
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a paper at DATA-FM workshop @ ICLR 2025

BENCHAGENTS: AUTOMATED BENCHMARK CRE-
ATION WITH AGENT INTERACTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Evaluations are limited by benchmark availability. As models evolve, there is a
need to create benchmarks that can measure progress on new generative capabili-
ties. However, creating new benchmarks through human annotations is slow and
expensive, restricting comprehensive evaluations for any capability. We introduce
BENCHAGENTS, a framework that methodically leverages large language models
(LLMs) to automate benchmark creation for complex capabilities while inherently
ensuring data and metric quality. BENCHAGENTS decomposes the benchmark
creation process into planning, generation, data verification, and evaluation, each
of which is executed by an LLM agent. These agents interact with each other
and utilize human-in-the-loop feedback from benchmark developers to explicitly
improve and flexibly control data diversity and quality. We use BENCHAGENTS
to create benchmarks to evaluate capabilities related to planning and constraint
satisfaction during text generation. We then use these benchmarks to study seven
state-of-the-art models and extract new insights on common failure modes and
model differences.

1 INTRODUCTION

AI advancements are progressing rapidly, with new models frequently showing enhanced capabil-
ities. Evaluation datasets are essential for testing these claims, but they are expensive to produce
and can quickly become saturated, due to the fast pace of model improvements (Balachandran et al.,
2024), or contaminated (Zhang et al., 2024a). In the absence of benchmarks, new capabilities are
often demonstrated with anecdotal, qualitative examples or small, non-comprehensive test sets; this
offers limited insight into actual model performance. This highlights the need for scalable, dynamic
benchmarking methods to enable fast and reliable model evaluation.

Figure 1: Overview of BENCHAGENTS. P-AGENT generates a plan for data generation and com-
municates this to G-AGENT. G-AGENT writes code for data generation and communicates to all
agents. P-AGENT generates plans for evaluation and verification and communicates these to the
respective agents. E-AGENT and V-AGENT write code for evaluation and verification. For each
instance, generation, verification and evaluation processes are run.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a paper at DATA-FM workshop @ ICLR 2025

Traditionally, benchmark creation involved designing data requirements and recruiting human anno-
tators to provide test instances. Whilst ensuring quality, this process is costly, time-consuming, and
difficult to scale. Previous work proposed methods for synthetic test data generation via prompt tem-
plates (Wang et al., 2024; Xia et al., 2024a; Yuan et al., 2024) or by using programmatic workflows
for narrow domains (Zhu et al., 2024; Zhang et al., 2024b). These methods, however, are unable
to easily generalize to a broader set of complex and generative tasks. Parallel efforts for training
data synthesis have been proposed (Li et al., 2023b; Mitra et al., 2024; Li et al., 2023a). However,
they do not usually transfer for generating evaluation datasets, due to stricter quality and diversity
requirements.

We propose BENCHAGENTS1, a multi-agent evaluation framework for automated, high-quality, and
diverse benchmark creation. BENCHAGENTS breaks down benchmark creation into four compo-
nents and instantiates each component via dedicated LLM agents as shown in Fig. 1. The Planning
Agent creates a high-level plan/specification based on the problem and user requirements, breaks it
down to tasks, and communicates the plan with the other agents. The plans may contain elements
including but not limited to parameters and their values to guide the data generation and enable
dis-aggregations along important dimensions, definitions for quality checks during data verification,
and metrics for model evaluation. The Data Generation Agent implements the plan programmati-
cally and generates diverse benchmark data. Next, the Verification Agent formulates and executes
fine-grained data quality checks to ensure quality control for the generated examples. Finally, the
Evaluation Agent produces evaluation code and prompts for one or more metrics used for assessing
target model performance.

Grounding the data generation on a shared plan (that consists of a structured set of parameters)
across agents enables precise control on the diversity of the data distribution. It also facilitates the
creation of data quality checks and model evaluation criteria that are consistent with the initial plan.
Whenever applicable, BENCHAGENTS by design allows for additional developer feedback at each
stage of the process to ensure transparency, control and quality in the produced benchmarks.

We demonstrate the utility of BENCHAGENTS, by generating benchmarks on two complex and gen-
erative problem settings - calendar scheduling (BA-CALENDAR) and constrained long-form text
generation (BA-TEXT) - each with 2, 000 test instances. These are tasks where current benchmarks
are lacking and state-of-the-art (SOTA) LLMs perform poorly. We then evaluate seven SOTA LLMs
on both benchmarks. The generated benchmarks enable fine-grained dis-aggregations along multi-
ple important dimensions, such as complexity. We find that (i) all LLMs struggle with joint con-
straint satisfaction across both datasets, with performance decreasing as the number of constraints
increases; (ii) LLMs differ in their prioritisation of constraints when all cannot be met; and (iii)
failures often involve constraints requiring numerical or logical reasoning.

In summary, our contributions are:

• We introduce BENCHAGENTS—a multi-agent framework which utilises interacting LLM agents
to design and create benchmarks for complex and generative capabilities, while ensuring data and
metric quality (§ 3).

• Using BENCHAGENTS, we create two diverse and high-quality benchmarks, BA-CALENDAR
and BA-TEXT, to evaluate LLMs on two complex problems (§ 4).

• Evaluating seven SOTA LLMs on the two benchmarks, we offer insights on models’ capabilities
for generative and complex tasks (§ 6).

2 RELATED WORK

A growing body of literature looks at leveraging algorithms and LLMs to automate parts of bench-
mark creation. This can be divided in two areas: dynamic benchmark creation for narrow domains,
and extending existing benchmarks.

Dynamic Benchmark Creation: Zhang et al. (2024b) create a data generation algorithm that selects
images and scene graphs from a corpus and generates input-output pairs based on question-answer
templates for custom multi-modal evaluations. Yuan et al. (2024) propose AutoBench for aligning

1Our code implementing BENCHAGENTS is available at https://anonymous.4open.science/r/BenchAgents-
752D

2

https://anonymous.4open.science/r/BenchAgents-752D
https://anonymous.4open.science/r/BenchAgents-752D

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a paper at DATA-FM workshop @ ICLR 2025

vision-language model evaluation, annotating images with question-answer pairs using LLMs for
skill-based analysis. Zhu et al. (2024) design an evaluation data generation algorithm for reasoning
tasks using graphs. These methods offer a dynamic way for users to produce fine-grained evalua-
tion data based on pre-defined tasks. However, the data generators are manually designed, limiting
generalisability and scalability.

Benchmark Extension: Li et al. (2024) propose AutoBencher to optimize existing benchmarks to
improve diversity and quality. It does so by generating question-answer pairs by proposing topics
and retrieving relevant information from databases using an LLM. AutoBencher is apt for improving
existing benchmarks, but is non-trivial to extend outside of question-answering domains to gener-
ative settings. Wang et al. (2024) present a multi-agent framework for dynamically augmenting
benchmarks for scalability and robustness. Xia et al. (2024a) look at evolving existing coding
benchmarks into different coding domains using LLM-based augmentation and verification with
manual examination. Though dynamic and scalable, these approaches mandatorily require a seed
dataset to bootstrap the process. Table 1 summarizes these comparisons.

Method Controllable
Parameters

Automated
Verification

Supports No
Seed Dataset

Automated
Benchmark Design

Generative
Settings

Xia et al. (2024a) ✓ ✓ p p ✓
Zhang et al. (2024b) ✓ - p p p
Wang et al. (2024) ✓ ✓ p p p
Yuan et al. (2024) ✓ ✓ p p p

Li et al. (2024) ✓ ✓ p p p
Zhu et al. (2024) ✓ - ✓ p p
BENCHAGENTS ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of automated benchmark creation frameworks.

3 DESIGN OF BENCHAGENTS

BENCHAGENTS automates benchmark creation for complex NLP tasks using LLM agents, while
accommodating developer-in-the-loop (DIL) feedback. An LLM agent is defined as the combination
of an LLM and an agent configuration (i.e., a set of prompts) provided by the developer or another
agent. An LLM agent is specialised for a particular task in the workflow of benchmark creation.

At a high-level, BENCHAGENTS takes as input a description of the task to be evaluated and option-
ally a seed set of prompts representing the type of evaluation benchmark intended. BENCHAGENTS
then uses multiple LLM agents—Planning Agent for benchmark planning (P-AGENT: § 3.1), Data
Generation Agent for instance generation (G-AGENT: § 3.2), Verification Agent for instance quality
verification (V-AGENT: § 3.3) and Evaluation Agent for response evaluation (E-AGENT: § 3.4)—
sequentially, for benchmark creation. The final output of BENCHAGENTS consists of (i) verified
and diverse instances, and (ii) metrics to evaluate outputs of a (target) model on these benchmark
instances. By dividing responsibilities across agents, BENCHAGENTS enables more precise debug-
ging of the benchmark creation process.

