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Abstract
We address the problem of detecting data glitches in ML training
sets, specifically mislabeled and anomalous samples. Detection of
data glitches provides insights into the quality of the data sampling.
Their repair may improve the reliability and the performance of the
model. The proposed methodology is based on exploiting influence
functions that estimate how much the loss of the model (or a given
sample) is affected when a sample is removed from the training set.
We introduce three novel signals for detecting, characterizing, and
repairing data glitches in a training set based on sample influences.
Influence-based signals form an explainable-by-design data glitch
detection framework, producing intuitively explainable signals of
the actual predictive model built. In contrast, specialized algorithms
that are agnostic to the target ML model (e.g., anomaly detectors)
replicate the work of fitting the data distribution and may detect
glitches that are inconsistent with the decision boundary of the
predictive model. Computational experiments on tabular and image
data modalities demonstrate that the proposed signals outperform,
in some cases up to a factor of 6, all existing influence-based signals,
and generalize across different datasets and ML models. In addition,
they often outperform specialized glitch detectors (e.g., mislabeled
and anomaly detectors) and provide accurate label repairs for mis-
labeled samples.
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1 Introduction
Machine Learning (ML) has become an essential tool for gaining
insights and making data-driven decisions in science and industry.
However, the success of ML projects is heavily dependent on the
quality of data used to train models. As a matter of fact, even the
most performant algorithms trained on mislabeled, or underrepre-
sented data may lead to models that make inaccurate predictions
and do not generalize well in real-world settings [4, 15, 54].

In particular, we are focusing on data glitches that break the
following assumptions made by traditional ML algorithms, such
as: (a) the observed labels of training samples are correct [49]; (b)
the feature values of training samples are consistent and occupy
different regions of the input data space per class [8]. Unfortunately,
these assumptions are rarely met in real-world settings jeopardizing
the performance of ML models with nefarious consequences for
business applications and people’s lives1. As a matter of fact, the
ratio of corrupted labels in real-world datasets is estimated to be
between 8.0% and 20% [29, 48].

In this paper, we propose an explainable-by-design data glitch
detection framework that allows analysts to identify and explain
different types of data glitches during the data modeling. In this
respect, we leverage recent advances in influence-based explanation
methods [16] to propose novel interpretable signals for detecting,
repairing, and characterizing both singular and mixtures of data
glitches in train sets. Specifically, we compute the influence of each
training sample on a small-but-clean validation set to identify the
train glitches. We argue that different types of glitches have distinct
influence signatures on the decision boundary of a trained model
compared to clean samples. Moreover, our signals2 can be used
with any influence estimator and classification model trained with
gradient descent or similar variants.

To the best of our knowledge, there is no previous study address-
ing how existing influence-based signals (i) can effectively detect
different types of data glitches, under the same influence function,
ML models, and benchmark datasets, (ii) can provide accurate label
repairs for the mislabeled samples and (iii) are compared to glitch
detectors w.r.t. detection performance. Motivated by these questions
we propose three novel signals to accurately detect, characterize,

1https://www.forbes.com/sites/gilpress/2021/06/16/andrew-ng-launches-a-
campaign-for-data-centric-ai/
2We use the term signals and influence signals interchangeably
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and repair both types of data glitches under the same influence
framework. In a nutshell, the main contributions of our work are:
• To identify the mislabelled, anomalous, and mixed types of
glitches we introduce three novel signals, called CNCI, PCID,
and CFRank, respectively. Conceptually, we categorize the
signals into a new family of signals, that we call counterfac-
tual signals, examining the change of a sample’s influence if
its label had been different.
• We show that the counterfactual signals provide accurate
label repairs for the mislabeled samples, showing the poten-
tial of influence-based explanations to detect and repair data
imperfections.
• We conduct the first comparative evaluation of the four ex-
isting and the three proposed influence-based signals w.r.t.
their detection performance for both mislabeled samples and
anomalies under the same influence estimator, ML models,
and datasets for two tabular and image data modalities.
• For low-class noise ratio, CNCI outperforms the state-of-
the-art mislabeled detection signal, Self-Influence, by a mar-
gin of 65% (F1) on average, as well as the mislabel detec-
tor CleanLab[39] by a margin of 75% (F1) on average. For
anomalies, PCID outperforms up to a factor of 6 the existing
influence signals, as well as three anomaly detectors in two
out of the three datasets while being the most robust.
• Ablation studies on glitch ratios and validation set size show
that CNCI and PCID are effective and robust even when only
2% of the samples are reserved as a validation set.

Our study provides the following insights: (i) mislabeled samples
and anomalies have fundamentally different influence signatures
during model training that lead to their detection and characteriza-
tion, and (ii) anomalies proved to be easy-to-fit samples having an
extremely low positive influence on each foundation model.

The remainder of the paper is organized as follows. Section 2
presents the notation used in our work and the foundations of
influence functions. Section 3 describes the different types of data
glitches (mislabeled and anomalous samples) studied in our work.
Section 4 introduces the three influence-based signals. Section 5
details the experimental testbed. Section 6 reports the results of our
experimental evaluation. Section 7 positions our work w.r.t. existing
influence-based signals used to detect data glitches in training
sets. Finally, Section 8 summarizes our contributions and draws
directions for future work.

2 Influence Functions
Influence Functions (IFs) [7, 17, 24] aim to reveal the training sam-
ples that are responsible for the prediction of another sample during
training or testing and hence enable instance-based explanations.

Here we introduce the notation that we will use throughout the
paper. Let𝐷𝑡𝑟 be a training dataset𝐷𝑡𝑟 = {(𝑥,𝑦)}𝑛

𝑖=1 that comprises
𝑛 pairs of feature vectors 𝑥 ∈ R𝑑 and possibly noisy labels 𝑦 ∈ Z.
We denote 𝐶 ∈ Z𝑘 as the set containing the 𝑘 classes, i.e., the
domain of the noisy label vector �̃� . In our work, we use a separate
clean validation set to clean the training glitches that we denote as
𝐷𝑣𝑎𝑙 = {(𝑥,𝑦)}𝑚𝑖=1. Note that 𝑦 signifies the true class of a sample,
which is not assumed to be given for 𝐷𝑡𝑟 . A classification model
is denoted as 𝑓𝜃 : 𝑋 → �̃� , parameterized by 𝜃 ∈ R𝑝 , where 𝑝 is

the total number of parameters. These parameters are obtained
via the optimization of a loss function L : �̃� × �̃� → R. Formally,
given a train dataset 𝐷𝑡𝑟 the optimal parameters are obtained by
minimizing the empirical risk (ERM): 𝜃 = argmin𝜃

1
𝑛

∑𝑛
𝑖=1 L(𝑧𝑖 ;𝜃 ),

where 𝑧𝑖 = (𝑥𝑖 , 𝑦𝑖 ) ∈ 𝐷𝑡𝑟 .
Finally, we denote the influence of a sample 𝑧𝑖 to another 𝑧 𝑗 via

an IF I : R𝑑 → R as I(𝑧𝑖 → 𝑧 𝑗 ).
Deletion diagnostics, i.e., the influence of a sample on the model

via its deletion, have been introduced using the Leave-One-Out-
Retraining (LOOR)method. LOOR is defined as follows:I𝐿𝑂𝑂𝑅 (𝑧𝑖 →
𝑧 𝑗 ) = L(𝑧 𝑗 ;𝜃\𝑧𝑖 ) − L(𝑧 𝑗 ;𝜃 ).

