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Figure 1: We propose GS2E, a high-fidelity synthetic dataset designed for 3D event-based vision,
comprising over 1150 scenes. GS2EExamples of RGB frames and event streams are shown above.

Abstract

We introduce (GS2E) (GAUSSIAN SPLATTING TO EVENT GENERATION), a
large-scale synthetic event dataset for high-fidelity event vision tasks, captured
from real-world sparse multi-view RGB images. Existing event datasets are often
synthesized from dense RGB videos, which typically lack viewpoint diversity
and geometric consistency, or depend on expensive, difficult-to-scale hardware
setups. GS2E overcomes these limitations by first reconstructing photorealistic
static scenes using 3D Gaussian Splatting, and subsequently employing a novel,
physically-informed event simulation pipeline. This pipeline generally integrates
adaptive trajectory interpolation with physically-consistent event contrast threshold
modeling. Such an approach yields temporally dense and geometrically consistent
event streams under diverse motion and lighting conditions, while ensuring strong
alignment with underlying scene structures. Experimental results on event-based
3D reconstruction demonstrate GS2E’s superior generalization capabilities and its
practical value as a benchmark for advancing event vision research.
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1 Introduction

Event cameras, provide high temporal resolution, low latency, and high dynamic range, making them
uniquely suited for tasks involving fast motion and challenging lighting conditions [10} [74]. These
advantages have been demonstrated in various applications such as autonomous driving [15} [17],
drone navigation [56) 5], and 3D scene reconstruction [25} |73} 24] 157, 152} [72]]. In particular, their
ability to capture asynchronous brightness changes enables accurate motion perception for 3D
reconstruction and novel view synthesis (NVS) tasks, surpassing the capabilities of conventional
RGB sensors under fast motion and dynamic illumination [[75]. However, despite their potential, the
advancement of event-based vision algorithms is significantly limited by the scarcity of large-scale,
high-quality event datasets, especially those offering multi-view consistency and aligned RGB data.
This bottleneck has slowed the development of hybrid approaches that aim to combine event and RGB
signals for high-fidelity 3D scene understanding and reconstruction. While event streams provide
accurate geometric and motion cues through the high-frequency edge information, RGB frames,
often motion-blurred, contribute essential color features with low-frequent details but can suffer from
degraded textural information for rendering. While event streams offer precise geometric and motion
cues through high-frequency edge information, RGB frames, though often degraded by motion blur,
provide complementary low-frequency texture and essential color details for photorealistic rendering.
However, the lack of large-scale datasets that jointly exploit these complementary signals limits
progress in event-based 3D scene understanding and generation [76]. This aligns with the broader
trend of establishing structured evaluation paradigms across domains [34].

As illustrated in Figure 2] existing efforts to conduct event-based 3D reconstruction datasets fall into
three main categories: (1) Real-world capture: This involves dedicated hardware setups such as
synchronized event-RGB stereo rigs or multi-sensor arrays (e.g., DAVIS-based systems [64]). While
providing realistic data, these setups are expensive, prone to calibration errors, and difficult to scale
to diverse scenes and camera configurations, as seen in systems like Dynamic EventNeRF [38]]. (2)
Video-driven synthesis: v2e [23]] and Vid2E [12] generate event streams from dense, high-framerate
RGB videos. Although flexible and accessible, they suffer from limited viewpoint diversity and lack
geometric consistency, making them suboptimal for multi-view reconstruction tasks. (3) Simulation
via computer graphics engines: Recent approaches [54, (19} 27, 41]] leverage 3D modeling tools like
Blender [6] or Unreal Engine [7] to simulate photo-realistic scenes and generate event data along
with RGB, depth, and pose annotations. These allow fine-grained control over camera trajectories
and lighting, enabling multi-view, physically-consistent dataset synthesis. However, such pipelines
may introduce a domain gap due to non-photorealistic rendering or oversimplified dynamics [61].

Video-driven and graphics-based approaches offer greater scalability by enabling controllable and
repeatable data generation among above methods. However, video-based methods rely on densely
sampled RGB frames from narrow-baseline views, often resulting in motion blur and limited geomet-
ric diversity. Simulation with physical engines offers greater control over scenes and trajectories, yet
frequently suffer from domain gaps due to non-photorealistic rendering and simplified dynamics [50].
Moreover, an important yet often underexplored factor influencing the realism of synthetic event
data is the contrast threshold (CT), which defines the minimum log-intensity change required to
trigger an event. While many existing simulators [37, [12]] adopt fixed or heuristic CT values, recent
analyses [61} 26} 18] show that CT values vary considerably across sensors, scenes, and even within
the same sequence. This variability induces a significant distribution shift between synthetic and
real event data, thereby limiting the generalization capability of models trained on simulated streams.
We posit that accurate modeling of contrast thresholds as data-dependent and adaptive parameters
is crucial for generating realistic and transferable event representations. Incorporating physically
informed CT sampling, potentially complemented by plausible noise considerations, can significantly
enhance sim-to-real transferability in downstream tasks such as 3D reconstruction [79, 19,78 9, 86]
and optical flow estimation 90} 47, 18, 33} [11]].

