atop a large, diverse
database.

• MetaAssist relies on a strong training corpus from MetaBench. MetaAssist also hinges on
the intelligibility of the representation, and the model’s ability to interpret, generate, and
modify programs according to user input.

We defer the language-specific development details to Section C.4.

Outside the scope of the DSL, we also found that dataset management and curation posed a major
hurdle. We improved diversity by continuously mining metamaterial literature for additional seed
program designs. We expressed these seed programs as-parametrically-as-possible to allow for
expert-driven sampling. As we scaled the dataset, we also realized that it would be critical to keep
track of the programs’ sources and relationship to one another. This information is especially useful
for navigation, contextualization and diversity management, particularly as the database grows in
response to community effort. To manage this, we introduced a formalized provenance system for
MetaDB.

C METADSL

C.1 ADDITIONAL IMPLEMENTATION DETAILS

We implemented the core functionality of MetaDSL (version 1.1.0) with two goals in mind. First, we
wanted full support for the metamaterials that were expressible in our geometry kernel, ProcMeta.
Second, we wanted our infrastructure to easily permit extensions in the future without invalidating
existing programs. We detail the current state of each feature category in our language: convex
polytopes, skeletons, lifting procedures, tiles, and patterns. For a full API description of the accessible
functions, please refer to Section I.2. Figure 8 shows an overview of the compiler architecture.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Embedded
DSL

Structure
Translator

Python
Code

MetaDSL
Structure

Geometry
Kernel

(ProcMeta)

Extensible Frontend Retargetable Backend

Figure 8: Overview of MetaDSL’s implementation. MetaDSL programs are written in an embedded
Python DSL frontend to allow for ease of use and extensibility. These structures are compiled into a
structured intermediate representation, and a backend Translator converts these structures into geome-
try kernel instructions. In our implementation we used the geometry kernel from ProcMeta Makatura
et al. (2023). By separating the front-end representation from the backend geometry kernel, MetaDSL
is flexible to both be extended in its frontend representation, and retargettable to different geometry
backends for new applications, while keeping a compatible material representation.

Convex Polytopes (CP) Currently, all of our programs make use of three pre-defined CPs (as
inspired by ProcMeta): cuboid, triPrism and tet. The infrastructure to define custom convex
polytopes exists, and most operators up to and including Tiles should generalize to such CPs. However,
the patterning operations would need to be generalized before being able to operate on arbitrary CPs.

Skeletons Then, a skeleton is constructed via a set of vertices and edges that are positioned
relative to a common CP. Each vertex is positioned on a particular CP entity (corner, edge, face,
interior). Each CP entity is accessed via a semantically meaningful alias, permitting calls such as
e.g. vertex(cuboid.edges.BACK LEFT). The vertex call also optionally takes a list t⃗ of
interpolation values used to position the vertex within the entity. If t⃗ is omitted, the returned point
will be at the entity’s midpoint (edge) or centroid (face/interior). Presently, corners ignore weights
(since they cannot be moved); edges use linear interpolation; and faces use barycentric coordinates if
they contain 3 vertices or bilinear interpolation for quads. If a CP with different polygonal faces (e.g.
pentagons) were implemented, an appropriate lower-dimensional vertex positioning specification
would need to be devised. Internally, the vertices are stored using weights over a full list of the CP
corners, so additional specification interfaces can easily be defined.

An ordered list of vertices can then be strung together into simple (non-branching, self-intersection-
free) open or closed paths via the Polyline or Curve commands. Each edge contained in a path
infers and maintains information about its incidence on the CP – including whether it is contained
within a face, through the CP volume, coincident with a CP edge, etc. This is very useful when
determining lifting function compatibility, as some procedures can only be applied when e.g. every
path edge is contained within a CP face.

Then, a skeleton is used to combine a set of vertices or polylines/curves into a larger, more
complex element, over which additional organizational information is computed. Skeletons infer the
connected components formed by the inputs, then categorize them based on their topology. Thus, a
skeleton may be labeled as a simple closed loop, even if the input is a set of open paths. Again, these
insights are critical for determining the skeleton’s compatibility with downstream operations, such
as lifting procedures. We also included infrastructure for the skeletons to infer and track their total
incidence on each entity of the reference CP, including the dimensionality (e.g. point or line) of an
intersection – however, this feature is not fully implemented in the current MetaDSL version.

Lifting Procedures Lifting procedures are used to transform the skeleton into a volumetric ob-
ject. Simple procedures like Spheres instantiate a sphere of the given radius centered at each
vertex in the skeleton. Similarly, UniformBeams instantiates a beam of the given thickness
centered along each path of the input skeleton. The shell operators (UniformDirectShell,
UniformTPMSShellViaMixedMinimal, and UniformTPMSShellViaConjugation)
solve for a surface that spans the provided boundary curve before expanding the surface to the
desired thickness. Our shell and beam procedures mimic those defined by ProcMeta, as they cover

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

a wide range of metamaterial classes and were already (by construction) natively supported by our
geometry kernel. Our Curve and Polyline commands correspond to their smooth/non-smooth
edge chains, respectively. Unlike the original, we chose to explicitly separate several operators that
were previously lumped together, which clarified and minimized the number of exposed parameters
for each call.

Tiles To create an embedded, patternable tile, we provide a list of one or more lifted skeletons as
input to the Tile operator. The tile operator also takes as input the embedding information, which
will be used to embed the CP and, in turn, each vertex of the contained skeleton(s). To obtain the
embedding information, each CP implements at least one embed function, which takes high level
parameters such as the min/max position of the CP’s AABB.

Because of constraints imposed by ProcMeta – that these must form a partition of the unit cell – our
code currently treats these CPs with some additional assumptions. Specifically, though the cuboid
need not be a cube, it must have right angles everywhere, and edge lengths must be 1/2k for some
positive integer k; in practice, k ∈ [1, ..4]. The triPrism is assumed to be an isoceles triangle with a
right angle. The tet similarly has a base that is an isoceles triangle with a right angle, and a fourth
vertex that is located directly above one of the 45 degree angles. These assumptions would ideally be
relaxed in a future version of MetaDSL.

Patterns Patterns are currently the most restricted feature of MetaDSL, as we restrict our dataset to
programs that can be compiled down to the language and solver set described by ProcMeta. Thus,
rather than extending our structures to a more arbitrary tiling in R3, all of our structures have a
translational unit residing in a unit cube. The pattern operators were written in a way that allows for
additional, extended tiling procedures. We prioritized mirrors, because they are sufficient to express
a wide range of common metamaterial designs, and they are often used in generative metamaterial
design schemes, as the connectivity requirements are simpler than most other operations. We also
have limited support for other operations such as Rotate180 and Translate, which can be used
inside the Custom pattern specifier. Currently, these limited operations are only defined for specific
transformations on cuboids. We look forward to an expanded MetaDSL that includes full support for
these patterning operations, at least over the pre-built CPs that currently exist. In the long term, we
envision a patterning system that extends well beyond this, to support large, potentially aperiodic or
asymmetric tilings composed of one or more tiles with arbitrary CPs. This is a very difficult problem,
and will itself present an interesting set of research directions, including how to intuitively specify
these patterns and how to characterize their compatibility/validity.

C.2 EXAMPLE PROGRAMS

Example program-structure pairs are listed in Figure 9 and Figure 10. Many additional models can
be found in the accompanying data.

C.3 METADSL VS. PROCMETA

As suggested by Section B.1 and the architecture diagram in Figure 8, MetaDSL is distinct from
and strictly more general than ProcMeta, with a design philosophy all its own. Our approach was
motivated by our early experiments with ProcMeta, which revealed a critical shortcoming: important
information was represented implicitly in the ProcMeta GUI interface, and was entirely absent from
the ProcMeta graph representation. To make this information accessible to LLMs (and more easily
accessible to humans), we implemented a programmatic interface, MetaDSL, that compiles to the
same geometry kernel as ProcMeta, but provides several practical advantages (see Table 2).

Most importantly, MetaDSL introduces explicit, referenceable bounding volumes (BVs), which are
critical for verifying and enforcing the preconditions of geometry operations. In the ProcMeta GUI,
BVs exist only as non-referenceable visual aids; users must manually align coordinates, and no auto-
mated compatibility checks are possible. ProcMeta graphs omit BVs entirely. MetaDSL represents
BVs through a CP abstraction, which enforces constraints by construction, enables type checking,
and cleanly separates tile content from patterning, improving modularity and reconfigurability. These
features align the representation more closely with the valid shape space, aiding both human de-
signers and LLMs in producing valid, diverse structures. MetaDSL programs also make heavy use

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

from metagen import *

def make structure (shell thickness =0.03) −> Structure :
v0 = vertex (tet .edges.BOTTOM LEFT)
v1 = vertex (tet .edges.TOP LEFT)
v2 = vertex (tet .edges.TOP RIGHT)
v3 = vertex (tet .edges.BOTTOM RIGHT)

c0 = Curve([v0, v1, v2, v3, v0])

skel = skeleton ([c0])
shell = UniformTPMSShellViaConjugation(skel, shell thickness)

embedding = tet .embed(0.5)
tile = Tile ([shell], embedding)
pat = TetFullMirror ()
obj = Structure (tile , pat)

return obj

Figure 9: Example program and corresponding geometry for the Schwarz P structure.

from metagen import *

def make structure (beamRadius narrow=0.03, beamRadius wide=0.1) −> Structure:
embed = cuboid.embed(0.5, 0.5, 0.5,

cornerAtAABBMin=cuboid.corners.FRONT BOTTOM LEFT)

v0 = vertex (cuboid. corners .FRONT BOTTOM LEFT)
v1 = vertex (cuboid. corners .BACK TOP RIGHT)
p0 = Polyline ([v0, v1])

skel = skeleton ([p0])
liftedSkel = SpatiallyVaryingBeams(skel , [[0, beamRadius narrow],

[0.5, beamRadius wide],
[1, beamRadius narrow]])

tile = Tile ([liftedSkel], embed)
pat = Custom(Rotate180([cuboid.edges.BACK RIGHT,

cuboid.edges.BACK LEFT], True,
Rotate180([cuboid.edges.TOP RIGHT], True)))

obj = Structure (tile , pat)

return obj

Figure 10: Example program and corresponding geometry for the pentamode structure.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

MetaDSL ProcMeta

Compactness Shorter, less boilerplate. Easier to read, less likely to
exceed token limits

Longer, more boilerplate. Exceeds context of small,
lightweight models.