Intuitively, a negative I𝐿𝑂𝑂𝑅 (𝑧𝑖 → 𝑧 𝑗 ) indicates that 𝑧 𝑗 ’s loss
has decreased when 𝑧𝑖 was absent. Positive I𝐿𝑂𝑂𝑅 (𝑧𝑖 → 𝑧 𝑗 ) means
that the absence of 𝑧𝑖 led to an increase in loss of 𝑧 𝑗 . Other works
refer to positive / negative influencers as proponents / opponents
[43] or excitatory / inhibitory samples [57]. Although LOOR makes
fewer assumptions than other IFs, it is infeasible for models with
a moderate size of parameters even on small datasets, as LOOR
requires 𝑛 + 1 retrainings to convergence.

For this reason, gradient-based IFs have been introduced [1, 5,
19, 24, 26, 27, 43, 50, 57] to estimate the leave-one-out effect without
re-training models. Gradient-based IFs could be either static or
dynamic [16]. The former estimates the samples’ influence using
the final model, i.e., at the end of the training phase. The latter
provides a more fine-grained view of influence by unrolling the
gradients throughout the training process, capturing the training
dynamics. We stress that the choice of IF is orthogonal to our work,
as long as the influence estimator is accurate. Thus, we employ the
dynamic estimator TracIn [43] rather than static estimators due
to limitations studied by recent works [2, 16, 45, 46]. Finally, since
the objective of our work is to use IFs, Representer Point-based
influence estimators [50, 57] are not studied in this work.

TracIn [43] is a dynamic IF that estimates how the parameter
updates, caused by a sample 𝑧𝑖 , affected the loss of 𝑧 𝑗 through
time, i.e., across epochs:

∑𝑇
𝑡=1 L(𝑧 𝑗 , 𝜃𝑡,𝑖 ) − L(𝑧 𝑗 , 𝜃𝑡+1,𝑖 ), where 𝜃𝑡,𝑖

are the model’s parameters at an epoch 𝑡 after updating with a
sample 𝑧𝑖 and𝑇 is the total number of epochs. Taking the first-order
Taylor approximation on L(𝑧 𝑗 , 𝜃𝑡+1,𝑖 ), the TracIn-Ideal becomes
ITracInId (𝑧𝑖 → 𝑧 𝑗 ) =

∑𝑇
𝑡=1 𝜂𝑡∇L(𝑧 𝑗 , 𝜃𝑡,𝑖 )∇L(𝑧𝑖 , 𝜃𝑡,𝑖 ), where 𝜂𝑡 is

the learning rate at the iteration 𝑡 . An important assumption of
ITracInId is that the model is built using stochastic gradient descent
with singular batch size (B=1). As this is not a realistic assumption,
a batched version of TracIn-Ideal has been proposed:

ITracIn (𝑧𝑖 → 𝑧 𝑗 ) =
𝑇∑

𝑡=1,𝑧𝑖 ∈𝐵𝑡

𝜂𝑡

|𝐵𝑡 |
∇L(𝑧 𝑗 , 𝜃𝑡 )∇L(𝑧𝑖 , 𝜃𝑡 ), (1)

where 𝐵𝑡 is the sample batch at iteration 𝑡 that contains 𝑧𝑖 . Note
that in ITracIn the parameter updates are also affected by other
samples in 𝐵𝑡 , however, the batched version approximates well the
estimation of TracInId [43]. In our work, we use ITracIn as an IF to
assess the accuracy of the proposed signals to detect data glitches.

3 Data Glitches
In this section, we describe the main types of data glitches that
we address in this work, namely, mislabeled and anomalous sam-
ples. Some glitches may arise due to human or script errors in the
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data acquisition, transmission, and collection processes, while oth-
ers are a natural product of the intrinsic nature of the domains
of interest. We should stress that we focus on non-deliberate data
glitches in training sets that may incur systematic bias in ML mod-
els. Deliberate glitches may include data poisoning and backdoor
attacks [53]. Finally, test set glitches e.g. subpopulation shift and
out-of-distribution samples [31] are beyond the scope of this work.

3.1 Mislabeled Samples
Recall that 𝑦 refers to the true unknown class of a training sample
and 𝑦 refers to the possibly noisy label, as recorded in the dataset.
If 𝑦 ≠ 𝑦 the sample is considered mislabelled. Label errors occur
when (i) the human annotators face imperfect/difficult patterns
or when the task is subjective [33], (ii) non-expert crowdsourcing
platforms, such as Amazon MTurk, are used due to time and budget
constraints, often lead to unreliable labels [41], or (iii) automated
classification systems are used [42].

In our work, we assume that label errors or class noise are gener-
ated from a stochastic process that is either independent or depen-
dent w.r.t. the sample features [11, 40, 49]. In this work, we focus
on error generation mechanisms that are conditionally indepen-
dent of the features given the true class 𝑃 (𝑦 |𝑋,𝑦) = 𝑃 (𝑦 |𝑦), Hence,
Feature-Dependent class noise is beyond the scope of this work.

Uniform Class Noise. In this type of noise, also known as sym-
metric noise, the true label of a sample 𝑦 = 𝑖 is flipped to another
label 𝑦 = 𝑗 with equal probability. Given a set of 𝐶 classes, 𝑃 (𝑦 =

𝑗 |𝑦 = 𝑖) = 𝜖
|𝐶 |−1 ,∀𝑗 ≠ 𝑖 ∧ 𝑖, 𝑗 ∈ 𝐶 and 𝑃 (𝑦 = 𝑖 |𝑦 = 𝑖) = 1− 𝜖,∀𝑖 ∈ 𝐶 ,

where 𝜖 denotes the flip probability.
Class-Dependent Noise. In this type of noise, also known as asym-

metric noise, the true label of a sample is more likely to be flipped
to a specific class. Given a set of classes 𝐶 , class-dependent noise is
defined as: max𝑐∈𝐶\{𝑖, 𝑗 } 𝑃 (𝑦 = 𝑐 |𝑦 = 𝑖) < 𝑃 (𝑦 = 𝑗 |𝑦 = 𝑖) < 𝜖 . Note
that in asymmetric noise 𝑃 (𝑦 = 𝑖 |𝑦 = 𝑖) = 1 − 𝜖,∀𝑖 ∈ 𝐶 .

Although the common assumption when building robust mod-
els is the uniform class noise, where most ML models are proved
to be tolerant, class-dependent noise may pose a serious risk to
models’ performance resulting in up to ∼ 20% drop in test accuracy
for 20% noise [40]. This is particularly important for deep neural
networks that can overfit a training set even with a high ratio of
corrupted labels due to a large number of parameters, resulting in
poor generalization performance [58].

