
Replicating Softmax Deep Double Deterministic Policy

Gradients

Anonymous Author(s)
Affiliation
Address
email

Reproducibility Summary1

Scope of Reproducibility2

We attempt to reproduce Pan et al. [25] claim that Softmax Deep Double Deterministic Policy Gradient (SD3) achieves3

superior performance over Twin Delayed Deep Double Deterministic Policy Gradient (TD3) [11] on continuous con-4

trol reinforcement learning tasks. We utilize both environments that were used by the paper and expand to include5

some not present.6

Methodology7

We compare the performance of TD3 and SD3 on a variety of continuous control tasks. We use the authors’ PyTorch8

code but also provide Tensorflow implementations of SD3 and TD3 (which we did not use for optimization reasons).9

For the control tasks we utilize OpenAI Gym environments with PyBullet implementations, as opposed to MuJoCo, in10

an effort to bolster claims of generalization and to avoid exclusionary research practices. Experiments are conducted11

both on similar environments in the original paper and those that were not mentioned.12

Results13

Overall we reach similar, albeit much milder, conclusions as the paper, specifically, that SD3 outperforms TD3 on14

some of continuous control tasks. However, the advantage is not always as readily apparent as in the original work.15

Algorithmic performance was comparable on most environments, with SD3 providing limited evidence of definitive16

superiority. Further investigation and improvements are warranted. The results are not directly comparable to the17

original paper due to differences in physics simulators. Additionally, we did not perform hyperparameter optimization,18

which could potentially bolster returns on some environments.19

What was easy20

The authors’ made their code extremely easy to use, run, modify and rewrite in a different package. Because everything21

was available on their github and required only common reinforcement learning packages it was quick and painless to22

run. It was trivial to use the algorithms on different environments from different packages and collect their results for23

analysis.24

What was difficult25

One of the biggest difficulties was the time and resource consumption of the experiments. Running each algorithm26

on each environment with a sufficient number of random seeds took the vast majority of the time. We had a total27

runtime of around 310 GPU hours (or 13 days). Time was our primary constraint and was the primary reason we did28

no investigate other environments. Simulator differences also proved to be somewhat challenging.29

Communication with original authors30

Our contact with the authors was limited to a discussion we had at their poster presentation at NeurIPS 2020.31

Submitted to ML Reproducibility Challenge 2020. Do not distribute.

https://github.com/benelot/pybullet-gym
https://github.com/ling-pan/SD3


1 Introduction32

Deep reinforcement learning (RL) has achieved a great deal in the past decade. From mastering games such as Go33

[27], Dota 2 [5], StarCraft II [32], and Atari [4], to precision robotic control [2] and robotic movements [14]. However,34

there is still substantial room to grow, and RL suffers from a number of problems. Problems such as brittleness to35

hyperparameters [17] and small code level changes [9], inferior performance to far simpler methods [12], [23], and36

weak generalization [21] that ultimately make RL difficult to use in any real world applications [8]. This problem of37

generalization is key to the investigation presented here. In this work, we attempt to evaluate the generalizability of the38

novel continuous control reinforcement algorithm presented in Pan et al. [25], the Softmax Deep Double Deterministic39

Policy Gradient (SD3).40

Pan et al. [25] presents an empirical and theoretical argument for the usage of the softmax operator in continuous41

control reinforcement learning tasks. While the softmax operator is standard practice in discrete policy gradient42

algorithms, it usage in continuous environments is rare. However, with the recent successes of entropy maximizing43

RL [10], [13], [14], [15], [16], [7], [33], there has been an increase of interest in the softmax operator for RL [3],44

[28] which is functionally similar to entropy maximization. SD3 continues this trend, utilizing the softmax operator45

to expand upon and claim improvements over TD3 [11] on the MuJoCo benchmark.46

In this work, we attempt to evaluate the generalization of Pan et al. [25] utilizing a variety of environments based in the47

open source PyBullet physics simulator. These environments include PyBullet reimplementations of the environments48

from the original paper, in addition to some that were not present. These environments are chosen to test SD3’s ability49

to generalize to other environments. These test environments utilize the PyBullet physics simulator and are adapted for50

