
SkyLadder: Better and Faster Pretraining via
Context Window Scheduling

Tongyao Zhu1,2 Qian Liu2∗ Haonan Wang1 Shiqi Chen3

Xiangming Gu1 Tianyu Pang2 Min-Yen Kan1

1National University of Singapore 2Sea AI Lab 3City University of Hong Kong
tongyao.zhu@u.nus.edu; liuqian.sea@gmail.com

Abstract

Recent advancements in LLM pretraining have featured ever-expanding context
windows to process longer sequences. However, our controlled study reveals that
models pretrained with shorter context windows consistently outperform their
long-context counterparts under a fixed token budget. This finding motivates
us to explore an optimal context window scheduling strategy to better balance
long-context capability with pretraining efficiency. To this end, we propose Sky-
Ladder, a simple yet effective approach that implements a short-to-long context
window transition. SkyLadder preserves strong standard benchmark performance,
while matching or exceeding baseline results on long-context tasks. Through ex-
tensive experiments, we pretrain 1B-parameter models (up to 32K context) and
3B-parameter models (8K context) on 100B tokens, demonstrating that SkyLadder
yields consistent gains of up to 3.7% on common benchmarks, while achieving up
to 22% faster training speeds compared to baselines2.

1 Introduction

The evolution of language models has been marked by a consistent expansion in context window sizes
(Figure 1 left). While early models like GPT [39] and BERT [8] were limited to context windows of
512 tokens, subsequent models have pushed significantly beyond these bounds. GPT-2 [40] doubled
this capacity to 1024 tokens, and with Large Language Models (LLMs) exceeding 1B parameters,
this trend has continued: Llama [51] has a 2048-token window, followed by Llama-2 [52] (4096
tokens), and Llama-3 [13] (8192 tokens). The need for models to handle longer sequences during
inference has fueled the rush to expand the context window. As models pretrained with longer context
windows reduce document truncation and preserve coherence [9], there is a widespread belief that
such models should perform comparably to, or even surpass, their shorter-context counterparts.

We question the common belief that larger context windows do actually improve performance. Close
inspection of previous work reveals that there has yet to be a fair experimental setup for comparing
models across different context windows while adhering to a fixed token budget. Using tightly
controlled experiments, we test how changing only the context window size during pretraining
impacts their performance. As shown in Figure 1 (right), our results indicate that models pretrained
using shorter contexts always outperform long-context models, when assessed by their average
performance across popular benchmarks. In addition, we verify that the performance gap is not
eliminated by using advanced document packing strategies [13, 9, 44].

To ensure the model can ultimately process long sequences, the model still needs to be exposed to
long sequences. However, given the finding that shorter context windows enhance performance on

∗Corresponding author.
2Project code is at https://github.com/sail-sg/SkyLadder

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/sail-sg/SkyLadder


2020 2022 2024
Year of Release

512

1024

2048

4096

8192

C
on

te
xt

 W
in

do
w

 S
iz

e

GPT

GPT2

GPT3

Llama1

Llama2

Llama3

Pythia

OLMo

BLOOM

Gemma
Gemma2

Qwen

Qwen2

20 40 60 80 100
Training Tokens (B)

35.0

37.5

40.0

42.5

45.0

47.5

Av
er

ag
e A

cc
ur

ac
y

512
1k
2k
4k
8k
16k

Figure 1: Left: Pretraining context window of LLMs grows over the recent years. Right: Average
performance (in %) across nine downstream tasks for 1B-parameter models with different pretrained
context window sizes (color-coded). Increasing the context window degrades the overall performance.

downstream tasks, we face a trade-off between long-context capability and pretraining effectiveness.
We propose SkyLadder, a simple yet effective context window scheduling strategy designed to
balance both objectives. SkyLadder does this by progressively expanding the size of the context
window during pretraining, beginning pretraining with a minimal short context window (e.g., 8
tokens) and progressively expanding it to the long target context window (e.g., 32,768 tokens).

Empirical results on 1B-parameter models (up to 32K context window) and 3B-parameter models
(up to 8K context window) on 100B tokens demonstrate that SkyLadder outperforms naive long-
context pretraining baselines, in both short- and long-context evaluation tasks. For example, models
trained with SkyLadder demonstrate significantly higher accuracy on standard benchmarks (e.g.,
HellaSwag), and reading comprehension tasks (e.g., HotpotQA), while still maintaining competitive
performance on long-context evaluations like RULER. We further investigate the mechanisms behind
the superior performance by observing the training dynamics, and discover that SkyLadder exhibits
more concentrated and effective attention patterns.

Overall, we suggest that the length of the context window is an important dimension in pretraining
and should be scheduled over the course of training. We recommend a progressive approach that
begins with a small context of 8 tokens and gradually increases according to a linear function of
training steps. Given a target context window (e.g., 32K), we suggest that allocating approximately
60% of the total training tokens to this expansion phase leads to stronger downstream performance
compared to baselines. This scheduling strategy optimally enhances both training efficiency and
model capability, offering a practical recipe for improving pretraining in language models.

2 Related Work

Training Tokens

Co
nt
ex
tW

in
do

w

Training Tokens

Co
nt
ex
tW

in
do

w

32K 32K

Training Tokens

Co
nt
ex
tW

in
do

w

32K

4K

(a) context window
scheduling (ours)

(b) constant
long context

(c) continual pretraining
on long context

Figure 2: Schematic comparison of training-time
context window scheduling.

Context Window Scheduling. Early work ex-
plored gradually increasing the context win-
dow in smaller models like BERT and GPT-
2, to improve training stability and efficiency
[35, 28, 21]. Notably, Li et al. [28] proposed
length warmup for more stable training but did
not show clear performance gains, while Jin et al.
[21] focused on training acceleration in 400M
models. We extend these findings by demon-
strating, for the first time, that context window scheduling significantly boosts both efficiency and
performance at much larger scales (up to 3B parameters). A parallel approach from Pouransari et al.
[38] segments training documents by length, but Fu et al. [10] caution that such segmentation can
introduce domain biases, as longer texts often cluster in specific domains such as books. Recent devel-
opments in continual pretraining with long context windows [37, 55, 12], can also be viewed through
the lens of context window scheduling with different strategies (illustrated in Figure 2). Our work
represents the first demonstration of both effectiveness and efficiency of context window scheduling,
providing empirical evidence of its benefits in both standard and long-context benchmarks.

Long-Context Language Models. Long-context language models have received a lot of attention
due to their ability to capture extended dependencies across large textual windows. Most existing

2



Doc 1

Doc 2

Doc 3

Doc 2 E Doc 3 E

Doc 2Doc 1

...

...

Documents of varying length Chunks of fixed length L

Packing

Truncation &
Concatenation

Training

Applying
Attention Mask

Model with
Context Window L

[EOS] Token

Pretraining Corpus Packed Sequences

E

Causal Mask Intra-Doc Mask

Figure 3: An illustration of the workflow for pretraining data preparation highlights several critical
decisions. Key considerations include the method of data packing, the type of attention mask to
employ (causal or intra-doc mask), and determining the appropriate context window length L.

approaches follow a continual pretraining paradigm [10, 57], which extends a pretrained backbone
model to longer contexts through specialized fine-tuning or additional training. Several works propose
to intervene in the positional embeddings to accommodate longer sequences [1, 31, 37, 4, 22], while
others perform extended pretraining on longer-sequence corpora [12, 55, 32, 63]. Our approach
differs from previous methods as we train native long-context models from scratch, rather than
modifying a pretrained model in post-training. Compared with a naive long-context pretraining
baseline with a constant schedule, our approach delivers substantial gains on multiple long-context
tasks, underscoring the benefits of training from scratch. These findings show that our method can be
a promising direction for future research on building language models with longer context windows.

3 How Context Window Affects Pretraining

How does context window affect pretraining? To investigate this in a fair and comparable manner,
we pretrain language models from scratch with context windows ranging from 512 to 16,384 tokens
under a fixed total number of tokens, evaluating via perplexity and downstream task benchmarks. We
examine how the context window size impacts model performance, analyzing how data packing and
masking strategies interact with window size.

3.1 Packing, Masking and Context Window

Most modern LLMs are based on a decoder-only transformer architecture [54] with a fixed context
window size denoted by L. In contrast, the pretraining corpus, D = {d1, d2, d3, . . . , dn}, consists
of documents with varying lengths different from L. Therefore, a key step before pretraining is
to pack the documents into sequences of length L. Formally, a packed sequence Ci is constructed
as Ci = Trunc(di,1)⊕ di,2 ⊕ · · · ⊕ di,n−1 ⊕ Trunc(di,n) , where ⊕ represents concatenation, and
Trunc(·) denotes truncation of documents to ensure len(Ci) = L. Following previous works [44, 64],
document boundaries within Ci are explicitly marked using end-of-sequence ([EOS]) tokens.

After the sequences are packed, the inputs are passed into transformer layers for next-token prediction
training. A crucial component of these layers is the attention mechanism, which can be formulated
as Ai,j = q⊤i kj , and then Attn(X) = Softmax(A + M). In decoder-only models, a mask M is
applied to introduce constraints. A common approach is to use a causal mask, which ensures that
each position can only attend to previous tokens by masking out (setting to −∞) attention scores
corresponding to future positions: Mij = −∞ for j > i and Mij = 0 otherwise. A recently proposed
masking scheme, known as intra-doc mask [64, 13], imposes a constraint that only allows tokens to
attend to each other if they belong to the same document. Let each document d have start index sd
and end index ed, the masking can be denoted as M intra

ij = 0 when ∃ d such that sd ≤ i, j ≤ ed and
j ≤ i, and M intra

ij = −∞ otherwise. The model is trained with the standard cross-entropy loss on the
packed sequences of length L. The workflow for pretraining data processing is illustrated in Figure 3.

3.2 Preliminary Study on Context Window Size

As per Section 1, we initiate our study by investigating the impact of context window size on model
performance through a controlled experiment. Specifically, we pretrain language models with varying
context window sizes, while preserving all other experimental settings. This enables a pure analysis of
the context window’s influence on model performance. Through this analysis, we aim to understand
whether longer context windows inherently lead to better or worse model performance.

3



(a) Validation perplexity of 
models with varying sizes across 
different context window sizes.

(b) Validation perplexity  of different 
packing and masking strategies across 

varying context window sizes.

(c) Validation perplexity of models 
without positional encoding across 

varying context window sizes

(d) Distribution of context 
window sizes for IntraDoc 

and Random methods.

Figure 4: Ablation studies of different factors on different context window sizes. Note that the
validation PPL is obtained on the validation documents with a sliding window size of 512 tokens. The
packing strategy in (a) is Random, and the model sizes in (b) and (c) are 1B and 120M, respectively.
Note that the context window in (d) means the number of available preceding tokens when making
next-token prediction (calculation details in Section A.6).

Key Variables. The context window size determines the number of tokens included in the context for
each packed sequence. However, as discussed earlier, several additional factors influence the content
within the context window: (1) Packing methods determine which documents constitute the context
window, and different packing strategies can significantly alter the composition of token sequences; (2)
Masking methods decide whether cross-document attention is enabled within the same context window.
The choice of masking affects how the information from different documents interacts during training.