3.2 Anomalous Samples
An anomaly is a sample that is irregular from the remainder of the
samples in the dataset. Anomalies can occur due to data entry errors,
bugs in data wrangling and preprocessing software, sensor faults,
etc. Unlike Out-Of-Distribution (OOD) samples [10] observed in
test sets, in this work we study the influence of anomalous samples
in a training set where their feature representation significantly
deviates from the rest of the samples. According to [3], an anomaly
𝑥 should satisfy 𝑝 (𝑥) < 𝜆, where 𝜆 is a density threshold and 𝑝 the
probability density function, indicating that anomalies often lie in
sparse, low-density areas.

In our work, we consider clustered anomalies, i.e., samples shar-
ing common characteristics that have not been previously seen
during training (aka novelties) and outlier samples that have been

corrupted under a common corruption mechanism. As frequently
observed in tabular data3 novelties form low-density clusters while
outlier samples are scattered. In this work, we examine the case
of Far Clustered-Anomalies (Far-CA), as studied in [56]. The key
difference with [56], is that in our work we consider the presence of
Far-CA in training instead of the test set. Such samples can be for
example undetected Out-of-Distribution (OOD)4 examples slipped
into the training set. The objective is to detect and inform a human
analyst about their presence as they come from a different distribu-
tion. Note that these anomaly notions are well-studied for images
but they are not directly applicable to tabular datasets. Although
many tabular anomaly detection datasets exist, their ground truth
is for unsupervised anomaly detection. In contrast, we solve a clas-
sification problem using the target ML model and aim to detect data
glitches based on their impact on the model’s decision boundary.

Similarly to mislabeled samples, the effect of anomalies in the
context of ML has been studied mainly under the lens of model per-
formance. Several empirical studies have shown that anomalies do
not significantly affect the model performance [19, 28, 37]. However,
the influence of anomalies in the formation of the model’s deci-
sion boundary is left unexplored. In other words, does the reported
insubstantial impact on performance also mean low influence?

4 Influence-based Signals
Despite the substantial efforts on the development of more accurate
influence estimators, it remains open how one can leverage the
output of an IF to form informative signals to accurately detect
training data glitches, characterize their type or propose repairs
when mixtures of glitches exist in a complex ML dataset.

The influence scores between different pairs of samples com-
puted by an IF form a matrix that we call Influence Matrix (IM). We
define an IM𝑡 : R𝑛×𝑚 as a 𝑛 ×𝑚 matrix that contains the sample-
wise influences of the 𝑛 training samples to𝑚 samples, at a specific
training epoch 𝑡 with model parameters denoted as 𝜃𝑡 . Each cell
𝑖, 𝑗 of IM𝑡 indicates the sample-wise influence I𝑡 (𝑥𝑖 → 𝑥 𝑗 ).

In the case of TracIn IF, the final IM =
∑𝑇
𝑖 IM𝑡 . An influence-

signal is then defined as an aggregation𝐴 over the rows or columns
of the IM . In our work, we calculate the train-to-validation influence,
which captures the impact of each training on each validation sam-
ple, resulting in an IM : R |𝐷𝑡𝑟 |× |𝐷𝑣𝑎𝑙 | . To discover training glitches,
we consider row-wise aggregations, i.e., 𝐴(𝐼𝑀𝑖,:) measuring how
the training 𝑖-th sample affects another subgroup of validation
samples.

The computation of train-to-validation influence reveals interest-
ing semantics that relate to the model’s generalization performance.
It is important to note that the validation set must be clean to reveal
training data errors [59]. This assumption is reasonable as our ap-
proach is part of the target model training, where a clean reference
set is necessary to tune, evaluate, and select the final ML model.
The typical size of a validation set is 10-20% of the total dataset
size, which is challenging in practical applications as it requires
manual inspection and substantial resources. For this reason, we
empirically show in our experiments that the proposed signals are

3https://odds.cs.stonybrook.edu/
4https://github.com/Jingkang50/OpenOOD
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effective even in the case that the validation set occupies 2% of the
total dataset size.

4.1 Counterfactual Influence Signals
In this section, we formalize the following desiderata that lead to
defining the novel signals:
D1. Sign-wise influence aggregations. Distinguishing between

the negative and positive influential samples when aggregat-
ing conveys information for the presence of glitches.

D2. Conditional influence aggregations. The class-conditioned
influence of 𝑧𝑖 to a subgroup of samples may provide less
noisy influence score aggregations [38].

D3. Magnitude of aggregated influence. The magnitude reveals
how much impact 𝑧𝑖 has on a collection of samples. Extreme
or unusual values (negative, positive, or near zero) may reveal
glitches with different intrinsic characteristics.

D4. Repair Actions. An influence signal should provide repairs,
when possible e.g. in case of mislabeled samples, that respect
the decision boundary of the target ML model.

As depicted in Table 2 of Section 7 none of the existing influence
signals address all the previous desiderata. More importantly, exist-
ing signals do not provide repair actions, especially for mislabeled
samples. This motivated the introduction of a novel family of in-
fluence signals, namely Counterfactual Signals. A counterfactual
signal aims essentially to answer how does the relabelling of a sample
alter its influence?. In a binary classification problem, it is trivial to
relabel each sample to the opposite class and recalculate the influ-
ence. However, in multi-class settings, the problem becomes harder
as we need to run the IF for each modified label vector 𝑌 ′. In the
following, we present the rationale behind the two counterfactual
signals we propose for mislabeled and anomalous samples. Then,
we introduce a combination of these two signals to detect arbitrary
mixtures of both types of data glitches.

Our signals assume that the final 𝐼𝑀 is computed based on
all epochs. The computational complexity of the 𝐼𝑀 is O(𝑇𝑛𝑚𝑑),
where 𝑇 is the number of epochs where the model checkpoints
were saved, the 𝑛 is the number of the training samples,𝑚 is the
number of validation samples and 𝑑 is the number of parameters
of the layers whose gradients were used to compute the influence.
Moreover, we note that I(𝑧𝑖 → 𝑧 𝑗 ) and I(𝑧𝑖 = (𝑥𝑖 , 𝑦𝑖 ) → 𝑧 𝑗 )
are equivalent. Finally, we define conditional influence as I(𝑧𝑖 →
𝑧 𝑗 |𝑐) = I(𝑧𝑖 → 𝑧 𝑗 )1{�̃� 𝑗=𝑐 } . Similarly, conditional joint influence
is defined as I(𝑧𝑖 → 𝐷𝑣𝑎𝑙 |𝑐) = 𝐴( [I(𝑧𝑖 → 𝑧 𝑗 |𝑐)]𝑧 𝑗 ∈𝐷𝑣𝑎𝑙

), where
𝐴 is an aggregation function applied in each 𝑧 𝑗 ∈ 𝐷𝑣𝑎𝑙 of class 𝑐 .