OpenAI Gym [6] via PyBullet-Gym and includes some similar environments from the MuJoCo benchmark and many51

unique ones. We use PyBullet over MuJoco to support efforts to make reinforcement learning more equitable [24], and52

we reject exclusionary MuJoCo usage, conducting all of our experiments exclusively on free and open source software.53

Note that all code and results will be available for a final copy (but are not presented here to preserve anonymity).54

2 Preliminaries55

2.1 Reinforcement Learning Background56

Reinforcement learning is a field of machine learning in which an agent seeks to maximize a numerical reward signal57

from an environment [29]. RL environments are often formalized as a Markov Decision Process (MDP), defined by58

the tuple 〈S,A, R, γ〉. Here S represents the set of states,A the set of actions, R the reward and γ the reward discount,59

γ ∈ [0, 1]. It is common to also see a P in this tuple representing the probability of state transitions; however, our60

environments are not stochastic and therefore P = 1. The goal of an RL algorithm is to design (or learn) a policy, π,61

such that it maximizes the expected return (also called objective): J = E
[

∑T

t=0 γ
tr(st, at)|π

]

.62

There are a number of techniques to design the policy π, but in contemporary RL it is standard practice to use non-63

linear function approximators (i.e. deep neural networks) to learn value and policy functions. While there are a number64

of classes of algorithms, the focus of this work is on model-free, off-policy, actor-critic algorithms. In these systems65

an actor (or policy) network outputs the actions and is updated with a critic network that learns the value function.66

These policy functions can either be stochastic or deterministic, i.e. they can either output the mean and standard67

deviation of the policy distribution for an action to be chosen from, or output a single value for the action. Both SD368

and TD3 are deterministic policy algorithms. The policy is network, parameterized by θ, is denoted as πθ. This allows69

us to represent the objective function J , as an expectation, J(πθ) =
∫

S
r(s, πθ(s))ds = E [R(s, πθ(s))], taking the70

gradient of the objective function yields ∇J(πθ) =
∫

S
∇πθ(s)∇Q(s, πθ(s))ds = E [∇πθ(s)∇Q(s, πθ(s))], where71

Q(s, a) indicates the expected return of taking action a in state s [26]. This is known as the deterministic policy72

gradient (DPG). There are a variety of techniques and improvements to this formulation building upon each other to73

achieve better results. For a visual outline of this see Figure 1. The x-axis is time, and reading this figure left to right74

shows how the algorithms have built upon each other over time. Each box is an algorithm and the arrow from one box75

indicates that the pointed to algorithm took ideas and techniques from the previous algorithm.76

DPG algorithm is essentially the same as described above, the policy is updated via the gradient above and the Q77

network is updated with the standard Bellman error: L(Qθ) = rt + γQθ(st+1, πθ(st+1))−Qθ(st, at) [26]. However,78

DPG is very hard to train suffering from severe hyperparameter brittleness and lack of exploration. DDPG improved79

upon DPG by adding noise to the policies to increase exploration, and by adding target networks for the policy and80

value networks to improve stability [11]. DDPG still suffers from over-estimations of the Q value, which happens81

because overestimation is selected for when updating the Q value, i.e. E [maxaQ(st, a)] ≥ maxaE [Q(st, a)], often82

leading to convergence problems [20]. TD3 attempts to address the well know overestimation problem in Q learning.83

2

https://github.com/benelot/pybullet-gym
http://www.mujoco.org/


Figure 1: Outline of Continuous Control Algorithms. Deterministic Policy Gradient (DPG) [26], Deep Deterministic
Policy Gradient (DDPG) [22], Double Deep Q Networks (Double DQN) [31], Twin Delayed Deep Deterministic
Policy Gradient (TD3) [11], Soft Q Learning (SQL) [13], Softmax Deep Double Deterministic Policy Gradients (SD3)
[25], Soft Actor-Critic (SAC) [16]

