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Figure 1: We propose GS2E, a high-fidelity synthetic dataset designed for 3D event-based vision,
comprising over 1150 scenes. GS2EExamples of RGB frames and event streams are shown above.

Abstract

We introduce (GS2E) (GAUSSIAN SPLATTING TO EVENT GENERATION), a2

large-scale synthetic event dataset for high-fidelity event vision tasks, captured3

from real-world sparse multi-view RGB images. Existing event datasets are often4

synthesized from dense RGB videos, which typically lack viewpoint diversity5

and geometric consistency, or depend on expensive, difficult-to-scale hardware6

setups. GS2E overcomes these limitations by first reconstructing photorealistic7

static scenes using 3D Gaussian Splatting, and subsequently employing a novel,8

physically-informed event simulation pipeline. This pipeline generally integrates9

adaptive trajectory interpolation with physically-consistent event contrast threshold10

modeling. Such an approach yields temporally dense and geometrically consistent11

event streams under diverse motion and lighting conditions, while ensuring strong12

alignment with underlying scene structures. Experimental results on event-based13

3D reconstruction demonstrate GS2E’s superior generalization capabilities and its14

practical value as a benchmark for advancing event vision research.15
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1 Introduction16

Event cameras, provide high temporal resolution, low latency, and high dynamic range, making them17

uniquely suited for tasks involving fast motion and challenging lighting conditions [10, 74]. These18

advantages have been demonstrated in various applications such as autonomous driving [15, 17],19

drone navigation [56, 5], and 3D scene reconstruction [25, 73, 24, 57, 52, 72]. In particular, their20

ability to capture asynchronous brightness changes enables accurate motion perception for 3D21

reconstruction and novel view synthesis (NVS) tasks, surpassing the capabilities of conventional22

RGB sensors under fast motion and dynamic illumination [75]. However, despite their potential, the23

advancement of event-based vision algorithms is significantly limited by the scarcity of large-scale,24

high-quality event datasets, especially those offering multi-view consistency and aligned RGB data.25

This bottleneck has slowed the development of hybrid approaches that aim to combine event and RGB26

signals for high-fidelity 3D scene understanding and reconstruction. While event streams provide27

accurate geometric and motion cues through the high-frequency edge information, RGB frames,28

often motion-blurred, contribute essential color features with low-frequent details but can suffer from29

degraded textural information for rendering. While event streams offer precise geometric and motion30

cues through high-frequency edge information, RGB frames, though often degraded by motion blur,31

provide complementary low-frequency texture and essential color details for photorealistic rendering.32

However, the lack of large-scale datasets that jointly exploit these complementary signals limits33

progress in event-based 3D scene understanding and generation [76]. This aligns with the broader34

trend of establishing structured evaluation paradigms across domains [34].35

As illustrated in Figure 2, existing efforts to conduct event-based 3D reconstruction datasets fall into36

three main categories: (1) Real-world capture: This involves dedicated hardware setups such as37

synchronized event-RGB stereo rigs or multi-sensor arrays (e.g., DAVIS-based systems [64]). While38

providing realistic data, these setups are expensive, prone to calibration errors, and difficult to scale39

to diverse scenes and camera configurations, as seen in systems like Dynamic EventNeRF [58]. (2)40

Video-driven synthesis: v2e [23] and Vid2E [12] generate event streams from dense, high-framerate41

RGB videos. Although flexible and accessible, they suffer from limited viewpoint diversity and lack42

geometric consistency, making them suboptimal for multi-view reconstruction tasks. (3) Simulation43

via computer graphics engines: Recent approaches [54, 19, 27, 41] leverage 3D modeling tools like44

Blender [6] or Unreal Engine [7] to simulate photo-realistic scenes and generate event data along45

with RGB, depth, and pose annotations. These allow fine-grained control over camera trajectories46

and lighting, enabling multi-view, physically-consistent dataset synthesis. However, such pipelines47

may introduce a domain gap due to non-photorealistic rendering or oversimplified dynamics [61].48

Video-driven and graphics-based approaches offer greater scalability by enabling controllable and49

repeatable data generation among above methods. However, video-based methods rely on densely50

sampled RGB frames from narrow-baseline views, often resulting in motion blur and limited geomet-51

ric diversity. Simulation with physical engines offers greater control over scenes and trajectories, yet52

frequently suffer from domain gaps due to non-photorealistic rendering and simplified dynamics [50].53

Moreover, an important yet often underexplored factor influencing the realism of synthetic event54

data is the contrast threshold (CT), which defines the minimum log-intensity change required to55

trigger an event. While many existing simulators [37, 12] adopt fixed or heuristic CT values, recent56

analyses [61, 26, 18] show that CT values vary considerably across sensors, scenes, and even within57

the same sequence. This variability induces a significant distribution shift between synthetic and58

real event data, thereby limiting the generalization capability of models trained on simulated streams.59

We posit that accurate modeling of contrast thresholds as data-dependent and adaptive parameters60

is crucial for generating realistic and transferable event representations. Incorporating physically61

informed CT sampling, potentially complemented by plausible noise considerations, can significantly62

enhance sim-to-real transferability in downstream tasks such as 3D reconstruction [79, 9, 78, 9, 86]63

and optical flow estimation [90, 47, 8, 33, 11].64

Based on the above observation, we propose a novel pipeline for synthesizing high-quality, geometry-65

consistent multi-view event data from sparse RGB inputs. Leveraging 3D Gaussian Splatting66