BENCHAGENTS follows a hybrid LLM and code execution approach to support automation. Such
an approach is effective as some automation tasks are best handled by code (even if the code is
generated by an LLM) while others are more easily managed through LLM calls. An overview of
the framework is described in Fig. 1, considering the task of calendar planning as an example.

3.1 PLANNING AGENT (P-AGENT)

Each instance BENCHAGENTS generates contains (i) a prompt to be used for (target) model eval-
uation, (ii) task-specific parameters, and (iii) constraints. Parameters are defined as variables on
which a prompt is grounded. In Fig.1 box b, parameters include the number of participants or the
earliest meeting start time. In contrast, constraints are defined as restrictions placed on the solution
to a prompt. For example, in Fig.1 box b, the meeting duration constrains the space of possible to
solutions to those with a specific meeting duration.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a paper at DATA-FM workshop @ ICLR 2025

P-AGENT takes a task description as an input and a set of optional seed prompts and proposes a plan
for the other agents to execute. As shown in Fig.1 box b, for data generation, P-AGENT proposes
and defines multiple parameters including the range and distribution of values for each parameter.
In addition to parameters, the plan also includes a set of constraints. After knowing the set of input
parameters and query constraints, G-AGENT can then proceed with sampling the inputs from the
parameters’ range and the corresponding queries from the constraints’ range (more details in § 3.2).
This controlled sampling process is essential in ensuring benchmark data diversity.

P-AGENT also guides V-AGENT by proposing a suite of quality checks that each instance in the
benchmark should pass, including clarity, completeness, consistency, feasibility, and complexity
(Fig.1 box c); more details are in § 3.3. At their core, these checks ensure that the generated instances
are exemplar representatives of the task, and that they can support reliable evaluations. Finally, P-
AGENT proposes evaluation metrics to E-AGENT for assessing the quality of model responses on
the generated benchmark prompts (Fig.1 box d); more details are in § 3.4.

Upon plan creation, developers can further steer the benchmark creation to better align it with their
measurement goals by refining elements like parameters (and ranges), constraints, or metrics.

3.2 DATA GENERATION AGENT (G-AGENT)

G-AGENT transforms the plan into concrete benchmark instances (Fig. 1 box e). To do so, G-
AGENT designs the template for the final instance generation prompt. This template is flexible i.e.,
it can support augmenting the prompt to ensure semantic equivalence but syntactic diversity. To
populate the prompt template, G-AGENT, first generates the code needed for parameter sampling
given the ranges from P-AGENT (Fig. 1 box b). It then adapts the code to sample and apply the
constraints in the plan.

Since generation may be challenging when the range of parameters and constraints is large and con-
flicts may arise, the current template allows developers to prioritise which parameters and constraints
should be prioritised at generation time.

3.3 VERIFICATION AGENT (V-AGENT)

V-AGENT analyses generated instances and evaluates their fitness for use in the benchmark. To do
so, it uses the following quality checks by generating code for programmatic checks or by generating
prompts for model-based checks:

1. Clarity: The prompt should be understandable and unambiguous to developers and target models.

2. Completeness: The prompt should contain all the constraints mentioned in the plan. For the
example in Fig. 1, meeting duration should be present in all prompts.

3. Consistency: When a parameter or constraint is realised in the prompt, the value should be
consistent. For the example in Fig. 1, the “number of participants” parameter should be consistent
with the number of participants in the schedules.

4. Feasibility: The constraints should define a feasible problem. For e.g, in Fig. 1, a common time
slot should exist that satisfies all constraints.

5. Complexity: The constraints should be associated with a measure of how challenging they make
the problem. To capture this, a task-specific metric should be defined by the P-AGENT. For the
example in Fig. 1, the metric involves the ratio of feasible slots to all slots.

For the example in Fig. 1, box f highlights the quality checks by V-AGENT for verifying feasibility
in calendar scheduling using the specification provided by P-AGENT in box c. The generated code
(used for verification) is manually reviewed for correctness. The same is done for the model-based
verification methods.

3.4 EVALUATION AGENT (E-AGENT)

E-AGENT evaluates the solutions generated by target models. This is necessary in generative set-
tings since we cannot always simply compare a solution to ground truth. E-AGENT operates based

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a paper at DATA-FM workshop @ ICLR 2025

on the evaluation metrics defined by P-AGENT, which are all grounded on the set of constraints
present in the plan. More specifically, for each constraint, there exists an evaluation metric that
marks whether the constraint was satisfied or not (pass vs. fail) by a proposed solution. E-AGENT
can implement both model-based and programmatic metrics. Developers can choose either of the
options and mark their preference in the plan. For example, for calendar planning we generated both
options and decided to go with programmatic metrics as they were fully implementable for this task.
For the example in Fig. 1, E-AGENT is required to check if the solution conforms to the duration
constraint (box g). To achieve this, it generates code to extract and check the duration from the
solution, given access to parameters and constraints (box d).

In addition to metrics associated to a single constraint, E-AGENT also computes the fraction of
constraints satisfied from the whole list of constraints (i.e., “fraction passed”) as well as whether all
constraints were satisfied (i.e., “pass all”).

4 BENCHMARK GENERATION

Next, we describe how we leveraged BENCHAGENTS to generate benchmarks for two challenging
tasks: calendar scheduling and constrained long-form text generation. For all agents, we use GPT-4o
as the LLM model and the specific agent configurations are reported in Appendices H.1 and I.1.

4.1 CALENDAR SCHEDULING (BA-CALENDAR)

Calendar scheduling is an important task that is relevant for several calendar and mail applications.
In addition, it also constitutes a domain where planning and reasoning are important. Previous
work (Zheng et al., 2024) has proposed initial benchmarks on the task (NATURALPLAN) but the
scheduling part of the benchmark was shown to be saturated in evaluations of the o1-preview model
(Valmeekam et al., 2024), with the majority of instances containing only two participants and one
day of the week (see Appendix B). Therefore, we generate BA-CALENDAR that simulates a chal-
lenging and closer to real-world setting, where the problem involves more constraints.

As part of the plan, P-AGENT proposes (i) various parameters including the number of participants,
number of days with availability, days of week, and (ii) multiple constraints like each participant’s
availability, required meeting duration, buffer times. G-AGENT writes code for generating diverse
data based on P-AGENT’s proposed parameters and constraints. Fig. 15 (in Appendix H) shows an
example prompt from a generated instance. V-AGENT initialises (i) model-based checks for clarity,
completeness, and consistency, and (ii) programmatic checks for feasibility. Further, V-AGENT also
implements a task-specific programmatic check for constrainedness as a measure of complexity:
the ratio of number of feasible solutions to number of time slots where at least one participant is
available. Finally, E-AGENT initialises programmatic metrics for the satisfaction of each constraint
defined by P-AGENT. For a full list of parameters and constraints along with details of each agent’s
implementation see Appendix H, where we also differentiate between what was provided by the
developer and what was generated by the model.

4.2 CONSTRAINED LONG-FORM TEXT GENERATION (BA-TEXT)

Constrained long-form text generation requires models to plan and produce a long response to a
user query that meets all the constraints in the query. This capability is relevant for creative and
technical writing, as important pillars of productivity applications. Existing datasets that aim to test
these capabilities evaluate only on format constraints (Xia et al., 2024b), short-form solutions (Zhou
et al., 2023) and include relatively simple constraints (Yao et al., 2023). In comparison, our BA-
TEXT focuses on long-form generations with complex content-based constraints.

P-AGENT proposes (i) parameters like user, role, task, and (ii) constraints including:

• Positive constraints: inclusion of certain content like topics or entities in the generation.
• Negative constraints: exclusion of content from the generation.
• Positional constraints: inclusion at a specific position (e.g., paragraph) in the generation.
• Sequencing constraints: inclusion of certain content in a specific sequence in the generation.
• Conditional constraints: inclusion or exclusion based on some conditions.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a paper at DATA-FM workshop @ ICLR 2025

• Iterative constraints: any previously defined constraints applied iteratively.