To address these overestimation errors, TD3 borrows from Double DQN [31] and uses the idea of using two (hence the84

name ’twin’) Q function approximators to prevent overestimations, in addition TD3 updates the policy network less85

frequently [11]. While TD3 does successfully address the overestimation problem, it introduces the new underestima-86

tion problem, something SD3 tries to combat [25]. Parallel to these developments are the improvements in entropy87

maximization methods: soft Q Learning [13] and soft actor-critic [15]. These methods maximize a different objective88

than presented above due to the addition of an entropy term: J(π) =
∑T

t=0E [r(st, at) + αH(π(st))]. This entropy89

objective (under optimal conditions) is functionally the same as the softmax operator.90

2.2 SD391

SD3 has a number of similarities with TD3, the main difference being the use of the softmax operator in the value func-92

tion Bellman error. Hence, key to understanding SD3 is understanding the softmax operator. The softmax operator is93

common in RL problems, but is typically seen in discrete action spaces where it is easy to calculate: σ(z)i =
ezi∑

K
j=0

e
zj

.94

If we consider the softmax of the Q function, in continuous action spaces it becomes computationally intractable:95

σ(Q(s, ·)) =
∫

A

exp(βQ(s,a))∫
A

exp(βQ(s,a′))da′Q(s, a)da. If we could utilize the softmax operator, Pan et al. [25] proves helpful96

bounds on the difference between maxaQ(s, a) and σ (Q(s, a)), showing that the softmax operator does not overes-97

timate and worst case only slightly underestimate. In order to make the continuous softmax operator computationally98

feasible, SD3 utilizes a sampling technique from [16]: σ(Q(s, ·)) = E [exp(βQ(s, a))Q(s, a))] /E [exp(βQ(s, a))].99

This sampling technique can also incorporate advancements in importance sampling, but that is unused in SD3. To100

illuminate the similarities and differences between the TD3 and SD3 we present them side by side highlighting a few101

key differences (blue are highlighted in both to show differences and red are only highlighted in one to show addition102

of a new feature). See Algorithms 1 and 2.103

3 Methodology104

3.1 Target Questions105

In order to provide a thorough assessment of the paper, the claims it makes, and the conclusions it draws, we present106

three central questions. These questions serve to guide our analysis, and we evaluate them after presenting the results.107

• To what extent can we replicate the superior performance of SD3 over TD3 on PyBullet reimplementations108

of the used MuJoCo environments?109

• To what extent does this performance generalize to other continuous control tasks?110

• What improvements can be made to the SD3 algorithm?111

3.2 Experimental Setup112

Although we provide TensorFlow [1] implementations of both TD3 and SD3, we run all experiments using the authors’113

provided PyTorch implementations. Our reasoning is twofold. First, our code is less optimized than the PyTorch code114

and it is therefore more computationally feasible to use the PyTorch code. Secondly, RL algorithms are notoriously115

3



difficult to re-implement [30] and we wish to avoid any challenges to our implementations. Even little differences,116

such as rounding vs. truncating floating points, can result is performance differences. We wanted to make our claims117

about the algorithm as presented, and our claims are strengthened by utilization of their code. The PyBullet gym118

adaptions and implementations can be found here. We begin by collecting data for the 6 of the environments in the119

original paper, specifically: Ant, Hopper, Lunar Lander, Walker2D, Humanoid, and Half Cheetah environments. We120

also evaluated three additional environments: Pendulum, InvertedDoublePendulum and HumanoidFlagrun (one of the121

hardest environments). Our experiments runs were setup using the same framework as the original paper: we collected122

data for 1 million iterations and repeated each experiment five times with a different random seed each time. For the123

extended experiments we only collected three runs due to time constraints. All experiments were conducted on two124

personal computers with CUDA enabled GPUs. Depending on the environment each run would take between 2 - 8125

hours.126

Algorithm 1: TD3

Initialize value networks Q1, Q2 with
parameters θ1, θ2

Initialize policy network π with parameters φ
Initialize target networks Q′

1, Q
′
2, π

′ with
parameters θ′1 ← θ1, θ′2 ← θ2, φ′ ← φ

Initialize replay buffer D
for for t = 0 to T do

Select noisy action a← π(s) +N and
observe reward and new state s′

Store 〈s, a, r, s′〉 in D
Randomly sample N tuples from D
y ← r + γmini=1,2Qθ′

i
(s′, πφ(s

′) +N )
Update critics via the loss

L ← 1
N

∑

(y −Qθi(s, a))
2

if policy update then
Update φ via gradient

1
N

∑

∇πφ(s)∇Qθ1(s, πφ(s) +N )