(3DGS) [31], we first reconstruct photorealistic 3D scenes from a sparse set of multi-view images67

with known poses. We then generate continuous trajectories via adaptive interpolation and render68

dense RGB sequences along these paths. These sequences are fed into our physically-informed event69

simulator [37]. This simulator employs our data-driven contrast threshold modeling to ensure event70

responses are consistent with real sensor behaviors, and inherently maintains geometric consistency71
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Figure 2: Overview and comparison of event-based 3D dataset construction methods. We
compare (1) real-world capture, (2) video-driven synthesis, and (3) simulation via computer graphics
engines in terms of commonly used methods, strengths, and drawbacks.

through the 3DGS-rendered views and trajectories. Our approach requires no dense input video and72

preserves the geometric fidelity of the original scene. The controllable virtual setup enables diverse73

motion patterns and blur levels, supporting the training of robust event-based models.74

To summarize, our main contributions are:75

• We propose a novel simulation pipeline for generating multi-view event data from sparse76

RGB images, leveraging 3DGS for high-fidelity reconstruction and novel view synthesis.77

• We propose an adaptive trajectory interpolation strategy coupled with a physically-grounded78

contrast threshold model, jointly enabling the synthesis of temporally coherent and sensor-79

consistent event streams.80

• We construct and release a benchmark dataset comprising photorealistic RGB frames,81

motion-blurred sequences, accurate camera poses, and multi-view event streams, facilitating82

research in structure-aware event vision.83

2 Related Work84

2.1 Optimization-based Event Simulators85

Early event simulation methods, such as those proposed by Kaiser et al.[29] and Mueggler et al.[45],86

generated events by thresholding frame differences or rendering high-framerate videos. However,87

these approaches failed to capture the inherent asynchronous and low-latency characteristics of88

event sensors. Subsequent works like ESIM [54] and Vid2E [13] improved realism by incorporating89

per-pixel log-intensity integration and optical flow-based interpolation to approximate event trig-90

gering more faithfully. V2E [23] further advanced realism by modeling sensor-level attributes such91

as bandwidth limitations, background activity noise, and Poisson-distributed firing. More recent92

simulators including V2CE [84], ICNS [28], and DVS-Voltmeter [37], introduced hardware-aware93

components, accounting for effects such as latency, temperature-dependent noise, and local motion94

dynamics. PECS [20] extended this direction by modeling the full optical path through multispectral95

photon rendering. Despite their increased physical fidelity, most of these simulators operate purely96

on 2D image or video inputs and do not exploit the underlying 3D structure of scenes. Furthermore,97

the prevalent use of fixed contrast thresholds across all viewpoints and scenes fails to reflect the98

variability observed in real sensors, thereby introducing a significant domain gap in simulated data.99

2.2 Learning-based Event Simulators100

Recent efforts have explored deep learning to synthesize event streams in a data-driven manner.101

EventGAN [89] employed GANs to generate event frames from static images, while Pantho et102

al. [48] learned to generate temporally consistent event tensors or voxel representations. Domain-103

adaptive simulators such as Gu et al. [16] jointly synthesized camera trajectories and event data,104

improving realism under target distributions. However, learning-based approaches generally suffer105
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from limited interpretability and require retraining when transferred to new scenarios, leading to106

weaker robustness compared to physics-inspired models. In contrast, our method follows a physically107

grounded yet geometry-aware paradigm: we first reconstruct high-fidelity 3D scenes via 3DGS then108

synthesize event streams by simulating photorealistic motion blur and modeling the contrast threshold109

distribution observed in real-world data. This enables us to generate temporally coherent, multi-view110

consistent event data with improved realism and transferability.111

3 Method112

3.1 Preliminary113

3D Gaussian Splatting. 3D Gaussian Splatting [31] represents a scene as a set of anisotropic114

Gaussians. Each Gaussian Gi is defined by115

Gi(x) = exp
(
− 1

2 (x− µi)
⊤(Ri diag(si)

2 R⊤
i )

−1(x− µi)
)
, (1)

where µi ∈ R3 is the mean, qi 7→ Ri ∈ SO(3) is the rotation, and si ∈ R3
+ is the scale. View-116

dependent radiance coefficients ci and opacity αi ∈ [0, 1] are optimized via differentiable rasterization117

under an ℓ1 photometric loss. Each Gaussian is transformed by the camera pose T ∈ SE(3) and118

projected at render time, then the resulting 2D covariance is119

Σ′
i = Ji TΣi T

⊤ J⊤
i , (2)

where Ji denotes the Jacobian of the projection and each pixel colors Ĉ are composited as follows:120

Ĉ =
∑
k∈N

ck αk

∏
j<k

(1− αj). (3)

Event Generation Model. Event cameras produce an asynchronous stream of tuples (x, y, ti, pi)121

by thresholding changes in log-irradiance [10, 14]. Denoting the last event time at pixel (x, y) by122

tref , define as:123

∆ logL = logL(x,y)(ti)− logL(x,y)(tref). (4)
An event of polarity pi ∈ {+1,−1} is emitted whenever |∆ logL| ≥ c:124

pi =

{
+1, ∆ logL ≥ c,

−1, ∆ logL ≤ −c.
(5)