Packing and Masking. To study the impact of packing, we employ two strategies: random packing
and semantic packing. For random packing, documents are randomly concatenated without a specific
ordering. For semantic packing, inspired by Shi et al. [44], we retrieve and concatenate semantically
relevant documents from the corpus, aiming to keep them within the same context window. After
experimenting with both a dense retriever [20] and a lexical retriever BM25, we found that BM25
gives stronger performance and chose it as our focus. For masking, the baseline approach is causal
masking, where each token can attend to all preceding tokens within the same context window,
regardless of document boundaries. Conversely, recent studies [64, 9] show that disabling cross-
document attention, thereby enabling intra-document attention, improves performance. For clarity in
subsequent discussions, we denote random packing with causal masking as Random, BM25 packing
with causal masking as BM25, and random packing with intra-document masking as IntraDoc.

Training. We pretrain models from scratch using the TinyLlama codebase [61], and study models
with 120M, 360M and 1B parameters. Given the substantial computational cost associated with
retrieval in semantic packing, we randomly select around 30B tokens from the CommonCrawl (CC)
subset of the SlimPajama dataset [46] as the pretraining corpus. All models undergo training for
up to 100B tokens (∼3.3 epochs). To ensure consistency across experiments, we strictly control all
other settings, retaining the same batch size and learning rate schedule for all context windows. All
models also incorporate Rotary Positional Encoding (RoPE) [47] to encode positional information.
Appendix A.3 and A.4 give further model architecture details and training settings.

Evaluation. For all model sizes, we use perplexity (PPL) on validation documents from the original
dataset as a key metric, in line with established practices [10, 24, 17]. Note that when comparing
models across different context windows (e.g., a 2K-context model and an 8K-context model), we
must ensure the evaluation sequence fits within the shorter model’s context window to maintain a
fair comparison. We also evaluate 1B models on downstream standard benchmarks: HellaSwag [60],
ARC-Easy and ARC-Challenge [6], Winogrande [42], CommonsenseQA [48], OpenBookQA [34],
PIQA [2], Social-QA [43], and MMLU [16]. We employ the OLMES suite [15] for the evaluation,
as it has been shown to provide reliable and stable results with curated 5-shot demonstrations [12].

3.3 Experimental Results

Figure 1 presents the main experimental result, obtained using the Random setting with 1B-parameter
models. The results indicate that context window size significantly influences the performance of
LLMs, with shorter contexts generally leading to better performance. To further investigate the

4



factors contributing to the observation, we perform a comprehensive analysis to examine potential
variables that may affect the conclusion. Figure 4 shows our results, and we derive four key findings:

Findings: (1) The advantage of training on shorter contexts is consistent across model sizes;
(2) This advantage is independent of the packing and masking methods employed; (3) It is
also unrelated to the use of positional encoding; (4) The best packing and masking strategy is
IntraDoc, which outperforms others probably because it introduces a larger number of short
contexts during pretraining.

Findings (1) and (2). As shown in Figure 4, regardless of the model size in (a) or the packing and
masking methods in (b), a shorter context window for pretraining generally results in higher average
performance on benchmarks. The finding on benchmarks is consistent with the trend of validation
PPL, where shorter context windows always yield lower PPL.

Finding (3). When using shorter context windows, one might hypothesize that the model learns
positional encoding patterns for nearer positions more frequently, leading to better performance on
standard benchmarks. To test the hypothesis, we systematically ablate RoPE by completely excluding
it during pretraining, following prior work [25]. In Figure 4(c), models trained with short-context
windows still outperform their long-context counterparts, even in the absence of positional encoding.
This suggests that the advantages of shorter contexts are independent of positional encoding.

Finding (4). From Figure 4(b), we observe that IntraDoc achieves the best validation PPL across all
context window sizes compared to Random and BM25, alongside consistently higher performance on
standard benchmarks (c.f. Appendix A.7.1). This raises the question: why does IntraDoc excel? We
attribute the advantage to the context window size distribution of IntraDoc, which implicitly increases
the prevalence of shorter contexts. As illustrated in Figure 4(d), despite the sequence length of 8K,
fewer than 1% of context windows actually reach this limit. While prior work links the success of
IntraDoc to reduced contextual noise [64], we identify a complementary factor — reduced average
context window size — as a key factor in its strong performance. That is, we hypothesize that the
effectiveness of IntraDoc may also be closely tied to short context windows.

4 SkyLadder: Context Window Scheduling

We now present SkyLadder for progressively expanding the context window during pretraining.

4.1 Method Sequence Length: L

Random + SkyLadder

w

d1 d2 Tr
ai
ni
ng

Ti
m
e

IntraDoc + SkyLadder

d2d1

Random IntraDoc

Tr
ai
ni
ng

Ti
m
e

Sequence Length: L

w

Figure 5: An illustration of SkyLadder with Ran-
dom and IntraDoc. The example shows a packed
sequence (length L) consisting of two documents.
For SkyLadder, the context window w starts from
a small value and dynamically adjusts during train-
ing, eventually converging to the masking patterns
of Random or IntraDoc.

Inspired by learning rate scheduling, we ex-
plore whether dynamically scheduling the con-
text window from short to long during pretrain-
ing could lead to performance improvements.
This method can be implemented by applying
multiple local “mini” causal masks to a long,
packed sequence. We illustrate this masking
strategy in Figure 5.

Formally, we define a local window length
w. The associated mask Mw is defined as fol-
lows: Mij = 0 when ⌊ i

w ⌋w ≤ j ≤ i, and
Mij = −∞ otherwise, where ⌊ i

w ⌋w calculates
the largest multiple of w that is less than or equal
to i, effectively defining a block-wise attention
mask for the query token at position i. We linearly adjust the window size upwards by a constant
factor per training step t: w(t) = min(we, ws + ⌊αt⌋), where we and ws represent the ending and
starting context window sizes, respectively. Here, α denotes the rate of expansion, and t corresponds
to the training step. As the training progresses, when the dynamic context window size w(t) even-
tually reaches the desired (long) context window size L = we, it remains fixed at that value. At
this point, the attention mask is equivalent to a full causal mask. Notably, this method modifies

5



Table 1: Performance (accuracy in %) of different 1B models pretrained on 100B CC tokens on
standard benchmarks. ∗ denotes statistical improvements over the baseline (described in §A.7.3).

Method Avg. ARC-E ARC-C CSQA HS OBQA PIQA SIQA WG MMLU

Random 46.3 58.0 32.7 49.6 43.0 40.2 64.8 46.4 51.9 29.9
+ SkyLadder 50.0 (+3.7) 65.4∗ 35.6∗ 56.8∗ 47.0∗ 42.8 64.8 48.9∗ 56.0∗ 32.4∗

IntraDoc 47.4 61.8 33.4 52.7 45.6 38.0 64.3 45.7 54.8 30.5
+ SkyLadder 49.3 (+1.9) 64.8∗ 33.8 55.4∗ 47.9∗ 39.4 66.1∗ 48.0∗ 56.4 31.8∗

Table 2: Performance (accuracy in %) of 1B models pretrained on 100B CC tokens with different meth-
ods on reading comprehension and long-context benchmarks. Detailed setup is in Appendix A.7.3.

Method Reading Comprehension Benchmarks Long Benchmarks

Avg. HotpotQA SQuAD NQ TriviaQA RACE-h Avg. MDQA RULER

Random 25.5 6.5 37.0 15.8 37.7 30.7 15.3 17.7 12.8
+ SkyLadder 30.2 (+4.7) 12.4 40.2 20.4 43.0 35.0 14.3 18.3 10.3
IntraDoc 28.7 11.4 39.0 18.2 42.3 32.3 13.0 15.3 10.6
+ SkyLadder 29.1 (+0.4) 11.0 38.5 20.4 41.5 34.3 13.2 15.6 10.7

the effective context window through masking, independent of how the sequences are packed. As
such, this mask Mw can be integrated with M Intra, which maintains the attention boundaries between
documents; it can be seamlessly combined with most packing and masking strategies.

4.2 Experimental Setup

We follow the same setup in Section 3.2 to pretrain language models with 8K context on 100B
tokens. We set ws = 32 and α = 1/8 by default, which means that a model roughly needs 64K
steps (around 64B tokens) to reach the final desired context window of L = 8192. All baseline
and SkyLadder models are implemented with Flash Attention 2 [7] (pseudocode in A.5). We fix
all other hyperparameters, such as the learning rate schedule, batch size, etc., for fair comparison.
Due to resource constraints, we do not perform extensive hyperparameter search to obtain the best
combinations for w(t), α, and ws. In our ablation study, we show that these hyperparameters have a
negligible impact on performance, as long as they are within a reasonable range.

For evaluation, we use the same suite mentioned in Section 3.2 with standard benchmarks. To evaluate
the performance of long-context question answering within an 8K length, we utilize the 30-document
setting from the Multi-Document QA (MDQA) benchmark [30]. This is a widely-adopted benchmark
that is shown to be reliable for models of 1B scale [38, 64], with an average length of approximately
6K tokens. We also select synthetic tasks within RULER [18], as defined by Yen et al. [59]. We
choose the setup of the task that fills up the model’s target context window L.

4.3 Experimental Results

Tables 1 and 2 present the main results, highlighting significant improvements achieved by SkyLadder
across standard benchmarks, reading comprehension tasks and long-context benchmarks. For instance,
compared to the Random baseline, integrating SkyLadder yields notable performance gains on
standard tasks such as MMLU (+2.5%), ARC-E (+7.4%), and HellaSwag (+4%). This suggests that
models with SkyLadder excel at learning common knowledge during pretraining. Additionally, our
method further improves the performance of the strong baseline IntraDoc across many benchmarks.
Meanwhile, for realistic long-context benchmarks like MDQA, SkyLadder matches or exceeds
baseline performance. For RULER, the performance difference is likely because of fluctuation
caused by its synthetic nature and small size [55]. More long-context evaluation can be found
in Section A.7.3, confirming that SkyLadder is comparable with or better than baselines on long-
context evaluation. In addition to Random and IntraDoc, we also verify that SkyLadder improves the
performance of the BM25 model on both short and long tasks (Section A.7.4).

To address potential concerns that the benefits observed in short contexts may stem from the high level
of noise in CC, we conduct additional experiments using the FineWeb-Pro dataset [65], a carefully
curated high-quality dataset containing 100B tokens. As shown in Table 4, improved data quality
indeed leads to substantial performance gains. However, our key findings remain consistent: IntraDoc

6



Table 3: Performance (in %) of 1B models pretrained on 100B Python code data. We follow the
protocol of Huang et al. [19] to evaluate on HumanEval [3] and BigCodeBench [66]. t is the sampling
temperature. SkyLadder shows consistent improvement especially for 32K-context models.

HumanEval BigCodeBench

Greedy Sampling (t = 0.8) Greedy Sampling (t = 0.8)

L Method Pass@1 Pass@10 Pass@100 Pass@1 Pass@10 Pass@20

32K Random 17.7 32.4 51.8 9.0 16.1 19.7
+ SkyLadder 21.3 37.7 59.8 9.4 20.6 24.3

8K Random 22.0 37.2 61.0 9.9 19.3 23.6
+ SkyLadder 23.2 38.2 63.4 11.3 20.0 24.1

Table 4: Performance (average accuracy over
tasks, in %) of 1B models pretrained on
FineWeb-Pro with an 8K context window.