G-AGENT generates data generation code that aligns with P-AGENT’s proposed parameters and
constraints. An example prompt from a generated instance may be found in Fig. 18 (Appendix
I). Amongst all quality checks from V-AGENT, the only programmatic check is for constrainedness
defined as number of constraints applied to total number of constraints. The model-based qual-
ity checks include clarity, completeness, consistency, and feasibility. Finally, E-AGENT initialises
model-based metrics2 for the satisfaction of each constraint and topic consistency based on proposed
metrics from P-AGENT. For a full list of parameters and constraint examples along with details of
the data generation procedure, see Appendix I, where we also distinguish between what was supplied
by the agent configuration, model and developer-in-the-loop feedback.

5 BENCHMARK QUALITY ASSESSMENT

To validate the quality and diversity of benchmarks produced by BENCHAGENTS, we conduct a
quality assessment consisting of automatic and human based assessments.

5.1 ARE GENERATED INSTANCES HIGH QUALITY?

Metric BA-CALENDAR BA-TEXT

Clarity 0.99 0.84
Completeness 0.96 0.94
Consistency 0.96 0.89
Feasibility 0.93 0.73

Table 2: Pass rate for verification quality checks.
We measure quality of the generated benchmark using two measures: (i) conformance with the
verification checks specified in § 3.3, and (ii) coverage of important parameters useful for compre-
hensive evaluation. Table 2 shows the pass rate for each of these quality checks. We observe that the
G-AGENT produces high-quality instances for both tasks, indicating good quality of our benchmark.
We see higher quality for all criteria in BA-CALENDAR compared to BA-TEXT. For BA-TEXT,
we note that the “feasibility” criterion is substantially lower that the other criteria. On investigation,
we find that the feasibility test fails sometimes due to conflicting constraints. For example, the G-
AGENT has a tendency to generate positional and sequencing constraints that contradict each-other.
To control for quality, BENCHAGENTS excludes any instance from the final benchmark that fail any
of the quality checks.

We discuss the coverage of various parameters for BA-CALENDAR in Appendix B, and for BA-
TEXT in Appendix C. We observe that BENCHAGENTS generates diverse instances ensuring supe-
rior coverage, even compared to manually curated benchmarks (see Appendix B).

5.2 ARE MODEL-BASED CHECKS RELIABLE?

Recall that for certain constraints and parameters, the V-AGENT employs model-based verification
checks. We conduct a human assessment of the V-AGENT for the model-based checks to evaluate
their reliability. In this study, for each generated dataset, we take 50 instances produced from the
G-AGENT (before filtering by the V-AGENT). For each instance, we collect two human annotations
for each model-based verification check performed (more details in § 4). For the ground truth, we
consider an instance to pass a verification check only if both annotators mark it as passed.

Table 3 reports high accuracy of the tests w.r.t human annotations, suggesting that the model-based
checks generated by V-AGENT are reliable. We also report the precision and recall for each dataset
in Appendix D.1, Fig. 9. A similar study (with similar conclusions) is conducted to evaluate the
reliability of model-based evaluations conducted by E-AGENT in Appendix D.2.

2Since the task is open-ended and generative, we instruct the E-AGENT to use LLM-as-judge for evaluation.
We evaluate how well the metrics align with human judgements in Appendix D.2.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a paper at DATA-FM workshop @ ICLR 2025

Metric BA-CALENDAR BA-TEXT

Clarity 0.96 0.80
Completeness 0.90 0.96
Consistency 0.86 0.76
Feasibility - 0.76

Table 3: Accuracy for V-AGENT model-based test results with human annotated ground truths.

0.0 0.2 0.4 0.6 0.8 1.0
Constrainedness

0

100

200

300

400

500

600

N
um

be
r o

f T
as

k
In

st
an

ce
s

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

P
as

s
A

ll
(a) BA-TEXT: Constrainedness (bar) and GPT-4o
average pass all (line).

0.0 0.2 0.4 0.6 0.8 1.0
Constrainedness

0

400

800

1200

1600

2000

N
um

be
r o

f T
as

k
In

st
an

ce
s

0.4

0.6

0.8

1.0

Av
er

ag
e

P
as

s
A

ll

(b) BA-CALENDAR: Constrainedness (bar) and
GPT-4o average pass all (line).

Figure 2: Comparison of constrainedness metrics for BA-TEXT and BA-CALENDAR.

Further, BENCHAGENTS allows the benchmark creators to verify, check, and provide feedback on
the outputs of each agent to ensure high quality and align the benchmark to their requirements.
Appendix G reports the extent of edits developers provided in addition for the two benchmarks.

5.3 ARE GENERATED INSTANCES DIFFICULT?

While we did not explicitly optimize for difficulty, any good benchmark should not be trivial to
solve. To ensure there is a range of difficulty over our task instances, we borrow insight from prior
work (Abdin et al., 2023; Yuksekgonul et al., 2023) and aim to assess if the respective constrained-
ness metrics (refer § 4.1 and § 4.2) from the V-AGENT act as a reliable proxy for difficulty. We do
so by comparing the average “pass all” from evaluating GPT-4o on both datasets.

In Fig. 2a, we bucketize task instances by their constrainedness measures and report both the average
“pass all” and number of task instances in each bucket. We observe a monotonic decrease in “pass
all” as constrainedness increases for buckets with more than 10 task instances across both datasets.
This suggests that adding constraints indeed increases difficulty.

6 MODEL ANALYSIS

We evaluated the generated benchmarks on OpenAI o1-preview (OpenAI, 2024b), GPT-4o (Ope-
nAI, 2024a), Claude 3.5 (Anthropic, 2024), Gemini 1.5 Pro (Reid et al., 2024), Llama 3.1 70B
and 405B (Dubey et al., 2024), and Mistral 2407 (MistralAI, 2024).3 For both datasets, we report
(i) fraction passed: the fraction of constraints passed per instance and solution, and (ii) pass all:
whether the solution satisfies all constraints. We discuss salient findings below. Note that such find-
ings are only possible due to the diverse set of parameters and constraints found and supported by
BENCHAGENTS.

6.1 MODEL PERFORMANCE

Insight 1. Models struggle to satisfy multiple constraints simultaneously. Fig. 3a and Fig. 3d show
that the “fraction passed” rate across all models is always substantially higher than the “passed
all” rate. Most models see a drop of nearly 50% in performance when comparing the two metrics,
showing that while they can satisfy some constraints in the query, reliably satisfying all of them is

3Details of configurations are presented in Appendix E.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a paper at DATA-FM workshop @ ICLR 2025

Fraction Passed Passed All
0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

(a) BA-CALENDAR

Availability

Buffer Time

Meeting
Duration

Time Restrictions Specific Times

Priority

Weekday Only

0.2

0.4

0.6

0.8

1.0

(b) BA-CALENDAR (By Constraint)

Priority
& Buffer Time

Buffer Time
& Time Restrictions

Buffer Time
& Specific

 Times

Buffer Time
& Weekday

 Only

Time Restrictions
& Specific Times

Time Restrictions
& Weekday Only

Specific Times
& Weekday Only

Priority
& Time

Restrictions

Priority
& Weekday

Only

Priority
& Specific Times

0.2

0.4

0.6

0.8

1.0

(c) BA-CALENDAR (By Pairwise)

Fraction Passed Passed All
0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

(d) BA-TEXT

Topic Consistency

Conditional

Iterative

Negative Positional

 Positive

Sequencing

0.2

0.4

0.6

0.8

1.0

(e) BA-TEXT (By Constraint)

Conditional
& Iterative

Conditional
& Negative

Conditional
& Positional

Conditional
& Sequencing

Iterative
& Negative

Iterative
& Positional

Iterative
& Sequencing

Negative
& Positional

Negative
& Sequencing

Positional
& Sequencing

0.2

0.4

0.6

0.8

1.0

(f) BA-TEXT (By Pairwise)

Figure 3: Model performance across different metrics: (a) and (b) show fraction passed and pass all
for all task instances; (c), (d), (e), and (f) show pass rate for a given constraint or combination of
constraints for task instances where constraints are applied.

0.80 0.84 0.88 0.92 0.96 1.00
Constrainedness

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

P
as

s
A

ll

(a) BA-CALENDAR (Pass All)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Constrainedness

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

P
as

s
A

ll

(b) BA-TEXT (Pass All)

Feasible Infeasible
0.0

0.2

0.4

0.6

0.8

1.0

N
o

S
ol

ut
io

n
G

iv
en

 R
at

e

(c) BA-CALENDAR (No Solu-
tion)

Figure 4: (a) and (b) Average pass all vs. constrainedness for BA-CALENDAR and BA-TEXT; (c)
No Solution outcome for feasible and infeasible instances in BA-CALENDAR. If the instance is
feasible, a low rate of no solution outcomes is preferred. Otherwise, if the instance is infeasible, a
high rate is preferred.

a challenge. Of all models evaluated, o1-preview shows the smallest gap between the two metrics
for BA-CALENDAR showing progress in this space with improved focus on reasoning and planning.
However, o1-preview also struggles with satisfying all constraints in BA-TEXT.