Based on the above observation, we propose a novel pipeline for synthesizing high-quality, geometry-
consistent multi-view event data from sparse RGB inputs. Leveraging 3D Gaussian Splatting
(3DGS) [31]], we first reconstruct photorealistic 3D scenes from a sparse set of multi-view images
with known poses. We then generate continuous trajectories via adaptive interpolation and render
dense RGB sequences along these paths. These sequences are fed into our physically-informed event
simulator [37]. This simulator employs our data-driven contrast threshold modeling to ensure event
responses are consistent with real sensor behaviors, and inherently maintains geometric consistency
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Figure 2: Overview and comparison of event-based 3D dataset construction methods. We
compare (1) real-world capture, (2) video-driven synthesis, and (3) simulation via computer graphics
engines in terms of commonly used methods, strengths, and drawbacks.

through the 3DGS-rendered views and trajectories. Our approach requires no dense input video and
preserves the geometric fidelity of the original scene. The controllable virtual setup enables diverse
motion patterns and blur levels, supporting the training of robust event-based models.

To summarize, our main contributions are:

* We propose a novel simulation pipeline for generating multi-view event data from sparse
RGB images, leveraging 3DGS for high-fidelity reconstruction and novel view synthesis.

» We propose an adaptive trajectory interpolation strategy coupled with a physically-grounded
contrast threshold model, jointly enabling the synthesis of temporally coherent and sensor-
consistent event streams.

* We construct and release a benchmark dataset comprising photorealistic RGB frames,
motion-blurred sequences, accurate camera poses, and multi-view event streams, facilitating
research in structure-aware event vision.

2 Related Work

2.1 Optimization-based Event Simulators

Early event simulation methods, such as those proposed by Kaiser et al.[29] and Mueggler et al.[45],
generated events by thresholding frame differences or rendering high-framerate videos. However,
these approaches failed to capture the inherent asynchronous and low-latency characteristics of
event sensors. Subsequent works like ESIM [54] and Vid2E [[13]] improved realism by incorporating
per-pixel log-intensity integration and optical flow-based interpolation to approximate event trig-
gering more faithfully. V2E [23]] further advanced realism by modeling sensor-level attributes such
as bandwidth limitations, background activity noise, and Poisson-distributed firing. More recent
simulators including V2CE [84]], ICNS [28]], and DVS-Voltmeter [37], introduced hardware-aware
components, accounting for effects such as latency, temperature-dependent noise, and local motion
dynamics. PECS [20] extended this direction by modeling the full optical path through multispectral
photon rendering. Despite their increased physical fidelity, most of these simulators operate purely
on 2D image or video inputs and do not exploit the underlying 3D structure of scenes. Furthermore,
the prevalent use of fixed contrast thresholds across all viewpoints and scenes fails to reflect the
variability observed in real sensors, thereby introducing a significant domain gap in simulated data.

2.2 Learning-based Event Simulators

Recent efforts have explored deep learning to synthesize event streams in a data-driven manner.
EventGAN [89]] employed GANSs to generate event frames from static images, while Pantho et
al. [48]] learned to generate temporally consistent event tensors or voxel representations. Domain-
adaptive simulators such as Gu et al. [16] jointly synthesized camera trajectories and event data,
improving realism under target distributions. However, learning-based approaches generally suffer
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from limited interpretability and require retraining when transferred to new scenarios, leading to
weaker robustness compared to physics-inspired models. In contrast, our method follows a physically
grounded yet geometry-aware paradigm: we first reconstruct high-fidelity 3D scenes via 3DGS then
synthesize event streams by simulating photorealistic motion blur and modeling the contrast threshold
distribution observed in real-world data. This enables us to generate temporally coherent, multi-view
consistent event data with improved realism and transferability.

3 Method

3.1 Preliminary

3D Gaussian Splatting. 3D Gaussian Splatting [31] represents a scene as a set of anisotropic
Gaussians. Each Gaussian G; is defined by

Gi(x) = exp(—4 (x — ;) T (R ding(s)* RY) " (x = 1)) M

where p; € R? is the mean, g; — R; € SO(3) is the rotation, and s; € R? is the scale. View-
dependent radiance coefficients ¢, and opacity a; € [0, 1] are optimized via differentiable rasterization
under an ¢; photometric loss. Each Gaussian is transformed by the camera pose T € SE(3) and
projected at render time, then the resulting 2D covariance is

=3, T, T"J/, (2)

where J; denotes the Jacobian of the projection and each pixel colors C are composited as follows:

C=> crar [J(1-0ay). A3)

keN i<k

Event Generation Model. Event cameras produce an asynchronous stream of tuples (x, y, t;, p;)
by thresholding changes in log-irradiance [[10} [14]. Denoting the last event time at pixel (z,y) by
tref, define as:

Alog L = log Ly ,(t;) — log Ly ) (tret). )
An event of polarity p; € {+1, —1} is emitted whenever |Alog L| > ¢

- Bt
-1, ogL < —c.
After each event, ¢, is updated to ¢;. This simple thresholding mechanism yields a high-temporal-
resolution, sparse stream of brightness changes suitable for downstream vision tasks. Here, we
introduce the off-the-shell model DVS-Voltmeter [37] as the event generation model, which incorpo-
rates physical characteristics of DVS circuits. Unlike deterministic models, DVS-Voltmeter treats the
voltage evolution at each pixel as a stochastic process, specifically a Brownian motion with drift. In
this formulation, the photovoltage change AV, over time is modeled as

AVy(t) = pAt + oW (At), (6)
where p is a drift term capturing systematic brightness changes, o denotes the noise scale influenced
by photon reception and leakage currents, and W (+) represents a standard Brownian motion. Events
are then generated when the stochastic voltage process crosses either the ON or OFF thresholds.
This physics-inspired modeling enables it to produce events with realistic timestamp randomness and
noise characteristics, providing more faithful supervision for event-based vision tasks.

