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Abstract

The biaffine model is a strong and efficient
model for graph-based dependency parsing.
However, previous work only used the biaffine
method in single-layer form. In this paper, we
propose a multi-layer biaffine model for neural
dependency parsing. In this model, we modify
the biaffine method so that it can be utilized in
multi-layer form. We evaluate our model on
PTB and CTB and show our model achieves
state-of-the-art results on both datasets. Further
experiments show the benefits of introducing
multi-layer form into the biaffine method with
low efficiency loss.

1 Introduction

Dependency parsing is a fundamental task in NLP.
Given a input sequence s = wowj...wy,, the out-
put is a dependency tree t = {(h,d,1),0 < h <
n,1 <d <mn,l € L}, where wy is a pseudo-word
as root and (h, d, ) is an arc from wy, to wg with
label [ in a relation set L. Due to the simplicity and
effectiveness of representing syntactic information
by using the tree structure, many works involve
dependency parsing, such as syntax-enhanced pre-
trained model (Xu et al., 2021).

Biaffine first-order graph-based parser (Dozat
and Manning, 2017), which utilizes biaffine mech-
anism and training via local head selection for each
token, is frequently used in dependency parsing
due to its high performance and efficiency. There
are two ways to extend the biaffine model in pre-
vious work, one is to extend the biaffine method
to triaffine for modeling second-order information
(Zhang et al., 2020; Wang and Tu, 2020), the other
is to modify the encoder (Li et al., 2019; Mrini et al.,
2020). However, no previous work has tried to in-
troduce multi-layer form into the biaffine method.

In this paper, we propose a multi-layer biaffine
method for dependency parsing. We modify the
biaffine model into a connectable layer form. The
output matrices of the biaffine model are used as

weight matrices to construct the new token repre-
sentation. The representation contains the informa-
tion of head, dependents, and labels provided by
the biaffine mechanism, and is used as the input to-
ken representation for the next layer. Experiments
on PTB and CTB show that our model achieves
state-of-the-art results on both datasets and has ad-
vantages over the single-layer biaffine model. Our
model also has a low efficiency loss compared with
the single-layer biaffine model.

2 Model

Our graph-based dependency parser consists of two
parts, i.e., Encoder and Multi-layer biaffine model.

2.1 Encoder

Encoder consists of Embedding layer and BiLSTM
layer. In Embedding layer, input token w; with
Part-of-speech tag p; are used to construct input
vector e;:

e; = [emb(w;); posemb(p;)] (1)

Where emb is word embedding, posemb is
learned Part-of-speech tag embedding. We use
pre-trained model for word embedding. Follow-
ing Straka et al. (2019), we use the linear com-
bination of hidden states of the last four layers
as the embedding, and a word embedding is the
average of its subword embeddings. We project
word embedding to a lower dimension. In BiLSTM
layer, ege; ...e, is input into a three-layer BILSTM
model. We arrange the output vectors of the last

layer hg, h1, ..., h, into the matrix X0 € R"*2",
as the initial input of Multi-layer biaffine model:
h,i :BZLSTMZ(eOelen) (2)
ho
x0=| M 3)

hn,



2.2 Multi-layer Biaffine Model

Multi-layer biaffine model consists of 7" layers with
the same structure. The input matrix of the ¢-th
layer is X*~!. The biaffine method is following
Dozat and Manning (2017) for arc prediction:

Rteadt = prppheadt (X1 )
R(dep)t — MLP(dep)t(Xt—l) (5)
T
Si(a'rC)t _ R(head)tU(l)t(Rz(dep)t) (6)
+ R(head)tb(l)t

Where M LPhead)t \p 1, P(dep)t are 2R x d,, (input
dimension is 2h and output dimension is d; simi-
larly hereinafter) and U (Dt € Rdaxda p(1)t ¢ Ra
are learned parameters.