Method Standard Long

Random 52.5 11.1
+ SkyLadder 55.2 (+2.7) 12.3 (+1.2)

IntraDoc 54.3 12.7
+ SkyLadder 54.8 (+0.5) 13.9 (+1.2)

Table 5: Performance (average accuracy in %) for
models of different sizes.

Size Method Standard Long

120M Random 40.1 5.8
+ SkyLadder 41.2 (+1.1) 5.1 (-0.7)

360M Random 47.2 8.9
+ SkyLadder 49.6 (+2.4) 8.9

3B Random 57.0 15.8
+ SkyLadder 60.5 (+3.5) 19.3 (+3.5)

continues to outperform Random, and SkyLadder consistently delivers significant improvements over
both baselines. This demonstrates that our method generalizes to corpora of varying quality.

We further examine whether SkyLadder is generalizable beyond natural language tasks. Follow-
ing Ding et al. [9], we pretrain 1B code models on 100B Python code with the Starcoder tokenizer [29].
We observe a lower training loss (∼ 0.9) for code pretraining compared to natural language (∼ 2.1),
suggesting that the structure in code makes the training easier. However, as shown in Table 3, there
is still significant improvement when applying SkyLadder under both greedy decoding and sampling
setups, especially when the target context length is 32K. This demonstrates the potential of SkyLadder
to coding and possibly other reasoning tasks beyond natural language modelling.

4.4 Scalability Experiments

We examine whether SkyLadder’s improvements persist as we scale up the model parameters and
extend the context window size. We use the largest model and context size that our compute permits.

Model Size. We conduct experiments across three model sizes: 120M, 360M, and 3B parameters on
the Fineweb-Pro dataset. Table 5 demonstrates that models utilizing SkyLadder consistently achieve
better standard benchmark performance on all model sizes. For long context tasks, our method
does not benefit 120M models, possibly due to their limited capacity in processing long sequences.
However, the performance gain on 3B models is prominent. We observe a positive scaling trend:
as the model size grows, the performance improvement also increases, indicating the potential of
applying our method to even larger models beyond our current scale. We leave it as a future work to
explore larger models as it requires significantly more compute.

Table 6: Performance (%) of 1B models
trained on 100B FineWeb-Pro tokens
with a 32K context window.

Method Standard Long

Random 50.7 9.7
+ SkyLadder 54.3 (+3.6) 13.5 (+3.8)
IntraDoc 54.0 13.0
+ SkyLadder 54.9 (+0.9) 14.4 (+1.4)

Context Window Size. To examine whether SkyLadder
can effectively scale to longer context windows, we train
1B models with a 32K context window on 100B FineWeb-
Pro tokens. We adjust α to 1/2 to ensure that the final
context window expands to 32K before the end of pretrain-
ing. As shown in Table 6, our model demonstrates strong
performance on both standard and long benchmarks. In
addition, the performance difference of SkyLadder (0.9%)
between the 8K and 32K models is largely reduced com-
pared with the baseline approach (1.8%), which alleviates

7



1 2 4 8 10 12
Expansion Rate (1/ )

15.0

15.2

15.4

15.6

15.8

Va
lid

at
io

n 
PP

L 
on

 5
12 PPL on 512

12.0

12.2

12.4

12.6

12.8

Va
lid

at
io

n 
PP

L 
on

 8
kPPL on 8k

4 8 16 32 64 128 256
Initial Window Length (ws)

15.0

15.2

15.4

15.6

15.8

Va
lid

at
io

n 
PP

L 
on

 5
12 PPL on 512

12.0

12.2

12.4

12.6

12.8

Va
lid

at
io

n 
PP

L 
on

 8
kPPL on 8k

Figure 6: Validation PPL on 512 and 8K contexts of models with different expansion rate α (left) and
initial window length ws (right).

Table 7: Comparison of 1B models trained with
a 32K context window with different scheduling
methods. Numbers are average accuracy (%).

Method Long Standard

Constant Long (32K) 9.7 50.7

Linear (32→32K, default) 13.5 54.3
Stepwise Linear (32→32K) 13.3 55.3
Sinusoidal (32→32K) 14.2 54.2
Exponential (32→32K) 11.5 54.7
Cont. Pretrain (4K→32K) 10.0 52.9

Table 8: Comparison of relative training time and
compute efficiency for 1B Models with different
context window sizes L. FLOPs calculation fol-
lows Zhang et al. [61]. A larger context window
leads to more efficiency gains.

Method Time (%) FLOPs (1020)

Random (8K) 100.0% 11.6
+ SkyLadder 86.9% (-13.1%) 9.9 (-14.7%)

Random (32K) 100.0% 25.5
+ SkyLadder 77.8% (-22.2%) 18.8 (-26.3%)

the performance degradation described in our earlier study. Notably, compared to the baseline
Random approach, SkyLadder trains the model on progressively shorter contexts during earlier stages.
This reveals a counterintuitive insight: naively training a model with a long context window is not
always optimal, even if the model is evaluated on long contexts. In contrast, strategic scheduling of
the context window during pretraining can yield better results.

4.5 Ablation Study

We now examine the impact of hyperparameters in SkyLadder scheduling. To manage computational
costs, we adopt a default setup of pretraining 120M models with 8K context on 100B CC tokens.

Expansion Rate. We investigate the impact of the expansion rate α in Figure 6 (left). We choose
different α ranging from slowest (1/12) to fastest (1). Our findings reveal that, for short contexts,
performance generally improves as the expansion rate slows down. However, selecting an excessively
slow rate (e.g., 1/12) can negatively affect long-context performance due to insufficient training on
longer contexts. Therefore, we recommend setting α to 1/8 for a good balance.

Initial Context Window. As the final context window length we is fixed to L, the sole remaining
hyperparameter is ws. Intuitively, setting ws to an excessively large value (e.g. close to L) leaves
little room for scheduling, resulting in sub-optimal performance. In Figure 6 (right), we demonstrate
that when ws is set to a relatively small value (e.g., 8), great performance can be achieved for both
short and long contexts. This suggests that there is still potential for further improvement in our
default setup. Therefore, we recommend starting with a small context window, such as 8 tokens.

Scheduling Type. The default scheduling method in SkyLadder is linear scheduling. We evaluate
different context window scheduling types (more details in Table 20 and Figure 12 in Appendix A.7.4):
(1) Stepwise Linear rounds window size w(t) to multiples of 1K, resulting in a step function; (2)
Sinusoidal increases quickly at the early stage then slows down; (3) Exponential starts slow but
accelerates sharply; (4) Continual pretraining setup trains with 4K context windows for ∼97B
tokens, then switches to 32K context for the final 3B tokens. Table 7 shows that linear and sinusoidal
schedules outperform the exponential variant on long tasks, likely because the exponential schedule,
with extended short-context pretraining at the beginning, fails to adequately train on long contexts.
Last, the most commonly used continual pretraining setup performs poorly overall, suggesting abrupt
context changes harm both short and long performance. These findings suggest that context window
scheduling is superior to both constant long-context pretraining and continual pretraining.

8



Overall, we conclude that the schedule should start from a small ws and the expansion should
be gradual. We leave it to future work to study more advanced schedules and discover optimal
configurations. For instance, it is possible that the schedule needs to be adjusted for various model
sizes. More ablations for combination with BM25, hybrid attention, cyclic schedules and scheduling
under a compute budget can be found in Appendix A.7.4.

4.6 Analysis and Discussion

Training Efficiency. We observe a significant boost in training efficiency when employing Sky-
Ladder in Table 8. On 8K models, SkyLadder accelerates training time by 13% due to the reduced
context window in calculating attention. With a 32K context window, the efficiency gain becomes
even more pronounced: our method saves 22% of training time while achieving better performance.
The FLOPs saving is larger than the actual time because of reduced attention calculation.

20 40 60 80 100
Training Tokens (B)

0

10

20

30

A
tte

nt
io

n 
Si

nk

3.2

3.3

3.4

3.5

3.6

A
tte

nt
io

n 
En

tro
py

Baseline
SkyLadder

Attention Sink
Attention Entropy

Figure 7: Dynamics of attention sink
and entropy during pretraining 1B mod-
els (8K context). SkyLadder delays the
emergence of attention sink while lower-
ing the overall entropy, indicating a more
effective attention pattern.

Attention Pattern. We next investigate why SkyLadder,
despite being trained on short contexts overall, consis-
tently outperforms the baseline. As language models rely
on attention mechanisms to encode context information,
we study how attention patterns change. Specifically, dur-
ing pretraining, we monitor the dynamics of (i) attention
entropy (solid lines in Figure 7), where a lower entropy is
associated with better downstream performance [62]; (ii)
attention sink [56], where the initial token in the context
receives disproportionately high attention. We utilize the
metric in Gu et al. [14] to quantitatively measure the ampli-
tude of attention sink. As shown in Figure 7 (dashed lines),
compared with the baseline Random, SkyLadder demon-
strates reduced attention entropy, suggesting a more con-
centrated attention pattern. However, a slower emergence
and lower amplitude of attention sink are simultaneously
observed. This suggests that SkyLadder’s attention is con-
centrated on the key information in the context instead of
the initial token, which accounts for the performance gain.

0 5 10 15 20 25 30
Training Tokens (B)

0

20

40

60

80

100

M
ax

 A
tte

nt
io

n 
Lo

gi
t

Max Attention Logit

1K 2K 8K 16K

Figure 8: Max attention logits during
training of models of different context
lengths (in different colors).

Training Stability. To further understand the reasons
behind SkyLadder’s better performance, we analyze the
impact of pretraining context length on training dynamics.
We pretrain 120M-parameter models with different context
lengths. We first monitor the maximum attention logits
(Smax = maxi,j qi · kj for all i, j) throughout pretraining,
following the methodology of K2 [50]. A large attention
logit indicates that an attention head is malfunctioning and
may cause numerical instability. In Figure 8, we observe
that pretraining with a long context of 16K tokens leads
to exploding max attention logits, while a shorter window
leads to lower attention logits.

Next, we study the loss and gradient behavior by comput-
ing four stability metrics over the first N = 30K steps of
pretraining, where Lt denotes the training loss and Gt is
the gradient norm before clipping:

• Loss Volatility: measures local fluctuations of loss over a sliding window (w = 10),
computed as 1

N

∑N
t=1 Std(Lt−w+1, . . . , Lt). Lower values indicate more stable training.

• Loss Smoothness: the average loss change between consecutive steps, 1
N−1

∑N
t=2 |Lt −

Lt−1|. Smaller values mean smoother convergence.

• Mean Loss Ratio [28]: measures temporary increases in loss relative to the best loss so far,
1

N−1

∑N
t=2

Lt

min(L1,...,Lt−1)
, where smaller values indicate fewer loss spikes.

9



Table 9: Training stability metrics during pretraining of 120M models with different context lengths.
All metrics are averaged over the first 30 billion tokens. ↓ indicates that smaller values are better.