θ′i ← τθi + (1− τ)θ′i
φ′ ← τφ+ (1− τ)φ′

Algorithm 2: SD3

Initialize value networks Q1, Q2 with parameters θ1, θ2
Initialize policy networks π1, π2 with parameters φ1, φ2

Initialize target networks Q′
1, Q

′
2, π

′
1, π

′
2 with parameters

θ′1 ← θ1, θ′2 ← θ2, φ′
1 ← φ1, φ′

2 ← φ2

Initialize replay buffer D
for for t = 0 to T do

Select action a← πi(s), i← maxi=1,2Qi(s, π1(s))
and observe reward and new state s′

Store 〈s, a, r, s′〉 in D
for i = 1, 2 do

Randomly sample N tuples from D
Sample K noises ǫ
â′ ← πθ′

1
(s) + ǫ

Q̂← mini=1,2(Qθ′
i
(s′, â′))

σ(Q̂)← exp(βQ̂(s′, â′))Q̂(s′, â′)/exp(βQ̂(s′, â′))

y ← r + γσ(Q̂)

Update Qθi via the loss L = 1
N

∑

(y −Qθi(s, a))
2

Update φi via gradient
1
N

∑

∇πφi
(s)∇Qθi(s, πφi

(s))

θ′i ← τθi + (1− τ)θ′i
φ′
i ← τφi + (1− τ)φ′

i

127

3.3 Hyperparameters128

We use the same hyperparameters as the original paper. For all environments and algorithms refer to Table 1.129

Batch size 100

Network architecture (policy and value) (400,300)

ADAM [19] learning rate 1 ∗ 10−3

Replay buffer size 1 ∗ 106

Training delay 1 ∗ 104

Noise, N (µ, σ2) N (0, 0.1)
γ 0.99

τ 0.005

Policy update frequency (TD3 only) 2

K (SD3 only) 50

Table 1: Hyperparameters

The one notable difference is that Pan et al. [25] uses a separate set of hyperparameters for the Humanoid environment130

which we do not do. The second important note on hyperparameters is the SD3 unique hyperparameter β, which131

scales the softmax operation. In the original paper this is determined to be a specific value for each environment,132

ranging from 0.001 to 500. On the environments utilized in the paper we use the same values of β. For the extended133

environments we adopt the values of β from similar environments. For all β value see Table 2134

4

https://github.com/benelot/pybullet-gym


Ant 0.001

Half Cheetah 0.005

Hopper 0.05

Lunar Lander 0.5

Walker 2D 0.1

Humanoid 0.05

Pendulum 0.5

Inverted Double Pendulum 0.5

Humanoid Flagrun 0.05

Table 2: β Values

4 Results135

Our results are overall indicative that SD3 does provide an advantage on the some of the environments, although these136

advantages are relatively small. On all 9 environments, SD3 performers an average of 7.7% better than TD3; however137

this comes at an increased computational cost and is not consistently superior.138

4.1 Results on Paper Benchmarks139

Figure 2: Paper Environments Reward vs Million Steps

Results for six of the original environments can be seen in Figure 2. The blue represents SD3 and red TD3. The shaded140

area represents a confidence interval of one standard deviation. While the exact numerical rewards of the PyBullet141

are not directly comparable1 to the MuJoCo rewards (hence we cannot overlay the original papers results directly142

on these graphs); the environments are evaluate the same goal and the same physics. The results are also presented143

in Table 3. This table shows the best average reward (over 5 runs) and the associated standard deviation. The better144

performing result is bolded. From these results we can see that SD3 outperforms TD3 on 2/6 of the environments. This145

may look as though these algorithms are effectively the same (as the humanoid performance difference in minuscule).146

