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ABSTRACT

In this paper, we revisit stochastic gradient descent (SGD) with AdaGrad-type
preconditioning. Our contributions are twofold. First, we develop a unified con-
vergence analysis of SGD with adaptive preconditioning under anisotropic or ma-
trix smoothness and noise assumptions. This allows us to recover state-of-the-
art convergence results for several popular adaptive gradient methods, including
AdaGrad-Norm, AdaGrad, and ASGO/One-sided Shampoo. In addition, we es-
tablish the fundamental connection between two recently proposed algorithms,
Scion and DASGO, and provide the first theoretical guarantees for the latter. Sec-
ond, we show that the convergence of methods like AdaGrad and DASGO can
be provably accelerated beyond the best-known rates using Nesterov momentum.
Consequently, we obtain the first theoretical justification that AdaGrad-type al-
gorithms can simultaneously benefit from both diagonal preconditioning and mo-
mentum, which may provide an ultimate explanation for the practical efficiency
of Adam.

1 INTRODUCTION

The optimization community has shown strong interest in adaptive stochastic gradient optimization
methods over recent years (Duchi et al., 2011; Tieleman, 2012; Kingma & Ba, 2014; Gupta et al.,
2018; Reddi et al., 2019) due to their applications in deep learning (LeCun et al., 2015). This re-
search direction has notably led to the development of Adam (Kingma & Ba, 2014) and AdamW
(Loshchilov & Hutter, 2017), algorithms with remarkable performance in training deep neural net-
works. Unfortunately, despite almost a decade of research, these algorithms continue to be the
preferred choice for most deep learning tasks, particularly in the training of large language mod-
els (Achiam et al., 2023; Liu et al., 2024a; Grattafiori et al., 2024; Anil et al., 2023). The lack of
worthy contenders to Adam and AdamW may be attributed to insufficient theoretical understanding
of adaptive optimization algorithms. Therefore, the primary objective of this paper is to enhance
the theoretical comprehension of this research area. Formally speaking, we consider the following
optimization problem:

min
x∈X

f(x), (1)

where X is a finite-dimensional Euclidean space, and f(x) : X → R is a continuous convex1 objec-
tive function. We assume that problem (1) has a solution x∗ ∈ X .

1.1 BASELINE ALGORITHM: ADAGRAD

The starting point for the development of Adam and AdamW was the gradient descent (GD) with
the AdaGrad-Norm stepsizes (Streeter & McMahan, 2010). Given the parameter η > 0 and the past
gradients gi ∈ ∂f(xi) for i = 0, . . . , k, this algorithm performs the following update:

xk+1 = xk − ηkgk, where ηk = η√∑k
i=0∥gi∥2

. (2)

It is well known that AdaGrad-Norm can achieve the convergence rate O(1/K) of GD with fixed
stepsizes for smooth functions with Lipschitz-continuous gradients and the rate O(1/

√
K) of GD

1We discuss the justification for using the convexity assumption in Appendix C.
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with diminishing step sizes for non-smooth Lipschitz functions or when only stochastic gradients
are available (Orabona, 2023; Li & Orabona, 2019; Levy et al., 2018). However, the main benefit of
this algorithm is that it can achieve both rates with the single parameter choice η ∝ ∥x∗∥. In other
words, it can adapt to the level of smoothness and gradient noise of the function f(x), which is called
“universality” (Nesterov, 2015). Furthermore, Duchi et al. (2011); McMahan & Streeter (2010)
proposed the AdaGrad method, which performs a coordinate-wise variant of the update (2), aiming
to exploit the potential sparsity of the gradients gk. Although they provided a limited theoretical
justification for the benefits of coordinate-wise updates compared to scalar stepsizes (2), AdaGrad
and its modifications, such as RMSProp (Tieleman, 2012) and Adam, have proven to be highly
efficient in practice.

1.2 ADAPTIVE GRADIENT METHODS WITH STRUCTURED PRECONDITIONING

Motivated by the success of AdaGrad, many adaptive optimization algorithms has been developed
that fall into the category of gradient methods with preconditioning. Such algorithms use the update
rule of the form

xk+1 = argmin
x∈X

⟨gk, x⟩+ 1
2∥x− xk∥2H−1

k

, (3)

where Hk ∈ S++ is a symmetric positive definite preconditioning operator X → X . Besides
AdaGrad, which uses a diagonal preconditioning matrix, notable examples of such algorithms in-
clude Shampoo (Gupta et al., 2018) and its theoretically streamlined variants: One-sided Shampoo
(Xie et al., 2025) and ASGO (An et al., 2025). Motivated by the structure of neural networks, these
algorithms are specifically designed for optimizing the function f(X) : Rm×n → R of anm×nma-
trix argument and use preconditioners that respect the function’s structure. In particular, One-sided
Shampoo and ASGO use the preconditioner Hk : G 7→ (

∑k
i=0GiG

⊤
i )

−1/2G, where G ∈ Rm×n

and Gi ∈ ∂f(Xi). Overall, the practical performance of Shampoo and its Adam-like modification,
SOAP (Vyas et al., 2024), is comparable to that of Adam and sometimes exceeds it.

Here, we come to the following issue: every time an adaptive preconditioned gradient method is
developed, one has to provide a separate convergence proof, even though the update rules in such
algorithms, as well as the convergence proofs, often have a similar structure. Consequently, we
arrive to the following question:

Q1. Can we develop a unified convergence analysis that would cover most existing adaptive
preconditioned gradient methods, including AdaGrad, Shampoo, ASGO, etc.?

A positive answer to this question was partially provided by the unified approach of Gupta et al.
(2017), who showed that the preconditioner operator Hk can be defined as a solution to a certain
optimization problem over a linear subspace of self-adjoint operators H ⊂ S. For instance, the
update rule for AdaGrad-Norm and AdaGrad can be obtained by choosing H to be the space of
multiples of the identity and the space of diagonal operators, respectively. Unfortunately, the unified
approach of Gupta et al. (2017) has major flaws: it still requires separate convergence proofs for
different algorithms, provides convergence guarantees only for non-smooth functions, and offers no
explanation for the benefits of using general preconditioning operators.