Context Volatility ↓ (w=10) Smoothness ↓ Mean Loss Ratio ↓ Avg Grad Norm ↓
1K 0.023 0.019 1.014 0.335
2K 0.026 0.023 1.017 0.338
4K 0.030 0.029 1.020 0.340
8K 0.036 0.036 1.025 0.347
16K 0.041 0.042 1.036 0.416

• Average Gradient Norm: 1
N

∑N
t=1 min(Gt, 1), where larger values indicate more aggressive

gradient updates.

In Table 9, longer-context models show higher volatility, less smooth loss curves, more frequent
upward spikes, and larger gradient norms, all indicating less stable optimization. In contrast, short-
context models converge more smoothly with smaller fluctuations and more controlled gradient
updates. Together, these results reveal that short-context pretraining is inherently more stable, both
in attention behavior and optimization dynamics. The reduced numerical instability and smoother
convergence likely enable more consistent gradient signals and better overall convergence, explaining
their superior downstream performance.

Table 10: Comparison between SkyLadder
and Dataset Decomposition (DD) on 1B mod-
els trained with 100B FineWeb-Pro tokens.
Numbers are in average performance in %.

Model Standard Long

IntraDoc 54.3 12.7
+ SkyLadder 54.8 (+0.5) 13.9 (+1.2)
+ DD (1 cycle) 53.9 (-0.4) 12.3 (-0.4)
+ DD (8 cycles) 54.5 (+0.2) 13.5 (+0.8)

Comparison with Related Work. We compare
our method with another approach for improving
pretraining in Table 10. As discussed in Section 2,
Pouransari et al. [38] proposed Dataset Decomposi-
tion (DD) by segmenting a document into sequences
of varying lengths and using a curriculum during
pretraining. However, this approach inevitably in-
troduces domain bias, as the document lengths in
different domains are different [10]. This explains
why DD with only one short-to-long cycle fails to
outperform the IntraDoc baseline. To mitigate this,
the authors suggested iterating through multiple cy-
cles of long and short data, which does improve performance substantially. In contrast, our method
achieves better performance by avoiding such biases by not altering the data order based on length.
In Appendix A.7.4, we experimented with various cyclic schedules but did not observe any im-
provements. In fact, we noticed loss spikes between cycles (Figure 14), indicating potential issues
with domain shifts. This further supports that our method is safer since it does not disrupt the
natural ordering and distribution of the data. More discussion with other related works [28, 21] is in
Section A.8, where we demonstrate that our work provides novel insights that scheduling the context
window over the entire training time improves both efficiency and performance.

5 Conclusion

We conduct a comprehensive controlled study of the impact of context window on pretraining,
revealing that a shorter context window is more beneficial to the model’s performance on standard
benchmarks. This debunks the trend of pretraining with longer context windows. We therefore
propose SkyLadder to schedule the context window from short to long during pretraining, which gives
substantial improvement in downstream performance and computational efficiency. We conclude
that context window scheduling is an important dimension for pretraining, and deserves more
consideration. In the future, we plan to explore more dynamic and performant scheduling strategies
that adapt according to model size or pretraining data distribution.

10



References
[1] Chenxin An, Jun Zhang, Ming Zhong, Lei Li, Shansan Gong, Yao Luo, Jingjing Xu, and

Lingpeng Kong. Why does the effective context length of llms fall short?, 2024. URL
https://arxiv.org/abs/2410.18745.

[2] Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: Reasoning
about physical commonsense in natural language. In Thirty-Fourth AAAI Conference on
Artificial Intelligence, 2020.

[3] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul
Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke
Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad
Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant
Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie
Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and
Wojciech Zaremba. Evaluating large language models trained on code, 2021. URL https:
//arxiv.org/abs/2107.03374.

[4] Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context
window of large language models via positional interpolation, 2023. URL https://arxiv.
org/abs/2306.15595.

[5] Yu-An Chung, Hung-Yi Lee, and James Glass. Supervised and unsupervised transfer learning
for question answering, 2018. URL https://arxiv.org/abs/1711.05345.

[6] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge, 2018. URL https://arxiv.org/abs/1803.05457.

[7] Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In
International Conference on Learning Representations (ICLR), 2024.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio, editors, Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota, June 2019. Association
for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.
org/N19-1423/.

[9] Hantian Ding, Zijian Wang, Giovanni Paolini, Varun Kumar, Anoop Deoras, Dan Roth, and
Stefano Soatto. Fewer truncations improve language modeling. In Proceedings of the 41st
International Conference on Machine Learning, pages 11030–11048, 2024.

[10] Yao Fu, Rameswar Panda, Xinyao Niu, Xiang Yue, Hannaneh Hajishirzi, Yoon Kim, and Hao
Peng. Data engineering for scaling language models to 128k context. In Proceedings of the
41st International Conference on Machine Learning, pages 14125–14134, 2024.

[11] Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles
Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas
Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron,
Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 07 2024. URL https://zenodo.org/records/
12608602.

[12] Tianyu Gao, Alexander Wettig, Howard Yen, and Danqi Chen. How to train long-context
language models (effectively), 2025. URL https://arxiv.org/abs/2410.02660.

11

https://arxiv.org/abs/2410.18745
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2306.15595
https://arxiv.org/abs/2306.15595
https://arxiv.org/abs/1711.05345
https://arxiv.org/abs/1803.05457
https://aclanthology.org/N19-1423/
https://aclanthology.org/N19-1423/
https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://arxiv.org/abs/2410.02660


[13] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama
3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

[14] Xiangming Gu, Tianyu Pang, Chao Du, Qian Liu, Fengzhuo Zhang, Cunxiao Du, Ye Wang, and
Min Lin. When attention sink emerges in language models: An empirical view, 2024. URL
https://arxiv.org/abs/2410.10781.

[15] Yuling Gu, Oyvind Tafjord, Bailey Kuehl, Dany Haddad, Jesse Dodge, and Hannaneh Ha-
jishirzi. OLMES: A standard for language model evaluations. In Luis Chiruzzo, Alan Ritter,
and Lu Wang, editors, Findings of the Association for Computational Linguistics: NAACL
2025, pages 5005–5033, Albuquerque, New Mexico, April 2025. Association for Computa-
tional Linguistics. ISBN 979-8-89176-195-7. URL https://aclanthology.org/2025.
findings-naacl.282/.

[16] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. Proceedings of the
International Conference on Learning Representations (ICLR), 2021.

[17] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Oriol Vinyals, Jack W. Rae, and Laurent Sifre.
Training compute-optimal large language models. In Proceedings of the 36th International
Conference on Neural Information Processing Systems, NIPS ’22, Red Hook, NY, USA, 2022.
Curran Associates Inc. ISBN 9781713871088.

[18] Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, and
Boris Ginsburg. RULER: What’s the real context size of your long-context language models?
In First Conference on Language Modeling, 2024.

[19] Siming Huang, Tianhao Cheng, J. K. Liu, Jiaran Hao, Liuyihan Song, Yang Xu, J. Yang, J. H.
Liu, Chenchen Zhang, Linzheng Chai, Ruifeng Yuan, Zhaoxiang Zhang, Jie Fu, Qian Liu,
Ge Zhang, Zili Wang, Yuan Qi, Yinghui Xu, and Wei Chu. Opencoder: The open cookbook for
top-tier code large language models, 2024. URL https://arxiv.org/abs/2411.04905.

[20] Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Armand
Joulin, and Edouard Grave. Unsupervised dense information retrieval with contrastive learning,
2021. URL https://arxiv.org/abs/2112.09118.

[21] Hongye Jin, Xiaotian Han, Jingfeng Yang, Zhimeng Jiang, Chia-Yuan Chang, and Xia Hu.
Growlength: Accelerating LLMs pretraining by progressively growing training length, 2023.
URL https://arxiv.org/abs/2310.00576.

[22] Hongye Jin, Xiaotian Han, Jingfeng Yang, Zhimeng Jiang, Zirui Liu, Chia-Yuan Chang, Huiyuan
Chen, and Xia Hu. LLM maybe longlm: Selfextend LLM context window without tuning. In
Forty-first International Conference on Machine Learning, 2024.

[23] Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale
distantly supervised challenge dataset for reading comprehension. In Regina Barzilay and
Min-Yen Kan, editors, Proceedings of the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages 1601–1611, Vancouver, Canada,
July 2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1147. URL
https://aclanthology.org/P17-1147/.

[24] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020. URL https://arxiv.org/abs/2001.08361.

[25] Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Payel Das, and
Siva Reddy. The impact of positional encoding on length generalization in transformers. In
Proceedings of the 37th International Conference on Neural Information Processing Systems,
NIPS ’23, Red Hook, NY, USA, 2023. Curran Associates Inc.

12

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2410.10781
https://aclanthology.org/2025.findings-naacl.282/
https://aclanthology.org/2025.findings-naacl.282/
https://arxiv.org/abs/2411.04905
https://arxiv.org/abs/2112.09118
https://arxiv.org/abs/2310.00576
https://aclanthology.org/P17-1147/
https://arxiv.org/abs/2001.08361


[26] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
Petrov. Natural questions: A benchmark for question answering research. Transactions of the
Association for Computational Linguistics, 7:452–466, 2019. doi: 10.1162/tacl_a_00276. URL
https://aclanthology.org/Q19-1026/.

[27] Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. RACE: Large-scale
ReAding comprehension dataset from examinations. In Martha Palmer, Rebecca Hwa, and
Sebastian Riedel, editors, Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, pages 785–794, Copenhagen, Denmark, September 2017. Association
for Computational Linguistics. doi: 10.18653/v1/D17-1082. URL https://aclanthology.
org/D17-1082/.

[28] Conglong Li, Minjia Zhang, and Yuxiong He. The stability-efficiency dilemma: investigating
sequence length warmup for training gpt models. In Proceedings of the 36th International
Conference on Neural Information Processing Systems, pages 26736–26750, 2022.

[29] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii,
Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João
Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee,
Logesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang,
Rudra Murthy, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan
Dey, Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh, Sasha
Luccioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav
Timor, Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank
Mishra, Alex Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Dan-
ish Contractor, Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz
Ferrandis, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.
Starcoder: may the source be with you!, 2023. URL https://arxiv.org/abs/2305.06161.

[30] Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
and Percy Liang. Lost in the middle: How language models use long contexts. Transactions of
the Association for Computational Linguistics, 12:157–173, 2024. doi: 10.1162/tacl_a_00638.
URL https://aclanthology.org/2024.tacl-1.9/.

[31] LocalLLaMA. NTK-aware scaled rope allows llama models to have extended (8k+)
context size without any fine-tuning and minimal perplexity degration, 2023. URL
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_
rope_allows_llama_models_to_have/.

[32] Yi Lu, Jing Nathan Yan, Songlin Yang, Justin T. Chiu, Siyu Ren, Fei Yuan, Wenting Zhao,
Zhiyong Wu, and Alexander M. Rush. A controlled study on long context extension and
generalization in llms, 2024. URL https://arxiv.org/abs/2409.12181.