For label prediction, we modify the biaffine
method in Dozat and Manning (2017). We do not
use the predictive head, but calculate the label score
vector for each pair of (i, j):

R(lhead)t — MLP(Zhead)t(xt—l) (7)

R(ldep)t — MLP(ldep)t(Xt—l) (8)
T

Sz(jlabel) R§lhead)tU(2)t(R§ld6p)t) 9)

Where M L Phead)t yrp, pUdep)t are 9h % d; and
U@t ¢ RAxkxdi i learned matrix (k is the size
of relation set).

We scale and apply softmax function (Vaswani
etal., 2017)on S(@79)t ¢ R™*" to obtain attention
weight matrix, using it to construct the arc-related
representation:

R(arc)t MLP(arc) (thl) 10)
(are)t
Vit — So ftmax(=—— Ton YR (11)

Where M LP@) is 2h x d,,.

We apply the same method on S(abelt ¢
R™*7xE after projection to construct the label-
related representation:

R(label)t — MLP(label)t (thl) (12)
S(label)tb(Q)t
V(label)t — Softmax R(label)t
Jmart e )
(13)

Where M LPUebeDt s o5 x d; and bt € RF is
learned vector.

At the end of the layer, we combine two types
of representations, applying projection and Add &

Norm (Vaswani et al., 2017) to obtain the input
matrix of the next layer:

Yyt — [V(arc) V(label)t]Wt
X! = LayerNorm(X'" ! +Y?)

(14)
15)

Where Wt e R(detd)x2h s learned matrix. Xt €
R™*2" is used as the input of (¢ + 1)-th layer.

For the final output dependency tree, we apply
softmax function on score matrices of the last layer:

5(7) = So ftmax (ST

= Softmaz(SUabelT)

16)

S(label) 17)
We use S(@°) as the edge weight matrix and apply
the Eisner algorithm (Eisner, 2000) to obtain the
projective maximum spanning tree. After obtain-
ing the tree structure, we use S as the score
matrix and select the label with the maximum score
for each arc.

2.3 Training

We use the cross-entropy loss for arc and label
predictions:

(are) — Zlog S5 (18)
label Z 1 Z l}?bil (19)

Where h; is the gold head of w;, and [; is the gold
label of arc (h;, w;). The final loss is:

L= )\ﬁ(arc) + (1 o )\)L(label) (20)

Where A is a hyper-parameter between 0 and 1.

3 Experiments

3.1 Datasets

We evaluate our method on PTB 3.0 (Marcus et al.,
1993) and CTB 5.1 (Xue et al., 2005). We use the
same POS tagger (Toutanova et al., 2003) and data
splits as described in Chen and Manning (2014).

3.2 Evaluation

We use UAS and LAS as the metric. During the
evaluation, we ignore all punctuation. We select
the model based on the sum of UAS and LAS on
the dev set. For all results reported, we run the
training process five times with different random
seeds and average the results to avoid contingency.



. PTB
Pre-trained | Model UAS LAS
wlo Doz. & Man. (2016) 95.74  94.08

Zhang et al. (2020) 96.14 94.49
Zhou & Zhao (2019)T | 9720 95.72
XLNet-large | Mrini et al. (2020)" 97.42  96.26
Ours(XLNet-large) 97.46 96.45
XLNet-base | Ours(XLNet-base) 9732 96.27
Wang & Tu (2020) 9691 95.34
BERT-large Fer. & Gom. (2021) 97.05 95.48
Ours(BERT-large) 97.20 96.14
Moh. & Hen. (2020) 96.11 94.33
BERT-base Moh. & Hen. (2021) 96.66 95.01
Ours(BERT-base) 96.97 95.90

. CTB
Pre-trained | Model UAS LAS
wlo Doz. & Man. (2016) 89.30 88.23

Ma et al. (2018) 90.59 89.29
Mrini et al. (2020)7 94.56 89.28
Wang & Tu (2020) 92.78  91.69
BERT-base Fer. & Gom. (2021) 92.75 91.62
Moh. & Hen. (2021) 9298 91.18
Ours(BERT-base) 93.03 91.21

Table 1: Comparison of dependency parsers on PTB and
CTB. Pre-trained column indicates pre-trained model
used for word embedding. T:These approaches join the
constituency parsing and use additional constituency
information for training.