1.3 MATRIX SMOOTHNESS AND ACCELERATION

Matrix smoothness. In an attempt to find a theoretical justification for the success of adaptive
preconditioned gradient methods, a considerable amount of recent research has focused on devel-
oping theoretical analyses of such methods under the assumption that the function smoothness, as
well as the gradient noise level, is measured in terms of the weighted Euclidean norm ∥ · ∥B, where
B ∈ S++ is a self-adjoint positive definite operator. For instance, Liu et al. (2024b); Jiang et al.
(2024) provided an analysis of AdaGrad under anisotropic smoothness, i.e., in the case of the di-
agonal operator B : x 7→ b ⊙ x, where b, x ∈ Rd. When the vector b is sparse, they managed to
prove substantially better theoretical convergence guarantees for AdaGrad compared to AdaGrad-
Norm, thus obtaining theoretical justification for the practical benefits of diagonal preconditioning.
Similarly, An et al. (2025); Xie et al. (2025) considered the matrix smoothness, i.e., the case where
the operator B : X 7→ BX , where the matrix B ∈ Rm×m is symmetric and positive definite, and
X ∈ Rm×n. This allowed them to theoretically justify the practical success of Shampoo-like al-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

gorithms. However, Question 1 discussed above is relevant here: a separate convergence proof is
required for each algorithm, even though they share many similarities.

Momentum acceleration. Besides diagonal preconditioning, momentum is another key component
that contributes to the efficiency of Adam. It is well-known that Nesterov momentum (Nesterov,
1983) can accelerate the convergence of GD for smooth convex (Nesterov, 2013) and convex-like
(Hinder et al., 2020) functions up to the rate O(1/T 2). Consequently, there is an array of works
that aim to establish theoretical guarantees for AdaGrad-type methods with Nesterov acceleration,
including the works of Levy et al. (2018); Cutkosky (2019); Kavis et al. (2019); Rodomanov et al.
(2024); Kreisler et al. (2024). However, to the best of our knowledge, all such algorithms achieve ac-
celerated theoretical convergence rates only for scalar stepsizes. Therefore, another natural question
appears:

Q2. Can we design an adaptive preconditioned gradient method that provably benefits from both
diagonal AdaGrad-type preconditioning and momentum?

To the best of our knowledge, the only attempt to answer this question was made by Trifonov et al.
(2025). However, they made additional unrealistic assumptions about the dynamics of the precon-
ditioning operator and considered only a smooth and strongly convex, non-stochastic setting. Their
theoretical results provided a highly limited explanation of the benefits of preconditioning, including
a lack of adaptation to stochasticity and matrix/anisotropic Hölder smoothness.

1.4 CONTRIBUTIONS AND RELATED WORK

In this paper we give positive answers to Questions 1 and 2 and provide the following contributions:

(i) We develop a unified analysis framework for adaptive preconditioned stochastic gradient
methods under the matrix Hölder smoothness and bounded variance. Using this frame-
work, in Section 3, we provide a single convergence proof that is applicable to most ex-
isting AdaGrad-type algorithms, recovering the state-of-the-art convergence guarantees for
AdaGrad-Norm, AdaGrad, and ASGO/One-sided Shampoo. Moreover, we establish con-
vergence guarantees for DASGO, a computationally efficient variant of ASGO proposed
by An et al. (2025), and find its fundamental connection with the recently proposed Scion
method by Pethick et al. (2025).

(ii) We develop a novel unified analysis of adaptive preconditioned stochastic gradient methods
with Nesterov acceleration under the additional assumption that the smoothness and noise
operators,2 L and Σ, commute with any preconditioner Hk. In particular, in Section 4, we
show that the convergence of algorithms with diagonal preconditioning, such as AdaGrad
and DASGO, can be significantly improved with no extra assumptions compared to their
non-accelerated counterparts. To the best of our knowledge, this is the first theoretical
justification that AdaGrad can benefit from both momentum and diagonal preconditioning.

We also provide a discussion of additional related work. First, we discuss the theoretical analysis
of the exponential moving average (EMA) in AdaGrad-type algorithms by Défossez et al. (2020).
Second, we mention several parameter-free AdaGrad-type algorithms that do not require tuning the
parameter η. Finally, we discuss the concurrent unified analysis of AdaGrad-type algorithms by
Xie et al. (2025), which appeared online earlier than our work but suffers from several substantial
drawbacks. The details are postponed to Appendix B due to the maximum page limit.

2 PRELIMINARIES

2.1 UNIFIED PRECONDITIONING FRAMEWORK

In this paper, we use the notation described in Appendix A. The preconditioned gradient method
uses the update rule in eq. (3), which requires the preconditioning operator Hk ∈ S++. Similar to
the approach of Gupta et al. (2017), we restrict the operator Hk to belong to a certain subspace of
self-adjoint operators H ⊂ S. As discussed in Section 1.2, we can obtain most existing AdaGrad-
type methods by choosing different instances of the space H. However, to develop a single unified

2Refer to Assumptions 2 and 3 for precise definitions.
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convergence proof for these algorithms, we need to impose formal assumptions on the space H.
This is done through the following Definition 1 and Assumption 1.

Definition 1. Let ψ(h) : I → R be a scalar function defined on an arbitrary interval I ⊂ R. Let
SI ⊂ S be the set of self-adjoint operators, with eigenvalues lying in I . The corresponding operator
function ψ(H) : SI → S is defined as follows:

ψ(H) =
∑

iψ(λi)Pi, (4)

where H =
∑

i λiPi is the eigendecomposition of the operator H ∈ SI , that is, λi ∈ I are the
eigenvalues of H, and Pi ∈ S are the projection operators onto the corresponding eigenspaces.

Assumption 1. The space of linear operators H ⊂ S satisfies the following properties:

(A1.1) The projection onto H is order preserving, that is, projH(H) ∈ S++ for all H ∈ S++.

(A1.2) The space H is closed under arbitrary operator functions, that is, ψ(H) ∈ H for all H ∈ H
and ψ(h) : R → R.