[33] Xin Men, Mingyu Xu, Bingning Wang, Qingyu Zhang, Hongyu Lin, Xianpei Han, and Weipeng
Chen. Base of RoPE bounds context length, 2024. URL https://arxiv.org/abs/2405.
14591.

[34] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In Ellen Riloff, David Chiang, Julia
Hockenmaier, and Jun’ichi Tsujii, editors, Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 2381–2391, Brussels, Belgium, October-
November 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1260. URL
https://aclanthology.org/D18-1260/.

[35] Koichi Nagatsuka, Clifford Broni-Bediako, and Masayasu Atsumi. Pre-training a BERT with
curriculum learning by increasing block-size of input text. In Proceedings of the International
Conference on Recent Advances in Natural Language Processing (RANLP 2021), pages 989–
996, 2021.

13

https://aclanthology.org/Q19-1026/
https://aclanthology.org/D17-1082/
https://aclanthology.org/D17-1082/
https://arxiv.org/abs/2305.06161
https://aclanthology.org/2024.tacl-1.9/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://arxiv.org/abs/2409.12181
https://arxiv.org/abs/2405.14591
https://arxiv.org/abs/2405.14591
https://aclanthology.org/D18-1260/


[36] Richard Yuanzhe Pang, Alicia Parrish, Nitish Joshi, Nikita Nangia, Jason Phang, Angelica
Chen, Vishakh Padmakumar, Johnny Ma, Jana Thompson, He He, and Samuel Bowman.
QuALITY: Question answering with long input texts, yes! In Marine Carpuat, Marie-Catherine
de Marneffe, and Ivan Vladimir Meza Ruiz, editors, Proceedings of the 2022 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pages 5336–5358, Seattle, United States, July 2022. Association
for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.391. URL https://
aclanthology.org/2022.naacl-main.391/.

[37] Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context
window extension of large language models. In The Twelfth International Conference on
Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.
URL https://openreview.net/forum?id=wHBfxhZu1u.

[38] Hadi Pouransari, Chun-Liang Li, Jen-Hao Chang, Pavan Kumar Anasosalu Vasu, Cem Koc,
Vaishaal Shankar, and Oncel Tuzel. Dataset decomposition: Faster llm training with variable
sequence length curriculum. Advances in Neural Information Processing Systems, 37:36121–
36147, 2024.

[39] Alec Radford. Improving language understanding by generative pre-training. OpenAI blog,
2018.

[40] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 2019.

[41] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+
questions for machine comprehension of text. In Jian Su, Kevin Duh, and Xavier Carreras,
editors, Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing, pages 2383–2392, Austin, Texas, November 2016. Association for Computational
Linguistics. doi: 10.18653/v1/D16-1264. URL https://aclanthology.org/D16-1264/.

[42] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

[43] Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Social IQa:
Commonsense reasoning about social interactions. In Kentaro Inui, Jing Jiang, Vincent
Ng, and Xiaojun Wan, editors, Proceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages 4463–4473, Hong Kong, China, Novem-
ber 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1454. URL
https://aclanthology.org/D19-1454/.

[44] Weijia Shi, Sewon Min, Maria Lomeli, Chunting Zhou, Margaret Li, Xi Victoria Lin, Noah A
Smith, Luke Zettlemoyer, Wen-tau Yih, and Mike Lewis. In-context pretraining: Language
modeling beyond document boundaries. In The Twelfth International Conference on Learning
Representations, 2024.

[45] Leslie N Smith. Cyclical learning rates for training neural networks. In 2017 IEEE winter
conference on applications of computer vision (WACV), pages 464–472. IEEE, 2017.

[46] Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel
Hestness, and Nolan Dey. SlimPajama: A 627B token cleaned and
deduplicated version of RedPajama. https://www.cerebras.net/blog/
slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama,
6 2023. URL https://huggingface.co/datasets/cerebras/SlimPajama-627B.

[47] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer:
Enhanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

[48] Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA:
A question answering challenge targeting commonsense knowledge. In Proceedings of the

14

https://aclanthology.org/2022.naacl-main.391/
https://aclanthology.org/2022.naacl-main.391/
https://openreview.net/forum?id=wHBfxhZu1u
https://aclanthology.org/D16-1264/
https://aclanthology.org/D19-1454/
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://huggingface.co/datasets/cerebras/SlimPajama-627B


2019 Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4149–
4158, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi:
10.18653/v1/N19-1421. URL https://aclanthology.org/N19-1421.

[49] Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona
Merhej, Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma
3 technical report, 2025. URL https://arxiv.org/abs/2503.19786.

[50] Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, Zhuofu Chen, Jialei Cui, Hao Ding, Mengnan Dong,
Angang Du, Chenzhuang Du, Dikang Du, Yulun Du, Yu Fan, Yichen Feng, Kelin Fu, Bofei Gao,
Hongcheng Gao, Peizhong Gao, Tong Gao, Xinran Gu, Longyu Guan, Haiqing Guo, Jianhang
Guo, Hao Hu, Xiaoru Hao, Tianhong He, Weiran He, Wenyang He, Chao Hong, Yangyang Hu,
Zhenxing Hu, Weixiao Huang, Zhiqi Huang, Zihao Huang, Tao Jiang, Zhejun Jiang, Xinyi Jin,
Yongsheng Kang, Guokun Lai, Cheng Li, Fang Li, Haoyang Li, Ming Li, Wentao Li, Yanhao
Li, Yiwei Li, Zhaowei Li, Zheming Li, Hongzhan Lin, Xiaohan Lin, Zongyu Lin, Chengyin
Liu, Chenyu Liu, Hongzhang Liu, Jingyuan Liu, Junqi Liu, Liang Liu, Shaowei Liu, T. Y. Liu,
Tianwei Liu, Weizhou Liu, Yangyang Liu, Yibo Liu, Yiping Liu, Yue Liu, Zhengying Liu, Enzhe
Lu, Lijun Lu, Shengling Ma, Xinyu Ma, Yingwei Ma, Shaoguang Mao, Jie Mei, Xin Men, Yibo
Miao, Siyuan Pan, Yebo Peng, Ruoyu Qin, Bowen Qu, Zeyu Shang, Lidong Shi, Shengyuan
Shi, Feifan Song, Jianlin Su, Zhengyuan Su, Xinjie Sun, Flood Sung, Heyi Tang, Jiawen Tao,
Qifeng Teng, Chensi Wang, Dinglu Wang, Feng Wang, Haiming Wang, Jianzhou Wang, Jiaxing
Wang, Jinhong Wang, Shengjie Wang, Shuyi Wang, Yao Wang, Yejie Wang, Yiqin Wang, Yuxin
Wang, Yuzhi Wang, Zhaoji Wang, Zhengtao Wang, Zhexu Wang, Chu Wei, Qianqian Wei,
Wenhao Wu, Xingzhe Wu, Yuxin Wu, Chenjun Xiao, Xiaotong Xie, Weimin Xiong, Boyu Xu,
Jing Xu, Jinjing Xu, L. H. Xu, Lin Xu, Suting Xu, Weixin Xu, Xinran Xu, Yangchuan Xu,
Ziyao Xu, Junjie Yan, Yuzi Yan, Xiaofei Yang, Ying Yang, Zhen Yang, Zhilin Yang, Zonghan
Yang, Haotian Yao, Xingcheng Yao, Wenjie Ye, Zhuorui Ye, Bohong Yin, Longhui Yu, Enming
Yuan, Hongbang Yuan, Mengjie Yuan, Haobing Zhan, Dehao Zhang, Hao Zhang, Wanlu Zhang,
Xiaobin Zhang, Yangkun Zhang, Yizhi Zhang, Yongting Zhang, Yu Zhang, Yutao Zhang, Yutong
Zhang, Zheng Zhang, Haotian Zhao, Yikai Zhao, Huabin Zheng, Shaojie Zheng, Jianren Zhou,
Xinyu Zhou, Zaida Zhou, Zhen Zhu, Weiyu Zhuang, and Xinxing Zu. Kimi k2: Open agentic
intelligence, 2025. URL https://arxiv.org/abs/2507.20534.

[51] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez,
Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023. URL https://arxiv.org/abs/2302.13971.

[52] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas
Blecher, Cristian Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian
Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta,
Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiao-
qing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng
Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation
and fine-tuned chat models. CoRR, abs/2307.09288, 2023. doi: 10.48550/ARXIV.2307.09288.
URL https://doi.org/10.48550/arXiv.2307.09288.

[53] Bo-Hsiang Tseng, Sheng-Syun Shen, Hung-Yi Lee, and Lin-Shan Lee. Towards machine
comprehension of spoken content: Initial toefl listening comprehension test by machine, 2016.
URL https://arxiv.org/abs/1608.06378.

[54] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,

15

https://aclanthology.org/N19-1421
https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2507.20534
https://arxiv.org/abs/2302.13971
https://doi.org/10.48550/arXiv.2307.09288
https://arxiv.org/abs/1608.06378


U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, ed-
itors, Advances in Neural Information Processing Systems, volume 30. Curran Associates,
Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[55] Haonan Wang, Qian Liu, Chao Du, Tongyao Zhu, Cunxiao Du, Kenji Kawaguchi, and Tianyu
Pang. When precision meets position: Bfloat16 breaks down rope in long-context training, 2024.
URL https://arxiv.org/abs/2411.13476.

[56] Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=NG7sS51zVF.

[57] Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang, Prajjwal Bhargava, Rui Hou, Louis
Martin, Rashi Rungta, Karthik Abinav Sankararaman, Barlas Oğuz, Madian Khabsa, Han Fang,
Yashar Mehdad, Sharan Narang, Kshitiz Malik, Angela Fan, Shruti Bhosale, Sergey Edunov,
Mike Lewis, Sinong Wang, and Hao Ma. Effective long-context scaling of foundation models.
In North American Chapter of the Association for Computational Linguistics, 2023.

[58] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
answering. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii, editors,
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
pages 2369–2380, Brussels, Belgium, October-November 2018. Association for Computational
Linguistics. doi: 10.18653/v1/D18-1259. URL https://aclanthology.org/D18-1259/.

[59] Howard Yen, Tianyu Gao, Minmin Hou, Ke Ding, Daniel Fleischer, Peter Izsak, Moshe
Wasserblat, and Danqi Chen. Helmet: How to evaluate long-context language models effectively
and thoroughly. In International Conference on Learning Representations (ICLR), 2025.

[60] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can
a machine really finish your sentence? In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages 4791–4800, 2019.

[61] Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model, 2024. URL https://arxiv.org/abs/2401.02385.

[62] Zhisong Zhang, Yan Wang, Xinting Huang, Tianqing Fang, Hongming Zhang, Chenlong
Deng, Shuaiyi Li, and Dong Yu. Attention entropy is a key factor: An analysis of parallel
context encoding with full-attention-based pre-trained language models, 2024. URL https:
//arxiv.org/abs/2412.16545.

[63] Liang Zhao, Tianwen Wei, Liang Zeng, Cheng Cheng, Liu Yang, Peng Cheng, Lijie Wang,
Chenxia Li, Xuejie Wu, Bo Zhu, Yimeng Gan, Rui Hu, Shuicheng Yan, Han Fang, and Yahui
Zhou. Longskywork: A training recipe for efficiently extending context length in large language
models, 2024. URL https://arxiv.org/abs/2406.00605.