Modules Highly reusable. Patterns defined in composable chunks
(eg TetMirror), independent of tile contents. Skeletons
defined independent of embedding, easily scale to differ-
ent Tiles.

No support. Limited reuse. Patterns can’t exist indepen-
dently; no pre-built Patterns. Absolute Skeletons, cannot
easily be rescaled.

Relative vs. Absolute Po-
sitioning

Positions and transforms use local coordinates (i.e. [0,1])
wrt named entities (cuboid.edges.TOP_LEFT) in
abstract polytopes. Robust for generation, clear design
space bounds, more intuitive.

Positions and transforms use absolute coordinates. Eas-
ily misaligned, difficult to visualize without plotting. Un-
suitable for VLMs, which struggle with computation/s-
patial tasks.

BV representation Explicit BV with named, referenceable entities. Facili-
tates verifiable parametric design, e.g., vertex constrained
to given BV edge. Allows type/error checking.

Implicit or Absent BV: drawn as a visual aid in the
GUI, but not represented/preserved in the graph. Never
referenceable.

Type/Error checking Type/incidence tracking to ensure compatibility – e.g.
conjugate TPMS require a closed loop where every edge
lies in a BV face, and every BV face contains at least 1
loop edge. This is known from our representation and ver-
ified by downstream operations. Helps determine valid
substitutions for mutations, even when large changes are
proposed, leading to greater diversity. Critical for com-
plex patterning, to determine compatibility of proposed-
adjacent faces.

None. The burden of verification (for e.g. vertices on BV
edges or edges in BV faces) is left to the user – infeasible
for agentic design. Bad inputs crash ProcMeta with no
explanation or suggested improvements.

Simplified Operations Abstractions simplify element creation; e.g., Sphere()
takes a center point and a radius, as one would expect.
Easier for humans and LLMs.

Strict compliance with the given graph interface makes
some operations cumbersome; e.g. for a sphere, thicken
a 0-length edge chain over 2 co-located vertices

Semantic information Complete support. Comments and meaningful variable
names improve readability and admit metadata (prove-
nance, parameter bounds)

No support.

Parameters Complete support. Allows parametrized models and
family generators.

None. Explicit positions etc. only. Variations defined as
separate graphs. Difficult/impossible to infer constraints
or design space from the graph description.

Loops, Functions Supports complex logic that would be tedious to im-
plement otherwise. Functions are especially useful for
hybridization, as programs can be directly reused and/or
rescaled.

No support. Each instance must be created/connected
individually. Even hybridization is difficult, because
subgraphs cannot be inserted directly – the identifier/ref-
erences of each node must be updated.

Table 2: Detailed differences between the interfaces for MetaDSL and ProcMeta.

of programmatic features absent from ProcMeta graphs. Semantic variable names, comments (avg.
4/program), and parametric variables improve human interpretability and support natural-language
reasoning for LLMs. Loops and helper functions are also common, appearing in 1,744 and 2,103 of
the 13,284 core programs respectively. These features allow compact, self-consistent definitions that
would be unwieldy if unrolled or inlined into a ProcMeta graph.

We tested LLM-based augmentation using ProcMeta JSON instead of MetaDSL. MetaDSL yielded:
(1) higher code validity (75% vs. 54%), (2) more structurally focused reasoning rather than boilerplate
handling, and (3) lower token usage (580 vs. 1,049 tokens on average for o4). Beyond these immediate
benefits for LLM usage and dataset generation, our DSL interface also makes MetaDSL a more
flexible platform from which to build further extensions, which facilitates its intended purpose as the
seed of a wider community project.

Extensibility The MetaDSL interface naturally generalizes to shape spaces that would be difficult to
represent in ProcMeta’s graph approach. For example, implicit functions are common in metamaterial
design, but they would be cumbersome to represent in ProcMeta’s graph. However, MetaDSL could
naturally include them: rather than an explicit Skeleton, we could use the implicit function to define
a SkeletonGenerator; this could then be fed to an Implicit lifting function, which would solidify a
given isovalue range. Non-trivial patterning would also be possible through MetaDSL’s Custom
pattern interface. For example, given a set of mutually compatible unit cells (like the left/right faces
of Figure 2a,b,c,f), simple translations could combine them into an elongated, interleaved tile (e.g.
ABCCBA). With enhanced compatibility determination, we could also create Pattern procedures
for scholastic or aperiodic tilings. This will allow MetaDSL to expand alongside developments in
metamaterial design.

We implemented a proof-of-concept for both of these extensions. An example is available in Figure 11.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

from metagen import *
from sdf import *
from tpms helpers import *
from common tpms import gyroid

def make structure (isoval min : float =−0.2, isoval max : float =0.2, l :
float =1.0) −> Structure :

cv = CartesianVolume(cuboid. corners .FRONT BOTTOM RIGHT,
cuboid. corners .FRONT BOTTOM LEFT,

1,
cuboid. corners .FRONT TOP RIGHT, 1,
cuboid. corners .BACK BOTTOM RIGHT,

1)

shell sdf = sheet isosurface pair (gyroid , isoval min , isoval max
)

shell = cv.liftedSkelsFromSDF(shell sdf)
print (f”Num ccs: { shell [0]. skel .num connected components()}”)
print (f”Some cc on all faces : { shell [0]. skel .

is some cc on all faces ()}”)

embedding and tiling
side len = 1.0
embedding = cuboid.embed(0.5*side len , side len , 2* side len)
tile = Tile (shell , embedding)
pat = Custom(Translate(cube. faces .FRONT, cube.faces.BACK, True,

Translate (cube. faces .BOTTOM, cube.faces.TOP,
True,
Translate (cube. faces .LEFT, cube.faces .

RIGHT, True))))
return Structure (tile , pat)

Figure 11: Example program and corresponding geometry for the implicit gyroid, with a stretched
unit cell generated by embedding the Tile with a non-unit aspect ratio.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C.4 LANGUAGE DEVELOPMENT PROCESS AND INSIGHTS

As mentioned in Section B.1, our geometry representation went through 3 major stages.

In the first iteration, we represented metamaterials using ProcMeta graphs directly. This had several
issues: it was not compact enough for the context windows of small, lightweight models; intuitiveness
and editability suffered dramatically without the aid of a GUI editing tool; the graphs’ use of absolute
coordinates proved challenging for LLMs (which struggle with spatial reasoning); and the program
manipulations (e.g. hybridization, mutation) were unwieldy and fragile, with low validity rates that
prohibited effective dataset scaling and diversification. This limited the breadth of MetaDB and
MetaBench, while curtailing the efficacy of MetaAssist.

To address this, we designed a higher-level language that became MetaDSL-v0. This approach had a
compact, modular, bilevel design that was embedded within Python and thus permitted semantically
meaningful content; as such, it solved the context length and human editability issues of ProcMeta.
It allowed for relative positioning, which mitigated the issues with coordinates while improving
components’ reusability. It also allowed for dataset augmentation through programmatic mutation,
and improved the efficacy of VLM-based hybridization and mutation – we attributed this jump to our
Python embedding, as VLMs show great facility with Python. Still, MetaDSL-v0 remained fragile:
generated programs frequently failed, and database augmentations showed limited diversity.

Analysis of MetaDSL-v0’s failure modes offered several insights; we arrived at the current MetaDSL
by addressing each in turn. First, we noticed that VLMs often used hallucinated synonyms, such
as TOP_LEFT vs LEFT_TOP; we added overloads for all reasonable variations of our functions
and attributes. We also found that it was critical to abrogate as much spatial reasoning from the
VLM as possible: a full 1/3 of failures were due to the VLM’s improper positioning of vertices that
form the concrete polytope tiles. We circumvented this through abstracted tile embedding functions,
which generate valid embeddings from simple, meaningful parameterizations. In our final large-scale
change, we swapped the relative order of lifting functions and tile embeddings (previously Embed
then Lift; now, Lift then Embed). This change improved the modularity and compositionality while
reducing verbosity – for example, this change allows multiple skeletons to reside in a shared Tile
embedding, such that they can be patterned as a single unit. This change also paved the way for
patterning of more diverse geometry-generation methods in future extensions. As a result, MetaDSL
showed dramatic improvements in generation/mutation rates, and – in turn – significantly more
diverse LLM-driven hybridizations.

D METADB

D.1 DATABASE LAYOUT

MetaDB is structured into 4 primary directories:

• literature: Literature references that are the sources for hand-authored models.

• models: MetaDSL programs and their outputs.

• generators: Programs that create and augment models

• benchmark: The MetaBench benchmark

Data items in MetaDB can reference other items by path. These paths are either absolute (start with a
forward slash “/”) or relative (no leading slash). Absolute paths are assumed to start at the root of the
database structure. For example, a model may reference the paper that defined it in its sources as
/literature/....

D.2 PROVENANCE INFORMATION

Each Model in MetaDB starts with a triple-single-quote (’’’) delimited yaml string called the
header-block. This contains useful metadata about the program, including provenance information
about how it was created, and what sources it draws on. Provenance information is recorded in two
places in the header block.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

The primary location is in the “sources” key. This is a dictionary where the keys are MetaDB
paths to literature, models, or generators that are the source of this model. The secondary location
is in file_info→generator_info. For models that are autogenerated via enumeration or
augmentation this section contains a MetaDB path to the script that generated the file, the arguments
that were passed into that script, and specific structure_details that specified this particular
model.