Next, according to Gupta et al. (2017), we describe a unified way to define the preconditioning
operator Hk ∈ S++ based on the choice of the space H. Given the past gradients g0, . . . , gk ∈ X ,
the preconditioning operator Hk is defined as a solution to the following optimization problem:

Hk = argmin
H∈H∩S++

⟨H,Sk⟩+ ⟨I, ϕ(H)⟩, where Sk =
∑k

i=0gi⟨gi, ·⟩, (5)

where ϕ(h) : R++ → R is a strictly convex non-negative potential function. The optimization
form of this definition allows the use of the standard tool from online optimization, the Follow-the-
Leader/Be-the-Leader (FTL-BTL) lemma (Kalai & Vempala, 2005). It can be summarized in the
following inequality:∑k

i=−1li(θi) ≤
∑k

i=−1li(θk), where θi = argminθ∈Θli(θ), (FTL-BTL)

where l−1(θ), . . . , lk(θ) : Θ → R is an arbitrary sequence of functions defined on a domain Θ.3
Similar to Gupta et al. (2017), we can use this result to obtain the following Lemma 1, which is one
of the key elements in the unified analysis of Adagrad-type algorithms.

Lemma 1 (↓). The preconditioner Hk defined in eq. (5) satisfies the following inequality:∑k
i=0∥gi∥

2
Hi

≤ ⟨Hk,Sk⟩+ ⟨I, ϕ(Hk)⟩. (6)

The application of Lemma 1 is not limited to a specific choice of the potential function. However,
to obtain Adagrad-type preconditioners, we will use the following potential function ϕ(h), which is
given as follows:

ϕ(h) = δ · h+ η2/h, (7)

where δ, η > 0 are positive parameters. Here appears the first key difference from Gupta et al.
(2017): using our Assumption 1, we can explicitly compute the preconditioner Hk, as stated by the
following Lemma 2.

Lemma 2 (↓). The auxiliary problem in eq. (5) with the potential function ϕ(h) defined in eq. (7)
has the following unique solution:

Hk = η (δI+ projH(Sk))
−1/2

. (8)

Moreover, the following operator inequality holds:

Hk+1 ⪯ Hk. (9)

Overall, the assumptions that we impose on the space of preconditioning operators H (Proper-
ties A1.1 and A1.2 in Assumption 1) are closely related to the notion of a well-structured precon-
ditioner set used by Xie et al. (2025). Consequently, the unified analysis of Xie et al. (2025) shares
some similarities with ours but suffers from significant disadvantages discussed in Appendix B.

3The proof of eq. (FTL-BTL) can be found in Appendix A of Gupta et al. (2017).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: The linear space X , the space of preconditioning operators H satisfying Assumption 1,
and the (possibly non-Euclidean) norm R(·) defined in eq. (12) for AdaGrad-Norm (Streeter &
McMahan, 2010), AdaGrad (Duchi et al., 2011; McMahan & Streeter, 2010), ASGO/One-sided
Shampoo (An et al., 2025; Xie et al., 2025), and DASGO (An et al., 2025).

Algorithm X H R(·)
AdaGrad-Norm Rd {g 7→ βg : β ∈ R} 1√

d
∥ · ∥

AdaGrad Rd {g 7→ b⊙ g : b ∈ Rd} ∥ · ∥∞
ASGO/One-sided Shampoo Rm×n {G 7→ BG : B ∈ Sm} 1√

n
σmax(·)

DASGO Rm×n {G 7→ diag(b)G : b ∈ Rm} 1√
n
∥ · ∥2→∞

2.2 ASSUMPTIONS ON THE OBJECTIVE FUNCTION

In this section, we formalize the assumptions that we impose on the objective function f(x). The
following Assumption 2 formalizes the convexity and matrix Hölder smoothness properties of the
function f(x). Note that in the smooth case (ν = 1) Assumption 2 matches the definitions used by
An et al. (2025); Xie et al. (2025). In the non-smooth case (ν = 0), it is more general compared to
the assumption used by An et al. (2025, Corollary 2). Note that Xie et al. (2025) provides no results
in the non-smooth case, and neither of the works of An et al. (2025); Xie et al. (2025) provides
results in the Hölder smooth case for 0 < ν < 1.

Assumption 2. The function f(x) is convex and (∥L∥
1−ν
2

tr , ν)-Hölder smooth with respect to the
norm ∥ · ∥L, where ν ∈ [0, 1] and L ∈ H∩ S++. That is, for all x1, x2 ∈ X and ∇f(x1) ∈ ∂f(x1),
the following inequalities hold:

0 ≤ f(x2)− f(x1)− ⟨∇f(x1), x2 − x1⟩ ≤ 1
1+ν ∥L∥

1−ν
2

tr ∥x2 − x1∥1+ν
L . (10)

Additionally, using the matrix Hölder smoothness property in Assumption 2, we establish the fol-
lowing Lemma 3, which will be further used in our convergence analysis.
Lemma 3 (↓). For all x ∈ X and ∇f(x) ∈ ∂f(x), the following inequality holds:

∥∇f(x)∥2L−1 ≤
(
1+ν
ν

) 2ν
1+ν ∥L∥

1−ν
1+ν

tr (f(x)− f(x∗))
2ν

1+ν , (11)

where in the case ν = 0, we use the convention 00 = 1.

The matrix smoothness in Assumption 2 is also closely related to the non-Euclidean smoothness
property, which recently received a lot of attention (Bernstein & Newhouse, 2024; Pethick et al.,
2025; Kovalev, 2025; Riabinin et al., 2025) due to the practical success of the Muon optimizer
(Jordan et al., 2024). Let function R(x) : X → R+ be defined as follows:

R(x) = ∥projH(X)∥1/2op , where X = x⟨x, ·⟩. (12)

One can verify that the function R(x) is a norm on the linear space X , as shown in Lemma 4.
Besides, Assumption 2 implies that the function f(x) is (∥L∥tr, ν)-Hölder smooth with respect to
this possibly non-Euclidean norm R(·). That is, the following inequality holds for all x1, x2 ∈ X :

f(x2)− f(x1)− ⟨∇f(x1), x2 − x1⟩ ≤ 1
1+ν ∥L∥tr [R(x2 − x1)]

1+ν
. (13)

We provide additional discussion of the connection between Assumption 2 and the non-Euclidean
Hölder smoothness in eq. (13) in Section 3.
Lemma 4 (↓). The function R(x) defined in eq. (12) is a norm. That is, it is subadditive, absolutely
homogeneous, non-negative, and positive definite.