Insight 2. Models’ prioritisation of constraint satisfaction varies. For BA-CALENDAR, in Fig. 3b,
we observe that in contrast to other strong models, o1-preview, Gemini-1-5-Pro and Mistral-2407
have lower performance with respect to simple constraints such as meeting duration or time re-
strictions. On further inspection, we see that these models are the most likely to respond with “no
solution exists” for both feasible and infeasible instances (Fig. 4c). We observe that for challeng-
ing problems, these models choose to not give a solution while other models provide a solution
that meets some constraints. In these cases, other models might prioritise simpler constraints like
meeting duration compared to availability.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a paper at DATA-FM workshop @ ICLR 2025

Insight 3. Bigger models are better at joint constraint satisfaction for tasks with strict criteria.
For BA-CALENDAR and models with known size, in Fig. 3a, we observe “pass all” increases w.r.t.
model size for Llama 3-1-70b, Mistral-2407 and Llama 3-1-405b, as expected. However, this trend
is not consistent with BA-TEXT in Fig. 3d where we observe Mistral-2407 outperforming Llama
3-1-70b and Llama 3-1-405b, and matching performance of GPT-4o. We posit this difference to
the more ambiguous and open-ended nature of BA-TEXT; BA-CALENDAR has well defined and
stricter satisfaction criteria, allowing large models to plan and execute the task well.

Insight 4. As the complexity in a query increases, individual and joint constraint satisfaction per-
formance decreases. This is observed in Fig. 4a and Fig. 4b for joint constraint satisfaction and
Fig. 12 (in Appendix F) for individual constraint satisfaction. All models have very similar trends
in pass rate at different constrainedness levels for BA-TEXT. Here, even strong reasoning mod-
els like o1-preview struggle at high levels of constrainedness. The trend while downward is more
varied for BA-CALENDAR with o1-preview performing more similarly at different constrainedness
levels. These results on performance w.r.t. constrainedness are consistent with findings in the litera-
ture; Yao et al. (2023); Abdin et al. (2023); Yuksekgonul et al. (2023) also find, when text generation
tasks incorporate more constraints, GPT-4 only partially satisfies them. Similarly, in Fig. 13 (Ap-
pendix F), model performance monotonically decreases with the number of days and the number of
participants. This finding is consistent with prior work (Zheng et al., 2024) showing the challenge
with increasing complexity in search space.

6.2 MODEL FAILURES

Insight 5. Numerical and logical reasoning requiring state tracking is challenging for most mod-
els. In Fig. 3b and Fig. 3e respectively, we observe lower performance for constraints that involve
logical reasoning such as availability, buffer time and priority for BA-CALENDAR and conditional,
iterative and sequencing constraints for BA-TEXT. While o1-preview’s performance exceeds other
models with respect to these constraints (highlighting the importance of inference-time compute
scaling (Snell et al., 2024)), we see that its performance on these constraints is still low indicating
further room for improvement.

Insight 6. Most models struggle with recognizing infeasible problems. In Fig. 4c we see that most
models have less than 40% accuracy in correctly identifying infeasible problems and responding
with a correct “no solution” response. Here, o1-preview improves over prior models significantly
pushing the rate to 70%. This shows that other models are strongly inclined to always respond with
a solution even when no solution exists.

Insight 7. All models struggle with specific combination of constraints. Comparing Fig. 3e and
Fig. 3f, we see that while model performance on positional and sequencing constraints individually
is higher than others, all models struggle with the combination of the two where the best model
performance is less than 60%. Similarly, models also jointly struggle with negative and positional
constraints, especially smaller models like Mistral 2407. In BA-CALENDAR, for all tasks involving
priority, performance is consistently low, potentially since priority itself is a challenging constraint.
We pose that the performance gap for certain constraint combinations is due to ambiguity in how
these constraints should be applied together.

7 LIMITATIONS

LLMs for Planning: P-AGENT uses an LLM to interpret user requirements and generate plans. To
this end, the LLM may misinterpret ambiguous developer instructions. Further, the quality of the
plan depends on the training data of the LLM, which may not have sufficient knowledge about the
task to generate high-quality plans. Thus, the plan may not fully capture the developer’s intended
application. However, we highlight that in BENCHAGENTS the develop reviews and edits all plans
before they are passed to the other agents, ensuring that the plans meet the desired use case.

LLMs for Initialisation: G-AGENT, V-AGENT and E-AGENT all use LLMs to initialise the respec-
tive data generation, verification, and evaluation processes with code and prompts for future LLM
calls. This relies on the LLM to have coding capabilities and to understand user intent from the plan
passed to it from the P-AGENT in order to write high-quality prompts. Again, we emphasise that
the DIL reviews and edits these code and prompts before execution for quality control.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a paper at DATA-FM workshop @ ICLR 2025

LLMs for Instance Generation: While executing the data generation processes, G-AGENT makes
LLM calls, for example, in flexible template creation to generate task prompts from sets of pa-
rameters and constraints. Here, there is risk of hallucination and other inconsistencies between the
desired parameters and constraints and the content of the prompt. This compounds the need for a
verification process to ensure completeness and consistency between the prompt and the parameters
and constraints. Further, the LLM may produce prompts that are unclear or infeasible, again high-
lighting the need for quality checks for clarity and feasibility. Finally, there is a risk that using LLMs
for instance generation will result in instances that are not challenging enough since we use LLMs
to create the data that we then evaluate them on. However, it is important to note the compositional
nature of the data generation where BENCHAGENTS uses both LLM calls and code execution, with
DIL for the initialisation stage. Our results show that both datasets we create are in fact challeng-
ing across all models. Further, since V-AGENT computes a metric for complexity, BENCHAGENTS
supports filtering by complexity to ensure instances in the benchmark are sufficiently challenging.

LLMs for Model-based Quality Checks and Evaluation Metrics: BENCHAGENTS supports the
use of model-based quality checks via the V-AGENT and evaluation metrics via the E-AGENT.
There is a growing body of literature on the effectiveness of using LLM-as-Judge Zheng et al.
(2023); Verga et al. (2024). There is a risk that LLMs provide inaccurate and/or biased responses
resulting in low quality instances in our datasets and/or inaccurate evaluation metrics. However, we
highlight that we conduct a human assessment of both the V-AGENT model-based quality checks
and the E-AGENT evaluation metrics for both of our generated datasets (see Appendix D) and any
further innovations to improve the reliability of model-based evaluations can be directly integrated
into our framework.

Computational Costs: Running multiple LLM agents in BENCHAGENTS can be computationally
expensive. As a result, the overall computational cost is higher than synthetic data generation frame-
works that rely solely on code execution or single inference calls. This could limit the accessibility
to developers with limited computational resources. Research on eliciting multi-agent capabilities
with smaller models would improve the cost and efficiency of the entire framework.

Single LLM Used in Agents: For the generation of BA-CALENDAR and BA-TEXT, we use GPT-
4o as the model in all our LLM agents. However, BENCHAGENTS is flexible and the compositional
nature enables the use of different models for different agents. Again, we highlight that this is not
a limitation of the framework but an implementation decision given the nature of the two generated
benchmarks and resource availability. Future work can explore the benefit of using different LLMs
for different agents.

7.1 ETHICAL CONSIDERATIONS

The aims of BENCHAGENTS are to assist in the automation and scalability of benchmark creation.
However, since LLMs can hallucinate or misinterpret instructions, caution should be taken not to
use model outputs without verification. BENCHAGENTS incorporates DIL feedback such that de-
velopers check the intermediate steps of the benchmark creation process and ensure the resulting
benchmark meets the desired user requirements.

8 CONCLUSION

We introduce BENCHAGENTS, a framework for automatic benchmark creation, which employs mul-
tiple LLM agents to interact with each other and developers to create high-quality, diverse and
challenging NLP benchmarks. BENCHAGENTS reduces developer effort while maintaining an ap-
propriate level of human oversight. Further, the hybrid LLM and code execution approach enables
flexibility to adapt to the generation of new complex and generative datasets in an efficient and con-
trollable way. In addition, BENCHAGENTS enables the computation of dis-aggregated evaluation
metrics. We highlight the advantage of this by producing two new benchmarks to evaluate planning
and constraint satisfaction capabilities of models and present insights of the common failure modes
across seven SOTA models.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a paper at DATA-FM workshop @ ICLR 2025

REFERENCES

Marah I Abdin, Suriya Gunasekar, Varun Chandrasekaran, Jerry Li, Mert Yuksekgonul, Ra-
hee Ghosh Peshawaria, Ranjita Naik, and Besmira Nushi. Kitab: Evaluating llms on constraint
satisfaction for information retrieval. arXiv preprint arXiv:2310.15511, 2023.