[64] Yu Zhao, Yuanbin Qu, Konrad Staniszewski, Szymon Tworkowski, Wei Liu, Piotr Miłoś,
Yuxiang Wu, and Pasquale Minervini. Analysing the impact of sequence composition on
language model pre-training. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, edi-
tors, Proceedings of the 62nd Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 7897–7912, Bangkok, Thailand, August 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.427. URL
https://aclanthology.org/2024.acl-long.427/.

[65] Fan Zhou, Zengzhi Wang, Qian Liu, Junlong Li, and Pengfei Liu. Programming every example:
Lifting pre-training data quality like experts at scale, 2024. URL https://arxiv.org/abs/
2409.17115.

[66] Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, Simon Brunner, Chen Gong, Thong
Hoang, Armel Randy Zebaze, Xiaoheng Hong, Wen-Ding Li, Jean Kaddour, Ming Xu, Zhihan
Zhang, Prateek Yadav, Naman Jain, Alex Gu, Zhoujun Cheng, Jiawei Liu, Qian Liu, Zijian

16

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2411.13476
https://openreview.net/forum?id=NG7sS51zVF
https://aclanthology.org/D18-1259/
https://arxiv.org/abs/2401.02385
https://arxiv.org/abs/2412.16545
https://arxiv.org/abs/2412.16545
https://arxiv.org/abs/2406.00605
https://aclanthology.org/2024.acl-long.427/
https://arxiv.org/abs/2409.17115
https://arxiv.org/abs/2409.17115


Wang, Binyuan Hui, Niklas Muennighoff, David Lo, Daniel Fried, Xiaoning Du, Harm de Vries,
and Leandro Von Werra. Bigcodebench: Benchmarking code generation with diverse function
calls and complex instructions, 2024. URL https://arxiv.org/abs/2406.15877.

17

https://arxiv.org/abs/2406.15877


NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our abstract summarizes the findings of our preliminary study and the essence
of the SkyLadder method: we systematically study the impact of context length on pretrain-
ing and empirically verify the effectiveness of our approach.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations of our study in Section A.1.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

18



Answer: [NA]
Justification: This paper is not a theory paper and we do not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed hyperparameter setting (Section 3.2, A.4), implementation
pseudocode (A.5) and model configuration (A.3). We implement most of the experiments in
TinyLlama, a popular public project for pretraining, which makes it highly reproducible.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

19



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our pretraining code is based on TinyLlama, an open-source pretraining
framework. The data is based on open-source pretraining corpora like SlimPajama and
Fineweb-Pro. We include the code in the supplementary materials, and will open source the
code upon acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe the training and testing setup in detail in Section 3.2 for our
preliminary study, and in Section A.7.3 for SkyLadder experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We conduct McNemar test for our main results in Table 1. The details for
testing are in A.7.3. Due to the excessive cost of pretraining, we do not perform repeated
runs of the same setup. However, our claims are supported by multiple variations of the
pretraining and comprehensive ablation studies in the main text and appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.

20

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We share the compute information in Section A.9.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We fully anonymize the paper and the code. All experiments fully conform
with the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impact of our work in Section A.2.

21

https://neurips.cc/public/EthicsGuidelines


Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This work is not meant to release a pretrained language model or publish a
dataset.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We explicitly mention and cite the source of the datasets (SlimPajama,
FineWeb-Pro) and the implementation codebase in our paper (TinyLlama). License in-
formation is described in Section A.11. All of them are open-source projects available for
public use.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.

22



• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide instructions to reproduce our experiments with the code in the
supplementary materials.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This project does not involve human subjects or crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This project does not involve human subjects or crowdsourcing.
Guidelines:

23

paperswithcode.com/datasets


• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We did not use LLMs for developing our method.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

24

https://neurips.cc/Conferences/2025/LLM


Table 11: Model configurations for pretrained language models.

Model Tinyllama 1B Tinyllama 120M Tinyllama 360M Llama3.2 3B

Vocab Size 32000 32000 32000 32000
Layers 22 12 18 28
Heads 32 12 16 24
Embedding Dim 2048 768 1024 3072
Intermediate Size 5632 2048 4096 8192
Normalization RMSNorm RMSNorm RMSNorm RMSNorm
Normalization ϵ 1× 10−5 1× 10−5 1× 10−5 1× 10−5

Query Groups 4 1 16 8
Bias No No No No

RoPE θ
10000 if L = 8K

1000000 if L = 32K
10000 10000 100000

A Appendix

A.1 Limitations

While we perform extensive experiments to study the impact of context window on pretraining and
demonstrate the effectiveness of SkyLadder, we acknowledge that there are still limitations to be
addressed. First, we conduct experiments up to a 3B-model scale and 32K context length, while the
latest large language models are typically much larger and capable of processing longer contexts.
However, pretraining a large model with a long context window requires prohibitive computational
resources beyond our budget. Within our computational capabilities, we have tried to demonstrate the
generalizability of SkyLadder across corpora, context window size, model size, and downstream tasks.
Thus, we leave it as future work to apply SkyLadder to larger models. Second, we do not include
a theoretical analysis to explain the effectiveness of SkyLadder as we mainly focus on empirical
insights. We suggest that future work may investigate the relationship between the context window
and the training compute to obtain the optimal context window schedule.

A.2 Broader Impacts

The work aims to investigate the impact of choices on context windows in language model pretraining
and proposes a way to speed up pretraining by scheduling context windows. On the positive side,
this improves the efficiency of language model pretraining, making it more accessible and reducing
the carbon footprint. Moreover, it enhances the performance of pretrained language models, which
may result in better downstream performance in applications. There might be potential misuse of
pretrained language models, which is beyond the scope of this work.

A.3 Model Architecture

In Table 11, we list the architecture choices of the models trained, including the 120M, 360M,
and 1B models based on the TinyLlama architecture [61]. The 3B model is based on Llama3.2
architecture [13].

A.4 Training Configurations

We include details of the training configurations in Table 12. All models, irrespective of size or context
window length, are trained on this same set of hyperparameters. For most of the hyperparameter
values, we follow the TinyLlama [61] project, therefore, our results are highly reproducible.

A.5 Implementation

We provide the pseudocode for implementing SkyLadder with Flash Attention 2 [7]. The only
change is to apply local causal masking with size w, and combine them with the original document
boundaries under the IntraDoc scenario. It can easily be integrated into any model before calculating
attention. The rest of the training pipeline remains unchanged.

25



Table 12: Hyperparameters setup for pretraining the language models. All pretrained models follow
the same structure.

Parameter Value
Optimizer AdamW

AdamW-β1 0.9
AdamW-β2 0.95

Learning Rate Schedule Cosine
Peak Learning Rate 4e-4

Minimum Learning Rate 4e-5
Warmup Steps 2000

Gradient Norm Clipping 1
Total Steps 100,000

Global Batch Size 1,048,576 (220) tokens
Weight Decay 0.1

SkyLadder with Flash Attention 2

# q, k, v: RoPE-encoded query, key, value tensors
# doc_boundaries: EOS token positions per document
# is_intradoc: intra-document attention flag
# training_step: current global step
# L: maximum context window length

# get current window size
w = min(L, get_current_mask_length(training_step))

# breakpoints every w tokens (and at document boundaries if using IntraDoc
masking)

mask_boundaries = np.arange(w, L, w)
if is_intradoc:

mask_boundaries = np.union1d(mask_boundaries, doc_boundaries)

# compute max segment length & cumulative lengths for flash attention
max_seqlen = get_max_seqlen(mask_boundaries, L)
cu_seqlens = get_cu_seqlens(mask_boundaries, L)

attn = flash_attn_varlen_func(
q, k, v,
cu_seqlens,
max_seqlen,
causal=True

)

A.6 Definition of Per-token Context Window

In Figure 4(d), we show the context window distribution difference between IntraDoc and Random.
To clarify, the context window size refers to the number of preceding tokens available in the context
window when making the next token prediction. This is different from (a) and (b), where the context
length L is the model’s pretrained context window.

Formally, consider a token at index i and an attention mask matrix M , where an entry Mi,j = 0
indicates that token i can attend to token j, and −∞ otherwise. The context window size Ci for the
i-th token is defined as Ci =

∑i
j=1 1 {Mi,j = 0}, where 1 {·} is the indicator function that returns 1

when Mi,j = 0 and 0 otherwise. In essence, Ci is the number of tokens available as context for the
i-th token, and the distribution of Ci over all pretraining tokens is in Figure 4(d).

26



For Random, the causal mask is triangular: the i-th token has a context window size equal to i (i.e.,
C1 = 1, C2 = 2, etc.). Thus, the distribution of Ci is uniform. In contrast, IntraDoc effectively
shortens the context length by limiting the cross-document attention.

A.7 Additional Results

A.7.1 Context Window Study

20 40 60 80 100
Training Tokens (B)

10

12

14

16

18

Va
lid

at
io

n 
PP

L

Random
L = 16k
L = 8k
L = 4k
L = 2k
L = 1k
L = 512

20 40 60 80 100
Training Tokens (B)

10

12

14

16

18

Va
lid

at
io

n 
PP

L

BM25
L = 16k
L = 8k
L = 4k
L = 2k
L = 1k
L = 512

20 40 60 80 100
Training Tokens (B)

10

11

12

13

14

15

16

Va
lid

at
io

n 
PP

L

IntraDoc
L = 16k
L = 8k
L = 4k
L = 2k
L = 1k
L = 512

Figure 9: Validation perplexity (evaluated on a sliding window of 512) on models with different
context lengths.

2000 4000 6000 8000
Evaluation Length

8.0

8.5

9.0

9.5

10.0

Va
lid

at
io

n 
PP

L

Random
BM25
IntraDoc

25 50 75 100
Training Tokens (B)

37.5

40.0

42.5

45.0

47.5

Av
er

ag
e A

cc
ur

ac
y 

(%
)

Random
BM25
IntraDoc

Figure 10: Left: Evaluation perplexity of models
with different packing or masking strategies. Right:
Downstream performance over 9 tasks of different
models.

1000 2000 3000 4000 5000 6000 7000 8000
Evaluation Length

12.5

13.0

13.5

14.0

14.5

15.0

15.5

16.0

16.5
Va

lid
at

io
n 

PP
L

L = 8k, = 104

L = 8k, = 105

L = 2k, = 104

L = 2k, = 105

L = 16k, = 104

L = 16k, = 105

Figure 11: Validation perplexity vs training
tokens with different context windows and
base of RoPE, θ. Evaluation is done on a
sliding window of varying length (x-axis)
on the validation documents.

In Figure 9. We plot the validation perplexity of models with different context windows under the
Random, IntraDoc, and BM25 settings. We observe a consistent trend that a shorter-context model
has lower evaluation perplexity on a shorter sequence under all settings.

In Figure 10, we plot the evaluation perplexity and downstream performance of models with different
packing or masking strategies. We conclude that overall, IntraDoc achieves the best performance,
with a consistently lower PPL and a higher downstream accuracy. We think that this is partially due
to the shorter context window that the IntraDoc model is trained on.