Additionally, we provide the assumptions on the stochastic gradient noise in the following Assump-
tion 3. These are more general than the assumptions used by both An et al. (2025) and Xie et al.
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Algorithm 1 Adaptive SGD with Preconditioning
1: input: x0 ∈ X , K ∈ {1, 2, . . .}
2: for k = 0, . . . ,K do
3: sample ξk ∼ D
4: compute gk = ∇f(xk; ξk)
5: compute Hk ∈ H ∩ S++ using eqs. (5) and (8)
6: compute xk+1 ∈ X using eq. (3).
7: output: xK = 1

K+1

∑K
k=0 xk

(2025). In particular, they assume the ordering Eξ∼D[n(x; ξ)⟨n(x; ξ), ·⟩] ⪯ Σ2, which implies Prop-
erty A3.2, and hence, is more restrictive. Moreover, similar to the connection between Assumption 2
and the non-Euclidean Hölder smoothness (13), one can show that Assumption 3 implies that the
variance of the stochastic gradient estimator is bounded with respect to the non-Euclidean dual norm
R∗(·). That is, the following inequality holds for all x ∈ X :

Eξ∼D
[
(R∗(n(x; ξ)))2

]
≤ ∥Σ∥2tr. (14)

Assumption 3. There exists a stochastic estimator ∇f(x; ξ) = n(x; ξ)+∇f(x) of the (sub)gradient
∇f(x) ∈ ∂f(x) of the objective function f(x), where n(x; ξ) is the noise and ξ ∼ D is a random
variable. The noise n(x; ξ) satisfies the following properties:

(A3.1) Zero mean: Eξ∼D[n(x; ξ)] = 0 for all x ∈ X .

(A3.2) Bounded variance: Eξ∼D[∥n(x; ξ)∥2Σ−1 ] ≤ ∥Σ∥tr for all x ∈ X , where Σ ∈ H ∩ S++.

3 UNIFIED ANALYSIS OF ADAPTIVE SGD WITH PRECONDITIONING

3.1 GENERAL ALGORITHM AND ITS CONVERGENCE

Based on the discussion in Section 2.1, we formalize the adaptive stochastic gradient method with
preconditioning as Algorithm 1. In this section, we develop the unified convergence analysis of
this algorithm. First, we obtain an upper bound on the expected regret E[

∑K
k=0f(xk) − f(x∗)] in

the following Lemma 5. The proof of this lemma, in many ways, relies on the previously obtained
Lemmas 1 and 2.
Lemma 5 (↓). Under the conditions of Theorem 1, the following inequality holds:∑K

k=0E[f(xk)− f(x∗)] ≤ 3
2R⟨I,projH(E[SK ])1/2⟩+ 3

2

√
δR dim(X ). (15)

Next, in the following Lemma 6, we establish an upper bound on the right-hand side of the inequality
in Lemma 5, using Assumption 3 and the previously obtained Lemma 3.
Lemma 6 (↓). Under the conditions of Theorem 1, the following inequality holds:

⟨I,projH(E[SK ])1/2⟩ ≤
√
K + 1

1−ν
1+ν ∥L∥

1
1+ν

tr

[∑K
k=0E[f(xk)− f(x∗)]

] ν
1+ν

+
√
K + 1∥Σ∥tr.

(16)

Finally, with the help of Lemmas 5 and 6, we obtain the convergence result for Algorithm 1 in the
following Theorem 1. Note that this result requires the inequality in eq. (17) to hold almost surely,
which may not be satisfied, especially in the stochastic setting. However, this issue can be easily
resolved with an additional projection step at each iteration. Refer to Appendix D for details.
Theorem 1 (↓). Under Assumptions 1, 2 and 3, let η = R, where R > 0 almost surely satisfies the
following inequality:

max
k=0,...,K

R(xk − x∗) ≤ R. (17)

Then, the output xK ∈ X of Algorithm 1 satisfies the following inequality:

E[f(xK)− f(x∗)] ≤ 3∥L∥trR1+ν

(K + 1)
1+ν
2

+
3∥Σ∥trR√
K + 1

+
3
√
δR dim(X )

(K + 1)
. (18)
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3.2 RELATED ALGORITHMS

In this section, we discuss the connection of Algorithm 1 with existing adaptive gradient methods
with preconditioning.

Connection with AdaGrad-Norm, AdaGrad, and ASGO/One-sided Shampoo. We can ob-
tain AdaGrad-Norm, AdaGrad, ASGO/One-sided Shampoo as special instances of Algorithm 1 by
choosing the space of preconditioning operators H satisfying Assumption 1 according to Table 1. In
the case ν = 1, Theorem 1 recovers the state-of-the-art convergence guarantees for AdaGrad under
anisotropic smoothness (Liu et al., 2024b) and for ASGO/One-sided Shampoo (An et al., 2025; Xie
et al., 2025) under matrix smoothness. However, recall that Liu et al. (2024b); An et al. (2025); Xie
et al. (2025) require a more restrictive noise variance bound as discussed in Section 2.2, and do not
cover Hölder smoothness. In contrast, Theorem 1 works for arbitrary ν ∈ [0, 1], which implies that
Algorithm 1 can adapt to different levels of anisotropic/matrix smoothness.

Connection with DASGO. Notably, Algorithm 1 recovers DASGO, a lightweight version of
ASGO/One-sided Shampoo that uses diagonal preconditioning and was proposed by An et al. (2025)
without any convergence guarantees. Consequently, Theorem 1 provides the first convergence guar-
antees for DASGO, to the best of our knowledge. Moreover, in Section 4, we will show that the
convergence of DASGO, as well as AdaGrad, can be accelerated using Nesterov momentum.