Anthropic. Claude 3.5 sonnet. https://www.anthropic.com/news/claude-3-5-sonnet, 2024.
Accessed: 2024-08-13.

Negar Arabzadeh, Siqing Huo, Nikhil Mehta, Qinqyun Wu, Chi Wang, Ahmed Awadallah, Charles
L. A. Clarke, and Julia Kiseleva. Assessing and verifying task utility in llm-powered applications,
2024. URL https://arxiv.org/abs/2405.02178.

Vidhisha Balachandran, Jingya Chen, Neel Joshi, Besmira Nushi, Hamid Palangi, Eduardo Salinas,
Vibhav Vineet, James Woffinden-Luey, and Safoora Yousefi. Eureka: Evaluating and understand-
ing large foundation models. arXiv preprint arXiv:2409.10566, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Xiang Lisa Li, Evan Zheran Liu, Percy Liang, and Tatsunori Hashimoto. Autobencher: Creating
salient, novel, difficult datasets for language models, 2024. URL https://arxiv.org/abs/
2407.08351.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee.
Textbooks are all you need ii: phi-1.5 technical report, 2023a. URL https://arxiv.org/abs/
2309.05463.

Zhuoyan Li, Hangxiao Zhu, Zhuoran Lu, and Ming Yin. Synthetic data generation with large lan-
guage models for text classification: Potential and limitations, 2023b. URL https://arxiv.
org/abs/2310.07849.

MistralAI. Mistral large 2. https://mistral.ai/news/mistral-large-2407/, 2024. Accessed:
2024-08-13.

Arindam Mitra, Luciano Del Corro, Guoqing Zheng, Shweti Mahajan, Dany Rouhana, Andres Co-
das, Yadong Lu, Wei ge Chen, Olga Vrousgos, Corby Rosset, Fillipe Silva, Hamed Khanpour,
Yash Lara, and Ahmed Awadallah. Agentinstruct: Toward generative teaching with agentic flows,
2024. URL https://arxiv.org/abs/2407.03502.

OpenAI. Gpt-4o system card. https://openai.com/index/gpt-4o-system-card/, 2024a. Ac-
cessed: 2024-10-14.

OpenAI. Openai o1 system card. https://openai.com/index/openai-o1-system-card/,
2024b. Accessed: 2024-10-14.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-
baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gem-
ini 1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Karthik Valmeekam, Kaya Stechly, Atharva Gundawar, and Subbarao Kambhampati. Planning in
strawberry fields: Evaluating and improving the planning and scheduling capabilities of lrm o1,
2024. URL https://arxiv.org/abs/2410.02162.

Pat Verga, Sebastian Hofstatter, Sophia Althammer, Yixuan Su, Aleksandra Piktus, Arkady
Arkhangorodsky, Minjie Xu, Naomi White, and Patrick Lewis. Replacing judges with juries:
Evaluating llm generations with a panel of diverse models, 2024. URL https://arxiv.org/
abs/2404.18796.

11

https://www.anthropic.com/news/claude-3-5-sonnet
https://arxiv.org/abs/2405.02178
https://arxiv.org/abs/2407.08351
https://arxiv.org/abs/2407.08351
https://arxiv.org/abs/2309.05463
https://arxiv.org/abs/2309.05463
https://arxiv.org/abs/2310.07849
https://arxiv.org/abs/2310.07849
https://mistral.ai/news/mistral-large-2407/
https://arxiv.org/abs/2407.03502
https://openai.com/index/gpt-4o-system-card/
https://openai.com/index/openai-o1-system-card/
https://arxiv.org/abs/2410.02162
https://arxiv.org/abs/2404.18796
https://arxiv.org/abs/2404.18796

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a paper at DATA-FM workshop @ ICLR 2025

Siyuan Wang, Zhuohan Long, Zhihao Fan, Zhongyu Wei, and Xuanjing Huang. Benchmark self-
evolving: A multi-agent framework for dynamic llm evaluation, 2024. URL https://arxiv.
org/abs/2402.11443.

Chunqiu Steven Xia, Yinlin Deng, and Lingming Zhang. Top leaderboard ranking = top coding
proficiency, always? evoeval: Evolving coding benchmarks via llm, 2024a. URL https://
arxiv.org/abs/2403.19114.

Congying Xia, Chen Xing, Jiangshu Du, Xinyi Yang, Yihao Feng, Ran Xu, Wenpeng Yin, and
Caiming Xiong. Fofo: A benchmark to evaluate llms’ format-following capability, 2024b. URL
https://arxiv.org/abs/2402.18667.

Shunyu Yao, Howard Chen, Austin W. Hanjie, Runzhe Yang, and Karthik Narasimhan. Collie:
Systematic construction of constrained text generation tasks, 2023. URL https://arxiv.org/
abs/2307.08689.

Xiaohan Yuan, Jinfeng Li, Dongxia Wang, Yuefeng Chen, Xiaofeng Mao, Longtao Huang, Hui
Xue, Wenhai Wang, Kui Ren, and Jingyi Wang. S-eval: Automatic and adaptive test generation
for benchmarking safety evaluation of large language models, 2024. URL https://arxiv.org/
abs/2405.14191.

Mert Yuksekgonul, Varun Chandrasekaran, Erik Jones, Suriya Gunasekar, Ranjita Naik, Hamid
Palangi, Ece Kamar, and Besmira Nushi. Attention satisfies: A constraint-satisfaction lens on
factual errors of language models. arXiv preprint arXiv:2309.15098, 2023.

Andy K Zhang, Kevin Klyman, Yifan Mai, Yoav Levine, Yian Zhang, Rishi Bommasani, and Percy
Liang. Language model developers should report train-test overlap, 2024a. URL https://
arxiv.org/abs/2410.08385.

Jieyu Zhang, Weikai Huang, Zixian Ma, Oscar Michel, Dong He, Tanmay Gupta, Wei-Chiu Ma,
Ali Farhadi, Aniruddha Kembhavi, and Ranjay Krishna. Task me anything, 2024b. URL https:
//arxiv.org/abs/2406.11775.

Huaixiu Steven Zheng, Swaroop Mishra, Hugh Zhang, Xinyun Chen, Minmin Chen, Azade Nova,
Le Hou, Heng-Tze Cheng, Quoc V. Le, Ed H. Chi, and Denny Zhou. Natural plan: Benchmarking
llms on natural language planning, 2024. URL https://arxiv.org/abs/2406.04520.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023. URL https://arxiv.org/abs/
2306.05685.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,
and Le Hou. Instruction-following evaluation for large language models, 2023. URL https:
//arxiv.org/abs/2311.07911.

Kaijie Zhu, Jiaao Chen, Jindong Wang, Neil Zhenqiang Gong, Diyi Yang, and Xing Xie. Dyval:
Dynamic evaluation of large language models for reasoning tasks, 2024. URL https://arxiv.
org/abs/2309.17167.

12

https://arxiv.org/abs/2402.11443
https://arxiv.org/abs/2402.11443
https://arxiv.org/abs/2403.19114
https://arxiv.org/abs/2403.19114
https://arxiv.org/abs/2402.18667
https://arxiv.org/abs/2307.08689
https://arxiv.org/abs/2307.08689
https://arxiv.org/abs/2405.14191
https://arxiv.org/abs/2405.14191
https://arxiv.org/abs/2410.08385
https://arxiv.org/abs/2410.08385
https://arxiv.org/abs/2406.11775
https://arxiv.org/abs/2406.11775
https://arxiv.org/abs/2406.04520
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2309.17167
https://arxiv.org/abs/2309.17167

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a paper at DATA-FM workshop @ ICLR 2025

APPENDIX

A V-AGENT’S PASS RATES

Fig. 5a and Fig. 5b show the pass rate for each verification test over all instances generated by
G-AGENT for BA-CALENDAR and BA-TEXT respectively.