A.7.2 Ablations for Context Window Study

Base of RoPE. It has been shown that the value of RoPE may have a significant impact on the
model’s long context performance, and a longer context requires a larger base [33]. Therefore, we
increase the RoPE base to 100,000, which is sufficiently large according to Men et al. [33]. In
Figure 11, we observe an improvement for long-context models on long-context evaluation. However,
the large gap between a shorter and a longer model still remains, therefore rejecting the hypothesis
that the RoPE base is the key contributing factor to the superior performance of short-context models.

27



Table 13: Performance of 3B models on long tasks of retrieval-augmented generation (evaluated by
exact-match scores) and reading comprehension benchmarks (accuracy in %).

Retrieval Augmented Generation Reading Comprehension

Model Avg. NQ TriviaQA HotpotQA PopQA Avg. TOEFL QuALITY

Random 30.3 24.3 45.2 29.3 22.5 37.1 43.5 30.6
+ SkyLadder 35.5 27.8 52.7 32.3 29.3 39.4 48.0 30.9

Table 14: Many-shot ICL performance (accuracy) on text classification benchmarks. Numbers in
parentheses denote the number of labels for each task.

Model Avg. DBpedia (14) AGNews (4) Amazon (2) Yelp (2) SST2 (2)

Random 73.9 17.4 68.6 94.3 94.7 94.5
+ SkyLadder 76.5 25.5 75.8 94.1 95.0 92.2

A.7.3 SkyLadder Evaluation

Statistical Test We test the statistical significance of the performance difference between our
models and baselines in Table 1. We use a McNemar test as the two models are evaluated on the same
set of questions. The original OLMES suite samples 1000 examples from each benchmark’s full
evaluation suite. In contrast, when conducting the McNemar test, we evaluate models on the full set
to obtain more statistically meaningful results. We note that OpenBookQA only has 500 questions,
making it harder to obtain statistical significance.

Reading Comprehension For reading comprehension, we evaluate the following benchmarks:
Hotpot QA (2-shot) [58], SQuAD (4-shot) [41], NaturalQuestions (NQ) (2-shot) [26], TriviaQA
(2-shot) [23], and RACE-high (0-shot) [27]. We follow the setup by Zhao et al. [64], where NQ and
TriviaQA use retrieved documents as contexts. For RACE, we use lm-evaluation-harness [11]
to compare the PPL between options.

Long-context Evaluation We provide additional long-context evaluation on our largest 3B model
with an 8K context. This is to mitigate the performance instability of using synthetic benchmarks
on small models. We first follow [38] to evaluate model accuracy on reading comprehension
benchmarks TOEFL [5, 53] and QuALITY [36]. Next, we evaluate the model’s performance on
Retrieval Augmented Generation (RAG), where the model is provided with many relevant but
potentially noisy contexts and needs to locate the correct information. As shown in Table 13,
SkyLadder consistently performs better than the baseline across all evaluated RAG and reading
comprehension datasets, highlighting its ability to locate correct answers within a lengthy con-
text. In addition, we test the in-context learning ability of the models on text classification bench-
marks [64, 44]. Results in Table 14 suggest that SkyLadder shows a significant gain for tasks
with many labels, such as DBpedia, while achieving comparable high performance on binary tasks.

Table 15: 1B model (trained on CC) performance
(exact match %) on closed-book QA tasks.

Closed-book QA

Model NQ TriviaQA Average

Random 6.1 11.9 9.0
+ SkyLadder 9.0 17.5 13.2
IntraDoc 7.8 14.7 11.3
+ SkyLadder 8.2 17.4 12.8

Closed-book QA We additionally evaluate the
closed-book QA performance of our models
without access to any document. We use the
evaluation protocol Zhao et al. [64] to measure
the exact match. In Table 15, we notice a signif-
icant improvement in our methods compared to
the baselines for answering closed-book ques-
tions. This is consistent with the results that our
models show improvements on standard bench-
marks that contain commonsense knowledge.

A.7.4 SkyLadder Ablations

Combination with BM25 Packing As SkyLadder only changes the context length via masking
without altering the underlying data, it is orthogonal to any advanced data packing method such as Shi

28



Table 16: Performance (%) of 1B models with
different schedule types. All models are trained
on the same 100B CommonCrawl tokens with a
final context length of 8K. BM25 packing, when
combined with SkyLadder, significantly boosts per-
formance on long tasks.

Standard Avg. Long Avg.

Random 46.3 15.3
BM25 47.5 (+1.2) 16.4 (+1.1)
+ SkyLadder 49.8 (+3.5) 17.0 (+1.7)

Table 17: Performance (%) of 1B models with
different schedule types. All models are trained
on the same 100B FineWeb-Pro tokens with a
final context length of 8K. Short-to-long schedul-
ing is consistently better than long-to-short
scheduling.

Standard Avg. Long Avg.

No Scheduling 52.5 11.1
Short-to-Long 55.2 (+2.7) 12.3 (+1.2)
Long-to-Short 52.6 (+0.1) 10.7 (-0.4)

Table 18: Evaluation perplexity for Gemma3-like models with different evaluation context lengths
Le. All models are trained with 100B tokens on CommonCrawl.

Model Le = 512 Le = 4K Le = 8K

Random – 120M 15.9 13.4 13.0
+ SkyLadder 15.5 12.9 12.4
Random – 360M 12.1 10.2 9.8
+ SkyLadder 11.6 9.7 9.4

et al. [44], Ding et al. [9]. In Table 16, we combine the SkyLadder with the BM25 packing method.
We show that the model achieves even better performance on both short and long context evaluation
than BM25 without scheduling, which is also better than the Random baseline. This reveals that our
method can be combined with more advanced packing techniques to further boost performance.

Combination with Hybrid Attention We note that a recent interesting trend in pretraining models
with long context is to use a hybrid attention structure. For instance, Gemma3 [49] uses a mixture of
global and local attention layers to balance efficiency and performance of the long-context model.
We are curious about the generalizability of SkyLadder to such architecture, and follow Gemma3’s
strategy with a global-to-local ratio of 6:1. The results are presented in Table 18. We observe
that SkyLadder consistently outperforms the baseline across all evaluation lengths, verifying its
applicability. Importantly, SkyLadder works along the time dimension and is combinable with
different attention variants, as long as there is a context window to be scheduled. We also verified
the effectiveness of SkyLadder on alternative model structures. In Table 19, we pretrain models
following the Qwen2.5-0.5B structure, and obtain consistent gains as well.

Long-to-Short Schedule A possibility that SkyLadder works better than baseline on standard
benchmarks, which are typically short, might be that the training data mix has more short-context
data after applying the mask. To study the effect of pure data distribution, we conduct an ablation of
reversing the original short-to-long schedule and name it as the long-to-short schedule. This schedule
spends the same number of tokens (64B) in the changing phase, before the constant training phase in
L = 8K for another 36B tokens. In Table 17, we show that the long-to-short schedule is not helpful
to the model’s performance in both short and long evaluation tasks. This highlights that the context
window needs to be scheduled, rather than simply having a data mixture of long and short contexts.

Alternative Schedule Types We explore various types of short-to-long scheduling following
different functions as mentioned in Section 4.5. Table 20 shows the details of the schedule as a
function of t, and Figure 12 shows an illustration of the different schedule types. In Table 7, we show

Table 19: Evaluation perplexity for Qwen2.5-0.5B models under different evaluation context lengths
Le. All models are trained with 100B tokens on CommonCrawl.

Model Le = 1K Le = 4K Le = 8K

Random 14.8 13.1 12.5
+ SkyLadder 14.3 12.7 12.1

29



Table 20: Functions for different context window
schedule types. We set ws = 32 and we =
32768 in our experiments. The r for rounding is
set to 1024.

Schedule Function

Constant we

Linear ws + (we − ws)
αx

we−ws

Stepwise max(ws, r ×
⌊

L(x)
r

⌋
)

Sinusoidal ws + (we − ws) sin
(

απx
2(we−ws)

)
Exponential ws ×

(
we
ws

) αx
we−ws

0 20 40 60 80 100
Training Tokens (B)

0

10K

20K

32K

Co
nt

ex
t W

in
do

w Constant
Linear
Stepwise
Sinusoidal
Exponential
Cont. Pretrain

Figure 12: Illustration plot of various scheduling
types.

that a smoother increase following the sinusoidal schedule works the best for long-context evaluation,
while also achieving strong performance on standard benchmarks.

0 20 40 60 80 100
Training Tokens (B)

2.5

3.0

3.5

4.0

4.5

5.0

Lo
ss

0

1000

2000

3000

4000

5000

6000

7000

8000
C

on
te

xt
 W

in
do

w

= 1/1
= 1/2
= 1/4

= 1/8
= 1/10
= 1/12

Baseline
Loss
Context Window (w)

Figure 13: An illustration of the effect of differ-
ent α. Dashed lines represent the current context
window w for each step, and solid lines are the
loss evaluated at 8K length.

0 20 40 60 80 100
Training Tokens (B)

2.5

3.0

3.5

4.0

4.5

5.0

Lo
ss

0

1000

2000

3000

4000

5000

6000

7000

8000

C
on

te
xt

 W
in

do
w

Gradual = 1/4, c = 1.5
Jump = 1/4, c = 3

Baseline
Loss

Context Window (w)

Figure 14: An illustration of the cyclic schedules
with gradual increases or jumps. Dashed lines
represent the context length for each step, and
solid lines are the loss evaluated at an 8K length.
c represents the number of cycles.

Expansion Rate We illustrate the effect of the rate of expansion α in Figure 13. As the evaluation
is done on 8K contexts, models with a lower rate (and shorter context window) will have a higher
loss as the evaluation length is out-of-distribution. However, eventually, all models’ loss converges to
a low level after the schedule reaches 8K. The detailed numbers of validation loss after pretraining
can be found in Table 21. Following previous work [10, 17, 24], we consider a loss difference larger
than 0.01 as significant. We conclude that setting a reasonable rate of 1/8 balances both short and
long-context loss, which is the default setup for our main experiments.

Cyclic Schedule Inspired by the cyclic schedule learning rate [45], we also wonder if cycles are
helpful in the schedule. In Figure 14, we show two cyclic schedules. In the “Jump” schedule, w(t)
will decrease to ws immediately after reaching L. On the other hand, the “Gradual” schedule means
an “M” shape alternating between we and ws. Notably, in the discontinuous Jump schedule, we
notice a significant increase in long-context perplexity when we train on only short contexts for an
extended period. However, as long as w increases back to L, the performance will return.

In Table 22, we show that these schedules have no major impact on the final performance. This
highlights that the method does not introduce additional bias in data selection: different from existing
methods such as Pouransari et al. [38] that proposes to train on short data first, followed by long
data, we do not assume such a curriculum on data. We argue that the context window size should be
independent of the data lengths to avoid bias in training only on certain domains of data.

30



Table 21: Validation loss with different expansion rates. A box is colored red if it is significantly
worse (difference > 0.01) than the best of the column. Le is the evaluation context length. All models
are of size 120M and trained on 100B tokens.