After each event, tref is updated to ti. This simple thresholding mechanism yields a high-temporal-125

resolution, sparse stream of brightness changes suitable for downstream vision tasks. Here, we126

introduce the off-the-shell model DVS-Voltmeter [37] as the event generation model, which incorpo-127

rates physical characteristics of DVS circuits. Unlike deterministic models, DVS-Voltmeter treats the128

voltage evolution at each pixel as a stochastic process, specifically a Brownian motion with drift. In129

this formulation, the photovoltage change ∆Vd over time is modeled as130

∆Vd(t) = µ∆t+ σW (∆t), (6)
where µ is a drift term capturing systematic brightness changes, σ denotes the noise scale influenced131

by photon reception and leakage currents, and W (·) represents a standard Brownian motion. Events132

are then generated when the stochastic voltage process crosses either the ON or OFF thresholds.133

This physics-inspired modeling enables it to produce events with realistic timestamp randomness and134

noise characteristics, providing more faithful supervision for event-based vision tasks.135

3.2 Pipeline Overview136

Our pipeline generates multi-view, geometry-consistent event data from sparse RGB inputs. The137

process begins with collecting sparse multi-view RGB images along with their corresponding camera138

poses (§3.3). Using these inputs, we reconstruct high-fidelity scene geometry and appearance139

via 3DGS [31] (§3.4), providing a solid foundation for the subsequent steps. To simulate diverse140

observations, we generate smooth, controllable virtual camera trajectories by reparameterizing the141

original pose sequence based on velocity constraints, followed by interpolation of dense viewpoints142

along the trajectory (§3.5). Finally, the generated RGB sequences are fed into our optimized event143

generation module to synthesize temporally coherent, multi-view-consistent event streams (§3.7).144

This well-structured pipeline enables scalable and controllable event data generation from sparse145

RGB inputs, ensuring both accuracy and efficiency. The overall pipeline is shown in Figure 3.146
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Figure 3: Overview of the proposed GS2E pipeline. Starting from sparse multi-view RGB images
and known camera poses, we reconstruct high-fidelity scene representations using 3D Gaussian
Splatting. Virtual camera trajectories are then synthesized via velocity-aware reparameterization and
interpolation. The rendered image sequences are passed to a volumetric event simulator to generate
temporally coherent and geometrically consistent event streams.

3.3 Data Collection147

To support high-fidelity reconstruction and geometry-consistent event generation, we leverage two148

complementary datasets. The first is MVImgNet [80], a large-scale multi-view image collection149

comprising 6.5 million frames from 219,199 videos across 238 object categories. We sample 1,000150

diverse scenes suitable for 3D reconstruction and motion-aware event synthesis from this dataset. To151

supplement MVImgNet’s object-centric diversity with scene-level structural richness, we incorporate152

DL3DV [38], a dense multi-view video dataset offering accurate camera poses and ground-truth depth153

maps across 10,000 photorealistic indoor and ourdoor scenes. We also sample 50 diverse scenes from154

its 140 benchmark scenes. DL3DV provides high-quality geometry and illumination cues that are155

critical for evaluating spatial and temporal consistency in event simulation.156

Totally, we select 1050 scenes from these datasets which enable us to construct a diverse benchmark157

for sparse-to-event generation, supporting both object-level and scene-level evaluation under motion158

blur and asynchronous observation conditions.159

3.4 3D Scene Representation160

We employ 3DGS as detailed in §3.1 to reconstruct high-fidelity 3D scenes from sparse input views.161

These views are represented by their corresponding camera poses {Pi = (Ri,Ti)}Ni=1, where162

Ri ∈ SO(3) is the rotation matrix, and Ti ∈ R3 is the translation vector. For the MVImgnet and163

DL3DV datasets, we typically use N = 30 and 100 for the number of input views. Given the image164

sequence {Ii}Ni=1, we train a 3DGS model for 30,000 iterations to reconstruct a high-fidelity 3D165

radiance field. This radiance field captures both the scene’s geometry and appearance, serving as the166

foundation for subsequent trajectory interpolation and event stream synthesis.167

3.5 Virtual Camera Trajectory Generation168

To simulate continuous camera motion essential for realistic event data synthesis, we transform the169

initial discrete set of camera poses, often obtained from structure-from-motion with COLMAP [59],170

into temporally dense and spatially smooth trajectories. This process involves two primary stages:171

(1) initial trajectory refinement and adaptive densification, (2) followed by an optional augmentation172

stage for enhanced motion diversity.173
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3.5.1 Base Trajectory Refinement and Densification174

The raw camera poses {Pi = (Ri,Ti)}Ni=1 can exhibit jitter or abrupt transitions, detrimental to175

high-fidelity event simulation. We first address this through local pose smoothing and then generate a176

dense base trajectory using velocity-controlled interpolation.177

Pose Stabilization via Local Trajectory Smoothing. To mitigate local jitter and discontinuities,178

we apply a temporal smoothing filter to the original camera poses. For each pose Pi, we define a179

local temporal window Wi = {Pj | |j − i| ≤ w, j ∈ N+} with a half-width w (e.g., w = 2). The180

smoothed pose P ′
i = (R′

i,T
′
i) is computed as:181

T′
i =

1

|Wi|
∑
j∈Wi

Tj , (7)

R′
i = Slerp

(
{Rj}j∈Wi

,
1

2

)
, (8)

where Slerp(·) denotes spherical linear interpolation of rotations, evaluated at the temporal midpoint182

of the window. This procedure enhances local continuity, yielding a smoothed sequence {P ′
i}Ni=1183

suitable for subsequent densification.184

Velocity-Controlled Dense Interpolation. Building upon the smoothed poses {P ′
i}, we generate185

a temporally uniform but spatially adaptive dense trajectory. Given a desired interpolation mul-186

tiplier γ > 1, the target number of poses in the dense trajectory is M = ⌈γ · N⌉. These poses,187

