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Abstract

The biaffine model is a strong and efficient001
model for graph-based dependency parsing.002
However, previous work only used the biaffine003
method in single-layer form. In this paper, we004
propose a multi-layer biaffine model for neural005
dependency parsing. In this model, we modify006
the biaffine method so that it can be utilized in007
multi-layer form. We evaluate our model on008
PTB and CTB and show our model achieves009
state-of-the-art results on both datasets. Further010
experiments show the benefits of introducing011
multi-layer form into the biaffine method with012
low efficiency loss.013

1 Introduction014

Dependency parsing is a fundamental task in NLP.015

Given a input sequence s = w0w1...wn, the out-016

put is a dependency tree t = {(h, d, l), 0 ≤ h ≤017

n, 1 ≤ d ≤ n, l ∈ L}, where w0 is a pseudo-word018

as root and (h, d, l) is an arc from wh to wd with019

label l in a relation set L. Due to the simplicity and020

effectiveness of representing syntactic information021

by using the tree structure, many works involve022

dependency parsing, such as syntax-enhanced pre-023

trained model (Xu et al., 2021).024

Biaffine first-order graph-based parser (Dozat025

and Manning, 2017), which utilizes biaffine mech-026

anism and training via local head selection for each027

token, is frequently used in dependency parsing028

due to its high performance and efficiency. There029

are two ways to extend the biaffine model in pre-030

vious work, one is to extend the biaffine method031

to triaffine for modeling second-order information032

(Zhang et al., 2020; Wang and Tu, 2020), the other033

is to modify the encoder (Li et al., 2019; Mrini et al.,034

2020). However, no previous work has tried to in-035

troduce multi-layer form into the biaffine method.036

In this paper, we propose a multi-layer biaffine037

method for dependency parsing. We modify the038

biaffine model into a connectable layer form. The039

output matrices of the biaffine model are used as040

weight matrices to construct the new token repre- 041

sentation. The representation contains the informa- 042

tion of head, dependents, and labels provided by 043

the biaffine mechanism, and is used as the input to- 044

ken representation for the next layer. Experiments 045

on PTB and CTB show that our model achieves 046

state-of-the-art results on both datasets and has ad- 047

vantages over the single-layer biaffine model. Our 048

model also has a low efficiency loss compared with 049

the single-layer biaffine model. 050

2 Model 051

Our graph-based dependency parser consists of two 052

parts, i.e., Encoder and Multi-layer biaffine model. 053

2.1 Encoder 054

Encoder consists of Embedding layer and BiLSTM 055

layer. In Embedding layer, input token wi with 056

Part-of-speech tag pi are used to construct input 057

vector ei: 058

ei = [emb(wi); posemb(pi)] (1) 059

Where emb is word embedding, posemb is 060

learned Part-of-speech tag embedding. We use 061

pre-trained model for word embedding. Follow- 062

ing Straka et al. (2019), we use the linear com- 063

bination of hidden states of the last four layers 064

as the embedding, and a word embedding is the 065

average of its subword embeddings. We project 066

word embedding to a lower dimension. In BiLSTM 067

layer, e0e1...en is input into a three-layer BiLSTM 068

model. We arrange the output vectors of the last 069

layer h0,h1, ...,hn into the matrix X0 ∈ Rn×2h, 070

as the initial input of Multi-layer biaffine model: 071

hi =BiLSTMi(e0e1...en) (2) 072

X0 =


h0

h1

...
hn

 (3) 073
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2.2 Multi-layer Biaffine Model074

Multi-layer biaffine model consists of T layers with075

the same structure. The input matrix of the t-th076

layer is Xt−1. The biaffine method is following077

Dozat and Manning (2017) for arc prediction:078

R(head)t = MLP (head)t(Xt−1) (4)079

R(dep)t = MLP (dep)t(Xt−1) (5)080

S
(arc)t
i = R(head)tU (1)t(R

(dep)t
i )