Rate
(1/α) Tokens to Reach 8K (B) Le = 512 Le = 4K Le = 8K

1 8 2.751 2.563 2.522
2 16 2.741 2.551 2.514
4 32 2.740 2.551 2.515
8 64 2.732 2.553 2.519
9 72 2.731 2.553 2.519

10 80 2.732 2.555 2.522
11 88 2.730 2.554 2.521
12 96 2.729 2.557 2.526

Baseline (Constant) 2.780 2.590 2.549

Table 22: Validation loss with cyclic schedules. Le represents the evaluation context length. All
models are of size 120M and trained on 100B tokens.

Type Number of Cycles Tokens per Cycle (B) Le = 512 Le = 8K

Random 2.780 2.549
+ SkyLadder 2.732 2.519

Gradual 4.5 16 2.743 2.530
Jump 9 8 2.744 2.532
Gradual 2.5 32 2.732 2.521
Jump 5 16 2.733 2.521
Gradual 1.5 64 2.728 2.524
Jump 3 32 2.727 2.522

Initial Window Length We show the effect of having different ws, the initial window length when
the training starts. In Table 23, we show that the optimal starting length is 8 tokens. The trend is the
same across both α = 1/4 and α = 1/8. This suggests that the starting length should be sufficiently
small, irrespective of the expansion rate. It also reveals that prior studies, such as Jin et al. [21]
and Pouransari et al. [38] that start with an initial length of 256 could be suboptimal.

Compute Budget We show that when the total number of tokens is limited, our method can still
improve language model performance. In Table 24, we choose 12.5B, 25B, and 50B total tokens
as the computing budget, and vary the expansion rate so that w reaches L at the same point during
training. We observe that under different token budgets, the performance trend is the best: gradually
expanding the context window gives better performance than a rapid increase.

Sliding Window Expansion A possible alternative to SkyLadder (using local causal masks by
default) is to use a sliding window attention with a window size of w(t) that changes with the training
time. Formally, the mask becomes:

Mi,j =

{
0 if i− w ≤ j ≤ i

−∞ otherwise.

so that each token in the context has a fixed preceding context of size w. When w(t) reaches L, the
mask becomes equivalent to a causal mask. We compare the performance of the two in Table 25
and observe that the sliding window approach shows slightly better performance in long tasks and
worse performance in standard benchmarks. This is likely because overall there are more tokens with
longer preceding contexts for the sliding window approach. In both cases, SkyLadder outperforms
the Random baseline. We think that future work could further investigate the differences between
SkyLadder implementations with causal and sliding window attention, such as the formation of
attention sink [14]. There could also be possible combinations of the two: for instance, using a local
mask first to disable distraction, and enabling sliding windows as the training progresses.

31



Table 23: Final validation loss after training 120M models on 100B tokens with different ws when
α = 1/4 and α = 1/8. Le represents the context length of evaluation. A cell is colored red if its loss
has a difference larger than 0.01 from the column’s best. ws = 8192 equals no scheduling.

ws Le = 512 Le = 4K Le = 8K

α = 1/4
4 2.731 2.546 2.510
8 2.730 2.545 2.508
16 2.733 2.551 2.513
32 2.740 2.551 2.515
64 2.742 2.557 2.520
128 2.748 2.564 2.528
256 2.750 2.566 2.527

α = 1/8
4 2.727 2.549 2.515
8 2.725 2.545 2.510
16 2.729 2.550 2.516
32 2.732 2.553 2.519
64 2.735 2.553 2.519
128 2.743 2.564 2.530
256 2.748 2.567 2.531

8192 2.780 2.590 2.549

Table 24: Final validation loss under different training token budgets and expansion rate α with 120M
models. Le represents the context length used for evaluation. “% of Token Budget” means how many
tokens are spent in the expansion phase with w(t) increasing. Under all token budgets, we observe a
consistent improvement when we spend around 64% in expansion, and 36% in the stable phase.

α Tokens to L (B) % of Token Budget Le = 512 Le = 4096 Le = 8192

Token Budget = 12.5B
1 8 64% 2.912 2.732 2.698
2 4 32% 2.933 2.746 2.709
4 2 16% 2.958 2.767 2.729
8 1 8% 2.976 2.782 2.743

Baseline 3.008 2.823 2.790

Token Budget = 25B
1/2 16 64% 2.829 2.650 2.617
1 8 32% 2.841 2.656 2.619
2 4 16% 2.851 2.665 2.626
4 2 8% 2.873 2.683 2.645

Baseline 2.918 2.734 2.700

Token Budget = 50B
1/4 32 64% 2.771 2.590 2.556
1/2 16 32% 2.781 2.596 2.560
1 8 16% 2.789 2.603 2.564
2 4 8% 2.795 2.607 2.567

Baseline 2.839 2.652 2.616

A.8 Additional Comparison with Related Work

We acknowledge that there are several prior works discovering a similar pattern of short-to-long
pretraining. For instance, Li et al. [28] discover that using a sequence-length warmup for the initial
steps in pretraining improves model stability. However, they mostly focus on stability in training loss
and do not show a clear performance gain across multiple evaluations and larger scales. Moreover,
we demonstrate that the benefits of scheduling a model’s context window go beyond only the warmup
stage. In Table 21’s first row, simply warming up the model with 8B tokens results in suboptimal
performance compared to a slower expansion rate. This validates that the context window should be

32



Table 25: Performance (%) of 1B models with different masking schemes. All models are trained
on the same 100B FineWeb-Pro tokens with a final context length of 8K. Both implementations of
SkyLadder outperform the baseline, and the sliding window approach excels at long tasks with a
slight performance drop on standard benchmarks.

Model Standard Avg. Long Avg.

Random 52.5 11.1
+ SkyLadder w/ local causal 55.2 (+2.7) 12.3 (+1.2)
+ SkyLadder w/ sliding window 54.4 (+1.9) 12.8 (+1.7)

considered as a factor to schedule over the entire training course, which also differentiates us from
Li et al. [28] that only consider the warmup stage.

Another related work is Jin et al. [21] where the authors use progressive sequence lengths to accelerate
training. However, their method leads to worse performance under the same token budget, while
our SkyLadder shows both time saving and performance improvement with the same number of
tokens. We suspect that this might be because of the suboptimal schedule they used. Moreover, their
study is limited to observing the training loss of small models (up to 410M parameters), while we
comprehensively show performance gain across multiple corpora, model sizes, context sizes, and a
wide variety of tasks. Overall, we systematically conduct controlled experiments on the impact of
context window scheduling in pretraining, providing insights to explain these previous studies.

A.9 Compute Information

We conducted all of our experiments for models with ≤ 1B size on an internal cluster of NVIDIA
A100 nodes with 40G memory. Experiments with 3B models were conducted on H100 nodes. There
are additional preliminary experiments that we did not include in the paper, which account for a
fraction of the total compute. The detailed computation for each experiment is as follows: For the
preliminary study on context window, pretraining a 1B model with 100B tokens (with 8K context)
takes around 200 hours on a node of 8 A100s. Models of different sizes scale accordingly. For
instance, plotting Figure 4(a) and (b) requires a total of 159 days of pretraining on a single node.
For SkyLadder experiments, the baseline pretraining using various corpora takes the same time, and
SkyLadder speeds up the training by 13% to 22% depending on the context length.

A.10 Dataset Statistics

In this section, we provide detailed statistics of the datasets used in our study. These include the
document length distributions of the pretraining corpora, the characteristics of the evaluation datasets,
and the input length statistics of standard reasoning benchmarks.

Table 26 reports the document length statistics for the two pretraining corpora, CommonCrawl and
FineWeb-Pro. Both distributions are strongly right-skewed, indicating that long documents are rare.
Compared to FineWeb-Pro, CommonCrawl generally contains longer documents, while FineWeb-Pro
has been more carefully cleaned and filtered.

Table 26: Document length statistics of the pretraining corpora, measured in tokens per document.
Mean, median, and standard deviation describe the central tendency and variation. P25 and P75
indicate the 25th and 75th percentiles, while skewness and kurtosis capture distribution asymmetry
and tail heaviness.

Dataset Mean Median StdDev Min Max P25 P75 Skewness Kurtosis

CommonCrawl 1973 1067 4567 45 594,272 651 1867 21 820
FineWeb-Pro 1364 849 2295 1 230,949 507 1481 15 533

Table 27 shows the input length characteristics of common reasoning and knowledge benchmarks,
including ARC, CSQA, HellaSwag, OBQA, PIQA, SocialIQA, Winogrande, and MMLU. While
these benchmarks consist of relatively short contexts, they remain standard for assessing a model’s
factual consistency and reasoning ability. Importantly, a long-context model should maintain stable
behavior even when the user provides a short query.

33



Table 27: Input length characteristics of common reasoning and knowledge benchmarks. Although
relatively short, these tasks are crucial for measuring knowledge and reasoning consistency.

Metric ARC-C ARC-E CSQA HellaSwag OBQA PIQA SIQA WinoG. MMLU

Mean 222 216 146 508 129 224 226 149 540
Std 20 16 7 32 9 29 6 4 512
Min 191 194 134 435 116 191 210 140 155
Max 401 336 203 576 192 440 262 170 3144

Finally, Table 28 summarizes the characteristics of the evaluation datasets used in the reading
comprehension and long-context evaluation. These include QA benchmarks such as MDQA, RULER,
SQuAD, HotpotQA, NQ, TriviaQA, and RACE. The datasets differ substantially in input length,
reflecting the diversity of reasoning depth and context complexity.

Table 28: Length statistics of reading comprehension and QA evaluation datasets. These benchmarks
capture varying levels of input complexity, from short factual QA to multi-hop reasoning tasks.

Metric MDQA RULER SQuAD HotpotQA NQ TriviaQA RACE

Mean 5150 7259 1048 5010 583 566 492
Std 287 745 81 993 21 28 121
Min 4172 6209 923 3587 536 529 122
Max 6755 8061 1174 7842 633 643 1323

Overall, the datasets used in this work span a wide range of input lengths and domains, from large-
scale pretraining corpora to short and long-context evaluation benchmarks, ensuring that our analysis
is both comprehensive and representative.

A.11 Licenses of Assets

We mainly use the following public datasets or codebases in this paper: SlimPajama [46] following
the CommonCrawl Foundation Terms of Use3, FineWeb-Pro [65] with an ODC-By 1.0 license, and
TinyLlama [61] with an Apache 2.0 License.

3https://commoncrawl.org/terms-of-use

34


	Introduction
	Related Work
	How Context Window Affects Pretraining
	Packing, Masking and Context Window
	Preliminary Study on Context Window Size
	Experimental Results

	SkyLadder: Context Window Scheduling
	Method
	Experimental Setup
	Experimental Results
	Scalability Experiments
	Ablation Study
	Analysis and Discussion

	Conclusion
	Appendix
	Limitations
	Broader Impacts
	Model Architecture
	Training Configurations
	Implementation
	Definition of Per-token Context Window
	Additional Results
	Context Window Study
	Ablations for Context Window Study
	SkyLadder Evaluation
	SkyLadder Ablations

	Additional Comparison with Related Work
	Compute Information
	Dataset Statistics
	Licenses of Assets