D.3 HYBRIDIZATION IMPLEMENTATION

We hybridized hand-authored models using calls to OpenAI’s o4-mini model using a reasoning effort
of ”medium”. For every pair and triplet of authored models, we used the following prompt template:

You have access to a DSL whose specification is as follows :
{ api description }

I want you to help discover unique new programs. Do this by genetic crossover based on these
parent Metagen DSL programs:

1)
‘‘‘ python
{program 1 code}
‘‘‘

2)
‘‘‘ python
{program 2 code}

Combine relevant structural / logical features from each sample into one coherent DSL program.
Be sure to :
− Respect the DSL syntax strictly .
− Maintain correctness in the final structure definition .
− Keep the final program well−formed and ready to be run as a standard Metagen DSL generator.
− Provide minimal descriptive comments.

Return only the resulting code in a single code block .

where api_description is the MetaDSL API specification given in Section I, and the program
code is listed excluding the header block.

D.4 MUTATION IMPLEMENTATION

Our mutation script loads a DSL model from file and constructs the corresponding Structure object
in memory. Then, it is able to modify the structure along 4 different axes. Two of the axes allow
discrete adjustments: (1) switching any Polyline to a Curve or vice versa; and (2) selecting
a different lifting procedure from the set of options compatible with the skeleton (as inferred by
our type system). The remaining modification axes permit continuous variations: (3) repositioning
a vertex within its CP element; and (4) selecting a different thickness specification for any lifting
procedures. To generate a given variant, each modification axis was permitted with a pre-specified
probability; we used Pr = 0.7 for both discrete changes, Pr = 0.9 for vertex perturbation, and
Pr = 0.98 for thickness perturbation. Once a given perturbation category was permitted, we looped
over each opportunity for said modification within our structure specification, and evaluated a random
number against the same respective probability to decide whether this specific instance should be
modified or not. For example, with Pr = 0.7 we allow Polyline/Curve swaps in the variant;
then, each time a candidate Polyline/Curve is identified, we enact the swap with Pr = 0.7.
Once an instance has been approved, the specific replacement value was chosen at random from
the appropriate set of options (if more than one available). The updated structure is then written to
file using the dslTranslator, which writes a DSL model from a Structure object. Additional
mutation procedures could be implemented to further increase the vawriety of resulting structures.

Provenance Information is stored in the sources section of each program’s header block. This is a
dictionary where the keys are database paths.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

D.5 MATERIAL PROPERTIES

Our simulation provides the 6 × 6 elastic tensor C in Voigt notation, along with the compliance
matrix, S = C−1. From this, we extract 18 common material properties:

• E: Young’s Modulus, Voigt-Reuss-Hill (VRH) average, relative to Ebase.

• E1, E2, E3: Directional Young’s Moduli, relative to Ebase

• G: Shear Modulus (VRH average), relative to Ebase

• G23, G13, G12: Directional Shear Moduli, relative to Ebase

• ν: Poisson ratio (VRH average)

• ν12, ν13, ν23, ν21, ν31, ν32: Directional Poisson ratios

• K: Bulk modulus (VRH average), relative to Ebase

• A: Anisotropy (universal anisotropy index)

• V : Volume Fraction.

D.6 ENSURING METADB QUALITY

MetaDB is founded on a strong basis of expert programs, including 50 hand-authored examples
sourced from diverse, singularly-developed designs in metamaterial literature. This large, diverse
collection of seeds is unique to MetaDB, as most large datasets are derived exclusively from a small
set of procedural generators. For example, Xue et al. (2025) creates a database of 180k samples,
78% of which stem from variations of the topologies in Elastic Textures (Panetta et al., 2015). The
remaining 22% stem from similar generators for planar- and curved-shell structures (Liu et al., 2022;
Sun et al., 2023a). Because of the reliance on such generators, Xue et al. (2025) does not offer any
representation of e.g. CSG-style structures like the Bucklicrystal of Babaee et al. (2013). However,
the bucklicrystal is part of our database, as shown in Figure 4(i), center). MetaDB also already
includes Elastic Textures, and similar generators could be implemented for the remaining sources
mentioned above.

To ensure that MetaDB only contains high-quality material definitions – even when automatically
generating a large portion of our entries – material models are only added after they have passed a
series of basic checks. Presently, this includes 3 criteria:

• MetaDSL compilation: the model must contain valid python code that successfully eval-
uates to a MetaDSL Structure object. This includes all runtime type checking done by
MetaDSL.

• Valid Geometry Generation: after the MetaDSL Structure object is transpiled into the
target geometry kernel (in our case, ProcMeta), the kernel is run. We check the resulting
geometry for validity, as measured by a non-null result that is tilable in 3D. To determine
tilability, we tile the base cell in a 3×3×3 lattice, then check that the boundaries are periodic
and that at least one connected component of this larger base cell reaches all boundaries.

• Physically Consistent Simulation Results: the simulator must return reasonable results
that obey physical constraints. For example, since our simulation is normalized by the base
material’s Young’s modulus Ebase, it must be the case that our simulation returns E ≤ 1.

D.7 METADB STATISTICS

MetaDB covers a wide range of material properties, illustrated here in as histograms (Figure 12) and
as parallel coordinates (Figure 13). MetaDB has dense coverage over most of its range of elastic
moduli, mid-range coverage of Poisson ratios, and dense coverage of low-anisotropy materials.

E ADDITIONAL CASE STUDY

Here we present a second case study in iterative inverse design. In Figure 14, we specify a set of
target property bounds, and the model is able to generate a metamaterial that satisfies them (we

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 12: MetaDB material property distributions.

Figure 13: Properties of all MetaDB materials: each horizontal polyline is one material.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 14: Iterative Inverse Design: Designers can specify desired target properties, and these
preferences and constraints can be considered throughout multiple design iterations.

Table 3: Multi-task vs Single Task Training. Bold indicates significance (pair t-test, p < .05). Across
tasks and models, multi-task training is almost always beneficial.

Category Inverse Design Material Understanding Reconstruction
Metric Error ↓ Valid ↑ Error ↓ CD ↓ IoU ↑ Valid ↑
Model

LLaVA .022 ± .004 98.3% .033 ± .006 .031 ± .003 .505 ± .029 94.2%
LLaVASingle .041 ± .005 100% .035 ± .005 .058 ± .003 .180 ± .017 91.8%

Nova .018 ± .004 88.5% .017 ± .003 .034 ± .003 .463 ± .029 97.8%
NovaSingle .021 ± .005 84.2% .024 ± .005 .040 ± .003 .389 ± .028 93.6%

verified this with our simulator). But design is always iterative, and seeing one design can spark
new criteria and objectives. In this case we wanted a thicker structure that still conformed to our
original input, and (again verified by simulation), the model was able to update the design within
target parameters. This illustrates the powerful ability of language models to remember and carry
through design context, allowing for assistance across multiple design iterations.

Both case studies were performed on an earlier version of MetaAssist-Nova with strictly worse
performance the the currently benchmarked version.

F FURTHER BENCHMARK RESULTS

F.1 ABLATIONS

F.2 CATEGORY SUB-TASK RESULTS

Tables 5, 6, and 7 break down Table 1 for each task category into its task variations (number of views,
targets, etc.). These allow a more nuanced view of MetaAssist’s capabilities.

In reconstruction (Table 5), we see that having more viewpoints generally improves reconstruction
accuracy, though this tops out for LLaVA at 4 viewpoints. We also see that multiple viewpoints
greatly improves o3’s validity. In practice, this is because it frequently produce 2D structures when
only given a single side-view, which do not meet our periodicity requirements for validity.

For the inverse design tasks in Table 6, there is a slight trend that an intermediate number of targets is
easier than very few or very many. Our hypothesis is that with a small number of targets it is possible
that all targets are correlated (e.g. elastic moduli), but this is eventually counteracted by having more
targets to hit. More in-depth study is required to deduce why this happens.

Table 4: Effect of sampling temperature on benchmark scores. It has no significant effect benchmark
performance. Testing was done on an earlier variant of the Nova model.

Category Inverse Design Material Understanding Reconstruction
Metric Error ↓ Valid ↑ Error ↓ CD ↓ IoU ↑ Valid ↑

Temperature

0.00001 .028 ± .003 92.7% .030 ± .004 .045 ± .001 .334 ± .007 86.7%
0.7 .026 ± .002 91.4% .032 ± .005 .045 ± .001 .334 ± .007 87.2%

Random .028 ± .003 91.9% .031 ± .004 .045 ± .001 .330 ± .007 87.2%

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 5: Reconstruction Results Broken Down by task type.

Task 1 View 2 View 3 View 4 View
Metric CD↓ IoU↑ Valid CD↓ IoU↑ Valid CD↓ IoU↑ Valid CD↓ IoU↑ Valid
Model

LLaVA 0.035 0.456 93.9% 0.032 0.498 94.2% 0.029 0.519 94.6% 0.031 0.505 94.2%
Nova 0.037 0.424 97.7% 0.035 0.454 97.6% 0.035 0.464 97.2% 0.034 0.463 97.8%

NovaBase 0.119 0.049 18.7% 0.117 0.050 17.0% 0.118 0.053 22.0% 0.125 0.050 25.0%
OpenAIO3 0.052 0.150 36.8% 0.055 0.141 58.9% 0.052 0.151 62.6% 0.052 0.155 68.5%

Table 6: Inverse Design Results broken down by task type.

Task 1 Target 2 Target 3 Target 4 Target 5 Target 6 Target
Metric Error↓ Valid Error↓ Valid Error↓ Valid Error↓ Valid Error↓ Valid Error↓ Valid
Model

LLaVA 0.004 100% 0.024 100% 0.021 99.0% 0.022 98.3% 0.020 97.3% 0.021 97.7%
Nova 0.020 90.0% 0.019 92.8% 0.016 88.0% 0.018 88.5% 0.017 88.5% 0.019 91.1%

NovaBase — 0.0% 0.164 3.0% 0.044 4.2% 0.042 2.1% 0.034 2.8% 0.073 2.3%
OpenAIO3 0.000 35.0% 0.033 44.7% 0.025 39.1% 0.031 35.7% 0.024 37.7% 0.031 35.8%

The expanded material understanding results shown in Table 7 reveals a difference between Nova
and LLaVA; Nova is more able to take advantage of the extra image and code information, whereas
LLaVA does best with only a single image. This mirrors the degredation of LLaVA in reconstruction
at 4 images.