ConditionalNegativeCounterfactual Influence (CNCI).The
first signal proposed in our work aims to detect mislabeled sam-
ples and suggest accurate label repairs. CNCI translates various
characteristics of mislabeled samples into an influence signal. The
main characteristics of mislabeled samples (MS) as observed by
prior works [12, 18, 49] are: (i) they often cause out-of-sample
performance degradation, (ii) they lie in a dense area of a class but
are labeled differently from their peers, and (iii) they exhibit high
loss as the model struggles to fit them given their feature values
and the assigned (observed) label. The steps of the CNCI for a single
training sample are presented in Algorithm 1. To encode the first
characteristic, CNCI keeps only negative influence scores in the

IM , as those scores indicate a harmful relation between training
and validation samples, fulfilling the D1. The second characteristic
implies that the negative influence of MS is not symmetric towards
the whole validation set but conditional towards the class of their
peers that are labeled differently. Thus, CNCI computes the cumula-
tive negative influence of each training sample per class, resulting
in a vector of |𝐶 | elements, fulfilling the D2. The most interesting
element of this vector is the class affected the most negatively, as
the gradient updates of MS point to a different direction than the
samples of this class.

We call the class with the most negative conditional influence
the negative counterfactual (ncf) class. The ncf class is the key of
CNCI and is computed per training sample, fulfilling the desiderata
D1-D3 (sign, magnitude, and conditional influence aggregations).
To do the detection, CNCI relabels all training samples to their ncf
class and performs a negative-conditional cumulative aggregation
towards their observed class (i.e., initially assigned class based on
the final parameter vector 𝜃𝑇 ). This simulates how the negative
impact of the training on validation samples would have changed
for a subsequent hypothetical epoch using the counterfactual label.
Intuitively, if the ncf is the true class of a mislabeled sample, its
negative influence should be small resembling the behavior of a
clean sample. In contrast, a clean-labeled sample is expected to have
a large negative influence as the ncf makes it mislabeled. Therefore,
clean samples will receive large negative values and mislabeled
samples will receive small values, close to zero.

The computational complexity of CNCI is O(𝑛𝑚 |𝐶 |), where 𝑛
is the number of training samples,𝑚 is the number of validation
samples, and |𝐶 | is the number of classes. Note that every compo-
nent of CNCI is parallelizable as the influence aggregations can be
computed independently per training sample and class.

CNCI is the first influence-based signal that hits two targets with
one arrow: detection and label repairs using the ncf class for the
detected MS. This paves the road on the potential that instance-
based explanation methods have for detecting and repairing data
quality issues using the model’s decision boundary and explaining
its decisions at the same time.

Algorithm 1: Conditional Negative Counterfactual Influ-
ence (CNCI) to detect mislabeled samples
Data: 𝑧𝑖 = (𝑥𝑖 , 𝑦𝑖 ) ∈ 𝐷𝑡𝑟 , 𝐷𝑣𝑎𝑙 , IM,I
Result: CNCI 𝑖 , rni

1 IM−
𝑖 𝑗
← min(𝐼𝑀𝑖 𝑗 , 0),∀𝑖, 𝑗

2 ncfi ← argmin
𝑐∈𝐶

[1{𝑦𝑣𝑎𝑙=𝑐 }]
𝑇 · 𝐼𝑀−

𝑖,:

3 CNCI 𝑖 ←
∑
𝑧𝑣𝑎𝑙 ∈𝐷𝑣𝑎𝑙

min(I𝑇 (𝑧′
𝑖
= (𝑥𝑖 , ncfi) → 𝑧𝑣𝑎𝑙 |𝑦𝑖 ), 0)

4 return CNCI 𝑖 , ncfi

Positive Counterfactual Influence Difference (PCID). We
propose the influence signal PCID to detect anomalous samples.
To the best of our knowledge, this is the first influence signal aim-
ing to detect anomalies. Prior works have shown [19, 28, 37] that
anomalous samples do not substantially impact the performance of
classifiers. We should stress that despite the insubstantial impact of
anomalies on performance they may still affect the construction of
the model’s decision boundary locally. In Table 3 in the Appendix,
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we show that the models achieve lower loss on anomalies than on
clean samples on average, thus, each foundation model learns the
anomalous area. PCID translates the observation to an influence
signal considering that anomalies have a small positive influence
on the whole validation set as they fall in sparse isolated areas and
do not interact with the rest of the samples in terms of parameter
updates. PCID leverages the counterfactual influence assuming that
the influence of an anomalous sample will remain small before and
after relabeling it to a different class, aiming to reduce the false
detection of clean-but-low-influential training samples.

PCID follows the steps of Algorithm 2 for a single training sample
𝑧𝑖 . First, only the positive scores of the IM+ are retained, while the
rest are set to zero. Using the non-negative IM+, we compute the
conditional positive influence vector u𝑖 ∈ R𝑘≥0 for each class 𝐶 . To
assess the difference before and after relabelling 𝑧𝑖 we use u𝑖 to
compute the positive counterfactual (pcf) class if 𝑧𝑖 ; the pcf is the
class that the sample affects the most positively and is different
from its observed class. The calculation of pcf fulfills the desiderata
D1-D3. After relabeling 𝑧𝑖 to its pcf class, a counterfactual positive
influence vector u′𝑖 is computed, similarly to u𝑖 . To do the detection,
the infinite norm returns the maximal difference between the two
conditional positive influence vectors, weighted by the marginal
positive influence of 𝑧𝑖 to the validation set. Finally, the inverse
weighted infinite norm is computed to assign higher scores to
anomalies than the inlier samples.

Similarly to CNCI, PCID is highly parallelizable. It requires
O(𝑛𝑚 |𝐶 |) to be computed. However, in comparison to CNCI, the
pcf class can not be used for repairs as there is no straightforward
repair for anomalies.

Algorithm 2: Positive Counterfactual Influence Difference
(PCID) to Detect Anomalies
Data: 𝑧𝑖 = (𝑥𝑖 , 𝑦𝑖 ) ∈ 𝐷𝑡𝑟 , 𝐷𝑣𝑎𝑙 , IM,I
Result: PCID𝑖

1 IM+
𝑖 𝑗
← max(𝐼𝑀𝑖 𝑗 , 0)

2 u𝑖 ← [[1{𝑦𝑣𝑎𝑙=𝑐 }]
𝑇 · IM+

𝑖,:]𝑐∈𝐶
3 pcfi ← argmax

𝑐∈𝐶,𝑐≠�̃�𝑖
[1{𝑦𝑣𝑎𝑙=𝑐 }]

𝑇 · IM+
𝑖,:

4 u′
𝑖
← [∑𝑧𝑣𝑎𝑙 ∈𝐷𝑣𝑎𝑙

max(I𝑇 (𝑧′
𝑖
= (𝑥𝑖 , pcfi) → 𝑧𝑣𝑎𝑙 |𝑐), 0)]𝑐∈𝐶

5 𝑤𝑖 ←
∑
𝑐∈𝐶 [1{𝑦𝑣𝑎𝑙=𝑐 }]

𝑇 · IM+
𝑖,:

6 PCID𝑖 ← (𝑤𝑖 · | |u𝑖 − u′𝑖 | |∞)
−1

7 return PCID𝑖

Counterfactual Influence Rank (CFRank). So far, CNCI and
PCID target only one type of data glitch. However, in real-world
datasets, one may have to deal with a mixture of glitches that pose
significant challenges in both their detection and characterization.
In this respect, we propose CFRank, a rank aggregation signal that
combines CNCI and PCID to detect both mislabeled and anomalous
samples that may be contained in a training set. Note that CFRank
targets samples that can be either mislabeled or anomalous but they
do not simultaneously exhibit both types of glitches as in the case of
feature-dependent class noise [11, 40]. Detecting and characterizing
samples with multiple glitches is left as future work. CFRank first
computes the rank of each sample for the CNCI and PCID lists in

ascending order using a rank function 𝑟 ; we use the rank since the
two signals may contain scores of different scales. Then, CFRank is
defined as follows:

CFRank = {max (r (CNCIi), r (PCIDi))}𝑛𝑖=1
The intuition is that both CNCI and PCID signals assign higher
scores to glitches than to clean samples, thus, the max function
keeps the most plausible category of the two glitches. This serves to
characterize the detected glitches. When combining the two signals,
CFRank assumes that the mislabeled samples and anomalies are
not prioritized simultaneously by the same signal, i.e., CNCI and
PCID are mutually exclusive. This requirement is fulfilled because
a counterfactual mislabeled sample may retain a large conditional
positive influence vector, which is not the case for the anomalies.