T
(6)081

+R(head)tb(1)t082

Where MLP (head)t,MLP (dep)t are 2h×da (input083

dimension is 2h and output dimension is da; simi-084

larly hereinafter) and U (1)t ∈ Rda×da , b(1)t ∈ Rda085

are learned parameters.086

For label prediction, we modify the biaffine087

method in Dozat and Manning (2017). We do not088

use the predictive head, but calculate the label score089

vector for each pair of (i, j):090

R(lhead)t = MLP (lhead)t(Xt−1) (7)091

R(ldep)t = MLP (ldep)t(Xt−1) (8)092

S
(label)t
ij = R

(lhead)t
j U (2)t(R

(ldep)t
i )

T
(9)093

Where MLP (lhead)t,MLP (ldep)t are 2h× dl and094

U (2)t ∈ Rdl×k×dl is learned matrix (k is the size095

of relation set).096

We scale and apply softmax function (Vaswani097

et al., 2017)on S(arc)t ∈ Rn×n to obtain attention098

weight matrix, using it to construct the arc-related099

representation:100

R(arc)t = MLP (arc)t(Xt−1) (10)101

V (arc)t = Softmax(
S(arc)t

√
2h

)R(arc)t (11)102

Where MLP (arc)t is 2h× da.103

We apply the same method on S(label)t ∈104

Rn×n×k after projection to construct the label-105

related representation:106

R(label)t = MLP (label)t(Xt−1) (12)107

V (label)t = Softmax(
S(label)tb(2)t√

2h
)R(label)t

(13)

108

Where MLP (label)t is 2h × dl and b(2)t ∈ Rk is109

learned vector.110

At the end of the layer, we combine two types111

of representations, applying projection and Add &112

Norm (Vaswani et al., 2017) to obtain the input 113

matrix of the next layer: 114

Y t = [V (arc)t;V (label)t]W t (14) 115

Xt = LayerNorm(Xt−1 + Y t) (15) 116

Where W t ∈ R(da+dl)×2h is learned matrix. Xt ∈ 117

Rn×2h is used as the input of (t+ 1)-th layer. 118

For the final output dependency tree, we apply 119

softmax function on score matrices of the last layer: 120

S(arc) = Softmax(S(arc)T ) (16) 121

S(label) = Softmax(S(label)T ) (17) 122

We use S(arc) as the edge weight matrix and apply 123

the Eisner algorithm (Eisner, 2000) to obtain the 124

projective maximum spanning tree. After obtain- 125

ing the tree structure, we use S(label) as the score 126

matrix and select the label with the maximum score 127

for each arc. 128

2.3 Training 129

We use the cross-entropy loss for arc and label 130

predictions: 131

L(arc) = −
n∑

i=1

log(S(arc)
i,hi

) (18) 132

L(label) = −
n∑

i=1

log(S(label)
i,hi,li

) (19) 133

Where hi is the gold head of wi, and li is the gold 134

label of arc (hi, wi). The final loss is: 135

L = λL(arc) + (1− λ)L(label) (20) 136

Where λ is a hyper-parameter between 0 and 1. 137

3 Experiments 138

3.1 Datasets 139

We evaluate our method on PTB 3.0 (Marcus et al., 140

1993) and CTB 5.1 (Xue et al., 2005). We use the 141

same POS tagger (Toutanova et al., 2003) and data 142

splits as described in Chen and Manning (2014). 143

3.2 Evaluation 144

We use UAS and LAS as the metric. During the 145

evaluation, we ignore all punctuation. We select 146

the model based on the sum of UAS and LAS on 147

the dev set. For all results reported, we run the 148

training process five times with different random 149

seeds and average the results to avoid contingency. 150
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Pre-trained Model PTB
UAS LAS

w/o Doz. & Man. (2016) 95.74 94.08
Zhang et al. (2020) 96.14 94.49

XLNet-large
Zhou & Zhao (2019)† 97.20 95.72
Mrini et al. (2020)† 97.42 96.26
Ours(XLNet-large) 97.46 96.45

XLNet-base Ours(XLNet-base) 97.32 96.27

BERT-large
Wang & Tu (2020) 96.91 95.34
Fer. & Góm. (2021) 97.05 95.48
Ours(BERT-large) 97.20 96.14

BERT-base
Moh. & Hen. (2020) 96.11 94.33
Moh. & Hen. (2021) 96.66 95.01
Ours(BERT-base) 96.97 95.90

Pre-trained Model CTB
UAS LAS

w/o Doz. & Man. (2016) 89.30 88.23
Ma et al. (2018) 90.59 89.29

BERT-base

Mrini et al. (2020)† 94.56 89.28
Wang & Tu (2020) 92.78 91.69
Fer. & Góm. (2021) 92.75 91.62
Moh. & Hen. (2021) 92.98 91.18
Ours(BERT-base) 93.03 91.21

Table 1: Comparison of dependency parsers on PTB and
CTB. Pre-trained column indicates pre-trained model
used for word embedding. †:These approaches join the
constituency parsing and use additional constituency
information for training.