F.3 RESULT GALLERIES

We also present randomly1 sampled queries for each task, and visualize their results across models,
along with their benchmark metrics. This shows the qualitative differences between the models’
performances, while grounding the numeric metrics to make them more understandable.

Figure 15 illustrates reconstruction from 4 viewpoint renders. Of particular interest is the o3 column
on the far right. For 4/5 examples, o3 correctly reproduced the basic shape of the side-on views up-to
the number of repeats. This suggests that it can correctly build skeletons, but struggles with selecting
the correct embedding scale.

Figure 16 illustrates material prediction based on specified property requirements. In these examples,
the LLaVA models successfully generate materials that meet the given criteria, but other models
occasionally generate invalid materials or fail to satisfy the specified requirements.

Figure 17 illustrates generated materials’ predicted versus actual properties. In these examples the
LLaVA and OmniTask Nova models do quite well, but single task Nova and untuned models (Novalite
and o3) fall behind.

1rejection filtered so that all models had valid outputs for the input, except for inverse design where this was
not possible

Table 7: Material Understanding results broken down by task type.

Task 1 View 4 View + Code
Metric Error ↓ Error ↓
Model

LLaVA 0.028 0.033
Nova 0.024 0.017

NovaBase 0.206 0.192
OpenAIO3 0.083 0.071

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Input Reconstruction

LLaVASingle
IoU: 0.200
CD: 0.063

LLaVA
IoU: 0.184
CD: 0.064

NovaSingle
IoU: 0.043
CD: 0.086

Nova
IoU: 0.310
CD: 0.043

NovaBase
IoU: 0.035
CD: 0.158

OpenAI-o3
IoU: 0.190
CD: 0.054

LLaVASingle
IoU: 0.095
CD: 0.060

LLaVA
IoU: 0.274
CD: 0.025

NovaSingle
IoU: 0.159
CD: 0.039

Nova
IoU: 0.575
CD: 0.011

NovaBase
IoU: 0.021
CD: 0.106

OpenAI-o3
IoU: 0.160
CD: 0.032

LLaVASingle
IoU: 0.361
CD: 0.064

LLaVA
IoU: 0.497
CD: 0.053

NovaSingle
IoU: 0.719
CD: 0.011

Nova
IoU: 0.514
CD: 0.016

NovaBase
IoU: 0.105
CD: 0.107

OpenAI-o3
IoU: 0.426
CD: 0.018

LLaVASingle
IoU: 0.092
CD: 0.057

LLaVA
IoU: 0.166
CD: 0.024

NovaSingle
IoU: 0.188
CD: 0.029

Nova
IoU: 0.376
CD: 0.012

NovaBase
IoU: 0.052
CD: 0.078

OpenAI-o3
IoU: 0.280
CD: 0.017

LLaVASingle
IoU: 1.000
CD: 0.000

LLaVA
IoU: 1.000
CD: 0.000

NovaSingle
IoU: 0.063
CD: 0.073

Nova
IoU: 0.070
CD: 0.069

NovaBase
IoU: 0.011
CD: 0.174

OpenAI-o3
IoU: 0.096
CD: 0.049

1

Figure 15: 4 View reconstruction results for random test samples by model. Left: the input renders
shown to each model. Right: renders of predicted reconstructions.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Write a metagen
program that creates... Generated Design

a material with a very
low Young’s modulus
along the x direction
(E1 ≤ 0.1), a low di-
rectional shear modulus
(G 31 ≤ 0.1), a low
directional shear modulus
(G 23 ≤ 0.1), and a
low Young’s modulus
along the y direction
(E 2 ≤ 0.25).

LLaVASingle
Error: 0.0

LLaVA
Error: 0.0

NovaSingle
Error: 0.0

Nova
Error: 0.0

INVALID

NovaBase
Error: NaN

OpenAI-o3
Error: 0.0

a compressible (K ≤ 0.5)
material with a very low
directional shear modu-
lus (G 23 ≤ 0.01), a di-
rectional shear modulus
(G 12) of roughly 3e-
05, and a very low di-
rectional shear modulus
(G 31 ≤ 0.01).

LLaVASingle
Error: 0.007

LLaVA
Error: 0.0

NovaSingle
Error: 0.0

Nova
Error: 0.011

INVALID

NovaBase
Error: NaN

OpenAI-o3
Error: 0.0

a material with a very low
Young’s modulus along
the vertical direction
(E 2 ≤ 0.1), a very low
directional shear modulus
(G 23 ≤ 0.01), a low
directional shear modulus
(G 12 ≤ 0.1), and a
very low bulk modulus
(K ≤ 0.2).

LLaVASingle
Error: 0.01

LLaVA
Error: 0.007

NovaSingle
Error: 0.0

Nova
Error: 0.0

INVALID

NovaBase
Error: NaN

OpenAI-o3
Error: 0.047

1

Figure 16: Inverse design results for a random selection of queries. Left: the text query given to each
model. Right: paired data showing – for each model – an image of the generated structure alongside
a property profile comparison. This profile shows the target values/ranges (in blue), versus simulated
properties of the predicted materials (in red). Red arrows indicate that the predicted value is beyond
the chart boundaries. Some models failed to produce a valid model for certain queries, indicated by
the label “INVALID”.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Input Predicted Properties

LLaVASingle
Error: 0.010

LLaVA
Error: 0.016

NovaSingle
Error: 0.009

Nova
Error: 0.009

NovaBase
Error: 0.233

OpenAI-o3
Error: 0.062

LLaVASingle
Error: 0.004

LLaVA
Error: 0.005

NovaSingle
Error: 0.011

Nova
Error: 0.005

NovaBase
Error: 0.162

OpenAI-o3
Error: 0.043

LLaVASingle
Error: 0.026

LLaVA
Error: 0.008

NovaSingle
Error: 0.004

Nova
Error: 0.005

NovaBase
Error: 0.088

OpenAI-o3
Error: 0.020

LLaVASingle
Error: 0.010

LLaVA
Error: 0.016

NovaSingle
Error: 0.015

Nova
Error: 0.001

NovaBase
Error: 0.276

OpenAI-o3
Error: 0.024

LLaVASingle
Error: 0.022

LLaVA
Error: 0.029

NovaSingle
Error: 0.009

Nova
Error: 0.011

NovaBase
Error: 0.209

OpenAI-o3
Error: 0.056

1

Figure 17: Material property predictions given 4 input views (shown) and the program code (not
shown). The radar charts plot the 6 averaged property values (scaled and shifted to always be positive).
The blue regions show the ground truth values, while red shows the prediction.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

G METABENCH

G.1 INTERMEDIATE REPRESENTATION

Each dataset is given by a set of .jsonl files: one file each for train, validate, and test. Each line of a
.jsonl file describes a single example using a dictionary with the following keys:

• ‘task type’: a string identifying the task category; in our case, it is one of {‘reconstruction’,
‘inverse design’, ‘material understanding’}.

• ‘label’: unique text label identifying this task entry, using descriptive elements where
applicable, such as provided image viewpoints or source files.

• ‘source’: [if applicable] path to the source metamaterial, relative to the database root (and
including the leading ‘/’)

• ‘data’: any and all data required to run evaluations, including references for large elements
(e.g. images, meshes, etc.) and/or directly embedded values.

• ‘query’: natural language framing of the question to be provided to an LLM. Any images
(or other non-text input) must be specified by reference.

• ‘response’: [optional] an expected response from an LLM that has been asked ‘query’. This
field is permitted to exist for a test example; removal of this information is the responsibility
of the LLM-specific formatters, when required.

The system prompt has been purposefully excluded, both because it would be very large, and because
that is an implementation detail of a predictive model, and not part of the benchmark itself.

G.2 TASK CONSTRUCTION FOR INVERSE DESIGN

Inverse design tasks are specified as a collection of target values or bounded-ranges for a subset
of material properties, from which we construct a natural-language query that describes that set of
targets. Creating these tasks has two stages: selecting a set of targets, and generating an grammatically
correct English sentence from those targets.

Property References To aid in this process, we generate a reference dictionary with information
about each of the 18 properties, of the following form:

1 {
2 ’nu’: {
3 ”full prop name”: ”Poisson ratio ” ,
4 ” alternate symbols ”: [”nu {VRH}”],
5 ” property generality ”: PropertyGenerality .OVERALL,
6 ” property type ”: PropertyType.POISSON RATIO,
7 ” dataset coverage ”: {
8 ”min”: −0.5,
9 ”max”: 0.5,

10 ”q1”: 0.3,
11 ”q3”: 0.36,
12 ” densely populated ranges ”: [[0.2, 0.4]]
13 },
14 ” smallest meaningful quantization ”: 0.01,
15 ” adjective descriptors ”: [{” description ”: f” auxetic ” , ” target type ”: TargetType.

UPPER BOUND, ”target value”:0}],
16 ” property descriptors ”: [{” description ”: f”a negative Poisson ratio ” , ” target type ”:

TargetType.UPPER BOUND, ”target value”:0},
17 {” description ”: f”a positive Poisson ratio ” , ” target type ”:

TargetType.LOWER BOUND, ”target value”:0}],
18 ” verb descriptors ”: [{” description ”: f” contracts transversely under axial compression”, ”

target type ”: TargetType.UPPER BOUND, ”target value”:0},
19 {” description ”: f”expands transversely under axial compression”, ”

target type ”: TargetType.LOWER BOUND, ”target value”:0},
20 {” description ”: f” contracts in other directions when compressed

along one axis” , ” target type ”: TargetType.UPPER BOUND, ”
target value”:0},

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

21 {” description ”: f”expands in other directions when compressed along
one axis” , ” target type ”: TargetType.LOWER BOUND, ”
target value”:0},

22 {” description ”: f”expands transversely under axial elongation ”, ”
target type ”: TargetType.UPPER BOUND, ”target value”:0},

23 {” description ”: f” contracts transversely under axial elongation ”, ”
target type ”: TargetType.LOWER BOUND, ”target value”:0},

24 {” description ”: f”expands in other directions when stretched along
one axis” , ” target type ”: TargetType.UPPER BOUND, ”
target value”:0},

25 {” description ”: f” contracts in other directions when stretched along
one axis” , ” target type ”: TargetType.LOWER BOUND, ”
target value”:0}]

26 },
27 }

The full listing for all 18 properties is available in the metagen code provided in the supplement:
metagen/benchmarks_inverse_design.py.