3.2 Pipeline Overview

Our pipeline generates multi-view, geometry-consistent event data from sparse RGB inputs. The
process begins with collecting sparse multi-view RGB images along with their corresponding camera
poses (§3.3). Using these inputs, we reconstruct high-fidelity scene geometry and appearance
via 3DGS [31]] (§3.4), providing a solid foundation for the subsequent steps. To simulate diverse
observations, we generate smooth, controllable virtual camera trajectories by reparameterizing the
original pose sequence based on velocity constraints, followed by interpolation of dense viewpoints
along the trajectory (§3.5)). Finally, the generated RGB sequences are fed into our optimized event
generation module to synthesize temporally coherent, multi-view-consistent event streams (§3.7).
This well-structured pipeline enables scalable and controllable event data generation from sparse
RGB inputs, ensuring both accuracy and efficiency. The overall pipeline is shown in Figure
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Figure 3: Overview of the proposed GS2E pipeline. Starting from sparse multi-view RGB images
and known camera poses, we reconstruct high-fidelity scene representations using 3D Gaussian
Splatting. Virtual camera trajectories are then synthesized via velocity-aware reparameterization and
interpolation. The rendered image sequences are passed to a volumetric event simulator to generate
temporally coherent and geometrically consistent event streams.

3.3 Data Collection

To support high-fidelity reconstruction and geometry-consistent event generation, we leverage two
complementary datasets. The first is MVImgNet [80], a large-scale multi-view image collection
comprising 6.5 million frames from 219,199 videos across 238 object categories. We sample 1,000
diverse scenes suitable for 3D reconstruction and motion-aware event synthesis from this dataset. To
supplement MVImgNet’s object-centric diversity with scene-level structural richness, we incorporate
DL3DV [38], a dense multi-view video dataset offering accurate camera poses and ground-truth depth
maps across 10,000 photorealistic indoor and ourdoor scenes. We also sample 50 diverse scenes from
its 140 benchmark scenes. DL3DV provides high-quality geometry and illumination cues that are
critical for evaluating spatial and temporal consistency in event simulation.

Totally, we select 1050 scenes from these datasets which enable us to construct a diverse benchmark
for sparse-to-event generation, supporting both object-level and scene-level evaluation under motion
blur and asynchronous observation conditions.

3.4 3D Scene Representation

We employ 3DGS as detailed in §3.1]to reconstruct high-fidelity 3D scenes from sparse input views.
These views are represented by their corresponding camera poses {P; = (R;, T;)}},, where
R; € SO(3) is the rotation matrix, and T; € R? is the translation vector. For the MVImgnet and
DL3DV datasets, we typically use N = 30 and 100 for the number of input views. Given the image
sequence {I;}¥ |, we train a 3DGS model for 30,000 iterations to reconstruct a high-fidelity 3D
radiance field. This radiance field captures both the scene’s geometry and appearance, serving as the

foundation for subsequent trajectory interpolation and event stream synthesis.

3.5 Virtual Camera Trajectory Generation

To simulate continuous camera motion essential for realistic event data synthesis, we transform the
initial discrete set of camera poses, often obtained from structure-from-motion with COLMAP [59],
into temporally dense and spatially smooth trajectories. This process involves two primary stages:
(1) initial trajectory refinement and adaptive densification, (2) followed by an optional augmentation
stage for enhanced motion diversity.
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3.5.1 Base Trajectory Refinement and Densification

The raw camera poses {P; = (R;, T;)}Y; can exhibit jitter or abrupt transitions, detrimental to
high-fidelity event simulation. We first address this through local pose smoothing and then generate a
dense base trajectory using velocity-controlled interpolation.

Pose Stabilization via Local Trajectory Smoothing. To mitigate local jitter and discontinuities,
we apply a temporal smoothing filter to the original camera poses. For each pose P;, we define a
local temporal window W; = {P; | |j — i| < w, j € N T} with a half-width w (e.g., w = 2). The
smoothed pose P} = (R}, T}) is computed as:

T = i YT, ™

JEW;

1
R} = Slerp <{Rj}j€W,,7 2) ; ®)
where Slerp(+) denotes spherical linear interpolation of rotations, evaluated at the temporal mldpomt
of the window. This procedure enhances local continuity, yielding a smoothed sequence { P/},
suitable for subsequent densification.