3.3 Implementation Details151

We evaluate our model with different pre-trained152

models. All pre-trained models we use for PTB are153

case-sensitive. The dimension of word embedding154

after projection is 300, and the dimension of POS155

embedding is 50. We set h = 512, da = 512,156

dl = 128, T = 6, λ = 0.55. We apply dropout157

after embedding, BiLSTM, and MLP layers with158

dropout rate 0.33. We apply gradient clipping with159

max 2-norm value 1. We use Adam(Kingma and160

Ba, 2015) optimizer with β1 = 0.9, β2 = 0.999.161

The learning rate is 1e−5 for pre-trained model and162

5e− 4 for other components. We train the model163

for 10 epochs on PTB and 20 epochs on CTB. We164

decay the learning rate linearly to 0 during the165

training process. We batch the sentences of similar166

length for efficiency. The batch size is 24.167

3.4 Baselines168

We use five types of baselines for comparison. All169

results of baselines are from the corresponding pa-170

pers. 1) Dozat and Manning (2017) introduces171

the biaffine method for first-order graph-based de-172

pendency parsing. 2) Zhang et al. (2020) intro-173

duces TreeCRF, and Wang and Tu (2020) intro-174

duces MFVI. These parsers extend the biaffine175

method to triaffine for modeling second-order infor- 176

mation. 3) Zhou and Zhao (2019) introduces head- 177

driven phrase structure grammar (HPSG) for joint 178

dependency and constituent parsing. Mrini et al. 179

(2020) uses HPSG and introduces label attention 180

layer. These parsers use additional constituency 181

information for training. 4) Mohammadshahi and 182

Henderson (2020) and Mohammadshahi and Hen- 183

derson (2021) introduces Graph-to-Graph Trans- 184

former for transition-based and graph-based depen- 185

dency parsing respectively. 5) Ma et al. (2018) 186

introduces stack-pointer networks, and Fernández- 187

González and Gómez-Rodríguez (2021) introduces 188

bottom-up hierarchical pointer networks, both for 189

transition-based dependency parsing. 190

3.5 Main Results 191

Table 1 shows the results of baselines and our mod- 192

els on PTB and CTB. For intuitive comparison, 193

we divide the models according to the pre-trained 194

model used for word embedding. It can be seen 195

that on PTB, our model with XLNet-large achieves 196

state-of-the-art performance. Compared with previ- 197

ous state-of-the-art model (Mrini et al., 2020) using 198

addtional constituency information for training, our 199

model improves 0.04 UAS and 0.19 LAS without 200

additional constituency information. Additionally, 201

our model with BERT-large and BERT-base respec- 202

tively outperforms previous state-of-the-art mod- 203

els with the same pre-trained model (Fernández- 204

González and Gómez-Rodríguez, 2021; Moham- 205

madshahi and Henderson, 2021). Our model with 206

BERT-large improves 0.15 UAS and 0.66 LAS, and 207

our model with BERT-base improves 0.31 UAS and 208

0.89 LAS. On CTB, our model with BERT-base- 209

Chinese achieves state-of-the-art UAS among de- 210

pendency parsers without additional constituency 211

information for training. Compared with previous 212

state-of-the-art model on UAS (Mohammadshahi 213

and Henderson, 2021), our model improves 0.05 214

UAS and 0.03 LAS. We also report the results of 215

our model with XLNet-base on PTB for possible 216

future comparison. 217

4 Analysis 218

4.1 Number of Layers 219

We evaluate our model with number of layers T ∈ 220

{1, 2, 5, 6}. The pre-trained model is XLNet-base 221

for PTB and BERT-base-Chinese for CTB, and we 222

use this setting in the whole section 4. The results 223

are shown in Table 2. It can be seen that the multi- 224
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Layers PTB CTB
UAS LAS UAS LAS

T = 1 97.27 96.23 92.95 91.05
T = 2 97.32 96.28 92.97 91.17
T = 5 97.30 96.27 92.95 91.16
T = 6 97.32 96.27 93.03 91.21

Table 2: Results of our model with T layers on PTB and
CTB.