These entries provide information about the property ranges, dataset coverage, and interesting value
breakpoints together with phrases that might be used to request them (e.g., “auxetic” implies ν < 0).
All aspects of these reference entries will be used in the following subsections to construct robust,
varied and meaningful property queries for different material examples.

Active Property Selection For a given structure, we enforce that the “active” property subset
follows two rules. First, the active set may only employ the overall values or the directional values for
any given property – e.g., if a profile includes measure(s) for Young’s modulus, it may either include
the overall Young’s modulus E or one or more of the directional values {E1, E2, E3}; however, it is
not permitted to simultaneously include E and one or more directional variants. Moreover, a profile
is only allowed to use directional variants if it is sufficiently anisiotropic. We chose our anisotropy
threshold as A ≥ 0.0025, based on a manual exploration of the correlation between material spheres
and anisotropy values appearing in our dataset. Subject to these rules, we select the “active” subset of
properties based on a heuristic that determines the most interesting or salient properties of a given
model.

We construct this heuristic score by examining individual properties of a model, and assigning a
reward or penalty based on the expected notability of a particular characteristic or combination thereof.
For example, if a material is near isotropic (A < 0.0025), we strongly reward the anisotropy property
(so it is likely to end up in the active set) and heavily penalize all directional properties (so they
will not be activated, as they are not likely to be notable). If the material is sufficiently anisotropic,
we look at each property with directional variants, then compute pairwise differences between the
values (e.g. E1 vs. E2). The directional properties are rewarded proportionally to each pairwise
difference, so directions with larger discrepancies are more likely to be activated. Independently, we
examine the ratio between the Young’s modulus E and the volume fraction V – if the ratio is high
(i.e., the material preserves stiffness with dramatically less material / lighter weight, which is a highly
sought after combination), we strongly reward both properties. Finally, we examine each property
in turn, and award additional points if they exhibit values that are extreme and/or underrepresented
in our dataset. The reward is proportional to the relative extremity and inversely proportional to
representation.

Given these scores, we iteratively select the highest-reward properties that preserve our overall active
set rules. To ensure some variation in our inverse design profiles, we also introduce the opportunity
to add randomly chosen properties into our profile: after each active set addition from the ranked
data, we break the loop with some low probability (10%) and fill the remaining slots with randomly
chosen properties that respect the rules relative to our partial active set.

Active Property Target Selection For each active property, we must now select a target value or
range. To do this, we evaluate the options present in our reference dictionary, and extract all targets
that are satisfied by the material at hand. We organize these into groups based on value and target type
(range, value, lower/upper bound). Then, we choose the group that offers the tightest bound relative
to the current material’s property value. If multiple bound types are associated with the chosen target

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

value, we select a bound type at random. Finally, we construct a profile with all targets matching the
selected value and bound type. Assuming an example material where the Poisson ratio ν = −0.1, the
resulting profile might be as follows:

1 {
2 ”property”: ”nu”
3 ” target value ”: 0
4 ” target type ”: ”upper bound”
5 ” target descriptions ”: [
6 {
7 ” description ”: ” auxetic ” ,
8 ” description type ”: ” adjective ”
9 },

10 {
11 ” description ”: ”a negative Poisson ratio ” ,
12 ” description type ”: ”noun”
13 },
14 {
15 ” description ” : ” contracts transversely under axial compression”,
16 ” description type ”: ”verb”
17 },
18 {
19 ” description ” : ” contracts in other directions when compressed along one axis” ,
20 ” description type ”: ”verb”
21 },
22 {
23 ” description ” : ”expands transversely under axial elongation ”,
24 ” description type ”: ”verb”
25 },
26 {
27 ” description ” : ”expands in other directions when stretched along one axis” ,
28 ” description type ”: ”verb”
29 }
30]
31 }

Query Construction We want to create varied sentence structures to train and test against. To do
this, each target type (value, upper bound, or lower bound) and target property has associated with it
several descriptive phrases, as shown in the profile above. These phrases are paired with a part of
speech (adjective, noun, or verb). As examples “very dense” (adjective), “contracts in the X direction
when the Y direction is stretched” (verb), or “a negative Poisson ratio in at least one direction” (noun).
Phrases that do not include numeric targets are accompanied by a parenthetical aside given a target
value or range (e.g. “very dense (V > 0.8).”

We start by randomly selecting one phrase for each target property, binning them by part of speech,
then randomizing the order within bins. Adjectives are further randomly split between front-adjectives
that precede the noun “material” (“a very dense material”) and back-adjectives that follow it (“a
material that is very dense”). We then form a query string by applying the template:

Write a metagen program that creates [a/an] { front adjectives } material { back adjectives } {verbs}
{nouns}.

The template strings are augmented with part-of-speech appropriate connectors (“that is”, “with”,
“that”, “and”), and commas, depending on the parts of number of each part of speech in each position.
The pronoun (a/an) as selected based on the first letter of {front_adjectives} if there are any,
otherwise “a” for “a material”.

H IMPLEMENTATION DETAILS

LLaVA LLaVA and LLaVASingle tune Llama3-LLaVA-Next-8b Li et al. (2024); Liu et al. (2024)
using low-rank adaptation Hu et al. (2022), with with r = 16 and α = 32. Models were optimized
using AdamW Loshchilov & Hutter (2017) with a 1e-5 learning rate and a cosine learning rate

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Figure 18: Training loss for LLaVA and Nova models. The smaller LLaVA model converges with
significantly fewer examples than the larger Nova model.

scheduler with 0.03 warm-up ratio. Single models were trained on for 1 epoch on 4 NVIDIA B100
GPUs for 2 hours each with a batch size of 16, while the generalist LLaVA model was trained for 1
epoch on 8 B200 GPUs with a batch size of 32 over 25 hours due to its significantly larger training
set, and for parity with the genaralist Nova model. During inference, the temperature was set to 0
to ensure deterministic outputs. We trained LLaVA on Amazon EC2 p6-b200.48xlarge instances.
Our distributed training implementation achieved performance metrics with peak GPU utilization
reaching 99% per GPU and peak memory utilization at approximately 95% per GPU across the
B200s’ 180GB HBM3 capacity.

Nova We implemented Nova full-rank supervised fine-tuning on the Nova Lite architecture
(amazon.nova-lite-v1:0:300k) using Amazon SageMaker distributed training infrastructure with
ml.p5.48xlarge instances, each equipped with 8 NVIDIA H100 GPUs featuring 80GB HBM3 mem-
ory. Our training configuration employed a maximum sequence length of 32,768 tokens with a
global batch size of 64, utilizing the distributed fused Adam optimizer in AdamW mode with a
learning rate of 5 × 10−6, beta parameters of (0.9, 0.999), epsilon of 1 × 10−6, and zero weight
decay. The learning rate schedule incorporated 10 warmup steps followed by decay to 1 × 10−6,
while all dropout mechanisms (hidden, attention, and feed-forward network) were disabled to perform
full-rank fine-tuning across all model parameters. All models were trained for 1 epoch, where the
multi-domain task required approximately 15 hours using 16 P5 instances. Our distributed training
implementation achieved notable performance metrics with peak GPU utilization reaching 95% per
GPU, sustained utilization of 75-95% per GPU during core training phases, and stable memory
utilization at approximately 43% per GPU across the H100s’ 80GB HBM3 capacity.

H.1 TRAINING CURVES

Both the LLaVA and Nova models were trained for 1 epoch. Figure 18 shows the training curves for
each model, demonstrating that the LLaVA model had converged more and more quickly than the
Nova model.

H.2 TIMING AND COSTS

MetaDSL execution and simulation time dominate LLM inference time for material generation.
These are highly variable based on the geometric complexity of the generated program, with the
majority executing and simulating in 5 minutes or less. MetaAssist generations are on average more
time-complex that MetaDB (see Table 8. In practice, MetaAssist latencies are much lower because
we do not run simulations in the interactive system.

Since MetaDSL is quite compact, inference can be performed efficiently with few tokens. The majority
of the inference tokens are taken by the common API-description system prompt (Section I.1), the
cost of which can be amortized by caching. Using NovaOmni (ignoring caching for simplicity), the

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Program Source Avg. (s) Median (s) Std (s)
MetaDB 181 123 328

MetaAssist 591 290 746

Table 8: MetaDSL Execution and simulation times for program in MetaDB, and programs generated
by MetaAssist-Nova over the MetaBench test set (reconstruction and inverse design).

average MetaBench query used 8730 tokens (8284 input and 446 output). At current API pricing, the
average query would cost $0.0006, and inference for the full test set would cost $7.11.

I QUERY TEMPLATES

For training models and running inference, we used prompt templates and inserted details for each
specific query. In the following templates, <[...]> is used as a delimiter to denote the inclusion
of an image.

I.1 UNIVERSAL SYSTEM PROMPT

For consistency, every example was provided with a common system prompt that describes the
Metagen DSL, explains the material properties and rendered views we have in our dataset, and
describes the basic task categories.

You are an expert metamaterials assistant that generates and analyzes cellular metamaterial
designs based on material properties , images, and programatic definitions in the Metagen
metamaterial DSL.

Procedural Description in a Metamaterial DSL:

{ api description }

Material Analysis :
You can analyze the density , anisotropy , and elasticity properties of metamaterials . All

metamaterials are assumed to be constucted from an isotropic base material with Poisson’s
ratio nu = 0.45.