Velocity-Controlled Dense Interpolation. Building upon the smoothed poses { P/}, we generate
a temporally uniform but spatially adaptive dense trajectory. Given a desired interpolation mul-
tiplier v > 1, the target number of poses in the dense trajectory is M = [+ - N|. These poses,
{P; = (R;, T )}J 1, are sampled at evenly spaced normalized time steps ¢; = j/(M — 1). To
achieve adaptlve spatial sampling, we first quantify the motion between adjacent smoothed poses.
The displacement ¢; between P; and P/, is defined as a weighted combination of rotational and
translational changes:

di=a-0;+ BT — T, ®
—1 (TY(R;+1(R2) )*1)

2

where 0; = cos is the geodesic distance between orientations R; and R;_ |,

and o, § are weighting coefficients. The cumulative path length up to pose P/ is s; = Z;;lo O, with
so = 0. The total path length is s _;. We then introduce a user-defined velocity profile, which can
be a continuous function v(t) or a discrete list {vx };~ %, controlling the desired speed along the
trajectory. This profile dictates the sampling density: higher velocities lead to sparser sampling in
terms of path length per time step. The target path length 5; corresponding to each time step ¢; is
computed by normalized cumulative velocity:

~ Zk: 0 Uk - (10)

Sj = SN-1"
’ Zl 0 o
where At = 1/(M — 1). Finally, we fit a cubic B-spline curve to the control points {(s;, P{)}
(parameterized by cumulative path length s;) and sample this spline at the reparameterized path
lengths {3;} to obtain the dense trajectory { P;}. This base trajectory serves as a foundation for
rendering image sequences.

3.5.2 Novel-View Trajectory Augmentation for Enhanced Motion Diversity

To further enrich the dataset with varied camera movements, we generate multiple novel-view mini-
trajectories. These are derived by sampling keyframes from the dense base trajectory {]5]- }jﬂigl
(generated in and interpolating new paths between them. Specifically, we uniformly sample
G groups of K keyframes from {Pj} without replacement:

Kg:{éﬁwwﬁg}c{éh g=1,....G, (11)

where K < K, is the number of keyframes per mini-trajectory and we set /{ = 5. For each group
K4, we compute cumulative pose displacements along its K keyframes using the metric dj, (Eq. EI)
resulting in a local path length s’ ;. We then generate F' uniformly spaced spatial targets along this
local path:

0 she 4

e R S S 12
F_1 0., (12)

Sy =
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Novel-view poses {ﬁz(g ) }5:*01 are interpolated by fitting either a cubic B-spline or a Bézier curve
(with a randomly selected degree d € {2,3,4,5}) to the keyframes in /C,, parameterized by their

local cumulative path length, and then sampling at {3,}. Each interpolated pose P[(g ) inherits its

camera intrinsics from the first keyframe Pi(lg ) in its group. Each resulting sequence C, = {Pe(g ) }5:_01
constitutes a geometry-consistent, temporally uniform mini-trajectory. The collection of all G groups,
{Cg}ngl, provides a diverse set of camera motions. In our experiments, we typically set G = 3 and
F = 150. These augmented trajectories, along with the base trajectory, are used for rendering image
sequences for event synthesis.

3.6 Optimize Novel View Synthesis of RGB Domain

Event synthesis is highly sensitive to minute radiometric variations and sensor noise; hence the
fidelity of RGB novel view synthesis (NVS) that drives simulation is critical. Because 3DGS is a
lossy reconstruction, naive renderings may contain subtle artifacts (e.g., incompletely reconstructed
fine textures) that are amplified in the event domain. We therefore explicitly optimize the RGB NVS
stage.

We adopt three complementary measures to improve RGB view fidelity before event simulation:
(1) Data curation. We use densely covered multi-view datasets (DL3DV, MVImgNet) and apply
manual screening plus task-driven filtering; scenes with poor downstream performance (event-based
3D reconstruction, video reconstruction, deblurring) are removed. (ii) RGB NVS enhancement. A
diffusion-based RGB refinement module, Difix3D+ [71]], is applied on top of 3DGS to suppress
holes/artifacts while preserving geometry, recovering rich textures and crisp edges without altering
camera parameters. (iii) Decoupled event noise. RGB denoising is kept separate from event-domain
stochasticity: the physically informed simulator governs event noise via sensor models like threshold
distribution, preventing uncontrolled propagation of RGB artifacts.

The improvement achieved by incorporating this module is evident, with specific results detailed in
the quantitative analysis of the experimental section.(§4.4)

3.7 Event Synthesis from Rendered Sequences

Given high-temporal-resolution image sequences rendered along diverse virtual camera trajectories
(§3.3), we synthesize event streams using the DVS-Voltmeter model [37], which stochastically
models pixel-level voltage accumulation. This simulator provides temporally continuous and proba-
bilistically grounded event generation, effectively mitigating aliasing artifacts introduced by 3DGS
rasterization [31]], especially under fast camera motion.

As discussed in Eq. (3) (§3-1), a key parameter is the contrast threshold ¢, denoting the minimum
log-intensity change required to trigger an event. Following the calibration strategy of Stoffregen et
al. [61]], we empirically sweep ¢ within [0.25, 1.5], observing that:

* Low thresholds (¢ < 0.4) yield dense, low-noise events, resembling IJRR [46], but may
introduce floater artifacts when used with 3DGS (see §B).

* High thresholds (c > 0.8) produce sparse events with pronounced dynamic features, similar
to MVSEC [88]].

The target datasets, MVImgNet [80] and DL3DV [38]], generally exhibit moderate motion and textured
surfaces, statistically between IJRR and HQF [61]. Based on this observation and experimental
validation (§EI), we adopt ¢ € [0.2,0.5], balancing fine detail preservation and temporal coherence
through the stochastic nature of the Voltmeter model.