A L PTB CTB
UAS LAS UAS LAS

Yes Yes 97.32 96.27 93.03 91.21
Yes No 97.30 96.24 93.00 91.19
No Yes 97.29 96.23 92.95 91.13

Table 3: Results on PTB and CTB of the ablation study
on two types of representation. A and L mean the use of
arc-related and label-related representation respectively.

layer biaffine model with any T > 1 outperforms225

the single-layer biaffine model with T = 1 on both226

PTB and CTB. The optimal multi-layer biaffine227

model improves 0.05 UAS, 0.05 LAS on PTB and228

0.08 UAS, 0.16 LAS on CTB compared with the229

strong base of single-layer biaffine model. The230

results show the benefit of introducing multi-layer231

form into the biaffine method.232

4.2 Ablation Study233

The construction of arc-related and label-related234

representation are two main components of the bi-235

affine layer. In the ablation study, we respectively236

remove one of two types of representations and237

evaluate our model. The results are shown in Ta-238

ble 3. It can be seen that removing either of two239

types of representation makes the model perform240

worse, though the results are still better than the241

single-layer biaffine model. The results show that242

both types of representations contribute to the per-243

formance improvement of our model.244

4.3 Error Analysis245

Sentence length. We evaluate head prediction er-246

ror rate of our model on sentences of length L < 50247

and L ≥ 50 on CTB and PTB. We compare our248

model with number of layers T = 1 and T = 6.249

The results are shown in Tabel 4. It can be seen that250

the multi-layer biaffine model performs better in251

head prediction than the single-layer biaffine model252

on both short and long sentences.253

Label prediction. We also evaluate label predic-254

Layers PTB CTB
L < 50 L ≥ 50 L < 50 L ≥ 50

T = 1 2.69 3.85 6.52 8.49
T = 6 2.64 3.53 6.44 8.42

Table 4: Head prediction error rate (%) of our model
with T ∈ {1, 6} layers on sentences of length L < 50
and L ≥ 50 on PTB and CTB.

tion error rate of our model on CTB and PTB when 255

the gold head is provided. On PTB, the error rate is 256

1.38% when T = 1 and T = 6. On CTB, the error 257

rate is 2.95% when T = 1 and 2.87% when T = 6. 258

It can be seen that when the influence of perfor- 259

mance difference in head prediction is excluded, 260

the multi-layer biaffine model still performs better 261

in label prediction than the single-layer biaffine 262

model. 263

4.4 Efficiency Loss 264

We evaluate the speed of our model with the num- 265

ber of layers T = 1 and T = 6 on PTB. We run our 266

model on a single TITAN RTX GPU. To run one 267

epoch of training with batch size 24 on the entire 268

PTB train set, it takes 12.08 minutes when T = 1 269

and 13.07 minutes when T = 6. To parse the entire 270

PTB test set, it takes 20.33 seconds when T = 1 271

and 21.07 seconds when T = 6. Compared with 272

the single-layer biaffine model, the multi-layer bi- 273

affine model with 6 layers uses 8.2% more time on 274

training and 3.6% more time on parsing. The rel- 275

atively low increase in time consumption on both 276

training and parsing indicates the low efficiency 277

loss of introducing multi-layer form into the bi- 278

affine method. 279

5 Conclusions 280

In this paper, we propose a multi-layer biaffine 281

model for neural dependency parsing, which uses 282

the modified biaffine method in multi-layer form. 283

Our experiments show that compared with the 284

single-layer biaffine model, our multi-layer biaffine 285

model has advantages in overall performance, head 286

prediction on sentences of different lengths, and 287

label prediction. Our ablation study shows that 288

both types of representations in the biaffine layer 289

contribute to performance improvement. Our speed 290

evaluation shows the low efficiency loss of intro- 291

ducing multi-layer form into the biaffine method. 292

Our model achieves state-of-the-art results on PTB 293

and CTB. 294
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