Connection between ASGO/One-sided Shampoo and Muon. Recently, Jordan et al. (2024) pro-
posed using the Shampoo optimizer (Gupta et al., 2018) with gradient accumulation turned off. This
led to the development of Muon, a new optimizer with promising practical performance. The con-
vergence of Muon was analyzed from the perspective of gradient methods with the non-Euclidean
matrix spectral norm by Bernstein & Newhouse (2024); Pethick et al. (2025); Kovalev (2025). No-
tably, our analysis captures the connection between ASGO/One-sided Shampoo and non-Euclidean
optimization with the spectral norm. Indeed, as discussed in Section 2.2, Assumption 2 implies
the (∥L∥tr, ν)-Hölder smoothness in eq. (13) with respect to the norm R(·), which, according to
Table 1, coincides with the matrix spectral norm (up to constant factors). Moreover, in the case
of ASGO/One-sided Shampoo, Theorem 1 provides the convergence result in terms of the constant
∥L∥tr and the norm R(·).
Connection between DASGO and Scion. Recently, Pethick et al. (2025) proposed Scion, a new
variant of Muon, which, instead of the spectral norm, can use the matrix norm ∥ · ∥2→∞: the maxi-
mal Euclidean norm of a row of a matrix. Note that in the case of DASGO, the norm R(·) defined
in eq. (12) coincides with the norm ∥ · ∥2→∞ up to multiplicative constants, according to Table 1.
Hence, Scion with the norm ∥ · ∥2→∞ can be obtained by turning off the gradient accumulation in
DASGO, that is, choosing Sk = gk⟨gk, ·⟩ in eq. (5). In other words, DASGO is connected to Scion
in the same way as ASGO/(One-sided) Shampoo is connected to Muon. It is important to highlight
that the iterations of Shampoo are not cheap and require matrix inversions, which triggered the de-
velopment of the computationally effective alternative, Muon, by Jordan et al. (2024). However, the
iterations of DASGO are not only inexpensive, but they also utilize adaptive preconditioning and
have much more attractive theoretical convergence properties compared to Scion. Hence, it is worth
trying to use DASGO in the practical scenarios identified by Pethick et al. (2025) to benefit from
using the non-Euclidean norm ∥ · ∥2→∞.

4 SGD WITH PRECONDITIONING AND ACCELERATION

4.1 GENERAL ACCELERATED ALGORITHM AND ITS CONVERGENCE

In this section, we develop accelerated adaptive SGD with preconditioning, which is summarized in
Algorithm 2, and provide its unified convergence analysis. First, to simplify the analysis, we use the
interpretation of Nesterov momentum acceleration (Nesterov, 1983) by Kovalev & Borodich (2024).
The idea is that we define the functions fk(x) : X → R as follows:

fk(x) = α−2
k · f(αkx+ (1− αk)xk), where αk ∈ (0, 1] and xk ∈ X , (19)

where xk ∈ X is updated according to line 7 at each iteration. We then apply the preconditioned
SGD iterations in eq. (3) to this “time-varying” function fk(x). With this approach, we can upper-
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Algorithm 2 Accelerated Adaptive SGD with Preconditioning
1: input: x0 = x0 ∈ X , K ∈ {1, 2, . . .}
2: for k = 0, . . . ,K do
3: sample ξk ∼ D
4: compute gk = ∇fk(xk; ξk), where fk(x) is defined in eq. (19)
5: compute Hk ∈ H ∩ S++ using eqs. (5) and (8)
6: compute xk+1 ∈ X using eq. (3).
7: compute xk+1 = αkxk+1 + (1− αk)xk
8: output: xK+1

bound the expected objective function suboptimality E[f(xK+1)−f(x∗)] using the expected regret-
like sum

∑K
k=0E[fk(xk+1)− fk(x

∗)] in the following Lemma 7.
Lemma 7 (↓). Under the conditions of Theorem 2, the following inequality holds:

1
4 (K + 2)2E[f(xK+1)− f(x∗)] ≤

∑K
k=0E[fk(xk+1)− fk(x

∗)]. (20)

Next, we proceed with the additional Assumption 4 on the operators L,Σ ∈ H defined in As-
sumptions 2 and 3. It is important to highlight that this assumption always holds when the space
of preconditioners H contains only diagonal operators. Hence, this assumption is automatically
satisfied for algorithms with diagonal preconditioning like AdaGrad and DASGO.
Assumption 4. The operators L ∈ H in Assumption 2 and Σ ∈ H in Assumption 3 commute with
the space H, that is, LH = HL and ΣH = HΣ for all H ∈ H.

The key idea for the analysis of Algorithm 2 is that under Assumption 4, the square of the precondi-
tion operator Hk, defined in eq. (8), is a solution to the optimization problem in eq. (21), as indicated
by Lemma 8. Hence, similar to the analysis of the non-accelerated Algorithm 1, we can utilize the
FTL-BTL lemma (FTL-BTL) and obtain one of the key inequalities in Lemma 9.
Lemma 8 (↓). Under Assumption 4, the operator H2

k defined by eq. (8) is a solution to the following
problem, where B = L or B = Σ:

H2
k ∈ argmin

Q∈H∩S++

⟨Q,BSk⟩+ ⟨B, δQ− η2 ln(Q)⟩. (21)

Lemma 9 (↓). Under Assumption 4, the following inequality holds for B = L or B = Σ:

E
[∑k

i=0∥gi∥
2
BH2

i

]
≤ η2∥B∥tr ln

[
1
δ η

2
(
E[∥H−1

k ∥tr]
)2]

. (22)

Finally, using the inequality in Lemma 9, we obtain the key upper bound on the regret-like sum
E[fk(xk+1)− fk(x

∗)] in Lemma 10.
Lemma 10 (↓). Under the conditions of Theorem 2, the following inequality holds:∑K

k=0E[fk(xk+1)− fk(x
∗)] ≤ 1

4CK(K + 2)
3(1−ν)

2 ∥L∥trR1+ν

+ 1
4CK(K + 2)

3
2 ∥Σ∥trR+

√
δR dim(X ).