The Young’s Modulus of this base material is not specified , instead , the elastic moduli of the
metamaterials −− Young’s Modulus (E), Bulk Modulus (K), and Shear Modulus (G), are expressed
relative to the base material Young’s modulus (E base) . This means, for example, that
relative Young’s Moduli can range from 0 to 1. The material properties you can analyze are :

− E: Young’s Modulus, Voigt−Reuss−Hill (VRH) average, relative to E base
− E 1,E 2,E 3: Directional Young’s Moduli, relative to E base
− G: Shear Modulus (VRH average), relative to E base
− G 23,G 13,G 12: Directional Shear Moduli, relative to E base
− nu: Poisson ratio (VRH average)
− nu 12, nu 13, nu 23, nu 21, nu 31, nu 32: Directional Poisson ratios
− K: Bulk modulus (VRH average), relative to E base
− A: Anisotropy (universal anisotropy index)
− V: Volume Fraction

Material Images:

Images of metamaterials depict a base cell of the material rendered from four viewpoints :

− from the top
− from the front side
− from the right side
− from an angle at the upper−front− right

Tasks:

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

You will be asked to perform several kinds of tasks :

− Reconstruction : from one or more images of a target material , reconstruct a Metagen program that
generates the metamaterial in the images.

− Inverse Design: from a description of the properties of a desired materials , write a Metagen
program that creates a metamaterial with those properties .

− Material Understanding: from images of a metamaterial and/or a Metagen program, analyze a
material and predict its properties .

I.2 METADSL API

The Metagen language description (inserted as the api_description in the system prompt
above) is as follows:

Programs in Metagen are built in two stages : one that creates local geometric structure , and a
second that patterns this structure throughout space . Each of these is further broken down
into subparts .

==================================
API description (Boilerplate)

==================================
Each program is given as a python file (. py) .
This program must import the metagen package and define a function called ” make structure () ”,

which returns the final Structure object defined by the program.
If parameters are present in make structure () , they MUST have a default value .
Specifically , the file structure is as follows :

from metagen import *

def make structure (...) −> Structure :
<content>

==================================
DSL description

==================================

======= Skeleton Creation ========
vertex (cpEntity , t)

@description:
Create a new vertex . This vertex is defined relative to its containing convex polytope (

CP). It will only have an embedding in R3 once the CP has been embedded.
@params:

cpEntity − an entity of a convex polytope (CP), referenced by the entity names.
t − [OPTIONAL] list of floats in range [0,1], used to interpolate to a specific

position on the cpEntity .
If cpEntity is a corner , t is ignored .
If cpEntity is an edge, t must contain exactly 1 value . t is used for

linear interpolation between the endpoints of cpEntity .
If cpEntity is a face , t must contain exactly 2 values . If cpEntity is a

triangular face , t is used to interpolate via barycentric coordinates
. If cpEntity is a quad face , bilinear interpolation is used.

If the optional interpolant t is omitted for a non−corner entity , the
returned point will be at the midpoint (for edge) or the centroid (
for face) of the entity . Semantically , we encourage that t be
excluded (1) if the structure would be invalid given a different non
−midpoint t , or (2) if the structure would remain unchanged in the
presence a different t (e .g ., in the case of a conjugate TPMS,
where only the entity selection matters) .

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

@returns:
vertex − the new vertex object

@example usage:
v0 = vertex (cuboid.edges.BACK RIGHT, [0.5])
v1 = vertex (cuboid.edges.TOP LEFT)

Polyline (ordered verts)
@description:

Creates a piecewise− linear path along the ordered input vertices . All vertices must be
referenced to the same CP (e.g ., all relative to cuboid entities) . The resulting path
will remain a polyline in any structures that include it .

@params:
ordered verts − a list of vertices , in the order you’d like them to be traversed . A

closed loop may be created by repeating the zeroth element at the end of the list .
No other vertex may be repeated . Only simple paths are permitted .

@returns:
polyline − the new polyline object

@example usage:
p0 = Polyline ([v2, v3])
p0 = Polyline ([v0, v1, v2, v3, v4, v5, v0])

Curve(ordered verts)
@description:

Creates a path along the ordered input vertices . This path will be smoothed at a later
stage (e .g ., to a Bezier curve) , depending on the lifting procedures that are chosen.
All input vertices must be referenced to the same CP (e.g ., all relative to cuboid
entities) .

@params:
ordered verts − a list of vertices , in the order you’d like them to be traversed . A

closed loop may be created by repeating the zeroth element at the end of the list .
No other vertex may be repeated . Only simple paths are permitted .

@returns:
curve − the new curve object

@example usage:
c0 = Curve([v2, v3])
c0 = Curve([v0, v1, v2, v3, v4, v5, v0])

skeleton (entities)
@description:

Combines a set of vertices OR polylines / curves into a larger structure , over which
additional information can be inferred . For example, within a skeleton , multiple

open polylines / curves may string together to create a closed loop , a branched path ,
or a set of disconnected components.

@params:
entities − a list of entities (vertices or polylines / curves) to be combined. A

given skeleton must only have entities with the same dimension −− that is , it must
consist of all points or all polylines / curves .

@returns:
skeleton − the new skeleton object

@example usage:
skel = skeleton ([curve0, polyline1 , curve2, polyline3])
skel = skeleton ([v0])

======= Lifting Procedures ========
UniformBeams(skel, thickness)

@description:
Procedure to lift the input skeleton to a 3D volumetric structure by instantiating a beam

of the given thickness centered along each polyline /curve of the input skeleton .
@requirements:

The skeleton must contain only polylines and/or curves . The skeleton must not contain any
standalone vertices .

@params:

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

skel − the skeleton to lift
thickness − the diameter of the beams

@returns:
liftProc − the lifted skeleton

@example usage:
liftProcedure = UniformBeams(skel, 0.03)

SpatiallyVaryingBeams(skel , thicknessProfile)
@description:

Procedure to lift the input skeleton to a 3D volumetric structure by instantiating a beam
of the given spatially −varying thickness profile centered along each polyline /curve
of the input skeleton .

@requirements:
The skeleton must contain only polylines and/or curves . The skeleton must not contain any

standalone vertices .
@params:

skel − the skeleton to lift
thicknessProfile − specifications for the diameter of the beams along each polyline /curve .

Given as a list [list [floats]], where the each of the n inner lists gives the
information for a single sample point along the polyline /curve . The first element in
each inner list provides a position parameter t\\in [0,1] along the polyline /curve ,
and the second element specifies the thickness of the beam at position t

@returns:
liftProc − the lifted skeleton

@example usage:
liftProcedure = SpatiallyVaryingBeams(skel , 0.03)

UniformDirectShell (skel , thickness)
@description:

Procedure to lift the input skeleton to a 3D volumetric structure by inferring a surface
that conforms to the boundary provided by the input skeleton . The surface is given by
a simple thin shell model: the resulting surface is incident on the provided

boundary while minimizing a weighted sum of bending and stretching energies . The
boundary is fixed , though it may be constructed with a mix of polylines and curves (
which are first interpolated into a spline , then fixed as part of the boundary). The
skeleton must contain a single closed loop composed of one or more polylines and/or
curves . The skeleton must not contain any standalone vertices .

@requirements:

@params:
skel − the skeleton to lift
thickness − the thickness of the shell . The final offset is thickness /2 to each side

of the inferred surface .
@returns:

liftProc − the lifted skeleton
@example usage:

liftProcedure = UniformDirectShell (skel , 0.1)

UniformTPMSShellViaConjugation(skel, thickness)
@description:

Procedure to lift the input skeleton to a 3D volumetric structure by inferring a triply
periodic minimal surface (TPMS) that conforms to the boundary constraints provided by
the input skeleton . The surface is computed via the conjugate surface construction

method.
@requirements:

The skeleton must contain a single closed loop composed of one or more polylines and/or
curves . The skeleton must not contain any standalone vertices .

Each vertex in the polylines / curves must live on a CP edge.
Adjacent vertices must have a shared face .
The loop must touch every face of the CP at least once.
If the CP has N faces , the loop must contain at least N vertices .

@params:
skel − the skeleton to lift
thickness − the thickness of the shell . The final offset is thickness /2 to each side

of the inferred surface .

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

@returns:
liftProc − the lifted skeleton

@example usage:
liftProcedure = UniformTPMSShellViaConjugation(skel, 0.03)

UniformTPMSShellViaMixedMinimal(skel, thickness)
@description:

Procedure to lift the input skeleton to a 3D volumetric structure by inferring a triply
periodic minimal surface (TPMS) that conforms to the boundary constraints provided by
the input skeleton . The surface is computed via mean curvature flow. All polyline

boundary regions are considered fixed , but any curved regions may slide within their
respective planes in order to reduce surface curvature during the solve .

@requirements:
The skeleton must contain a single closed loop composed of one or more polylines and/or

curves . The skeleton must not contain any standalone vertices .
Each vertex in the polylines / curves must live on a CP edge.
Adjacent vertices must have a shared face .

@params:
skel − the skeleton to lift
thickness − the thickness of the shell . The final offset is thickness /2 to each side

of the inferred surface .
@returns:

liftProc − the lifted skeleton
@example usage:

liftProcedure = UniformTPMSShellViaMixedMinimal(skel, 0.03)

Spheres(skel , thickness)
@description:

Procedure to lift the input skeleton to a 3D volumetric structure by instantiating a
sphere of the given radius centered at vertex p, for each vertex in the skeleton .

@requirements:
The skeleton must only contain standalone vertices ; no polylines or curves can be used.

@params:
skel − the skeleton to lift
thickness − the sphere radius

@returns:
liftProc − the lifted skeleton

@example usage:
s lift = Spheres(skel , 0.25)

======= Tile Creation ========
Tile (lifted skeletons , embedding)

@description:
Procedure to embed a copy of the skeleton in Rˆ3 using the provided embedding information .