5 Experimental Setting
All experiments run on a 16-core Intel Xeon, 64 GB of main memory,
and no GPU. The code is available on https://github.com/myrtakis/
data-hedgehog.

Datasets.We employ three benchmark image datasets, namely
MNIST, Fashion-MNIST, and CIFAR-10, which are widely used in
the IF literature [5, 19, 26, 27, 43, 51]. For the tabular datasets we
employ Epsilon, Forest Cover and Jannis [14] since the employed
ML models perform well for these datasets. For each dataset, we
draw a 10% stratified5 subset uniformly at random to speed up
influence computations as performed in [51]. Then we split each
subset into 80% for training (𝐷𝑡𝑟 ) and 20% for validation (𝐷𝑣𝑎𝑙 ).

Data glitch injection on training sets. For each 𝐷𝑡𝑟 , we in-
troduce uniform class noise, by randomly flipping the label of 10%
of 𝐷𝑡𝑟 [24, 38, 43] to a different class uniformly at random. For the
class-dependent noise, we select a class 𝑐𝑖 uniformly at random
that contains the samples 𝑆𝑖 and flip the labels of the 10% of 𝑆𝑖 to
another class 𝑐 𝑗 , as described in Section 3.1. To inject anomalies we
follow the methodology as described in Section 3.2. Specifically, to
create far-isolated clusters we first select 10% of the samples from
a specific class of MNIST denoted as 𝑆𝑀 , Fashion-MNIST denoted
as 𝑆𝐹−𝑀 , and CIFAR-10 denoted as 𝑆𝐶 . We then use the follow-
ing combinations to contaminate the training sets of each dataset:
𝐷𝑀 = 𝐷𝑀 ∪ 𝑆𝐹−𝑀 , 𝐷𝐹−𝑀 = 𝐷𝐹−𝑀 ∪ 𝑆𝑀 , and 𝐷𝐶 = 𝐷𝐶 ∪ 𝑆𝐹−𝑀 .
Note that we assign a random class to the anomaly subset that
exists in the contaminated dataset. To inject corruptions, we used
MNIST-C [34] and CIFAR-10-C [22] that include corrupted versions
of MNIST and CIFAR-10. In particular, we selected 10% of the sam-
ples and corrupted them using brightness and stripe corruptions in
the training sets generated by [34]. We chose these two corruption
types based on their impact on the models’ generalization perfor-
mance [34]. Finally, for the mixed glitch case, where 𝐷𝑡𝑟 contains
both mislabeled samples and anomalies, we set the glitch ratio to
20%, distributed evenly between mislabeled and anomalies.

ML Models. For the image datasets, we employ powerful and
popular foundation models for computer vision tasks with diverse
architectures such as ResNet-20 [20] pre-trained on CIFAR-10, Con-
vNeXt [32] pre-trained on ImageNet and Vision Transformer (ViT-
16B) [9] pre-trained on JFT-300M. For the tabular datasets, we
employed FT-Transformer, ResNet and MLP [14]. Each model was

5Stratification preserves the initial class distribution

https://github.com/myrtakis/data-hedgehog
https://github.com/myrtakis/data-hedgehog
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then trained for a few fine-tuning steps on each contaminated train-
ing set, minimizing the cross-entropy loss and achieving a good
validation accuracy. The learning rate, number of epochs, batch
size, and validation accuracy for each model can be found in our
code repository. Each model was fine-tuned using stochastic gra-
dient descent with no momentum to meet TracIn’s assumptions
[43]. Note that each model was trained in each dataset, resulting
in 9 combinations in total. Regarding the ResNet-20 - CIFAR-10
combination, the rationale is to continue the training procedure, to
increase the predictive performance further while injecting data
glitches into the training set. This simulates the scenario of fresh
incoming samples with data quality issues that become part of the
training set. The goal is to detect those glitches.

IF. As described in Section 2, we employ TracIn [43] using the
Captum 6 package implemented in PyTorch. To speed up compu-
tations, the influence is estimated based only on the weights of
the last layer of each model, which does not degrade influence
estimation [1, 38, 43].

Performance metric. To compare the detection efficacy of the
proposed influence signals and the baselines, the F1-score is em-
ployed. Intuitively, the F1-score is higher when a corresponding
method precisely retrieves most mislabeled or anomalous samples.
As the F1-score is a binary metric, to binarize the scores returned
by the influence signals and the employed glitch detectors, we con-
sidered the true mislabeled and anomaly ratios as thresholds [36].

Influence-based Signals. We compare the detection perfor-
mance of the three new with existing influence signals such as
Self Influence (SI), Average Absolute Influence (AAI), GD-class, and
Marginal Influence (MI) (see Section 7 for the exact definitions).

Glitch Detectors. For the mislabeled detection, we compare
our signals with CleanLab [39], a model-based mislabeled detector
with label repair capabilities7. Regarding the anomalies, we com-
pare against popular model-agnostic detectors such as Deep-SVDD
[44] DIF [55], Isolation Forest (iForest) [30], and CBLOF [21], all
implemented by PyOD [60]. Given that data glitch detection is
an unsupervised problem, i.e., the error labels are not known in
advance, the default hyper-parameters as proposed in the respec-
tive works are employed. Note that CNCI and PCID do not require
tuning, i.e., they do not have any hyper-parameters.

6 Experimental Evaluation
In this section, we report the results of the experimental comparison
of the 3 proposed influence-based signals CNCI, PCID, and CFRank
with existing signals and detectors. In particular, we are interested in
detecting mislabeled and anomalous samples during model training
by examining their influence footprint on the ML models. Note that
each experiment was repeated five times with different random
seeds. Due to space constraints, the pipeline schema along with its
description is illustrated in Section A.1 in Appendix.

6https://captum.ai/api/index.html
7https://github.com/cleanlab/cleanlab

6.1 Mislabeled Samples
In this experiment, we are interested in assessing the detection
performance of the influence-based signals for uniform and class-
based label noise. In our experiments, we have observed a similar
trend between uniform and class-based noise in terms of detection
performance (see Fig. 1a and Fig. 7 in the Appendix). Therefore, we
explore amore challenging case by contaminating the 10% of a single
class instead of all classes. Now, the mislabeled data correspond to
the 1% of the dataset. We call this case singular mislabeled class.