4 Experiments

Implementation details. For the reconstruction stage, we carefully collect approximately 2k high-
quality multi-view images from 2 public datasets: MVImageNet [80] and DL3DV [38]]: we choose
and render 1.8k scenes from MVImageNet and 100 scenes from DL3DV. We employ the official
interplementation verision of 3DGS [31] in the original setting. For the event generation stage, we
utilize the DVS-Voltmeter simulator [37] to synthesize events from the rendered RGB sequences. We
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adopt the following sensor-specific parameters to closely mimic the behavior of real DVS sensors:
the ON and OFF contrast thresholds are both set to Ogn = Oopr = 1 as default. We conduct our
experiment on the NVIDIA RTX 3090 24GB, and more details and settings are in the appendix.

Evaluation Baselines and Metrics. We evaluate the proposed dataset across three key dimensions:
(1) 3D reconstruction quality (§4.1)), (2) the domain gap between synthetic and real-world event
streams (§4.2), and (3) applicability to a range of downstream tasks (§4.3). For reconstruction-
related evaluations, we adopt standard full-reference image quality metrics: PSNR, SSIM [70]], and
LPIPS [83], to assess both novel view synthesis and event-based deblurring performance. To further
evaluate perceptual quality in image restoration and video interpolation tasks, we also employ no-
reference metrics, including CLIPIQA [67], MUSIQ [30], and RANKIQA [40]. These metrics help
quantify the realism, fidelity, and temporal consistency of outputs under different usage scenarios.

4.1 Reliability of 3D Reconstruction

We trained the 3DGS model on the MVImgNet dataset following a rigorous selection of input views
and optimized the model for 30,000 iterations. We then evaluated its rendering fidelity against the
ground-truth test set. Quantitative results demonstrate high reconstruction quality, with an average
PSNR of 29.8, SSIM of 0.92, and a perceptual LPIPS score of 0.14. These results establish a
solid foundation for leveraging 3DGS as a core module for camera pose control, high frame-rate
interpolation, and photorealistic rendering, thereby enabling physically grounded event simulation.

4.2 Reliability of event sequences

Due to the lack of widely accepted quantitative metrics for evaluating event data quality, recent
proposals such as the Event Quality Score (EQS) [3] offer promising directions for future research.
However, as the EQS implementation is not publicly available.

Therefore, we first performed qualitative evaluations using real-world RGB-event datasets. Specifi-
cally, we employed the DSEC dataset from the Robotics and Perception Group at the University of
Zurich, which provides synchronized recordings from RGB and DVS cameras in driving scenarios.
To approximate static 3D scene conditions, we selected scenes with rigid object motion and limited
amplitude variation. Visual comparisons demonstrate that our method produces event distributions
more consistent with real data than conventional video-driven synthesis approaches.

Afterward, to objectively assess event-stream fidelity, we carefully reproduce the EQS on 70 real
scenes from the DSEC dataset, where ground-truth events are available. We compare video-to-event
methods (Vid2e, v2e) with our GS2E, and an enhanced variant with Difix3D+.

Table 1: Evaluation of the event stream quality with the DSEC dataset (7: higher is better).

Metric  Vid2e  v2e  GS2E GS2E+Difix3D+
EQStT 0.725 0.738 0.761 0.782

GS2E achieves higher EQS than Vid2e and v2e, and further improves with Difix3D+. We attribute
these gains to: (i) scene-consistent multi-view synthesis that enables dense, artifact-reduced event
generation across views; and (ii) physically informed noise modeling that captures realistic sensor
behaviors without temporal jitter or stereo mismatch typical of real sensors.

V2E GT RGB

Figure 4: Qualitative comparison of synthesized event distributions using GS2E versus traditional
video-driven event synthesis methods, evaluated against real-world event data from the DSEC dataset.
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Figure 5: Application to Multiple Tasks. We benchmark it across event-vision tasks: 3D reconstruc-
tion and image deblurring.

Table 2: Comparison of different methods under varying motion speeds. Metrics are averaged over
each category (7: higher is better; |: lower is better).

Category | Method Mild Speed | Medium Speed | Strong Speed
‘ PSNRT SSIM?T LPIPS| ‘ PSNRT SSIMT LPIPS| ‘ PSNRT SSIMtT LPIPS]
Event-onl E-NeRF [32] 21.67 0.827 0.216 20.93 0.815 0.244 20.11 0.792 0.260
y Event-3DGS 11.19 0.623 0.649 10.34 0.387 0.695 ‘ 10.68 0.374 0.712
Event-fusion E-NeRF [32] 21.89 0.834 0.208 21.05 0.820 0.239 20.57 0.809 0.251
Event-3DGS [18] 24.31 0.884 0.118 21.88 0.832 0.224 ‘ 19.36 0.793 0.295

4.3 Application to Multiple Tasks

To evaluate the generalization and practicality of our proposed event dataset, we benchmark it across
three event-vision tasks: 3D reconstruction, image deblurring, and image/video reconstruction. For
all tasks, we compare several state-of-the-art methods, and report standard image quality metrics.