{P̃j = (R̃j , T̃j)}M−1
j=0 , are sampled at evenly spaced normalized time steps tj = j/(M − 1). To188

achieve adaptive spatial sampling, we first quantify the motion between adjacent smoothed poses.189

The displacement δi between P ′
i and P ′

i+1 is defined as a weighted combination of rotational and190

translational changes:191

δi = α · θi + β · ∥T′
i+1 −T′

i∥2, (9)

where θi = cos−1
(

Tr(R′
i+1(R

′
i)

⊤)−1

2

)
is the geodesic distance between orientations R′

i and R′
i+1,192

and α, β are weighting coefficients. The cumulative path length up to pose P ′
i is si =

∑i−1
k=0 δk, with193

s0 = 0. The total path length is sN−1. We then introduce a user-defined velocity profile, which can194

be a continuous function v(t) or a discrete list {vk}M−2
k=0 , controlling the desired speed along the195

trajectory. This profile dictates the sampling density: higher velocities lead to sparser sampling in196

terms of path length per time step. The target path length s̃j corresponding to each time step tj is197

computed by normalized cumulative velocity:198

s̃j = sN−1 ·
∑j−1

k=0 vk ·∆t∑M−2
l=0 vl ·∆t

, (10)

where ∆t = 1/(M − 1). Finally, we fit a cubic B-spline curve to the control points {(si, P ′
i )}199

(parameterized by cumulative path length si) and sample this spline at the reparameterized path200

lengths {s̃j} to obtain the dense trajectory {P̃j}. This base trajectory serves as a foundation for201

rendering image sequences.202

3.5.2 Novel-View Trajectory Augmentation for Enhanced Motion Diversity203

To further enrich the dataset with varied camera movements, we generate multiple novel-view mini-204

trajectories. These are derived by sampling keyframes from the dense base trajectory {P̃j}M−1
j=0205

(generated in §3.5.1) and interpolating new paths between them. Specifically, we uniformly sample206

G groups of K keyframes from {P̃j} without replacement:207

Kg =
{
P̃

(g)
i1

, . . . , P̃
(g)
iK

}
⊂ {P̃j}, g = 1, . . . , G, (11)

where K ≤ Kmax is the number of keyframes per mini-trajectory and we set K = 5. For each group208

Kg, we compute cumulative pose displacements along its K keyframes using the metric δk (Eq. 9),209

resulting in a local path length s′K−1. We then generate F uniformly spaced spatial targets along this210

local path:211

ŝℓ =
ℓ · s′K−1

F − 1
, ℓ = 0, . . . , F − 1. (12)
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Novel-view poses {P̂ (g)
ℓ }F−1

ℓ=0 are interpolated by fitting either a cubic B-spline or a Bézier curve212

(with a randomly selected degree d ∈ {2, 3, 4, 5}) to the keyframes in Kg, parameterized by their213

local cumulative path length, and then sampling at {ŝℓ}. Each interpolated pose P̂
(g)
ℓ inherits its214

camera intrinsics from the first keyframe P̃ (g)
i1

in its group. Each resulting sequence Cg = {P̂ (g)
ℓ }F−1

ℓ=0215

constitutes a geometry-consistent, temporally uniform mini-trajectory. The collection of all G groups,216

{Cg}Gg=1, provides a diverse set of camera motions. In our experiments, we typically set G = 3 and217

F = 150. These augmented trajectories, along with the base trajectory, are used for rendering image218

sequences for event synthesis.219

3.6 Optimize Novel View Synthesis of RGB Domain220

Event synthesis is highly sensitive to minute radiometric variations and sensor noise; hence the221

fidelity of RGB novel view synthesis (NVS) that drives simulation is critical. Because 3DGS is a222

lossy reconstruction, naïve renderings may contain subtle artifacts (e.g., incompletely reconstructed223

fine textures) that are amplified in the event domain. We therefore explicitly optimize the RGB NVS224

stage.225

We adopt three complementary measures to improve RGB view fidelity before event simulation:226

(i) Data curation. We use densely covered multi-view datasets (DL3DV, MVImgNet) and apply227

manual screening plus task-driven filtering; scenes with poor downstream performance (event-based228

3D reconstruction, video reconstruction, deblurring) are removed. (ii) RGB NVS enhancement. A229

diffusion-based RGB refinement module, Difix3D+ [71], is applied on top of 3DGS to suppress230

holes/artifacts while preserving geometry, recovering rich textures and crisp edges without altering231

camera parameters. (iii) Decoupled event noise. RGB denoising is kept separate from event-domain232

stochasticity: the physically informed simulator governs event noise via sensor models like threshold233

distribution, preventing uncontrolled propagation of RGB artifacts.234

The improvement achieved by incorporating this module is evident, with specific results detailed in235

the quantitative analysis of the experimental section.(§4.4)236

3.7 Event Synthesis from Rendered Sequences237

Given high-temporal-resolution image sequences rendered along diverse virtual camera trajectories238