6.1.1 Influence-Based Signals Comparison. As illustrated in Fig.
1, CNCI outperforms the existing influence signals in terms of de-
tection performance for both image and tabular data modalities.
CNCI exhibits robust performance across the different ML models
irrespective of the class noise type (uniform or class-based noise).
Specifically, for the singular mislabeled class in Fig. 1d, CNCI out-
performs the state-of-the-art signal for label noise, namely SI, by a
margin of 65% and up to a factor of 2 the signals GD-class and AAI
on average. Moreover, we show that CNCI is very effective in the
high-resolution ImageNet-Dogs in Fig. 9 (Appendix). The detection
performance difference is higher for the tabular datasets in both
label noise types, where CNCI outperforms SI by a factor of 2.3 on
average. When the models are trained from scratch, the parame-
ter updates are expected to diverge more than when fine-tuning a
foundation model, especially in the earlier stage of the training [45],
confusing the existing signals into attributing greater influence to
clean samples. CNCI is confused less by this phenomenon. This
may attributed to the last influence step when computing the coun-
terfactual influence using the final model parameters, i.e., when
the model is at a convergence state. The execution time of CNCI is
depicted in Table 1. The signal takes approximately a fraction of
9 w.r.t. the total model training time without using a GPU. Apart
from the debugging objective, employing influence-based signals
offers the additional advantage of instance-based explanations for
every training example.

6.1.2 CNCI vs CleanLab. In Fig. 2a and 2b, we compare for tabular
and image modalities the detection performance of CNCI with
the model-based mislabeled detector, CleanLab [39] which also
provides label repairs on the detected mislabeled samples. We
present the results when only one class contains mislabeled samples,
which is a more realistic noise distribution in real applications. The
uniform noise detection and repair comparison is depicted in 8 in
the Appendix. CNCI achieves a 50% higher F1-score for tabular and
70% for image datasets on average. CleanLab returns more false
positives, i.e., clean samples identified as mislabeled. Since both
CNCI and CleanLab are model-based detectors, their F1-Score is
expected to decrease with model performance degradation, which
is the case for ViT-16B and ConvNeXt. In Section 4 we argued
that a counterfactual label will enable CNCI not only to detect but
to repair a problematic label. This motivates us to compare the
accuracy of the counterfactual labels that serve as label corrections,
with CleanLab. In Fig. 2c and 2d, the label cleaning performance
of CNCI is on par with CleanLab, achieving 85% label correction
accuracy on average for both data modalities. Interestingly enough,
even in the presence of 10 classes on image datasets, CNCI suggests
the correct label with approximately 75% accuracy on average.

https://captum.ai/api/index.html
https://github.com/cleanlab/cleanlab
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This verifies that the counterfactual labels obtained by CNCI were
indeed the true labels of the mislabeled samples. Note that in the
label correction experiment, we evaluated both repair mechanisms,
CNCI and CleanLab, under the assumption that all the mislabeled
samples were detected, i.e., focusing exclusively on how accurate
label repairs they provide.

6.1.3 CNCI Robustness on Different Validation Set Characteristics
and Noise Ratios. Although a common assumption is that the vali-
dation set is clean [59], this may not hold in practice. For instance,
obtaining a clean validation set may be challenging; thus, it is im-
portant to assess that influence signals can still work using a either
a very-small-and-clean or an imperfect validation set. Fig. 3a shows
various validation set sizes w.r.t. the training set ranging from 2% up
to 20%. We report the steepest performance difference from 2% to
10% validation size among all dataset and model combinations. For
every dataset and model combination, the performance difference
after the 10% validation size was not substantial. The experiment is
repeated for 100 bootstraps for every ratio, and the average detec-
tion performance is depicted. The detection performance of CNCI
when the validation set is 2% is not substantially than the perfor-
mance on 10%. In a real-world scenario where the model is trained
and deployed rapidly, the existence of a clean validation set may
be unrealistic. For this reason, we evaluated CNCI on imperfect
validation sets containing 20% class-dependent label noise. In Fig 3b,
CNCI is not affected substantially by the existence of noisy labels
in the validation set showing almost no performance difference.

Finally, CNCI is more robust than the rest of the signals in low
label noise ratios such as 1%, as depicted in Fig. 11 in the Appendix.

Lessons Learned. The mislabeled samples negatively influence
the model’s decision boundary, especially the samples of their true
unknown class (the ncf class). Computing the counterfactual influ-
ence lets CNCI outperform the existing influence signals, especially
on the singular mislabeled class case, for both data modalities while
being robust across the different ML models, validation set size
(2%), and varying label noise ratios. Moreover, CNCI is on par and
sometimes outperforms CleanLab while providing accurate label re-
pairs. Finally, we should stress that the performance of all influence
signals and model-based detectors such as CleanLab are heavily
impacted by the model’s performance.

6.2 Anomalous Samples
The influence signature between an anomalous and a mislabeled
sample during model training is fundamentally different. In con-
trast to mislabelled, anomalies often lie in sparse, isolated areas. We
observed that each foundation model predicts them with very high
accuracy and achieves lower loss on anomalies than on clean sam-
ples (see Table 3 in the Appendix). This explains why in Fig.4a the
proposed signal PCID is the only one that can detect Far-Clustered
anomalies, outperforming all other signals up to a factor of 6 for
all foundation models. Anomalies proved to be easy-to-fit samples
with small conditional positive influence. Moreover, we show that
PCID is very effective in the high-resolution ImageNet-Dogs in Fig.
9 (Appendix). Interestingly enough, as the Far-CA ratio increases,
the detection quality increases for every foundation model and
dataset combination, see Fig. 12 (Appendix). Finally, even with a
2% validation set size, PCID can still accurately spot the Far-CA

(a) Uniform Class Noise
(Image Datasets)

(b) Singular Mislabeled Class
(Image Datasets)

(c) Uniform Label Noise
(Tabular Datasets)

(d) Singular Mislabeled Class
(Tabular Datasets)

Figure 1: Detection performance comparison of CNCI with
existing signals for 10% class noise. The results are aver-
aged by ML model on the three image (a,b) and tabular
(c,d) datasets. In image data, the foundation models are fine-
tuned. In tabular data, the DNNs are trained from scratch.

(a) Label Noise Detection (Tabu-
lar Datasets)

(b) Label Noise Detection (Image
Datasets)

(c) Label Noise Repair (Tabular
Datasets)

(d) Label Noise Repair (Image
Datasets)

Figure 2: CNCI and CleanLab detecting (a,b) and repairing
(c,d) 10% samples of Singular Mislabelled Class, averaged by
ML model for tabular and image datasets.

samples. The execution time of PCID is depicted in Table 1. PCID
takes approximately a fraction of 10 w.r.t. the total model training
time. The execution time can be further reduced if a GPU is used.
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As depicted in Fig. 4b, PCID’s detection performance is on par
with dedicated anomaly detectors. PCID seems to be themost robust
method across different datasets, which is not the case for the
employed anomaly detectors. We perform the experiments on the
outlier samples injected via corruptions, depicted in Fig. ?? in the
Appendix. Despite the fact that PCID outperforms the existing
signals for detecting outliers while being the most robust across
the different datasets, Isolation Forest significantly outperforms
PCID in the MNIST dataset for the two corruption types. Note that
as explained in Section 3, the anomaly detection experiments are
performed only for the image datasets; to the best of our knowledge,
there is no straightforward method to inject far-clustered anomalies
in tabular data when solving a classification problem, instead of
unsupervised anomaly detection.