Event-based 3D Reconstruction. We first evaluate the utility of our dataset in static 3D scene
reconstruction. To assess robustness under motion-induced challenges, we simulate static scenes
with varying camera motion speeds (mild, medium, and strong), allowing controlled evaluation of
temporal consistency and appearance fidelity. We further compare grayscale-only and RGB-colored
supervision settings to investigate the effect of color information. As shown in Table 2} while all
methods exhibit performance drops under faster motion, models trained with color supervision
consistently achieve better perceptual quality. These results highlight the versatility of our dataset in
supporting both grayscale and color-aware pipelines, and its suitability for evaluating spatiotemporal
consistency in static scenes captured via asynchronous event observations.

Event-based I Deblurring. We furth
veni-based mage Ueburring o uriher Table 3: Comparison of image deblurring and

test whether event streams generated from our
dataset can support high-quality image restora-
tion under motion blur. Leveraging recent event-

video reconstruction methods.

guided deblurring frameworks [60} [62]], we eval- Method PSNRt SSIMT LPIPS|

uate reconstruction performance using both syn- Deblurring Task

thetic blurry frames paired with our event data. g;g:: g?gé 8'3% 8‘(1);2

The results indicate that our dataset effectively . : .

captures motion-dependent blur patterns and  Method CLIPIQAT MUSIQT RANKIQA/|

high-frequency temporal cues, which help de- Video Reconstruction Task

blurring models produce sharper and more tem-  E2VID [55] 0.139 46.52 4.879
TimeLen++ 0.144 48.68 4.325

porally consistent outputs, particularly in low-
light and fast-moving scenes.

Event-based Video Reconstruction. Finally, we assess the utility of GS2E as a benchmark for event-
driven video reconstruction tasks [53}[63]], including frame interpolation and intensity reconstruction.
Owing to its fine-grained temporal resolution, accurate camera motion, and realistic lighting variations,
GS2E provides a challenging yet structured testbed for evaluating reconstruction quality under high-
speed motion. As shown in Table[3] existing models exhibit improved motion continuity and reduced
ghosting artifacts when evaluated on our dataset, highlighting its effectiveness.



314

315
316
317
318
319
320
321

322
323
324
325

327
328

329

330

332
333
334
335
336

Table 4: RGB NVS quality before event simulation. Higher is better for PSNR/SSIM; lower is better
for LPIPS.

PSNR 1 SSIM 1 LPIPS |
Scene 3DGS +Difix3D+ 3DGS +Difix3D+ 3DGS +Difix3D+

Scene_1 29.10 31.64 0.945 0.953 0.171 0.162
Scene_2  32.01 33.82 0.939 0.951 0.117 0.109
Scene_3 28.98 30.15 0.936 0.944 0.143 0.131
Scene_4  38.41 38.63 0.959 0.960 0.158 0.159
Scene_5 35.79 36.29 0.967 0.969 0.071 0.064
Scene_6  31.81 33.32 0.934 0.947 0.318 0.292
Scene_7  29.26 3249 0.942 0.968 0.151 0.137
Scene_8  32.88 34.21 0.928 0.941 0.153 0.126
Scene_ 9  30.87 31.95 0.928 0.940 0.240 0.228
Scene_10  30.67 32.48 0.895 0914 0.290 0.291
Scene_11  35.29 36.03 0.955 0.956 0.261 0.260

Average  32.28 33.73 0.939 0.949 0.188 0.178

4.4 Ablation study

Interplation Methods of Trajectory. To analyze how different interpolation strategies influence
the quality of synthesized event streams and their impact on downstream reconstruction tasks, we
compare linear, Bézier, and cubic B-spline methods for virtual camera trajectory generation, shown
as in Figure [6] While linear interpolation is efficient, its velocity discontinuities at control points can
undermine temporal coherence in high-fidelity reconstruction. Cubic B-splines, by ensuring smooth
higher-order continuity, yield more realistic trajectories. We thus use cubic B-spline interpolation
with velocity control as the default, balancing smoothness and trajectory realism.

e

Relative speed (slow - fast)

Linear Interpolation Bézier Interpolation Velocity-Controlled Dense
B-spline Interpolation (Ours)
Figure 6: Comparison of different interpolation methods shows that our method is smoother and has
speed control capabilities.

The Generative Refinement Module We evaluate the effect of the RGB enhancement on static
scenes from DL3DV and MVImgNet using PSNR, SSIM, and LPIPS. Table [4] reports per-scene
results for 3DGS and 3DGS&Difix3D+[[/1]. The enhancement yields consistent gains across 11
scenes: average PSNR increases by +1.45dB (min +0.22 dB, max +3.23 dB), SSIM improves by
+0.010, and LPIPS decreases by 0.010 on average. These results indicate that RGB novel views
entering the event simulator are of sufficiently high fidelity and reduced artifact levels, addressing the
risk of artifact-induced spurious events.

5 Conclusion

We introduced GS2E, a large-scale dataset that synthesizes high-fidelity event streams from sparse
multi-view RGB. Our pipeline couples 3DGS reconstruction with a physically grounded simulator,
featuring adaptive trajectory interpolation and contrast-threshold modeling, and employs a diffusion-
based RGB refinement module to reduce artifacts before event simulation. This yields temporally
dense, geometry-consistent events under diverse motion and lighting. Experiments show clear gains
on downstream tasks (e.g., event-based 3D reconstruction and video interpolation). Future work will
incorporate exposure-aware camera models into 3DGS and extend to dynamic scenes.
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A Details of Velocity-Controlled Reparameterization

In our code, we provide two ways to precisely control speed. These are using continuously defined
functions and a discrete speed list.