Clar
ity

Com
ple

ten
es

s

Con
sis

ten
cy

Fea
sib

ilit
y

Verification Test

0.0

0.2

0.4

0.6

0.8

1.0

P
as

s
R

at
e

(a) BA-CALENDAR

Clar
ity

Com
ple

ten
es

s

Con
sis

ten
cy

Fea
sib

ilit
y

Verification Test

0.0

0.2

0.4

0.6

0.8

1.0

P
as

s
R

at
e

(b) BA-TEXT

Figure 5: Pass rate for verification checks.

B BA-CALENDAR’S PARAMETER COVERAGE & COMPARISON TO
NATURALPLAN

1 2 3 4 5 6 7
Number of Days

0

100

200

300

400

500

600

Fr
eq

ue
nc

y

Bench Agents
Natural Plan

(a) Coverage of Number of Days

2 3 4 5 6 7 8 9 10
Number of Participants

0

100

200

300

400

500

Fr
eq

ue
nc

y

Bench Agents
Natural Plan

(b) Coverage of Number of Participants

Figure 6: Coverage Metrics for Calendar Scheduling Parameters.

For BA-CALENDAR, we may compare to an existing dataset: NATURALPLAN Zheng et al. (2024).
NATURALPLAN only includes parameters as metadata, and not constraints. Thus, for the following
analysis we extract a set of constraints in each NATURALPLAN prompt using GPT-4o. Figures 6a
and 6b demonstrate that BENCHAGENTS has increased coverage compared to NATURALPLAN with
respect to the number of days and number of participants parameters. In Figure 7, we can see
that both BENCHAGENTS and NATURALPLAN share similar constraints, however, the buffer time
constraint is a novel addition by our P-AGENT.

C BA-TEXT’S PARAMETER COVERAGE

In Figure 8, we observe a relatively uniform distribution across constraints. The increased frequency
of the positive constraint may be explained by the sampling function of the G-AGENT, whereas,
the reduced frequency of positional and sequencing constraints may be explained by the increased
likelihood of these two constraints conflicting and so being filtered out by the V-AGENT.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a paper at DATA-FM workshop @ ICLR 2025

Buff
er

Tim
e

Prio
rity

End
 Ti

me R
es

tric
tio

ns

Star
t T

im
e R

es
tric

tio
ns

Brea
k T

im
es

Day
 R

es
tric

tio
ns

Part
ici

pa
nt

Pref
ere

nc
es

Constraint

0

200

400

600

800

1000

N
um

 In
st

an
ce

s
w

ith
 C

on
st

ra
in

t

Bench Agents Natural Plan

Figure 7: Coverage of Calendar Scheduling Constraints.

Con
dit

ion
al

Ite
rat

ive

Neg
ati

ve

Pos
itio

na
l

Pos
itiv

e

Seq
ue

nc
ing

Constraint

0

500

1000

1500

2000

N
um

 In
st

an
ce

s
w

ith
 C

on
st

ra
in

t

Figure 8: Coverage of Text Generation Constraints.

D MORE DETAILS ON HUMAN ANNOTATION EXPERIMENT FROM § 5.2

In both the human assessment of the V-AGENT and E-AGENT, annotators were given instructions
to annotate each model-based quality check or evaluation metric as either True or False based on
the same criteria as output by the P-AGENT. For the human assessment of the V-AGENT, these
were clarity, completeness, consistency (and feasibility for BA-TEXT). For the human assessment
of the E-AGENT, definitions of each constraint were given to the annotators in line with the agent
configuration and P-AGENT outputs.

D.1 HUMAN ASSESSMENT OF V-AGENT

Fig. 9a and 9b report accuracy, precision and recall for V-AGENT and human annotated ground
truths.

D.2 HUMAN ASSESSMENT OF E-AGENT

We perform a human assessment of the quality of the model-based evaluations for BA-TEXT. In
this study, we take 20 task instances from the G-AGENT after filtering by the V-AGENT, leaving
only high quality task instances. For each task instance, we acquire two human annotations for each
evaluation test. For the ground truth, we take the worst of both annotations again and our predicted

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a paper at DATA-FM workshop @ ICLR 2025

Clar
ity

Com
ple

ten
es

s

Con
sis

ten
cy

Verification Test

0.00

0.25

0.50

0.75

1.00

S
co

re

accuracy precision recall

(a) BA-CALENDAR

Clar
ity

Com
ple

ten
es

s

Con
sis

ten
cy

Fea
sib

ilit
y

Verification Test

0.00

0.25

0.50

0.75

1.00

S
co

re

accuracy precision recall

(b) BA-TEXT

Figure 9: Human annotator and V-AGENT scores.

values are obtained by executing the model-based evaluation tests from the E-AGENT on GPT-4o
solutions. We report accuracy in Table 10 and precision/recall are reported in Fig. 11. Finally, we
note that the use of an evaluation agent for generative tasks is consistent with prior work Arabzadeh
et al. (2024).

BA-TEXT

Topic 1.00
Positive 0.85
Negative 0.80
Positional 0.90

Sequencing 0.80
Conditional 0.75

Iterative 0.70

Figure 10: Accuracy for E-
AGENT model-based checks.

To
pic

Pos
itiv

e

Neg
ati

ve

Pos
itio

na
l

Seq
ue

nc
ing

Con
dit

ion
al

Ite
rat

ive

Evaluation Test

0.00

0.25

0.50

0.75

1.00

S
co

re

accuracy precision recall

Figure 11: Human annotator and E-AGENT scores for BA-
TEXT.

E EXPERIMENTAL SETTINGS

To evaluate each test instance, we perform zero-shot inference with the task prompt, with temper-
ature 0, top_p 0.95 and max_tokens 2000. The purported solution is then evaluated under the
evaluation criteria provided by the E-AGENT. For each test instance, we obtain a set of evaluation
test results for constraint satisfaction.

F ADDITIONAL RESULTS ON MODEL ANALYSIS (§ 6)

Here, we present some additional results from our model analysis in § 6. Fig.12 reports the average
fraction passed with increasing constrainedness for BA-CALENDAR and BA-TEXT. Further, Fig.13
shows the average pass all with increasing parameter ranges for the number of days and number of
participants parameters in BA-CALENDAR.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a paper at DATA-FM workshop @ ICLR 2025

0.80 0.84 0.88 0.92 0.96 1.00
Constrainedness

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Fr
ac

tio
n

P
as

se
d

(a) BA-CALENDAR (Fraction Passed)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Constrainedness

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Fr
ac

tio
n

P
as

se
d

(b) BA-TEXT (Fraction Passed)

claude-3-5-sonnet gemini-1-5-pro gpt-4o o1-preview llama-3-1-70b llama-3-1-405b mistral-2407

Figure 12: Average Fraction Passed with Increasing Constrainedness.

1 2 3 4 5 6 7
Number of Days

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

P
as

s
A

ll

(a) BA-CALENDAR

2 3 4 5 6 7 8 9 10
Number of Participants

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

P
as

s
A

ll

(b) BA-CALENDAR

claude-3-5-sonnet
gemini-1-5-pro

gpt-4o
o1-preview

llama-3-1-70b
llama-3-1-405b

mistral-2407

Figure 13: Model performance with increasing availability schedule complexity.

G QUANTIFYING DEVELOPER FEEDBACK

Dataset G-AGENT V-AGENT E-AGENT
Plan Code Plan Code Plan Code

BA-CALENDAR 0.34 (827) 0.14 (11,491) 0.41 (911) 0.34 (11,399) 0.0 (608) 0.25 (17,449)
BA-TEXT 0.02 (3,093) 0.15 (6,145) 0.15 (687) 0.05 (6,276) 0.25 (700) 0.08 (7,687)

Table 4: Normalized Levenshtein distance (max number of characters) between model generations
pre- and post- DIL feedback.

From § 3, recall that DIL feedback can utilize the outputs of different agents to refine generation. To
quantify the amount of developer-in-the-loop feedback, we calculate the Levenshtein distance on the
natural language plans generated by P-AGENT nd the code generated by the respective G-AGENT
V-AGENT and E-AGENT In each case, we calculate the distance between the agent-generated plan
or code and the plan or code after developer-in-the-loop edits and normalize with the maximum
number of characters.

Observations: Table 4 reports the normalized distance and the maximum number of characters for
each dataset. We observe that BA-CALENDAR requires substantially more characters overall and
proportionally more developer-in-the-loop feedback compared to BA-TEXT. We pose that this is
because more intervention is needed to ensure the correct parsing of logical conditions verified and

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a paper at DATA-FM workshop @ ICLR 2025

evaluated using programmatic tests; constraints in BA-TEXT are not as challenging to parse. This
in turn results in better data generated for BA-CALENDAR (§ 5.1).