(23)

Now, all that remains is to combine Lemma 10 with Lemma 7 and obtain the main convergence
result for Algorithm 2 in Theorem 2. Similar to the non-accelerated result in Theorem 1, we require
the inequality in eq. (17) to hold almost surely. This can be easily guaranteed by an additional
projection step at each iteration, as discussed in Appendix D.
Theorem 2. Under Assumptions 1, 2, 3 and 4, let η = 2R, where R > 0 satisfies eq. (17), and let
αk = 2/(k + 2). Then, the output xK+1 ∈ X of Algorithm 2 satisfies the following inequality:

E[f(xK+1)− f(x∗)] ≤ CK∥L∥trR1+ν

(K + 2)
1+3ν

2

+
CK∥Σ∥trR√

K + 2
+

4
√
δR dim(X )

(K + 2)2
, (24)

where the constant CK > 0 satisfies the following relation:

CK = O
(
1 + lnK + ln ∥L∥trRν

√
δ

+ ln ∥Σ∥tr√
δ

)
. (25)
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4.2 ADAGRAD AND DASGO WITH MOMENTUM ACCELERATION

In this section, we provide a detailed discussion of our results for two special instances of adaptive
gradient methods with diagonal preconditioning: AdaGrad and DASGO. In the case of DASGO,
let X = Rm×n be the space of m × n matrices and consider the following special instance of
problem (1):

min
X∈Rm×n

f(X). (26)

We choose the space H of preconditioning operators Rm×n → Rm×n for DASGO according to
Table 1. That is, H = {G 7→ diag(b)G : b ∈ Rm}, which obviously satisfies Assumption 1. Note
that AdaGrad can be obtained from DASGO by simply choosing n = 1. Henceforth, for simplicity,
we will consider only DASGO.

Next, we specialize Assumptions 2 and 3 to the setting of DASGO. In particular, we define the
operator L ∈ H in Assumption 2 as L : X 7→ n

ν−1
2 diag(l)X , where l = (l1, . . . , lm) ∈ Rm

++

and X ∈ Rm×n. For example, in the case ν = 1 and n = 1, Assumption 2 exactly matches the
anisotropic smoothness assumption used by Liu et al. (2024b). In the general case ν ∈ [0, 1] and
n ≥ 1, Assumption 2 implies the (∥l∥1, ν)-Hölder smoothness with respect to the non-Euclidean
norm ∥ · ∥2→∞, that is, the following special instance of the inequality in eq. (13) holds:

0 ≤ f(X2)− f(X1)− ⟨∇f(X1), X2 −X1⟩ ≤ 1
1+ν ∥l∥

1−ν
2

1 ∥X2 −X1∥1+ν
2→∞. (27)

Similarly, we define the operator Σ ∈ H in Property A3.2 as Σ : X 7→ n−
1
2 diag(σ)X , where

σ = (σ1, . . . ,σm) ∈ Rm
++ and X ∈ Rm×n. Consequently, the variance bound in Property A3.2

turns into the following inequality:

Eξ∼D[
∑m

i=1(1/σi)∥Ni∥2] ≤ ∥σ∥1, where [N1, . . . , Nm]⊤ = ∇F (X; ξ)−∇F (X). (28)

This inequality is implied, for instance, by the anisotropic noise assumption used by Liu et al.
(2024b), and hence, it is more general.

Further, for simplicity in the presentation of the results, we use the convergence guarantees from
Appendix D for the algorithms with projection steps. Using Theorem 3 and assuming δ ≪ 1, we
obtain the following convergence guarantees for AdaGrad and DASGO:

E[f(XK)− f(X∗)] ≤ Õ
(
∥l∥1∥X∗∥1+ν

2→∞

K
1+ν
2

+
∥σ∥1∥X∗∥2→∞√

K + 1

)
. (29)

This matches the result of Liu et al. (2024b) for AdaGrad in the smooth case (ν = 1 and n = 1),
but also provides convergence guarantees for DASGO. Similarly, using Theorem 4, we establish
convergence guarantees for AdaGrad and DASGO with Nesterov momentum:

E[f(XK+1)− f(X∗)] ≤ Õ
(
∥l∥1∥X∗∥1+ν

2→∞

K
1+3ν

2

+
∥σ∥1∥X∗∥2→∞√

K + 1

)
, (30)

which substantially improves upon the non-accelerated result above. We can also compare this result
with the state-of-the-art result of Kavis et al. (2019); Rodomanov et al. (2024) for scalar AdaGrad-
type stepsizes under the above assumptions:

E[f(XK+1)− f(X∗)] ≤ Õ
(
∥l∥∞∥X∗∥1+ν

K
1+3ν

2

+

√
m∥σ∥∞∥X∗∥√

K + 1

)
. (31)

Our result in eq. (30) is substantially better than the existing result in eq. (31) as long as ∥l∥1 ∼
∥l∥∞, ∥σ∥1 ∼ ∥σ∥∞, and ∥X∗∥ ≫ ∥X∗∥2→∞. For instance, in the AdaGrad case (n = 1), this
holds when l and σ are sparse andX∗ is dense, which aligns with the conclusions made by Liu et al.
(2024b) for AdaGrad without momentum acceleration.
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scion great again!(bridging theory and practice of lmo-based optimizers for llms). arXiv preprint
arXiv:2505.13416, 2025.

Anton Rodomanov, Xiaowen Jiang, and Sebastian U Stich. Universality of adagrad stepsizes for
stochastic optimization: Inexact oracle, acceleration and variance reduction. Advances in Neural
Information Processing Systems, 37:26770–26813, 2024.

Matthew Streeter and H Brendan McMahan. Less regret via online conditioning. arXiv preprint
arXiv:1002.4862, 2010.

Tijmen Tieleman. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent
magnitude. COURSERA: Neural networks for machine learning, 4(2):26, 2012.

Stepan Trifonov, Leonid Levin, Savelii Chezhegov, and Aleksandr Beznosikov. Incorporating pre-
conditioning into accelerated approaches: Theoretical guarantees and practical improvement.
arXiv preprint arXiv:2505.23510, 2025.

Nikhil Vyas, Depen Morwani, Rosie Zhao, Mujin Kwun, Itai Shapira, David Brandfonbrener, Lucas
Janson, and Sham Kakade. Soap: Improving and stabilizing shampoo using adam. arXiv preprint
arXiv:2409.11321, 2024.

Shuo Xie, Tianhao Wang, Sashank Reddi, Sanjiv Kumar, and Zhiyuan Li. Structured preconditioners
in adaptive optimization: A unified analysis. arXiv preprint arXiv:2503.10537, 2025.