A.1 Continuous speed function

A positive, analytic function
v:]0,1] = Rs (dimensionless),
sampled at normalised time ¢, directly prescribes the speed curve. In the released dataset we adopt

o(t) = 0.25 sin(t) + 1.1, t € [0,1], (13)

A.2 Speed list

An arbitrary-length float array r = {rk}ﬁgol (rr > 0) is interpreted as multipliers of a base frame
rate fpase = 2400 fps: the k-th temporal segment [ﬁ;€7 tk+1] of length AT = T'/L is rendered at
fr = Tk foase- To obtain a continuous speed curve we blend neighbouring segments with a cubic
B—spline[ﬁ in a 27-second window centred at each boundary,

v(t) = Bspline(t; r,7),  7~0.1AT.
A.3 From speed curve to arc-length samples

Let M be the desired number of interpolated frames, we sample the chosen speed interface on a
uniform grid ¢; = j /(M — 1):

’U,j:’l}(tj), j:O7...,M—2; (]4)

Asj = —— 5; (15)
k=0 Uk

S0 = 0, Sj+1 = S5 + ASj. (16)

Equation rescales the sampled speeds so that Zj As; = S, ensuring the full geometric path is
covered.

A.4 Evaluating the spline

Each interpolated pose Pj = (Rj, ’i‘j) is obtained by querying the spline at the renormalised
arc-length s7:

P; =7P(s)), j=0,...,M—1.

Because s;1 — s; o v(t;), the linear and angular velocities of the discrete trajectory { P;} follow
the prescribed speed profile with frame-level accuracy.

A.5 Practical remarks

* Choice of interface. The analytic form (T3) is convenient for dataset-level consistency; the speed
list form offers frame-accurate speed control for bespoke sequences.

« Continuity. Both interfaces yield a C? speed curve, hence the final trajectory is at least C*,
avoiding jerk during rendering.

* Complexity. The whole pipeline is linear in N+ M and is CPU-friendly (< 0.5 us per interpolated
pose).

Summary. Either a compact analytic law (13) or an arbitrary-length speed list can be mapped, via
Eq. (T3), to B-spline arc-length samples, providing reliable and precise control over camera velocity
for every rendered frame.

'Order 3 suffices to reach C*? continuity while keeping local support.
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B Details of choosing the contrast threshold

In our experiments, we found that when we set the contrast threshold ¢ < 0.75, visible floater
artifacts appeared during the visualization of the event stream. These artifacts occur when the
viewpoint changes and certain Gaussians—originally situated in the background and expected to
be occluded—are mistakenly treated as part of the visible foreground. This misclassification leads
to variations in illumination that induce apparent voltage changes, which the simulator erroneously
interprets as valid event triggers. As a result, the synthesized event stream contains non-physical
textures, manifesting as spurious structures or noise in the visualization. As shown in the figure[7}
once we raise c to 1 or higher, the floater becomes almost invisible.

It is worth noting that when the contrast threshold is set too low, according to the research results
in [51]], it will lead to a loss of dynamic range. Therefore, in this paper, we tend to set a larger ¢
to solve both problems simultaneously. To ensure that events are not overly sparse and sufficient
information integrity is retained, the GS2E dataset was simulated with the parameter setting ¢ = 1.

c=0.25 c=0.5 c¢=0.75 c=1.25 c=15

Figure 7: Selecting the same viewpoint and time window(1000 us), visualize events simulated from
3DGS with different contrast threshold(c) values. The results show that when ¢ < 0.75, error events
generated by floater Gaussians can be seen on the integral event diagram, while this phenomenon is
greatly alleviated when ¢ > 1.

C Implementation Details

For the reconstruction stage, we carefully collect approximately 2k high-quality multi-view images
from 2 public datasets: MVImageNet [80] and DL3DV [38]]: we choose and render 1.8k scenes
from MVImageNet and 100 scenes from DL3DV. We employ the official interplementation verision
of 3DGS [31] in the original setting. For the event generation stage, we utilize the DVS-Voltmeter
simulator [37] to synthesize events from the rendered RGB sequences. We adopt the following
sensor-specific parameters to closely mimic the behavior of real DVS sensors: the ON and OFF
contrast thresholds are both set to Ogn = Oppr = 1 as default. The dvs camera parameters are
calibrated as k; = 0.5,k = le—3,k3 = 0.1, k4 = 0.01,k5 = 0.1,k = le—05, following the
original DVS-Voltmeter setting. These control the brightness-dependent drift 1 and variance o2 of
the stochastic process, which determine the polarity distribution and the inverse-Gaussian timestamp
sampling for each event.

All events are simulated at 2400 FPS temporal resolution and stored with microsecond timestamps
for high-fidelity spatio-temporal alignment. The overall process are conducted on a workstation
equipped with 8 xNVIDIA RTX 3090 GPUs. The selected MVImageNet clip images vary in size,
but most are approximately 1080p in resolution. When training 3DGS on MVImageNet, each
scene takes an average of 16 minutes. For the camera pose upsampling and trajectory control
stage, using an interpolation factor of v = 5, the strategy ada_speed, and the velocity function
v(t) = 0.25sin(¢t) + 1.1, the average runtime per scene is approximately 45 seconds.