1The reward scale is lower than MuJoCo

5

https://github.com/bulletphysics/bullet3/issues/1718#issuecomment-393198883


Environment TD3 SD3

Ant 3744.6± 305.5 3878.3 ± 103

HalfCheetah 2948.1 ± 665.7 2711.3± 644.8
Hopper 2553.1 ± 181.2 2367.3± 157.8

LunarLander 290.1 ± 4.6 289.7± 5.5
Walker2D 942.4± 132.8 1572 ± 260

Humanoid −1.1649 ± 0.022 −1.1651± 0.021
Table 3: Paper Environments Comparisons

However, further analysis gives a slight edge to SD3. The average performance of SD3 is 9% better than TD32 on147

these environments. This is very minor improvements (and not a reliable one) and comes at the cost of increased148

computation time. Walker2D is the only environment that one could universally recommend SD3 over TD3 as in149

every other environment the standard deviation curves overlap. There seems to be consistent failues in the Humanoid150

PyBullet environment, which both algorithms fail to learn.151

4.2 Additional results not present in the original paper152

(a) Pendulum Reward vs Million Steps (b) Double Inverted Pendulum Reward vs Million Steps

Figure 3: Humanoid Flagrun Reward vs Million Steps

6



Environment TD3 SD3

Pendulum −139.2 ± 0.9 −157.4± 18.1
Inverted Double Pendulum 9358.4 ± 0.6 9357.1± 0.1

Humanoid Flagrun 74.8± 23 94.2 ± 19.4

Table 4: New Environments Comparisons

Standard benchmarks are often problematic and may not always generalize (a reinforcement learning of "teaching for153

the test" so to speak). While there are proposals for other metrics of evaluation [18], we choose to do a simple test154

for generalization by expanding the testing on environments that are not part of the "standard" benchmark. These155

These three environments offer similar results to the paper environments, a positive indication for generalization. SD3156

performs worse on the majority of the environments once again, while also performing (on average) 5% better3. Note157

that this is without substantial hyperparameter (β) optimization. This is indicative that even without full knowledge158

of hyperparameters, reasonable choices can lead to an advantage. The point of these extended results is less about a159

direct comparison These results are less about the potential strength of SD3 compared to TD3, and more about the160

generalizability and out of the box usability.161

5 Discussion162

5.1 Results Analysis163

The results presented above are not entirely conclusive. Although they indicate that, on average, SD3 performs superior164

to TD3, this is not the end all be all. SD3 only outperforms TD3 on 3 out of the 9 environments, but it outperforms165

TD3 substantially (hence why the average is in its favor). Note too that SD3 is a more computationally expensive166

algorithm (only by a small margin, comparable to its performance gains). However, the runtime of the algorithm does167

not include the necessary hyperparameter optimization for the β value that would be needed (which could require 5-10168

additional runs) for any real world applications. The advantages appear to be more nuanced than the original paper169

suggested.170

5.2 Target Questions171

Next, let us consider the target questions we set in the beginning of this work. To what extent can we replicate the172

superior performance of SD3 over TD3 on the given environments? In short, we we largely not able to. We were able173

to replicate superior performance on some environments and on average, but the majority of environments we were174

not able to. In addition, the size of the advantages present in the original paper do not appear to be as large here. Pan175

et al. [25] presents 4 environments that SD3 definitively (i.e. the standard deviation curves do not overlap) performs176

better on: Half Cheetah, Ant, Walker2d, Hopper. However, we were only able to replicate this level of superior177

performance on Walker2d. On the other three environments, SD3’s advantage was minimal to nonexistent. This is not178

to suggest that there is anything wrong with their results, rather, that the results may not generalize (even to extremely179

similar environments, with minorly different reward scaling). This is unfortunate, as decreasing the brittleness of RL180

algorithms is necessary for real world applications.181

To what extent does this performance generalize to other continuous control tasks? As was mentioned above, this182

generalization is weak. The generalization is minimal even to the same environments in a different physics simulator183

and this is also true for the new environments. We cannot say definitively that SD3 is the inferior algorithm on184

Pendulum and Double Inverted Pendulum as we did not do the full ablation studies to determine the optimal β values.185