H BA-CALENDAR

H.1 AGENT CONFIGURATION

Figure 14 displays the task description for BA-CALENDAR from the agent configuration. For the full
agent configuration used for BA-CALENDAR, see https://anonymous.4open.science/r/BenchAgents-
752D/configs/task/calendar.yaml.

Questions will include an availability schedule for participants and additional
constraints to increase difficulty.
The goal is to find one day and common time slot when all participants are available.
Schedules will be provided as a dictionary with participants as keys and availability
schedules as values.
Each schedule will be a dictionary with days of the week as keys and a list of
time blocks as values.
For example:
availability = {

"p1": {
"Monday": [9:00-12:00, 14:00-17:00],
"Tuesday": [10:00-15:00]

},
"p2": {

"Monday": [15:00-18:00],
"Tuesday": [09:00-12:00, 14:00-17:00]

},
"p3": {

"Monday": [10:00-11:00, 13:00-16:00, 18:00-19:00],
"Tuesday": [11:00-14:00]

}
}
A time block will be a string in the format "start_time-end_time" where a participant
is available. A time slot refers to a single time block of length meeting duration.
Granularity refers to the start and end times we consider for blocks. For example,
if granularity is 30 minutes, we consider 9:00, 9:30, 10:00, etc.
Scheduling parameters refers to the parameters used to generate availability schedules
such as Minium length of time block etc.
Constraints refer to additional conditions that must be met for any correct solution
slot such as meeting duration, etc.
Constraints will always have a default value of None, False or 0.
For evaluation, solutions will be in the format:
"[day] [start_time]-[end_time]" or "No common time slot available".

Figure 14: BA-CALENDAR task description from its agent config

H.2 DATA GENERATION WITH G-AGENT

As described in § 3.1, P-AGENT takes the agent configuration (see Appendix H.1) as input and
generates a plan for data generation (see Appendix H.4). Note, that the DIL may update the plan.
The plan includes a list of parameters and constraints, along with the range of values each may take.
Tables 5 and 6 contains the full list of parameters and constraints from the plan along with whether
each was provided by the agent configuration, LLM or DIL.

The G-AGENT takes the agent configuration and data generation plan as input and writes
the code to initialise the data generation procedure. The data generation procedure is
initialised as follows. First, the G-AGENT writes functions, sample_parameters() and

17

https://anonymous.4open.science/r/BenchAgents-752D/configs/task/calendar.yaml
https://anonymous.4open.science/r/BenchAgents-752D/configs/task/calendar.yaml

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a paper at DATA-FM workshop @ ICLR 2025

Parameter Description Provided By

Min Length Time Blocks Minimum length of time blocks per participant per day Agent Config
Number of Days Number of days in availability schedule Model

Number of Participants Number of participants in availability schedule Model
Max Length Time Blocks Maximum length of time blocks per participant per day Model

Earliest start time Earliest time in availability schedule Model
Latest end time Latest time in availability schedule Model

Min Number Time Blocks Minimum number of time blocks per participant per day DIL
Max Number Time Blocks Maximum number of time blocks per participant per day DIL

Table 5: Parameters for BA-CALENDAR.

Constraint Description Provided By

Meeting Duration Duration of solution meeting Agent Config
Availability Participants must be available for solution meeting Agent Config
Buffer Time Buffer time before and after solution meeting Agent Config

Weekday Only Solution meeting must be on a weekday Model
Morning Time Restriction Solution must be after a given start Model
Evening Time Restriction Solution must be before a given end Model

Priority Solution must be the first available slot DIL
Specific Times Solution must fall outside of specific time slot DIL

Table 6: Constraints for BA-CALENDAR.

sample_constraints(parameters), for sampling parameters and constraints. Then, the G-
AGENT writes a function sample_answer(constraints) for sampling a candidate answer given
the constraints. Next, the G-AGENT writes a function sample_availability(parameters,
candidate_answer) for sampling availability schedules given the parameters and candidate an-
swer.

During data generation, G-AGENT first runs the code for sampling parameters and constraints. Then,
G-AGENT sequentially runs the code for sampling a candidate answer and availability. Finally,
the prompt is generated by G-AGENT with constraints and availability schedules in-context. The
instance is a triple (prompt, parameters, constraints). This procedure is repeated for every
instance in the dataset. An example prompt generated for BA-CALENDAR by G-AGENT is given in
Fig. 15.

Given the following availability schedules for participants, find a common time
slot for a meeting that lasts 60 minutes. Additionally,
ensure there is a buffer time of 5 minutes before and after
the meeting.

Availability:
p1:
Monday: 07:00-08:30, 09:30-12:30, 13:15-14:00, 15:00-17:15, 17:45-18:00
Tuesday: 07:00-11:45, 12:15-16:00, 16:45-18:00
Wednesday: 07:00-09:15, 09:45-11:45, 12:30-18:00
p2:
Monday: 07:00-07:15, 08:15-12:30, 13:15-15:00, 16:00-18:00
Tuesday: 07:00-10:15, 10:45-16:00, 17:00-18:00
Wednesday: 07:00-08:00, 09:00-12:30, 13:30-18:00

What is the common time slot for the meeting?

Figure 15: BA-CALENDAR example prompt from generated instance

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a paper at DATA-FM workshop @ ICLR 2025

H.3 BA-CALENDAR: QUALITY CHECKS & EVALUATION METRICS

Tables 7 and 8 contains the full list of quality checks and evaluation metrics from the P-AGENT
along with whether each was provided by the agent configuration, LLM or DIL.

Quality Check Type Provided By

Clarity Model-based DIL
Consistency Model-based Model

Constrainedness Programmatic Agent Config
Completeness Model-based Agent Config

Feasibility Programmatic Agent Config

Table 7: Quality Checks for BA-
CALENDAR.

Evaluation Metric Type Provided By

Availability Programmatic Agent Config
Meeting Duration Programmatic Model

Buffer Time Programmatic Model
Weekdays Only Programmatic Model

Time Restrictions Programmatic Model
Priority Programmatic Model

Specific Times Programmatic Model

Table 8: Evaluation Metrics for BA-
CALENDAR.

H.4 P-AGENT PLAN

It can be found in Figure 16.

Parameters:
- Minimum length of time block: 15, 30, 45, 60 minutes
- Maximum length of time block: 60, 90, 120, 180, 240 minutes
- Number of participants: 2-10
- Number of days in the schedule: 1-7
- Maximum number of time blocks per day: 1-5
- Minimum number of time blocks per day: 1-5
- Earliest start time: 6:00, 7:00, 8:00, 9:00
- Latest end time: 17:00, 18:00, 19:00, 20:00

Constraints:
- Meeting duration: 15, 30, 45, 60, 90, 120 minutes
- Buffer time before and after meeting: None, 5, 10, 15, 30 minutes
- No meetings on weekends: True, False
- No meetings before: None, 8:00, 9:00, 10:00
- No meetings after: None, 17:00, 18:00, 19:00
- High priority meeting (must be scheduled in first available slot): True, False
- No meetings during specific times: None, 12:00-13:00, 16:00-17:00

Figure 16: P-AGENT Plan post DIL feedback for BA-CALENDAR.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a paper at DATA-FM workshop @ ICLR 2025

I BA-TEXT

I.1 AGENT CONFIGURATION

Figure 17 shows the task description for BA-TEXT from the agent configuration. For the
full agent configuration used for BA-TEXT, see https://anonymous.4open.science/r/BenchAgents-
752D/configs/task/text.yaml.

The task is open-ended text generation under constraints.
The goal is to generate text that meets the constraints.

Here are some settings in which we will base our task instances.

Chef
Roles: amateur, professional
Task: recipe

Teacher
Roles: primary school, high school
Task: lesson plan

Student
Roles: high school, university
Task: essay

Researcher
Roles: machine learning, biology
Task: scientific article

Engineer
Roles: mechanical, structural
Task: technical report

We will add constraints to each settings grouped into categories.
Here are the definitions of each category:
Positive: apply a constraint to include something in the text
generation
Negative: apply a constraint to exclude something in the text generation
Positional: apply a constraint at an absolute or relative position in the
text generation
Sequencing: apply multiple constraints in a specific order
Iterative: apply a constraint multiple times for items in a list
Conditional: apply a constraint if the text generation meets a condition,
else apply another constraint or do nothing. we can have multiple conditions
and constraints such as if condition then apply constraint, else if condition
apply another constraint, else apply another constraint. do not make conditional
constraints that read if condition apply constraint or another constraint
as this is ambiguous.