Yi Zhou, Junjie Yang, Huishuai Zhang, Yingbin Liang, and Vahid Tarokh. Sgd converges to global
minimum in deep learning via star-convex path. arXiv preprint arXiv:1901.00451, 2019.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Appendix
A NOTATION

In this paper, we use the following notation: dim(X ) is the dimension of the space X ; L is the space
of linear operators X → X , for arbitrary operator A ∈ L, A∗ ∈ L denotes its adjoint operator,
I ∈ L and O ∈ L denote the identity and the zero operators, respectively; S ⊂ L is the space of self-
adjoint linear operators, S++,S+ ⊂ S are the spaces of positive definite and positive semi-definite
self-adjoint operators, respectively; ≺,⪯,≻,⪰ denote the standard Löwner order on S; ⟨·, ·⟩ and
∥ · ∥ denote the standard inner product and Euclidean norm on X or L, depending on the context, in
particular, ⟨A,B⟩ = tr(AB∗) for A,B ∈ L; for arbitrary H ∈ S++, ∥ · ∥H denotes the weighted
Euclidean norm in X , i.e., ∥x∥2H = ⟨x,Hx⟩ for x ∈ X ; ∥ · ∥op and ∥ · ∥tr denote the operator and
trace norm on L, respectively, i.e., ∥A∥op = max∥x∥≤1∥Ax∥ and ∥A∥tr = tr(

√
AA∗) for all

A ∈ L; for arbitrary y, z ∈ X , by z⟨y, ·⟩ ∈ L we denote the rank-1 linear operator x 7→ ⟨x, y⟩z;
by Sd ⊂ Rd×d we denote the space of d × d symmetric matrices; by ⊙, we denote the Hadamard
vector or matrix product.

B ADDITIONAL RELATED WORK

Exponential moving average. AdaGrad-type algorithms, like RMSProp, often utilize the exponen-
tial moving average (EMA): they replace the cumulative sum of the squared gradients

∑k
i=0∥gi∥2

in eq. (2) with the exponential moving average
∑k

i=0 β
i∥gi∥2. Notably, EMA is the third key com-

ponent of Adam, in addition to diagonal preconditioning and momentum. Moreover, Défossez et al.
(2020) showed how to analyze AdaGrad with EMA and explained that it is related to the standard
AdaGrad in the same way as fixed stepsize SGD is related to decaying stepsize SGD. Consequently,
we can develop EMA versions of our algorithms as well as their convergence proofs. However,
Défossez et al. (2020) could not justify the benefits of using momentum. Hence, our theoretical
justification of the benefits of momentum and diagonal preconditioning, combined with the analysis
of EMA by Défossez et al. (2020), may provide the ultimate explanation for the efficiency of Adam.

Parameter-free algorithms. There is an important research direction aimed at designing parameter-
free variants of AdaGrad, which can avoid tuning the parameter η ∝ ∥x∗∥ in eq. (2). This includes
the works of Cutkosky & Orabona (2018); Orabona & Pál (2021); Defazio & Mishchenko (2023);
Mishchenko & Defazio (2023); Ivgi et al. (2023); Khaled et al. (2023); Kreisler et al. (2024).4
However, to the best of our knowledge, the existing results are applicable only to scalar stepsizes,
which are rarely used in practice. Designing parameter-free gradient methods with diagonal or
matrix preconditioning is an interesting question for future work.

Concurrent unified analysis framework. Xie et al. (2025) developed a unified analysis for
AdaGrad-type methods, where they also adopt the matrix smoothness assumption. We found their
work during the preparation of our literature review, at a point when our results had already been
finalized. Although the results of Xie et al. (2025) share some similarities with ours and are capa-
ble of providing a partially positive answer to Question 1, their analysis has substantial differences
and drawbacks. Specifically, it only covers the smooth case and lacks adaptation to non-smooth
or Hölder smooth functions. In addition, it requires a more restrictive stochastic gradient noise as-
sumption and, most importantly, does not contain any results about using momentum acceleration,
thus completely missing an answer to the fundamental Question 2.

C MOTIVATION FOR CONVEX SETTING

In this paper, we focus on the case where the objective function f(x) in problem (1) is convex.
There are multiple reasons for this assumption. First, optimization algorithms for convex functions
hold substantial practical interest because empirical studies (Zhou et al., 2019; Kleinberg et al.,
2018) suggest that deep neural networks may adhere to convexity or its variants. Second, for gen-

4Additional references can be found in the overview of Orabona (2023).
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Algorithm 3 Adaptive SGD with Preconditioning and Weight Clipping
1: input: x0 ∈ QR, K ∈ {1, 2, . . .}
2: for k = 0, . . . ,K do
3: sample ξk ∼ D
4: compute gk = ∇f(xk; ξk)
5: compute Hk ∈ H ∩ S++ using eqs. (5) and (8)
6: compute xk+1 ∈ X using eq. (32)
7: output: xK = 1

K+1

∑K
k=0 xk

Algorithm 4 Accelerated Adaptive SGD with Preconditioning and Weight Clipping
1: input: x0 = x0 ∈ QR, K ∈ {1, 2, . . .}
2: for k = 0, . . . ,K do
3: sample ξk ∼ D
4: compute gk = ∇fk(xk; ξk), where fk(x) is defined in eq. (19)
5: compute Hk ∈ H ∩ S++ using eqs. (5) and (8)
6: compute xk+1 ∈ X and xk+1/2 ∈ X using eq. (32)
7: compute xk+1 = αkxk+1/2 + (1− αk)xk
8: output: xK+1

eral non-convex functions, it is impossible to achieve meaningful global convergence beyond vague
first-order stationarity (Carmon et al., 2020). However, in practice, it is typically desirable to achieve
small values of the objective function, which can only be guaranteed under additional assumptions,
such as gradient domination (Fatkhullin et al., 2022), star/quasar convexity (Hinder et al., 2020),
etc. Such assumptions are, in turn, relaxations of the convexity property itself. Hence, it is natural
to consider the convex setting first before trying to relax it. Finally, convex optimization serves as a
large source of inspiration for designing efficient optimization algorithms. Notably, many optimiza-
tion techniques that have practical benefits were initially theoretically justified for convex functions.
These include momentum acceleration (Nesterov, 2013), local training (Mishchenko et al., 2022),
and AdaGrad (Duchi et al., 2011), on which Adam itself is based.