Lessons Learned. Anomalies are easy-to-fit samples for each foun-
dation model and have a very small positive impact on all classes
compared to the clean samples. This particular characteristic is not
captured by existing signals that rely on influence aggregations of
high magnitude to identify an anomalous sample. In contrast, PCID
exhibits a high detection performance and it is more robust than
anomaly detectors.

(a) Steepest detection per-
formance difference of all
model/dataset combinations for
different validation set sizes.

(b) Detection performance on
clean and imperfect val. set.
The diagonal indicates no per-
formance difference.

Figure 3: CNCI robustness on detecting class-dependentmis-
labeled samples for different validation set characteristics.

(a) PCID vs influence-based sig-
nals. All baselines achieve F1
lower than 0.1

(b) PCID vs anomaly detectors.
PCID is the most robust method
across the three datasets

Figure 4: Detection performance comparison of 10% Far-CA.
The results are averaged by the foundation model on the
three image datasets.

Model #Parameters Model Training CNCI PCID
ResNet-20 270K 600 50 60
ConvNeXT 27M 2,000 300 320

ViT 85M 4,900 500 580
Table 1: Execution time for models training on 6K samples
and calculating the proposed influence signals in seconds
(no GPU or parallelization used). Both signals require a frac-
tion, approximately 10%, of the total training time.

6.3 Glitch Mixtures
In the previous experiments, the training sets were contaminated
with single-type glitches, either mislabeled or anomalous samples.
In this experiment, we are interested in discovering arbitrary mix-
tures of glitches in the same training set using the CFRank signal
and assessing its added value over the CNCI and PCID that tar-
get single glitches. As stated in Section 4.1, the glitch mixtures
considered in our experiments concern glitched samples that are
either mislabeled or anomalous, rather than samples with multiple
errors such as feature-dependent class noise. In our experiments,
we contaminated the three image datasets with 10% mislabeled and
10% anomalies. In Fig. 5a, we observe that CFRank achieves a 50%
performance improvement in detecting both types of glitches by
combining the two signals. Apart from discovering glitch mixtures,
CFRank is also able to characterize their type precisely. In Fig. 5b,
we observe that CFRank accomplishes this additional task with
high precision by examining the individual PCID and CNCI val-
ues. Anomalous and mislabeled samples have consistently higher
PCID/CNCI ranks than clean samples.

(a) Detection (b) Characterization

Figure 5: Performance of CFRank for detecting (a) and char-
acterizing (b)mixed glitches, i.e., training setswith bothmis-
labeled and anomalies, averaged by foundation model.

7 Related Work
In this section, we survey prior works on IFs and their application
in the detection of data glitches. IFs were first introduced for regres-
sion tasks [7, 17] and they recently served as model diagnostic tools
in classification tasks [24, 25]. Apart from explaining the model’s
predictions, IFs provide valuable information for detecting various
data glitches during training [19, 24, 27, 38, 43, 51] or testing [52].
Table 2 summarizes the main characteristics of existing influence-
based signals for detecting mislabeled samples or anomalies during
training and positions the new signals proposed in this work. Influ-
ence signals [52] for detecting test errors such as out-of-distribution,
open-set recognition, adversarial attacks [6] or data poisoning [47]
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Influence Signal IF Sign Magnitude Conditional Mislabeled samples Anomalies Mixed Repair
SI [24, 27, 43] [24, 27, 43] - � - � � � �

MI [5, 26] [5, 24] � � � � � � �

AAI [19] [19] � � � � � � -
GD-class [38] [43] � � � � � � �

CNCI (ours) [43] � � � � � � �

PCID (ours) [43] � � � � � � -
CFRank (ours) [43] � � � � � � �

Table 2: Influence-Based signals for detectingmislabeled samples, anomalies, ormixed data glitches in training sets. IF denotes
the influence estimator where the signal was used, the sign, magnitude, and conditional columns concern characteristics of
the influence aggregations made by a signal as described in Section 4. The last column shows if a signal can provide repairs to
the detected errors. The “-” denotes that the characteristic can not be defined for that signal, e.g., SI measures the influence of
a sample on itself, thus sign and conditional aggregations are undefined; for anomalies, there is no straightforward repair.

are outside the scope of this work. We should stress that our signals
are orthogonal to the choice of the IF, assuming that the IF provides
accurate influence estimates. In this respect, we rely on dynamic
IFs [43], omitting Shappely-Values-based methods [13, 23] as well
as Representer-Point-based methods [50, 57].

The seminal signal for detecting mislabeled and anomalous sam-
ples is Self Influence (SI) [24, 27, 43]. Considering a sample 𝑧𝑖 and an
IF I, SI is defined as I(𝑧𝑖 → 𝑧𝑖 ). Samples with high SI magnitude
are considered “influential” and are more prone to have errors in
labels [24, 43] or features [27]. Although previous studies report
that SI can also detect anomalies in generative models [27], our
experiments do not confirm such results for classification tasks.
Indeed, the efficacy of the proposed signal PCID stems from the
fact that anomalies do not have a substantial positive influence on
any of the employed foundation models.

Marginal Influence (MI) [5, 26] is a joint influence signal defined
as 𝐼 (𝑧𝑖 → 𝑆) = ∑𝑚

𝑗=1 𝐼 (𝑧𝑖 → 𝑧 𝑗 ), where 𝑧 𝑗 ∈ 𝑆 , capturing the mar-
ginal influence of 𝑧𝑖 to a sample set 𝑆 to detect mislabeled samples.
MI assumes that these samples have large influence values, without
considering sign or class information in the influence aggregation.
This fundamental distinction sets CNCI apart, leading to a substan-
tial performance advantage over MI across all ML models. Average
Absolute Influence (AAI) [19] is a joint influence signal for detecting
anomalies, defined as 𝐼 (𝑧𝑖 → 𝑆) = ∑𝑚

𝑗=1
1
𝑚 |I(𝑧𝑖 → 𝑧 𝑗 ) |, where

𝑧 𝑗 ∈ 𝑆 . This signal prioritizes anomalies with high AAI scores. Sim-
ilarly to MI, it does not consider sign or class information, leading
to lower performance than our PCID.

Finally, GD-class [38] is a joint conditional signal defined as
I(𝑧 𝑗 → 𝑆) = min𝑦∈𝑌

∑𝑚
𝑗=1 I(𝑧𝑖 → 𝑧 𝑗 |𝑐), where 𝑧 𝑗 ∈ 𝑆 . It as-

sumes that these samples have a very large negative influence on
a specific class. The authors state that the most negative class of
a mislabeled sample is its true class; however, they use GD-class
only for detection and not for label correction. We find that this
signal is not effective especially for a low class noise ratio, because
some hard (but clean) samples. CNCI deals with these samples by
performing a single influence step on the counterfactual label.