(§3.5), we synthesize event streams using the DVS-Voltmeter model [37], which stochastically239

models pixel-level voltage accumulation. This simulator provides temporally continuous and proba-240

bilistically grounded event generation, effectively mitigating aliasing artifacts introduced by 3DGS241

rasterization [31], especially under fast camera motion.242

As discussed in Eq. (5) (§3.1), a key parameter is the contrast threshold c, denoting the minimum243

log-intensity change required to trigger an event. Following the calibration strategy of Stoffregen et244

al. [61], we empirically sweep c within [0.25, 1.5], observing that:245

• Low thresholds (c ≤ 0.4) yield dense, low-noise events, resembling IJRR [46], but may246

introduce floater artifacts when used with 3DGS (see §B).247

• High thresholds (c ≥ 0.8) produce sparse events with pronounced dynamic features, similar248

to MVSEC [88].249

The target datasets, MVImgNet [80] and DL3DV [38], generally exhibit moderate motion and textured250

surfaces, statistically between IJRR and HQF [61]. Based on this observation and experimental251

validation (§4), we adopt c ∈ [0.2, 0.5], balancing fine detail preservation and temporal coherence252

through the stochastic nature of the Voltmeter model.253

4 Experiments254

Implementation details. For the reconstruction stage, we carefully collect approximately 2k high-255

quality multi-view images from 2 public datasets: MVImageNet [80] and DL3DV [38]: we choose256

and render 1.8k scenes from MVImageNet and 100 scenes from DL3DV. We employ the official257

interplementation verision of 3DGS [31] in the original setting. For the event generation stage, we258

utilize the DVS-Voltmeter simulator [37] to synthesize events from the rendered RGB sequences. We259
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adopt the following sensor-specific parameters to closely mimic the behavior of real DVS sensors:260

the ON and OFF contrast thresholds are both set to ΘON = ΘOFF = 1 as default. We conduct our261

experiment on the NVIDIA RTX 3090 24GB, and more details and settings are in the appendix.262

Evaluation Baselines and Metrics. We evaluate the proposed dataset across three key dimensions:263

(1) 3D reconstruction quality (§4.1), (2) the domain gap between synthetic and real-world event264

streams (§4.2), and (3) applicability to a range of downstream tasks (§4.3). For reconstruction-265

related evaluations, we adopt standard full-reference image quality metrics: PSNR, SSIM [70], and266

LPIPS [83], to assess both novel view synthesis and event-based deblurring performance. To further267

evaluate perceptual quality in image restoration and video interpolation tasks, we also employ no-268

reference metrics, including CLIPIQA [67], MUSIQ [30], and RANKIQA [40]. These metrics help269

quantify the realism, fidelity, and temporal consistency of outputs under different usage scenarios.270

4.1 Reliability of 3D Reconstruction271

We trained the 3DGS model on the MVImgNet dataset following a rigorous selection of input views272

and optimized the model for 30,000 iterations. We then evaluated its rendering fidelity against the273

ground-truth test set. Quantitative results demonstrate high reconstruction quality, with an average274

PSNR of 29.8, SSIM of 0.92, and a perceptual LPIPS score of 0.14. These results establish a275

solid foundation for leveraging 3DGS as a core module for camera pose control, high frame-rate276

interpolation, and photorealistic rendering, thereby enabling physically grounded event simulation.277

4.2 Reliability of event sequences278

Due to the lack of widely accepted quantitative metrics for evaluating event data quality, recent279

proposals such as the Event Quality Score (EQS) [3] offer promising directions for future research.280

However, as the EQS implementation is not publicly available.281

Therefore, we first performed qualitative evaluations using real-world RGB-event datasets. Specifi-282

cally, we employed the DSEC dataset from the Robotics and Perception Group at the University of283

Zurich, which provides synchronized recordings from RGB and DVS cameras in driving scenarios.284

To approximate static 3D scene conditions, we selected scenes with rigid object motion and limited285

amplitude variation. Visual comparisons demonstrate that our method produces event distributions286

more consistent with real data than conventional video-driven synthesis approaches.287

Afterward, to objectively assess event-stream fidelity, we carefully reproduce the EQS on 10 real288

scenes from the DSEC dataset, where ground-truth events are available. We compare video-to-event289

methods (Vid2e, v2e) with our GS2E, and an enhanced variant with Difix3D+.290

Table 1: Evaluation of the event stream quality with the DSEC dataset (↑: higher is better).

Metric Vid2e v2e GS2E GS2E+Difix3D+

EQS↑ 0.725 0.738 0.761 0.782

GS2E achieves higher EQS than Vid2e and v2e, and further improves with Difix3D+. We attribute291

these gains to: (i) scene-consistent multi-view synthesis that enables dense, artifact-reduced event292

generation across views; and (ii) physically informed noise modeling that captures realistic sensor293

behaviors without temporal jitter or stereo mismatch typical of real sensors.294

V2E GS2E (Ours) GT Event GT RGB

Figure 4: Qualitative comparison of synthesized event distributions using GS2E versus traditional
video-driven event synthesis methods, evaluated against real-world event data from the DSEC dataset.
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(a) Event-vision Task: 3D Reconstruction (b) Event-vision Task: Image Deblurring

Figure 5: Application to Multiple Tasks. We benchmark it across event-vision tasks: 3D reconstruc-
tion and image deblurring.

Table 2: Comparison of different methods under varying motion speeds. Metrics are averaged over
each category (↑: higher is better; ↓: lower is better).