All constraints should be conditioned on the model context only and not
outside knowledge.
No constraints should use outside knowledge.
Constraints should only ask for text based outputs and not ask for figures
or other output types.
Constraints should be based on the model's context and the setting.

Figure 17: BA-TEXT Task Description from Agent Config.

20

https://anonymous.4open.science/r/BenchAgents-752D/configs/task/text.yaml
https://anonymous.4open.science/r/BenchAgents-752D/configs/task/text.yaml

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a paper at DATA-FM workshop @ ICLR 2025

I.2 DATA GENERATION WITH G-AGENT

P-AGENT takes the agent configuration (see Appendix I.1) as input and generates a plan for data
generation (see Appendix I.4). For each user parameter and constraint group defined in the task
description from the agent configuration, the plan includes an example constraint. The DIL has the
option to update these to align the constraint generation with developer preferences, however, we
can see from Appendix G Table 4, the normalized edit distance for BA-TEXT data generation plan
is 0.02 and so minimal changes were made. Definitions of parameters (all provided by the agent
configuration) may be found in Table 9.

Parameter Description Provided By

User User performing task Agent Config
Role Role of user Agent Config
Task Text generation task Agent Config

Number of Constraints The number of constraints applied in each constraint group Agent Config

Table 9: Parameters for BA-TEXT.

Similarly to BA-CALENDAR, the G-AGENT takes the agent configuration and data generation plan
as input and writes the code to initialise the data generation procedure. The data generation pro-
cedure is initialised as follows. First, the G-AGENT writes a function sample_parameters for pa-
rameter sampling. Note that the parameters here include a number of constraints for each constraint
group. Next, the G-AGENT writes a function generate_topic(parameters) which prompts the
LLM to generate a topic grounded on the instance parameters. Then, the G-AGENT writes a function
generate_constraints(parameters, topic), which prompts a LLM to sequentially generate
constraints with all previous constraints in-context. An example prompt generated by G-AGENT for
BA-TEXT is given in Fig. 18.

You are tasked with writing a scientific article on the topic of underfitting in machine
learning. The article should include a detailed explanation of underfitting, provide at
least one example of a model that commonly experiences underfitting, and discuss methods
to mitigate underfitting in machine learning models.

Ensure that you do not include any references to specific datasets, avoid mentioning
any proprietary machine learning frameworks, and exclude any discussion of overfitting.

If the article discusses linear regression, include a section on the limitations of
linear models in complex datasets. If neural networks are mentioned, provide an example
of underfitting in a deep learning context. If the article includes
a section on data preprocessing, discuss how insufficient data preprocessing can lead
to underfitting.

Additionally, discuss at least three different techniques to address underfitting and
provide multiple examples of underfitting in various
machine learning algorithms.”

Figure 18: BA-TEXT example prompt from generated instance

During data generation, the G-AGENT first samples parameters and then generates a topic. Next, the
G-AGENT sequentially generates constraints given the parameters and topic, keeping all previously
generated constraints for the instance in-context. Finally, finally, the prompt is generated by G-
AGENT with constraints and topic in-context. An example of a constraint for each constraint group
may be found in Table 10. Note that often the number of constraints for each constraint group is
more than one i.e. G-AGENT will generate multiple constraints in the same constraint group. The
instance is a triple (prompt, parameters, constraints). This procedure is repeated for every
instance in the dataset.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a paper at DATA-FM workshop @ ICLR 2025

Constraint Group Example Provided By

Positive Include at least one type of fresh herb Model
Negative Do not include any nuts Model
Positional Add salt and pepper after all other ingredients have been mixed Model

Sequencing Start with washing and chopping vegetables, then proceed to cooking Model
Conditional If the recipe includes meat, ensure it is marinated for at least 30 minutes Model

Iterative For each step, specify the cooking time and temperature Model

Table 10: Example Constraints for BA-TEXT.

I.3 BA-TEXT: QUALITY CHECKS & EVALUATION METRICS

Tables 11 and 12 contain the full list of quality checks and evaluation metrics from the P-AGENT
along with whether each was provided by the agent configuration, LLM, or DIL.

Quality Check Type Provided By

Clarity Model-based Model
Consistency Model-based Agent Config

Constrainedness Programmatic Agent Config
Completeness Model-based Agent Config

Feasibility Model-based Model

Table 11: Quality Checks for BA-
TEXT.

Evaluation Metric Type Provided By

Topic Consistency Model-based Agent Config
Conditional Constraints Model-based Agent Config

Positive Constraints Model-based Model
Negative Constraints Model-based Model
Positional Constraints Model-based Model

Sequencing Constraints Model-based Model
Iterative Constraints Model-based Model

Table 12: Evaluation Metrics for BA-TEXT.

I.4 P-AGENT PLAN

It can be found in Figure 19.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a paper at DATA-FM workshop @ ICLR 2025

Chef
Roles: amateur, professional
Task: recipe
- **Positive:** Include at least one type of fresh herb.
- **Negative:** Do not include any nuts.
- **Positional:** Add salt and pepper after all other ingredients have been mixed.
- **Conditional:** If the recipe includes meat, ensure it is marinated for at
least 30 minutes; else, if the recipe is vegetarian, include a protein source
like beans or tofu.
- **Sequencing:** Start with washing and chopping vegetables, then proceed to
cooking.
- **Iterative:** For each step, specify the cooking time and temperature.

Teacher
Roles: primary school, high school
Task: lesson plan
- **Positive:** Include a hands-on activity.
- **Negative:** Do not use any digital tools.
- **Positional:** Introduce the main topic within the first 10 minutes of the lesson.
- **Conditional:** If the lesson is for primary school, include a story; else, if the
lesson is for high school, include a case study.
- **Sequencing:** Begin with a warm-up exercise, followed by the main lesson, and end
with a review.
- **Iterative:** For each section of the lesson, provide an estimated duration.

Student
Roles: high school, university
Task: essay
- **Positive:** Include at least three references to academic sources.
- **Negative:** Do not use first-person pronouns.
- **Positional:** State the thesis statement in the first paragraph.
- **Conditional:** If the essay is argumentative, include a counterargument; else,
if the essay is descriptive, include detailed descriptions.
- **Sequencing:** Start with an introduction, followed by body paragraphs, and end
with a conclusion.
- **Iterative:** For each body paragraph, include a topic sentence and supporting
evidence.

Researcher
Roles: machine learning, biology
Task: scientific article
- **Positive:** Include a section on related work.
- **Negative:** Do not use informal language.
- **Positional:** Place the abstract at the beginning of the article.
- **Conditional:** If the research includes experiments, provide a detailed
methodology; else, if it is a review, include a comprehensive literature survey.
- **Sequencing:** Start with an introduction, followed by methods, results, and
discussion.
- **Iterative:** For each figure or table mentioned, provide a brief description
in the text.

Engineer
Roles: mechanical, structural
Task: technical report
- **Positive:** Include a section on safety considerations.
- **Negative:** Do not include any speculative statements.
- **Positional:** Place the executive summary at the beginning of the report.
- **Conditional:** If the report includes calculations, provide detailed steps.
- **Sequencing:** Start with an introduction, followed by methodology, results,
and conclusions.
- **Iterative:** For each section, include a summary at the end.

Figure 19: P-AGENT Plan Post DIL Feedback for BA-TEXT.

23

	Introduction
	Related Work
	Design of BenchAgents
	Planning Agent (P-Agent)
	Data Generation Agent (G-Agent)
	Verification Agent (V-Agent)
	Evaluation Agent (E-Agent)

	Benchmark Generation
	Calendar Scheduling (BA-Calendar)
	Constrained Long-form Text Generation (BA-Text)

	Benchmark Quality Assessment
	Are Generated Instances High Quality?
	Are Model-based Checks Reliable?
	Are Generated Instances Difficult?

	Model Analysis
	Model Performance
	Model Failures

	Limitations
	Ethical Considerations

	Conclusion
	V-Agent's Pass Rates
	BA-Calendar's Parameter Coverage & Comparison to NaturalPlan
	BA-Text's Parameter Coverage
	More Details on Human Annotation Experiment from § 5.2
	Human Assessment of V-Agent
	Human Assessment of E-Agent

	Experimental Settings
	Additional Results on Model Analysis (§ 6)
	Quantifying Developer Feedback
	BA-Calendar
	Agent Configuration
	Data Generation with G-Agent
	BA-Calendar: Quality Checks & Evaluation Metrics
	P-Agent Plan

	BA-Text
	Agent Configuration
	Data Generation with G-Agent
	BA-Text: Quality Checks & Evaluation Metrics
	P-Agent Plan