Unlike the existing joint influence-based signals, the three pro-
posed signals are the only ones that account for both the influence
sign and class information (see Table 2). This is crucial to enhance

the interpretability of our signals: CNCI and PCID work with nega-
tive and positive influencers rather than raw aggregations. More-
over, existing signals target exclusively single types of glitches. In
contrast, CFRank has been introduced to detect mixtures of data
glitches, proposing at the same time label corrections using CNCI.
Last but not least, CFRank strives to characterize the type of a de-
tected glitch which is practically useful in datasets with unknown
data imperfections.

8 Summary
In this work, we introduced an influence-based framework to de-
tect and characterize arbitrary mixtures of data glitches during
model training using distinct influence signatures. We proposed
three novel influence-based signals for mislabeled and anomalous
samples in training sets that generalize well across different ML
models and datasets outperforming existing signals and in some
cases data glitch detectors. The proposed signals proved robust
across various datasets, varying validation set sizes, and imperfect
validation sets. More importantly, we demonstrated that instance-
based explanations can serve as accurate detectors and introduced
a new family of signals called counterfactuals that provide accurate
repairs for label noise. As future work, we are interested in study-
ing the effectiveness of the proposed signals on feature-dependent
class noise. Moreover, we plan to study the detection and charac-
terization of data glitches such as out-of-distribution, adversarial
examples in test sets, and data poisons. We argue that discovering
distinct influence signatures under a common framework using the
target ML model for different types of glitches paves the road for
Explainable Data Debugging Frameworks.
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A Appendix
A.1 Pipeline
The influence-based detection pipeline is summarized as follows:
(i) a ML model is trained directly to the given training dataset that
contains data glitches, (ii) the model’s parameters are stored across
all epochs (iii) the Influence Matrix is obtained using the TracIn,
(iv) the proposed influence-based signals to detect potential data
glitches are computed, and (v) repair actions are applied. Then
one can retrain the model or continue the training after repairing
the glitches for a few epochs. Regarding (v) the repair action for
the mislabeled samples is to discover their unknown correct class
using the CNCI signal. As for the anomalous samples considered
in our work, there is no label error, they correspond to samples of
either new concepts (far-isolated clusters) or outliers injected into
the training dataset; thus, none of the classes or straightforward
repairs are suitable for them. For the far-isolated clusters, a possible
repair requires augmenting the neighborhood area with additional
samples and assigning a new class to them, letting the classifier
better learn their distinctive properties. Note that the repair of the
studied anomalies is beyond the scope of this work.

Figure 6: Influence-based data glitch detection, characteriza-
tion, and repair pipeline.

(a) Label Noise Detection (Tab-
ular Datasets)

(b) Label Noise Detection (Im-
age Datasets)

(c) Label NoiseRepair (Tabular
Datasets)

(d) Label Noise Repair (Image
Datasets)

Figure 8: CNCI and CleanLab detecting (a,b) and repairing
(c,d) samples of UniformClass Noise, averaged byMLmodel
for tabular and image datasets. CNCI outperforms CleanLab
for both tasks.

A.2 Additional and Supporting Experiments

Figure 7: Detection of 10% class-based noise where all classes
are contaminated. The experiment ran for 5 random seeds
and the results were averaged by the foundation model on
the three image datasets.

A.2.1 Experiment on a high-resolution image dataset. We have em-
ployed a challenging subset of ImageNet that contains 10 different
dog breeds, taken from FastAI8 to show the robustness of the pro-
posed signals in a higher resolution dataset. This dataset contains
320x333 high-quality images.We injected 10%mislabeled samples in
the train set (Fig. 9) and 10% Far-CA (Fig. 10) and ran the influence-
based signals to measure the detection performance. Note that only
ViT and ConvNeXt models were able to learn this dataset; we omit-
ted to compute the signals for ResNet-20 due to very low accuracy.
CNCI is on par with SI and outperforms the rest of influence-based

8https://github.com/fastai/imagenette?tab=readme-ov-file
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(a) ConvNeXt (b) Vision Transformer

Figure 9: Performance of CNCI vs existing signals for detect-
ing 10% uniform label noise on the high resolution dataset
ImageNet-Dogs.

(a) ConvNeXt (b) Vision Transformer

Figure 10: Performance of PCID vs existing signals for de-
tecting 10% Far-CA samples injected from Fashion-MNIST
to ImageNet-Dogs.

signals. In comparison to SI, CNCI is also able to provide accurate
label repairs while being more robust for a lower noise ratio.

A.2.2 Signals Detection Performance w.r.t. Glitch Ratio. In this ex-
periment, we increase the glitch ratio starting from 1% up to 30%.
For the mislabeled samples in Fig. 11, the CNCI preserves its detec-
tion accuracy for small and higher noise ratios, outperforming SI,
especially for low noise ratios. Regarding the anomalies in Fig. 12,
PCID achieves a better detection accuracy for every model/dataset
combination as the Far-CA ratio increases. This may be attributed
to the fact that the foundation models fit the anomalies better when
they form bigger isolated clusters, resulting in a smaller overall
positive influence.

A.2.3 Detection of Outlier Samples. In this experiment, we are
interested in detecting outlier samples in the form of corruptions. As
outliers, we consider the samples (images) that have been corrupted
under a common corruption mechanism. We employ two popular
corrupted versions of MNIST, namely MNIST-10-c9, and CIFAR-10,
namely CIFAR-10-c10. We corrupted the 10% of the training samples
using “Brightness” and “Stripe” corruptions using the code11 of the
paper [34]. We chose these two corruptions as they seem to affect
the models’ performances as shown in [34]. In Fig. ??, PCID exhibits
the best performance among the rest of the influence signals and
outperforms the anomaly detectors for the two corruptions on
CIFAR-10. PCID is substantially outperformed by Isolation Forest
in MNIST. However, as in the case of Far-CA samples, PCID is the
most robust signal on both datasets.

9https://zenodo.org/records/3239543
10https://zenodo.org/records/2535967
11https://github.com/google-research/mnist-c

Figure 11: Influence-based signals’ detection performance
w.r.t. increasing uniform class noise ratio. CNCI exhibits ro-
bust performance for increasing noise ratio, outperforming
SI on average for lower noise settings.

Figure 12: Influence-based signals’ average precision w.r.t.
increasing Far-CA ratio.

Clean Samples Mislabeled Far-CA
Dataset Loss Acc. Loss Acc. Loss Acc.
MNIST 1.6 97% 2.35 5% 1.47 100%
F-MNIST 1.67 91% 2.35 9% 1.48 100%
CIFAR-10 1.76 95% 2.38 6% 1.59 100%

Table 3: ResNet-20 average loss and accuracy on clean, mis-
labeled, and Far-CA samples using 10% glitch ratio over the
three vision datasets. ResNet-20 perfectly fits the Far-CA
achieving 100% accuracy and a smaller average loss than the
clean samples. On the other hand, the model does not learn
the mislabeled samples.

https://zenodo.org/records/3239543
https://zenodo.org/records/2535967
https://github.com/google-research/mnist-c
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