The embedding information can be computed by calling the ”embed” method of the
relevant CP.

@requirements:
The embedding information must correspond to the same CP against which the vertices were

defined . For example, if the vertices are defined relative to the cuboid, you must
use the cuboid.embed() method.

@params:
lifted skeletons − a list of lifted skeleton entities to embed in Rˆ3. All entities must

reside in the same CP type, and this type must have N corners .
embedding − information about how to embed the CP and its relative skeletons within

Rˆ3. Obtained using the CP’s embed() method
@returns:

tile − the new tile object
@example usage:

embedding = cuboid.embed(side len , side len , side len , cornerAtAABBMin=cuboid.corners.
FRONT BOTTOM LEFT)

s tile = Tile ([beams, shell], embedding)

======= Patterning Procedures ========

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

TetFullMirror ()
@description:

Procedure which uses only mirrors to duplicate a tet −based tile such that it partitions R
ˆ3

@params:
N/A

@returns:
pat − the patterning procedure

@example usage:
pat = TetFullMirror ()

TriPrismFullMirror ()
@description:

Procedure which uses only mirrors to duplicate a triangular prism−based tile such that it
partitions Rˆ3

@params:
N/A

@returns:
pat − the patterning procedure

@example usage:
pat = TriPrismFullMirror ()

CuboidFullMirror()
@description:

Procedure which uses only mirrors to duplicate an axis−aligned cuboid tile such that it
fills a unit cube, such that it partitions Rˆ3. Eligible cuboid CPs must be such
that all dimensions are 1/(2ˆ k) for some positive integer k.

@params:
N/A

@returns:
pat − the patterning procedure

@example usage:
pat = CuboidFullMirror()

Identity ()
@description:

No−op patterning procedure .
@params:

N/A
@returns:

pat − the patterning procedure
@example usage:

pat = Identity ()

Custom(patternOp)
@description:

Environment used to compose a custom patterning procedure . Currently only implemented for
the Cuboid CP.

@params:
patternOp− outermost pattern operation in the composition

@returns:
pat − the complete patterning procedure

@example usage:
pat = Custom(Rotate180([cuboid.edges.BACK RIGHT, cuboid.edges.BACK LEFT], True,

Rotate180([cuboid.edges.TOP RIGHT], True)))

Mirror(entity , doCopy, patternOp)
@description:

Pattern operation specifying a mirror over the provided CP entity , which must be a CP
Face. Can only be used inside of a Custom patterning environment.

@params:
entity − CP Face that serves as the mirror plane .
doCopy − boolean. When True, applies the operation to a copy of the input , such that the

original and the transformed copy persist . When False, directly transforms the input
.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

patternOp− [OPTIONAL] outermost pattern operation in the sub−composition, if any
@returns:

pat − the composed patterning procedure , which may be used as is (within the Custom
environment), or as the input for further composition

@example usage:
pat = Custom(Mirror(cuboid. faces .TOP, True,

Mirror(cuboid. faces .LEFT, True)))

Rotate180(entities , doCopy, patternOp)
@description:

Pattern operation specifying a 180 degree rotation about the provided CP entity . Can only
be used inside of a Custom patterning environment.

@params:
entities − List of CP entities , which define the axis about which to rotate . If a single

entity is provided , it must be a CP Edge. If multiple entities , they will be used to
define a new entity that spans them. For example, if you provide two corners , the
axis will go from one to the other . If you provide two CP Edges, the axis will reach
from the midpoint of one to the midpoint of the other .

doCopy − boolean. When True, applies the operation to a copy of the input , such that the
original and the transformed copy persist . When False, directly transforms the input

.
patternOp− [OPTIONAL] outermost pattern operation in the sub−composition, if any

@returns:
pat − the composed patterning procedure , which may be used as is (within the Custom

environment), or as the input for further composition
@example usage:

pat = Custom(Rotate180([cuboid.edges.FRONT LEFT, cuboid.edges.FRONT RIGHT], True))

Translate (fromEntity , toEntity , doCopy, patternOp)
@description:

Pattern operation specifying a translation that effectively moves the fromEntity to the
targetEntity . Can only be used inside of a Custom patterning environment.

@params:
fromEntity− CP Entity that serves as the origin of the translation vector . Currently only

implemented for a CP Face.
toEntity − CP Entity that serves as the target of the translation vector . Currently only

implemented for a CP Face.
doCopy − boolean. When True, applies the operation to a copy of the input , such that the

original and the transformed copy persist . When False, directly transforms the input
.

patternOp− [OPTIONAL] outermost pattern operation in the sub−composition, if any
@returns:

pat − the composed patterning procedure , which may be used as is (within the Custom
environment), or as the input for further composition

@example usage:
gridPat = Custom(Translate(cuboid. faces .LEFT, cuboid.faces .RIGHT, True,

Translate (cuboid. faces .FRONT, cuboid.faces.BACK, True)))

======= Structure Procedures ========
Structure (tile , pattern)

@description:
Combines local tile information (containing lifted skeletons) with the global patterning

procedure to generate a complete metamaterial .
@params:

tile − the tile object , which has (by construction) already been embedded in 3
D space, along with all lifted skeletons it contains .

pattern − the patterning sequence to apply to extend this tile throughout space
@returns:

structure − the new structure object
@example usage:

obj = Structure (tile , pat)

Union(A, B)
@description:

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Constructive solid geometry Boolean operation that computes the union of two input
structures . The output of Union(A,B) is identical to Union(B,A)

@params:
A − the first Structure to be unioned. This may be the output of Structure ,

Union, Subtract , or Intersect
B − the second Structure to be unioned. This may be the output of Structure ,

Union, Subtract , or Intersect
@returns:

structure − the new structure object containing union(A,B)
@example usage:

final obj = Union(schwarzP obj, Union(sphere obj , beam obj))

Subtract (A, B)
@description:

Constructive solid geometry Boolean operation that computes the difference (A − B) of two
input structures . The relative input order is critical .

@params:
A − the first Structure , from which B will be subtracted . This may be the

output of Structure , Union, Subtract , or Intersect
B − the second Structure , to be subtracted from A. This may be the output of

Structure , Union, Subtract , or Intersect
@returns:

structure − the new structure object containing (A − B)
@example usage:

final obj = Subtract (c obj , s obj)

Intersect (A, B)
@description:

Constructive solid geometry Boolean operation that computes the intersection of two input
structures , A and B.

@params:
A − the first Structure , which may be the output of Structure , Union,

Subtract , or Intersect
B − the second Structure , which may be the output of Structure , Union,

Subtract , or Intersect
@returns:

structure − the new structure object containing the intersection of A and B
@example usage:

final obj = Intersect (c obj , s obj)

==================================
Prebuilt Convex Polytopes

==================================
There are 3 prebuilt convex polytopes (CP) available for use: cuboid, triPrism , and tet . Each CP

comprises a set of Entities , namely faces , edges and corners .
For convenience, each individual entity can be referenced using the pattern <CP>.<entity type

>.<ENTITY NAME>.
For example, you can select a particular edge of the cuboid with the notation cuboid.edges.

BOTTOM RIGHT.
Each CP also has an embed() method which returns all necessary information to embed the CP within

Rˆ3.

The full list of entities and embed() method signatures for our predefined CPs are as follows :

tet . corners .{ BOTTOM RIGHT,
BOTTOM LEFT,
TOP BACK,
BOTTOM BACK

}
tet .edges. { BOTTOM FRONT,

TOP LEFT,
BACK,

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

BOTTOM RIGHT,
TOP RIGHT,
BOTTOM LEFT

}
tet . faces . { BOTTOM,

TOP,
RIGHT,
LEFT

}
tet .embed(bounding box side length)

@description:
Constructs the information required to embed the tet CP in Rˆ3

@params:
bounding box side length − length of axis−aligned bounding box containing the tet . Float in

range [0,1]. Must be 1/2ˆk for some integer k
@returns:

embedding − the embedding information . Specifically , the position in Rˆ3 of all the
CP corners .

@example usage:
side len = 0.5 / num tiling unit repeats per dim
embedding = tet .embed(side len)

triPrism . corners .{FRONT BOTTOM LEFT,
FRONT TOP,
FRONT BOTTOM RIGHT,
BACK BOTTOM LEFT,
BACK TOP,
BACK BOTTOM RIGHT

}
triPrism .edges.{FRONT LEFT,

FRONT RIGHT,
FRONT BOTTOM,
BACK LEFT,
BACK RIGHT,
BACK BOTTOM,
BOTTOM LEFT,
TOP,
BOTTOM RIGHT

}
triPrism . faces .{FRONT TRI,

BACK TRI,
LEFT QUAD,
RIGHT QUAD,
BOTTOM QUAD

}
triPrism .embed(bounding box side length)

@description:
Constructs the information required to embed the triangular prism CP in Rˆ3

@params:
bounding box side length − length of axis−aligned bounding box containing the triangular

prism. Float in range [0,1]. Must be 1/2ˆk for some integer k
@returns:

embedding − the embedding information . Specifically , the position in Rˆ3 of all the
CP corners .

@example usage:
side len = 0.5 / num tiling unit repeats per dim
embedding = triPrism .embed(side len)

cuboid. corners .{FRONT BOTTOM LEFT,
FRONT BOTTOM RIGHT,
FRONT TOP LEFT,
FRONT TOP RIGHT,
BACK BOTTOM LEFT,

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

BACK BOTTOM RIGHT,
BACK TOP LEFT,
BACK TOP RIGHT

}
cuboid.edges.{ FRONT BOTTOM,

FRONT LEFT,
FRONT TOP,
FRONT RIGHT,
BACK BOTTOM,
BACK LEFT,
BACK TOP,
BACK RIGHT,
BOTTOM LEFT,
TOP LEFT,
TOP RIGHT,
BOTTOM RIGHT

}
cuboid. faces .{ FRONT,

BACK,
TOP,
BOTTOM,
LEFT,
RIGHT

}

cuboid.embed(width, height , depth , cornerAtMinPt)
@description:

Constructs the information required to embed the cuboid CP in Rˆ3
@params:

width − length of cuboid side from left to right . float in range [0,1]. Must be
1/2ˆk for some integer k

height − length of cuboid side from top to bottom. float in range [0,1]. Must be
1/2ˆk for some integer k

depth − length of cuboid side from front to back. float in range [0,1]. Must be
1/2ˆk for some integer k

cornerAtMinPt − CP corner entity (e .g ., cuboid. corners .FRONT BOTTOM LEFT) that
should be collocated with the cuboid’s minimum position in Rˆ3

@returns:
embedding − the embedding information . Specifically , the position in Rˆ3 of all the

CP corners .
@example usage:

side len = 0.5 / num tiling unit repeats per dim
embedding = cuboid.embed(side len , side len , side len , cornerAtAABBMin=cuboid.corners.