3.3 Implementation Details

We evaluate our model with different pre-trained
models. All pre-trained models we use for PTB are
case-sensitive. The dimension of word embedding
after projection is 300, and the dimension of POS
embedding is 50. We set h = 512, d, = 512,
dp =128, T = 6, A = 0.55. We apply dropout
after embedding, BiLSTM, and MLP layers with
dropout rate 0.33. We apply gradient clipping with
max 2-norm value 1. We use Adam(Kingma and
Ba, 2015) optimizer with 51 = 0.9, 5o = 0.999.
The learning rate is 1e—5 for pre-trained model and
5e — 4 for other components. We train the model
for 10 epochs on PTB and 20 epochs on CTB. We
decay the learning rate linearly to O during the
training process. We batch the sentences of similar
length for efficiency. The batch size is 24.

3.4 Baselines

We use five types of baselines for comparison. All
results of baselines are from the corresponding pa-
pers. 1) Dozat and Manning (2017) introduces
the biaffine method for first-order graph-based de-
pendency parsing. 2) Zhang et al. (2020) intro-
duces TreeCRF, and Wang and Tu (2020) intro-
duces MFVI. These parsers extend the biaffine

method to triaffine for modeling second-order infor-
mation. 3) Zhou and Zhao (2019) introduces head-
driven phrase structure grammar (HPSG) for joint
dependency and constituent parsing. Mrini et al.
(2020) uses HPSG and introduces label attention
layer. These parsers use additional constituency
information for training. 4) Mohammadshahi and
Henderson (2020) and Mohammadshahi and Hen-
derson (2021) introduces Graph-to-Graph Trans-
former for transition-based and graph-based depen-
dency parsing respectively. 5) Ma et al. (2018)
introduces stack-pointer networks, and Ferndndez-
Gonzélez and Goémez-Rodriguez (2021) introduces
bottom-up hierarchical pointer networks, both for
transition-based dependency parsing.

3.5 Main Results

Table 1 shows the results of baselines and our mod-
els on PTB and CTB. For intuitive comparison,
we divide the models according to the pre-trained
model used for word embedding. It can be seen
that on PTB, our model with XL Net-large achieves
state-of-the-art performance. Compared with previ-
ous state-of-the-art model (Mrini et al., 2020) using
addtional constituency information for training, our
model improves 0.04 UAS and 0.19 LAS without
additional constituency information. Additionally,
our model with BERT-large and BERT-base respec-
tively outperforms previous state-of-the-art mod-
els with the same pre-trained model (Ferndndez-
Gonzélez and Gémez-Rodriguez, 2021; Moham-
madshahi and Henderson, 2021). Our model with
BERT-large improves 0.15 UAS and 0.66 LAS, and
our model with BERT-base improves 0.31 UAS and
0.89 LAS. On CTB, our model with BERT-base-
Chinese achieves state-of-the-art UAS among de-
pendency parsers without additional constituency
information for training. Compared with previous
state-of-the-art model on UAS (Mohammadshahi
and Henderson, 2021), our model improves 0.05
UAS and 0.03 LAS. We also report the results of
our model with XLNet-base on PTB for possible
future comparison.

4 Analysis
4.1 Number of Layers

We evaluate our model with number of layers T' €
{1,2,5,6}. The pre-trained model is XLNet-base
for PTB and BERT-base-Chinese for CTB, and we
use this setting in the whole section 4. The results
are shown in Table 2. It can be seen that the multi-



Layers PTB CTB
UAS LAS | UAS LAS
T=1|9727 9623|9295 91.05
T=2 9732 9628 | 9297 91.17
T=5|9730 9627 | 9295 91.16
T=6|9732 9627 | 93.03 91.21

Table 2: Results of our model with 7" layers on PTB and
CTB.