However, we can say that if one wants SD3 to perform definitely better, specific values of β are needed, and even then186

performance may not be superior to TD3. This need for hyperparameter optimization is a weakness of the algorithm.187

Given the already numerous challenges of real world RL [8], requiring extensive trial and error to obtain the necessary188

parameters for algorithmic superiority is a steep price. Given the results on a new simulator and new environments,189

the SD3 does not appear to generalize particularly well. Of course, this is the case for many algorithms (and is not190

necessarily a unique flaw of SD3).191

What improvement can be made to the SD3 algorithm? Although improving generalizability is an important problem,192

solutions are much more difficult. However, one solution that would help would be to enable automatic adjustments193

of the β value. This is not only prohibitive when using SD3 for new environments (as hyperparameter optimization194

2(3878.3/3744.6 + 2711.3/2948.1 + 2367.3/2553.1 + 289.7/290.1 + 1572/942.4 + 1.1649/1.1651)/6 = 1.09
3(139.2/157.4 + 9357/9358 + 94.2/74.8)/3 = 1.05

7



can be expensive) but also over the course of a single run, the optimal β might differ. This idea is very similar to the195

improvements made to Soft-Actor Critic. In the original paper, the entropy parameter, α, was determined via trial and196

error [15]; however, automating this parameter showed to be more effective from both a computation expense and a197

maximum reward standpoint [16]. The exact technique may not be able to carry over, as the nature of the problems198

are different, but it is certainly worth investigating.199

6 Conclusion200

In this work, we evaluate the replicatability of the paper Softmax Deep Double Deterministic Policy Gradients [25]. To201

promote inclusive research practices, we ran all code on the open source PyBullet physics engine. Our results generally202

align with the original paper’s claims about SD3’s superior performance over TD3 overall, are not very compelling.203

SD3 failed to offer an advantage on the majority of environments evaluated. However, the average performance boost204

warrants further investigation and there is potential that hyperparameter optimization would bolster the performance205

of SD3. It is worth noting that this level of scrutiny is not applied to all algorithms, and we make no claims that other206

SotA continuous control algorithms would generalize any better.207

8



References208

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay209

Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-scale machine learning. In 12th210

{USENIX} symposium on operating systems design and implementation ({OSDI} 16), pages 265–283, 2016.211

[2] Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron, Alex Paino,212

Matthias Plappert, Glenn Powell, Raphael Ribas, et al. Solving rubik’s cube with a robot hand. arXiv preprint213

arXiv:1910.07113, 2019.214

[3] Kavosh Asadi and Michael L Littman. An alternative softmax operator for reinforcement learning. In Interna-215

tional Conference on Machine Learning, pages 243–252. PMLR, 2017.216

[4] Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi, Zhaohan Daniel217

Guo, and Charles Blundell. Agent57: Outperforming the atari human benchmark. In International Conference218

on Machine Learning, pages 507–517. PMLR, 2020.219

[5] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak, Christy Dennison, David220

Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large scale deep reinforcement learning.221

arXiv preprint arXiv:1912.06680, 2019.222

[6] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech223

Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.224

[7] Petros Christodoulou. Soft actor-critic for discrete action settings. arXiv preprint arXiv:1910.07207, 2019.225

[8] Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges of real-world reinforcement learning.226

arXiv preprint arXiv:1904.12901, 2019.227

[9] Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry Rudolph, and Alek-228

sander Madry. Implementation matters in deep rl: A case study on ppo and trpo. In International conference on229

learning representations, 2019.230

[10] Benjamin Eysenbach and Sergey Levine. Maximum entropy rl (provably) solves some robust rl problems. arXiv231

preprint arXiv:2103.06257, 2021.232

[11] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in233

actor-critic methods. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th In-234

ternational Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Re-235

search, pages 1587–1596, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR. URL236

http://proceedings.mlr.press/v80/fujimoto18a.html.237

[12] Xiaoxiao Guo, Satinder Singh, Honglak Lee, Richard L Lewis, and Xiaoshi Wang.238

Deep learning for real-time atari game play using offline monte-carlo tree search plan-239

ning. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Q. Weinberger,240

editors, Advances in Neural Information Processing Systems, volume 27, 2014. URL241

https://proceedings.neurips.cc/paper/2014/file/8bb88f80d334b1869781beb89f7b73be-Paper.pdf.242