Category Method Mild Speed Medium Speed Strong Speed

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Event-only E-NeRF [32] 21.67 0.827 0.216 20.93 0.815 0.244 20.11 0.792 0.260
Event-3DGS [18] 11.19 0.623 0.649 10.34 0.387 0.695 10.68 0.374 0.712

Event-fusion E-NeRF [32] 21.89 0.834 0.208 21.05 0.820 0.239 20.57 0.809 0.251
Event-3DGS [18] 24.31 0.884 0.118 21.88 0.832 0.224 19.36 0.793 0.295

4.3 Application to Multiple Tasks295

To evaluate the generalization and practicality of our proposed event dataset, we benchmark it across296

three event-vision tasks: 3D reconstruction, image deblurring, and image/video reconstruction. For297

all tasks, we compare several state-of-the-art methods, and report standard image quality metrics.298

Event-based 3D Reconstruction. We first evaluate the utility of our dataset in static 3D scene299

reconstruction. To assess robustness under motion-induced challenges, we simulate static scenes300

with varying camera motion speeds (mild, medium, and strong), allowing controlled evaluation of301

temporal consistency and appearance fidelity. We further compare grayscale-only and RGB-colored302

supervision settings to investigate the effect of color information. As shown in Table 2, while all303

methods exhibit performance drops under faster motion, models trained with color supervision304

consistently achieve better perceptual quality. These results highlight the versatility of our dataset in305

supporting both grayscale and color-aware pipelines, and its suitability for evaluating spatiotemporal306

consistency in static scenes captured via asynchronous event observations.307

Event-based Image Deblurring. We further
test whether event streams generated from our
dataset can support high-quality image restora-
tion under motion blur. Leveraging recent event-
guided deblurring frameworks [60, 62], we eval-
uate reconstruction performance using both syn-
thetic blurry frames paired with our event data.
The results indicate that our dataset effectively
captures motion-dependent blur patterns and
high-frequency temporal cues, which help de-
blurring models produce sharper and more tem-
porally consistent outputs, particularly in low-
light and fast-moving scenes.

Table 3: Comparison of image deblurring and
video reconstruction methods.

Method PSNR↑ SSIM↑ LPIPS↓
Deblurring Task

D2Net [60] 29.61 0.932 0.113
EFNet [62] 31.26 0.940 0.098

Method CLIPIQA↑ MUSIQ↑ RANKIQA↓
Video Reconstruction Task

E2VID [55] 0.139 46.52 4.879
TimeLen++ [65] 0.144 48.68 4.325

Event-based Video Reconstruction. Finally, we assess the utility of GS2E as a benchmark for event-308

driven video reconstruction tasks [55, 65], including frame interpolation and intensity reconstruction.309

Owing to its fine-grained temporal resolution, accurate camera motion, and realistic lighting variations,310

GS2E provides a challenging yet structured testbed for evaluating reconstruction quality under high-311

speed motion. As shown in Table 3, existing models exhibit improved motion continuity and reduced312

ghosting artifacts when evaluated on our dataset, highlighting its effectiveness.313
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Table 4: RGB NVS quality before event simulation. Higher is better for PSNR/SSIM; lower is better
for LPIPS.

PSNR ↑ SSIM ↑ LPIPS ↓
Scene 3DGS +Difix3D+ 3DGS +Difix3D+ 3DGS +Difix3D+

Scene_1 29.10 31.64 0.945 0.953 0.171 0.162
Scene_2 32.01 33.82 0.939 0.951 0.117 0.109
Scene_3 28.98 30.15 0.936 0.944 0.143 0.131
Scene_4 38.41 38.63 0.959 0.960 0.158 0.159
Scene_5 35.79 36.29 0.967 0.969 0.071 0.064
Scene_6 31.81 33.32 0.934 0.947 0.318 0.292
Scene_7 29.26 32.49 0.942 0.968 0.151 0.137
Scene_8 32.88 34.21 0.928 0.941 0.153 0.126
Scene_9 30.87 31.95 0.928 0.940 0.240 0.228
Scene_10 30.67 32.48 0.895 0.914 0.290 0.291
Scene_11 35.29 36.03 0.955 0.956 0.261 0.260

Average 32.28 33.73 0.939 0.949 0.188 0.178

4.4 Ablation study314

Interplation Methods of Trajectory. To analyze how different interpolation strategies influence315

the quality of synthesized event streams and their impact on downstream reconstruction tasks, we316

compare linear, Bézier, and cubic B-spline methods for virtual camera trajectory generation, shown317

as in Figure 6. While linear interpolation is efficient, its velocity discontinuities at control points can318

undermine temporal coherence in high-fidelity reconstruction. Cubic B-splines, by ensuring smooth319

higher-order continuity, yield more realistic trajectories. We thus use cubic B-spline interpolation320

with velocity control as the default, balancing smoothness and trajectory realism.321

Linear Interpolation Bézier Interpolation Velocity-Controlled Dense
B-spline Interpolation (Ours)

Figure 6: Comparison of different interpolation methods shows that our method is smoother and has
speed control capabilities.

The Generative Refinement Module We evaluate the effect of the RGB enhancement on static322

scenes from DL3DV and MVImgNet using PSNR, SSIM, and LPIPS. Table 4 reports per-scene323

results for 3DGS and 3DGS&Difix3D+[71]. The enhancement yields consistent gains across 11324

scenes: average PSNR increases by +1.45 dB (min +0.22 dB, max +3.23 dB), SSIM improves by325

+0.010, and LPIPS decreases by 0.010 on average. These results indicate that RGB novel views326

entering the event simulator are of sufficiently high fidelity and reduced artifact levels, addressing the327

risk of artifact-induced spurious events.328

5 Conclusion329

We introduced GS2E, a large-scale dataset that synthesizes high-fidelity event streams from sparse330

multi-view RGB. Our pipeline couples 3DGS reconstruction with a physically grounded simulator,331

featuring adaptive trajectory interpolation and contrast-threshold modeling, and employs a diffusion-332

based RGB refinement module to reduce artifacts before event simulation. This yields temporally333

dense, geometry-consistent events under diverse motion and lighting. Experiments show clear gains334

on downstream tasks (e.g., event-based 3D reconstruction and video interpolation). Future work will335

incorporate exposure-aware camera models into 3DGS and extend to dynamic scenes.336
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A Details of Velocity-Controlled Reparameterization606