During event simulation, we adopt the same camera parameter configuration as mentioned previously.
However, the simulation time varies significantly depending on the motion amplitude and speed of
the camera, as well as the scene complexity, making it difficult to estimate a consistent runtime.

For the DL3DV dataset, each scene contains 300—400 images. To ensure higher reconstruction and
rendering quality, as well as to generate longer event streams, we do not downsample the input image
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resolution, nor do we slice the image or event sequences. Using the same hardware configuration
as with MVImageNet, the average per-scene training time is approximately 27 minutes, and the
rendering time is around 41 minutes.

D Existing Event-based 3D Reconstruction Datasets

To contextualize the contribution of GS2E, Table[5|provides a comprehensive comparison of existing
event-based 3D datasets and 3D reconstruction methods [43, (9] 52} [2] 182, 163! 187,153, 158\ 79, 89, 73|
77,124,118} 157, (72 111 [78, 181}, 141}, 1421 186, 168}, 25| 88, 391 [15] 1351149, 14} 22} 166} 117, [11} 85} 144} 21]]. We
categorize these into static scenes and dynamic scenes, based on whether the underlying geometry
remains constant or involves temporal variation.

Attributes. Each dataset is evaluated along key axes:
» Data Type: Whether sharp and/or blurry RGB frames are provided. Blurry frames support
deblurring tasks, while sharp ones aid in geometry fidelity.

* Scene Num / Scale: Number of distinct scenes and their spatial scope (object-level vs.
medium/large indoor scenes).

* GT Poses: Availability of ground-truth camera extrinsics.
* Speed Profile: Whether camera motion follows uniform or non-uniform velocity.

* Multi-Trajectory: Whether each scene supports multiple trajectory simulations, enabling
consistent multi-view observations.

* Device: Capture source—real event sensors (e.g., DAVIS346C, DVXplore) or simulated
streams (e.g., ESIM, Vid2E, V2E).

» Data Source: Origin of the base scene data (e.g., NeRF renderings, Blender, Unreal Engine,
or real-world scenes).

Key Findings. We observe that existing datasets are limited in several aspects:
* Most datasets focus on small-scale, object-centric scenes with limited spatial or temporal
diversity.

* Simulators typically use simplified trajectories and fixed contrast thresholds, which constrain
realism.

* Real event data remains scarce and often lacks consistent trajectory coverage or paired
ground truth.

* Multi-trajectory support is rare, impeding evaluation under view-consistency and generaliza-
tion settings.

Positioning of GS2E. Our proposed GS2E benchmark is designed to address these limitations by:
» Leveraging 3D Gaussian Splatting to reconstruct photorealistic static scenes from sparse
real-world RGB inputs.

* Generating controllable, dense virtual trajectories with adaptive speed profiles and multiple
interpolated paths per scene.

» Synthesizing events via a physically-informed simulator that incorporates realistic contrast
threshold modeling.

» Supporting both object- and scene-level scales with consistent multi-view alignment and
temporal density.

By filling the gaps in scale, realism, and trajectory diversity, GS2E enables more robust evaluation of
event-based 3D reconstruction and rendering methods.
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E Limitation and Broader impacts

Limitation. While GS2E provides high-fidelity, geometry-consistent event data under a wide range of
camera trajectories and motion patterns, it remains fundamentally limited by its reliance on rendered
RGB images from 3DGS. Specifically, the current pipeline inherits the photometric constraints of
3D Gaussian Splatting , which may not faithfully replicate extreme illumination conditions such
as overexposure or underexposure. As a result, scenes with very low light or high dynamic range
may not be accurately modeled in terms of event triggering behavior. Additionally, our framework
currently assumes static scenes; dynamic object motion is not yet modeled. In future work, we plan
to extend the simulator by incorporating physically-realistic camera models into the 3DGS rendering
pipeline, enabling explicit control over exposure, tone mapping, and sensor response curves to better
approximate real-world lighting variability.

Broader impacts. This work introduces a scalable, geometry-consistent synthetic dataset for event-
based vision research. On the positive side, it lowers the barrier for training high-performance models
in domains such as autonomous driving, robotics, and augmented reality, where event-based sensing
offers advantages under fast motion or challenging lighting. By providing a flexible, physically-
grounded simulation framework, the work supports reproducible and ethical Al development. On
the negative side, improved realism in synthetic event data may inadvertently enable misuse such as
generating adversarial inputs or synthetic surveillance data. These risks are mitigated by the dataset’s
academic licensing and transparency in its construction pipeline. Furthermore, the data generation
framework may raise privacy concerns if adapted for real-scene reproduction, which warrants further
community discussion and the adoption of usage safeguards.

F License of the used assets

* 3D Gaussian Splatting [31]]: A publicly available method with its dataset released under
the CC BY MIT license.
MVImgNet [80]: A publicly available dataset released under the CC BY 4.0 license.
DL3DV [38]: A publicly available dataset released under the CC BY 4.0 license.
* GS2E: A publicly available dataset released under the CC BY MIT license.
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