FRONT BOTTOM LEFT)

cuboid.embed via minmax(aabb min pt, aabb max pt, cornerAtMinPt)
@description:

Constructs the information required to embed the cuboid CP in Rˆ3
@params:

aabb min pt − Minimum point of the cuboid, in Rˆ3. Given as a list of length 3, where
each component must be a float in range [0,1], with 1/2ˆk for some integer k

aabb max pt − Maximum point of the cuboid, in Rˆ3. Given as a list of length 3, where
each component must be a float in range [0,1], with 1/2ˆk for some integer k

cornerAtMinPt − CP corner entity (e .g ., cuboid. corners .FRONT BOTTOM LEFT) that
should be collocated with the cuboid’s minimum position in Rˆ3

@returns:
embedding − the embedding information . Specifically , the position in Rˆ3 of all the

CP corners .
@example usage:

side len = 0.5 / num tiling unit repeats per dim
embedding = cuboid.embed ([0,0,0], [side len , side len , side len], cuboid. corners .

BACK BOTTOM RIGHT)

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

API Errata The API description listed in this section is the exact version we used to train all
models in MetaBench. This differs slightly from the released version, which corrects two mistakes
that were identified at a later stage:

• cuboid.embed(): the original description (above) listed a parameter cornerAtMinPt
in both the signature line and the @params listing. However, the @example_usage
showed the parameter as cornerAtAABBMin. The latter is correct, and reflects an update
made in the code independently of the documentation. The released API description
consistently shows the correct parameter name, cornerAtAABBMin.

• cuboid.embed_via_minmax(): the @example_usage field of the original de-
scription (above) erroneously lists the cuboid.embed() function with the inputs of
the intended function, cuboid.embed_via_minmax(). None of the parameters
were updated, as they are all correct in the original description above. Only the er-
roneous function call was corrected in the released version (cuboid.embed() →
cuboid.embed_via_minmax()).

These mistakes did not cause any observable issue in the trained model output, as the (correctly
expressed) training data overrode the error in our API description. However, this did cause an issue
for zero shot experiments (which ultimately revealed the bug). All zero shot results reported in the
paper reflect the results using the updated version of our API, where the difference relative to the
listing above constitutes exactly the two changes discussed here.

To ensure that this API description would not derail otherwise successful program outputs (and to
mitigate confusion between the two very similar keywords across functions), we added an optional
keyword argument to the signature of both affected functions, such that either keyword (or no keyword,
as in a positional argument) is permissible. Thus, either API description is suitable; however, we
release the corrected version to prevent issues and reduce confusion moving forward.

I.3 RECONSTRUCTION

Reconstruction tasks can have any combination of one to four views. Here we only reproduced the 4
view template; the others have the irrelevant lines removed.

Task:
Analyze these views of a metamaterial , then generate a metamaterial DSL procedure to reproduce it .

Inputs :
Rendered Views:
Top: <[{top}]>
Front : <[{front}]>
Right: <[{right}]>
Angled (Front−Top−Right): <[{ top right}]>

Output Format:
Generate a Metagen program within a python code block:

‘‘‘ python
from metagen import *

def make structure (...) −> Structure :
...

‘‘‘

I.4 INVERSE DESIGN

Task:
Write a metagen program that creates { query target }.

Output Format:
Generate a Metagen program within a python code block:

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

‘‘‘ python
from metagen import *

def make structure (...) −> Structure :
...

‘‘‘

I.5 MATERIAL UNDERSTANDING

Single View:

Task:
Analyze these views of a metamaterial , and predict its material properties .

Inputs :

Rendered View:

− Angled (Front−Top−Right): <[{ top right}]>

Output Format:

Output a json object , delimited by ‘‘‘ json ‘‘‘, where the keys are material property names, and
the values are the predicted material properties . Predict these properties (keys) :

− ”A” : Anisotropy (universal anisotropy index)
− ”E” : Young’s Modulus relative to E base
− ”K” : Bulk modulus relative to E base
− ”G”: Shear modulus relative to E base
− ”nu”: Isotropic Poisson ratio
− ”V” : Relative Density (Volume Fraction)

Multiview + Code:

Task:
Analyze these views of a metamaterial , and the Metagen program, and predict its material

properties .

Inputs :

Metagen Program:

{code}

Rendered Views:
− Top: <[{top}]>
− Front : <[{front}]>
− Right : <[{right}]>
− Angled (Front−Top−Right): <[{ top right}]>

Output Format:

Output a json object , delimited by ‘‘‘ json ‘‘‘, where the keys are material property names, and
the values are the predicted material properties . Predict these properties (keys) :

− ”A” : Anisotropy (universal anisotropy index)
− ”E” : Young’s Modulus relative to E base
− ”K” : Bulk modulus relative to E base
− ”G”: Shear modulus relative to E base
− ”nu”: Isotropic Poisson ratio
− ”V” : Relative Density (Volume Fraction)

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

J EFFECT OF MODEL MERGING ON TASK PERFORMANCE

To preserve prior capabilities after target-domain tuning (e.g., safety behaviors, general reasoning,
coding, tool-use), a post-hoc merging step is generally employed that interpolates the target fine-
tuned weights with the original base model. In the main results (Table 1), we report the merged
variant. However, follow-up controlled experiments indicate that an unmerged model can exceed the
merged model on target-domain benchmarks. This appendix section formalizes the construction and
quantifies the effect.

Material Understanding Reconstruction
Model Error ↓ CD ↓ IoU ↑ Valid ↑
Model 1 (merge w/ base) 0.021 ± 0.003 0.035 ± 0.001 0.449 ± 0.007 97.5% ± 0.4%
Model 2 (no merge) 0.015 ± 0.002 0.028 ± 0.001 0.533 ± 0.008 96.4% ± 0.4%

∆ (2 − 1) −0.006 −0.007 +0.084 −1.1 pp

Table 9: Effect of model merging on task metrics in the Nova Model. Model 1 merges the target
fine-tune with the base model; Model 2 omits merging. Best values per column are in bold. “pp”
denotes percentage points.

Let θbase denote the base parameters and θtgt the target-domain fine-tuned parameters. Model 1 is
constructed by weight-space interpolation with the base,

θmerge = (1− λ) θtgt + λ θbase = θbase + (1− λ)
(
θtgt − θbase

)
, λ = 0.6,

which shrinks the task-specific delta toward the base. Model 2 uses λ = 0 (no merge). All data,
compute, and optimization hyperparameters are held fixed; the only difference is the merge.

Table 9 2 shows that removing the merge yields consistently better target-domain reconstruction: CD
improves from 0.035±0.001 to 0.028±0.001 (relative ↓20%), and IoU rises from 0.449±0.007 to
0.533±0.008 (relative +18.7%). Auxiliary tasks move in the same or neutral direction: Material
Understanding Error decreases from 0.021±0.003 to 0.015±0.002 (Valid =100% for both). Together,
these effect sizes are large relative to the reported uncertainty and are aligned with the removal of the
merge (λ: > 0 → 0).

Interpolating toward θbase creates a trade-off: while it can preserve broader domain capabilities, it
dilutes the beneficial target-specific adaptations and reintroduces base model behaviors that perform
poorly on the target task. A local quadratic approximation around θtgt with Hessian H yields
L(θmerge)− L(θtgt) ≈ 1

2λ
2∥θtgt − θbase∥2H , predicting systematic degradation as λ increases. The

empirical ordering (Model 2 > Model 1 on CD/IoU) and the magnitude of the gains are therefore
most parsimoniously explained by the merging step rather than by data, compute, or randomness.

Under our target focused setting, merging the target fine-tune with the base model dilutes special-
ization and materially harms reconstruction (CD ↓ 20%, IoU ↑ 18.7% when omitting the merge).
Consequently, we recommend λ=0 for target-centric deployments; alternative merge recipes may
aid robustness/multitask breadth, but they are unnecessary—and harmful—for this target-domain
objective.

2Lower is better for Error and CD; higher is better for IoU and Valid.

45

	Introduction
	Background
	Domain-Specific Language
	Language Design Philosophy
	Implementation

	Database Generation
	Constructing Metamaterial Models
	Auxiliary Data Generation

	Benchmark Curation
	Task-Based Dataset Construction
	Task-Based Example Format

	Results
	Database
	Benchmark & Baseline
	Interactive Case Studies

	Discussion, Limitations, and Future Work
	Conclusion
	Appendix
	Ecosystem Design
	Ecosystem Development and Insights

	MetaDSL
	Additional Implementation Details
	Example Programs
	MetaDSL vs. ProcMeta
	Language Development Process and Insights

	MetaDB
	Database Layout
	Provenance Information
	Hybridization Implementation
	Mutation Implementation
	Material Properties
	Ensuring MetaDB Quality
	MetaDB Statistics

	Additional Case Study
	Further Benchmark Results
	Ablations
	Category Sub-Task Results
	Result Galleries

	MetaBench
	Intermediate Representation
	Task Construction for Inverse Design

	Implementation Details
	Training Curves
	Timing and Costs

	Query Templates
	Universal System Prompt
	MetaDSL API
	Reconstruction
	Inverse Design
	Material Understanding

	Effect of Model Merging on Task Performance