In our code, we provide two ways to precisely control speed. These are using continuously defined607

functions and a discrete speed list.608

A.1 Continuous speed function609

A positive, analytic function610

v : [0, 1] → R>0 (dimensionless),

sampled at normalised time t, directly prescribes the speed curve. In the released dataset we adopt611

v(t) = 0.25 sin(t) + 1.1, t ∈ [0, 1], (13)

A.2 Speed list612

An arbitrary-length float array r = {rk}L−1
k=0 (rk > 0) is interpreted as multipliers of a base frame613

rate fbase = 2400 fps: the k-th temporal segment
[
tk, tk+1

]
of length ∆T = T/L is rendered at614

fk = rkfbase. To obtain a continuous speed curve we blend neighbouring segments with a cubic615

B-spline1 in a 2τ -second window centred at each boundary,616

v(t) = Bspline
(
t; r, τ

)
, τ ≃ 0.1∆T.

A.3 From speed curve to arc-length samples617

Let M be the desired number of interpolated frames, we sample the chosen speed interface on a618

uniform grid tj = j/(M − 1):619

uj = v(tj), j = 0, . . . ,M − 2; (14)

∆sj =
uj∑M−2

k=0 uk

S; (15)

s0 = 0, sj+1 = sj +∆sj . (16)

Equation (15) rescales the sampled speeds so that
∑

j ∆sj = S, ensuring the full geometric path is620

covered.621

A.4 Evaluating the spline622

Each interpolated pose P̃j = (R̃j , T̃j) is obtained by querying the spline at the renormalised623

arc-length s⋆j :624

P̃j = P
(
sj
)
, j = 0, . . . ,M − 1.

Because sj+1 − sj ∝ v(tj), the linear and angular velocities of the discrete trajectory {P̃j} follow625

the prescribed speed profile with frame-level accuracy.626

A.5 Practical remarks627

• Choice of interface. The analytic form (13) is convenient for dataset-level consistency; the speed628

list form offers frame-accurate speed control for bespoke sequences.629

• Continuity. Both interfaces yield a C2 speed curve, hence the final trajectory is at least C1,630

avoiding jerk during rendering.631

• Complexity. The whole pipeline is linear in N+M and is CPU-friendly (< 0.5µs per interpolated632

pose).633

Summary. Either a compact analytic law (13) or an arbitrary-length speed list can be mapped, via634

Eq. (15), to B-spline arc-length samples, providing reliable and precise control over camera velocity635

for every rendered frame.636

1Order 3 suffices to reach C2 continuity while keeping local support.
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B Details of choosing the contrast threshold637

In our experiments, we found that when we set the contrast threshold c ≤ 0.75, visible floater638

artifacts appeared during the visualization of the event stream. These artifacts occur when the639

viewpoint changes and certain Gaussians—originally situated in the background and expected to640

be occluded—are mistakenly treated as part of the visible foreground. This misclassification leads641

to variations in illumination that induce apparent voltage changes, which the simulator erroneously642

interprets as valid event triggers. As a result, the synthesized event stream contains non-physical643

textures, manifesting as spurious structures or noise in the visualization. As shown in the figure 7,644

once we raise c to 1 or higher, the floater becomes almost invisible.645

It is worth noting that when the contrast threshold is set too low, according to the research results646

in [51], it will lead to a loss of dynamic range. Therefore, in this paper, we tend to set a larger c647

to solve both problems simultaneously. To ensure that events are not overly sparse and sufficient648

information integrity is retained, the GS2E dataset was simulated with the parameter setting c = 1.649

c = 0.25 c = 0.5 c = 0.75 c = 1.25c = 1 c = 1.5

Figure 7: Selecting the same viewpoint and time window(1000 us), visualize events simulated from
3DGS with different contrast threshold(c) values. The results show that when c ≤ 0.75, error events
generated by floater Gaussians can be seen on the integral event diagram, while this phenomenon is
greatly alleviated when c ≥ 1.

C Implementation Details650

For the reconstruction stage, we carefully collect approximately 2k high-quality multi-view images651

from 2 public datasets: MVImageNet [80] and DL3DV [38]: we choose and render 1.8k scenes652

from MVImageNet and 100 scenes from DL3DV. We employ the official interplementation verision653

of 3DGS [31] in the original setting. For the event generation stage, we utilize the DVS-Voltmeter654

simulator [37] to synthesize events from the rendered RGB sequences. We adopt the following655

sensor-specific parameters to closely mimic the behavior of real DVS sensors: the ON and OFF656

contrast thresholds are both set to ΘON = ΘOFF = 1 as default. The dvs camera parameters are657

calibrated as k1 = 0.5, k2 = 1e−3, k3 = 0.1, k4 = 0.01, k5 = 0.1, k6 = 1e−5, following the658

original DVS-Voltmeter setting. These control the brightness-dependent drift µ and variance σ2 of659

the stochastic process, which determine the polarity distribution and the inverse-Gaussian timestamp660

sampling for each event.661

All events are simulated at 2400 FPS temporal resolution and stored with microsecond timestamps662

for high-fidelity spatio-temporal alignment. The overall process are conducted on a workstation663

equipped with 8×NVIDIA RTX 3090 GPUs. The selected MVImageNet clip images vary in size,664

but most are approximately 1080p in resolution. When training 3DGS on MVImageNet, each665

scene takes an average of 16 minutes. For the camera pose upsampling and trajectory control666

stage, using an interpolation factor of γ = 5, the strategy ada_speed, and the velocity function667

v(t) = 0.25 sin(t) + 1.1, the average runtime per scene is approximately 45 seconds.668