A L PTB CTB
UAS LAS | UAS LAS
Yes | Yes | 97.32 96.27 | 93.03 91.21
Yes | No | 97.30 96.24 | 93.00 91.19
No | Yes | 97.29 96.23 | 9295 91.13

Table 3: Results on PTB and CTB of the ablation study
on two types of representation. A and L. mean the use of
arc-related and label-related representation respectively.

layer biaffine model with any 7" > 1 outperforms
the single-layer biaffine model with 7" = 1 on both
PTB and CTB. The optimal multi-layer biaffine
model improves 0.05 UAS, 0.05 LAS on PTB and
0.08 UAS, 0.16 LAS on CTB compared with the
strong base of single-layer biaffine model. The
results show the benefit of introducing multi-layer
form into the biaffine method.

4.2 Ablation Study

The construction of arc-related and label-related
representation are two main components of the bi-
affine layer. In the ablation study, we respectively
remove one of two types of representations and
evaluate our model. The results are shown in Ta-
ble 3. It can be seen that removing either of two
types of representation makes the model perform
worse, though the results are still better than the
single-layer biaffine model. The results show that
both types of representations contribute to the per-
formance improvement of our model.

4.3 Error Analysis

Sentence length. We evaluate head prediction er-
ror rate of our model on sentences of length L. < 50
and L > 50 on CTB and PTB. We compare our
model with number of layers 7' = 1 and T' = 6.
The results are shown in Tabel 4. It can be seen that
the multi-layer biaffine model performs better in
head prediction than the single-layer biaffine model
on both short and long sentences.

Label prediction. We also evaluate label predic-

PTB CTB
Layers
L<50 L>50| L<50 L>50
T=11] 269 3.85 6.52 8.49
T=6| 2.64 3.53 6.44 8.42

Table 4: Head prediction error rate (%) of our model
with T € {1, 6} layers on sentences of length L < 50
and L > 50 on PTB and CTB.

tion error rate of our model on CTB and PTB when
the gold head is provided. On PTB, the error rate is
1.38% when T'= 1 and T' = 6. On CTB, the error
rate is 2.95% when T = 1 and 2.87% when T' = 6.
It can be seen that when the influence of perfor-
mance difference in head prediction is excluded,
the multi-layer biaffine model still performs better
in label prediction than the single-layer biaffine
model.

4.4 Efficiency Loss

We evaluate the speed of our model with the num-
ber of layers T' = 1 and T' = 6 on PTB. We run our
model on a single TITAN RTX GPU. To run one
epoch of training with batch size 24 on the entire
PTB train set, it takes 12.08 minutes when T = 1
and 13.07 minutes when 1" = 6. To parse the entire
PTB test set, it takes 20.33 seconds when 7" = 1
and 21.07 seconds when 7' = 6. Compared with
the single-layer biaffine model, the multi-layer bi-
affine model with 6 layers uses 8.2% more time on
training and 3.6% more time on parsing. The rel-
atively low increase in time consumption on both
training and parsing indicates the low efficiency
loss of introducing multi-layer form into the bi-
affine method.

5 Conclusions

In this paper, we propose a multi-layer biaffine
model for neural dependency parsing, which uses
the modified biaffine method in multi-layer form.
Our experiments show that compared with the
single-layer biaffine model, our multi-layer biaffine
model has advantages in overall performance, head
prediction on sentences of different lengths, and
label prediction. Our ablation study shows that
both types of representations in the biaffine layer
contribute to performance improvement. Our speed
evaluation shows the low efficiency loss of intro-
ducing multi-layer form into the biaffine method.
Our model achieves state-of-the-art results on PTB
and CTB.
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