[13] Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with deep energy-243

based policies. In International Conference on Machine Learning, pages 1352–1361. PMLR, 2017.244

[14] Tuomas Haarnoja, Sehoon Ha, Aurick Zhou, Jie Tan, George Tucker, and Sergey Levine. Learning to walk via245

deep reinforcement learning. arXiv preprint arXiv:1812.11103, 2018.246

[15] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum247

entropy deep reinforcement learning with a stochastic actor. In International Conference on Machine Learning,248

pages 1861–1870. PMLR, 2018.249

[16] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash Kumar,250

Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and applications. arXiv preprint251

arXiv:1812.05905, 2018.252

[17] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger. Deep rein-253

forcement learning that matters. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32,254

2018.255

9

http://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.neurips.cc/paper/2014/file/8bb88f80d334b1869781beb89f7b73be-Paper.pdf


[18] Andrew Ilyas, Logan Engstrom, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry Rudolph, and Alek-256

sander Madry. A closer look at deep policy gradients. In International Conference on Learning Representations,257

2020. URL https://openreview.net/forum?id=ryxdEkHtPS.258

[19] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint259

arXiv:1412.6980, 2014.260

[20] Qingfeng Lan, Yangchen Pan, Alona Fyshe, and Martha White. Maxmin q-learning: Controlling the261

estimation bias of q-learning. In International Conference on Learning Representations, 2020. URL262

https://openreview.net/forum?id=Bkg0u3Etwr.263

[21] Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien Pérolat, David264

Silver, and Thore Graepel. A unified game-theoretic approach to multiagent reinforcement learning. arXiv265

preprint arXiv:1711.00832, 2017.266

[22] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver,267

and Daan Wierstra. Continuous control with deep reinforcement learning. In International Conference on268

Learning Representations, 2016.269

[23] Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search provides a competitive approach to270

reinforcement learning. arXiv preprint arXiv:1803.07055, 2018.271

[24] Johan S Obando-Ceron and Pablo Samuel Castro. Revisiting rainbow: Promoting more insightful and inclusive272

deep reinforcement learning research. arXiv preprint arXiv:2011.14826, 2020.273

[25] Ling Pan, Qingpeng Cai, and Longbo Huang. Softmax deep double deterministic policy gradients. In Neural274

Information Processing System, 2020.275

[26] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller. Deterministic276

policy gradient algorithms. In International conference on machine learning, pages 387–395. PMLR, 2014.277

[27] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian278

Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go with279

deep neural networks and tree search. nature, 529(7587):484–489, 2016.280

[28] Zhao Song, Ron Parr, and Lawrence Carin. Revisiting the softmax bellman operator: New benefits and new281

perspective. In International Conference on Machine Learning, pages 5916–5925. PMLR, 2019.282

[29] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.283

[30] Yuandong Tian, Jerry Ma, Qucheng Gong, Shubho Sengupta, Zhuoyuan Chen, James Pinkerton, and Larry284

Zitnick. Elf opengo: An analysis and open reimplementation of alphazero. In International Conference on285

Machine Learning, pages 6244–6253. PMLR, 2019.286

[31] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-learning. In287

Proceedings of the AAAI Conference on Artificial Intelligence, volume 30, 2016.288

[32] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung Chung,289

David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in starcraft ii using290

multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.291

[33] Patrick Nadeem Ward, Ariella Smofsky, and Avishek Joey Bose. Improving exploration in soft-actor-critic with292

normalizing flows policies. arXiv preprint arXiv:1906.02771, 2019.293

10

https://openreview.net/forum?id=ryxdEkHtPS
https://openreview.net/forum?id=Bkg0u3Etwr

	Introduction
	Preliminaries
	Reinforcement Learning Background
	SD3

	Methodology
	Target Questions
	Experimental Setup
	Hyperparameters

	Results
	Results on Paper Benchmarks
	Additional results not present in the original paper

	Discussion
	Results Analysis
	Target Questions

	Conclusion