During event simulation, we adopt the same camera parameter configuration as mentioned previously.669

However, the simulation time varies significantly depending on the motion amplitude and speed of670

the camera, as well as the scene complexity, making it difficult to estimate a consistent runtime.671

For the DL3DV dataset, each scene contains 300–400 images. To ensure higher reconstruction and672

rendering quality, as well as to generate longer event streams, we do not downsample the input image673
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resolution, nor do we slice the image or event sequences. Using the same hardware configuration674

as with MVImageNet, the average per-scene training time is approximately 27 minutes, and the675

rendering time is around 41 minutes.676

D Existing Event-based 3D Reconstruction Datasets677

To contextualize the contribution of GS2E, Table 5 provides a comprehensive comparison of existing678

event-based 3D datasets and 3D reconstruction methods [43, 9, 52, 2, 82, 63, 87, 53, 58, 79, 89, 73,679

77, 24, 18, 57, 72, 1, 78, 81, 41, 42, 86, 68, 25, 88, 39, 15, 35, 49, 4, 22, 66, 17, 11, 85, 44, 21]. We680

categorize these into static scenes and dynamic scenes, based on whether the underlying geometry681

remains constant or involves temporal variation.682

Attributes. Each dataset is evaluated along key axes:683

• Data Type: Whether sharp and/or blurry RGB frames are provided. Blurry frames support684

deblurring tasks, while sharp ones aid in geometry fidelity.685

• Scene Num / Scale: Number of distinct scenes and their spatial scope (object-level vs.686

medium/large indoor scenes).687

• GT Poses: Availability of ground-truth camera extrinsics.688

• Speed Profile: Whether camera motion follows uniform or non-uniform velocity.689

• Multi-Trajectory: Whether each scene supports multiple trajectory simulations, enabling690

consistent multi-view observations.691

• Device: Capture source—real event sensors (e.g., DAVIS346C, DVXplore) or simulated692

streams (e.g., ESIM, Vid2E, V2E).693

• Data Source: Origin of the base scene data (e.g., NeRF renderings, Blender, Unreal Engine,694

or real-world scenes).695

Key Findings. We observe that existing datasets are limited in several aspects:696

• Most datasets focus on small-scale, object-centric scenes with limited spatial or temporal697

diversity.698

• Simulators typically use simplified trajectories and fixed contrast thresholds, which constrain699

realism.700

• Real event data remains scarce and often lacks consistent trajectory coverage or paired701

ground truth.702

• Multi-trajectory support is rare, impeding evaluation under view-consistency and generaliza-703

tion settings.704

Positioning of GS2E. Our proposed GS2E benchmark is designed to address these limitations by:705

• Leveraging 3D Gaussian Splatting to reconstruct photorealistic static scenes from sparse706

real-world RGB inputs.707

• Generating controllable, dense virtual trajectories with adaptive speed profiles and multiple708

interpolated paths per scene.709

• Synthesizing events via a physically-informed simulator that incorporates realistic contrast710

threshold modeling.711

• Supporting both object- and scene-level scales with consistent multi-view alignment and712

temporal density.713

By filling the gaps in scale, realism, and trajectory diversity, GS2E enables more robust evaluation of714

event-based 3D reconstruction and rendering methods.715
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E Limitation and Broader impacts716

Limitation. While GS2E provides high-fidelity, geometry-consistent event data under a wide range of717

camera trajectories and motion patterns, it remains fundamentally limited by its reliance on rendered718

RGB images from 3DGS. Specifically, the current pipeline inherits the photometric constraints of719

3D Gaussian Splatting , which may not faithfully replicate extreme illumination conditions such720

as overexposure or underexposure. As a result, scenes with very low light or high dynamic range721

may not be accurately modeled in terms of event triggering behavior. Additionally, our framework722

currently assumes static scenes; dynamic object motion is not yet modeled. In future work, we plan723

to extend the simulator by incorporating physically-realistic camera models into the 3DGS rendering724

pipeline, enabling explicit control over exposure, tone mapping, and sensor response curves to better725

approximate real-world lighting variability.726

Broader impacts. This work introduces a scalable, geometry-consistent synthetic dataset for event-727

based vision research. On the positive side, it lowers the barrier for training high-performance models728

in domains such as autonomous driving, robotics, and augmented reality, where event-based sensing729

offers advantages under fast motion or challenging lighting. By providing a flexible, physically-730

grounded simulation framework, the work supports reproducible and ethical AI development. On731

the negative side, improved realism in synthetic event data may inadvertently enable misuse such as732

generating adversarial inputs or synthetic surveillance data. These risks are mitigated by the dataset’s733

academic licensing and transparency in its construction pipeline. Furthermore, the data generation734

framework may raise privacy concerns if adapted for real-scene reproduction, which warrants further735

community discussion and the adoption of usage safeguards.736

F License of the used assets737

• 3D Gaussian Splatting [31]: A publicly available method with its dataset released under738

the CC BY MIT license.739

• MVImgNet [80]: A publicly available dataset released under the CC BY 4.0 license.740

• DL3DV [38]: A publicly available dataset released under the CC BY 4.0 license.741

• GS2E: A publicly available dataset released under the CC BY MIT license.742
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