D ALGORITHMS WITH WEIGHT CLIPPING

The upper bounds on the expected functional suboptimality in Theorem 1 for Algorithm 1 and in
Theorem 2 for Algorithm 2 require the inequality in eq. (17) to hold almost surely. However, this
requirement may not be satisfied, for instance, in the stochastic case. It is important to higlight that
such issue is not an artifact of our analysis but a common phenomenon in AdaGrad-type algorithms
(Duchi et al., 2011; Gupta et al., 2018; Liu et al., 2024b; An et al., 2025; Xie et al., 2025). To
bypass this issue, a typical approach is to modify the preconditioned gradient update rule in eq. (3)
by adding an extra projection step onto the set QR = {x ∈ X : R(x) ≤ R}, where R > R(x∗).
The modified update rule is given as follows:

xk+1 = argmin
x∈QR

1
2∥x− xk+1/2∥2H−1

k

, xk+1/2 = argmin
x∈X

⟨gk, x⟩+ 1
2∥x− xk∥2H−1

k

. (32)

Note that the set QR is convex and hence the projection step is well-defined. Also, note that the
projection is performed with respect to the weighted Euclidean norm ∥ · ∥H−1

k
, which may be ex-

pensive, for instance, when the preconditioner Hk is dense. However, this projection step can be
computed efficiently when the preconditioner Hk is diagonal. For instance, the projection is equiv-
alent to the coordinate-wise clipping t 7→ min{R,max{−R, t}} in AdaGrad, and to the row-wise
or column-wise norm-clipping z 7→ min{1,R/∥z∥}z in DASGO. Below, we discuss the modified
update rule eq. (32) in relation to the non-accelerated Algorithm 1 and the accelerated Algorithm 2
in detail, including the additional modifications in Algorithms 1 and 2 and the modifications in the
convergence proofs.

Non-accelerated Algorithm 1 → Algorithm 3. The only modifications to Algorithm 1 are the
initialization x0 ∈ Q on line 1 and the modified update rule (32) on line 6 in Algorithm 3, as
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discussed above. We also modify the proof of Lemma 5 in Appendix F.1 by obtaining the following:

1
2∥xk+1 − x∗∥2

H−1
k

(a)
≤ 1

2∥xk+1/2 − x∗∥2
H−1

k

(b)
= 1

2∥xk − x∗∥2
H−1

k

− ⟨gk, xk − x∗⟩+ 1
2∥gk∥

2
Hk
, (33)

where (a) uses the update rule for xk+1 in eq. (32), the non-expansiveness of the projection, and the
fact that x∗ ∈ QR; (b) uses the update rule for xk+1/2 in eq. (32). One can observe that this eq. (33)
coincides with eq. (43) in Appendix F.1. Moreover, the inequality eq. (17) holds almost surely due
to the projection step in eq. (32). Therefore, the rest of the proof of Theorem 1 remains unchanged,
and we obtain the following Theorem 3.
Theorem 3. Under Assumptions 1, 2 and 3, let η = R, where R > R(x∗). Then, the output
xK ∈ X of Algorithm 3 satisfies the following inequality:

E[f(xK)− f(x∗)] ≤ 3∥L∥trR1+ν

(K + 1)
1+ν
2

+
3∥Σ∥trR√
K + 1

+
3
√
δR dim(X )

(K + 1)
. (34)

Accelerated Algorithm 2 → Algorithm 4. Similarly, to the non-accelerated algorithm, the accel-
erated Algorithm 4 contains the modified initialization x0 = x0 ∈ QR on line 1 and the modified
update rule (32) on line 6 in Algorithm 4. In addition to the modified eq. (33), we also modify the
first inequality in the proof of Lemma 10 in Appendix G.4 as follows:

E[fk(xk+1/2)] ≤ E
[
fk(xk)− ∥gk∥2Hk

+ ⟨nk,Hkgk⟩+ 1
1+να

ν−1
k ∥L∥

1−ν
2

tr ∥gk∥1+ν
LH2

k

]
. (35)

Here, the only difference is the left-hand side E[fk(xk+1/2)] compared to E[fk(xk+1)] in Ap-
pendix G.4, which means that we also have to modify the update rule for xk+1 on line 7 of Al-
gorithm 4 and apply trivial changes to Lemma 7. The rest of the proof of Theorem 2 remains
unchanged and we obtain the following Theorem 4.
Theorem 4. Under Assumptions 1, 2, 3 and 4, let η = 2R, where R > R(x∗), and let αk =
2/(k + 2). Then, the output xK+1 ∈ X of Algorithm 4 satisfies the following inequality:

E[f(xK+1)− f(x∗)] ≤ CK∥L∥trR1+ν

(K + 2)
1+3ν

2

+
CK∥Σ∥trR√

K + 2
+

4
√
δR dim(X )

(K + 2)2
, (36)

where the constant CK > 0 satisfies the following relation:

CK = O
(
1 + lnK + ln ∥L∥trRν

√
δ

+ ln ∥Σ∥tr√
δ

)
. (37)
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E PROOFS FOR SECTION 2

E.1 PROOF OF LEMMA 1

Let functions l−1(H), . . . , lk(H) : S++ → R be defined as follows:

l−1(H) = ⟨I, ϕ(H)⟩, li(H) = ∥gi∥2H for i = 0, . . . , k. (38)

Let H−1 ∈ H ∩ S++ be defined as follows:

H−1 = argmin
H∈H∩S++

⟨I, ϕ(H)⟩. (39)

From eq. (5), it is easy to verify that the following relation holds for all i = −1, . . . , k:

Hi = argmin
H∈H∩S++

∑k
i=−1li(H).

Next, we get the following inequality:∑k
i=0li(Hi)

(a)
≤

∑k
i=−1li(Hi)

(b)
≤

∑k
i=−1li(Hk).

where (a) uses the assumption that the potential function ϕ(h) is non-negative; (b) uses eq. (FTL-
BTL). It remains to to do rearranging and use the definition of the functions li(H).

E.2 PROOF OF LEMMA 2

First, using Properties A1.1 and A1.2, we can show that Hk ∈ H∩ S++. Next, we show that Hk in
eq. (8) is a solution to the problem in eq. (5) by verifying the first-order optimality condition:

∇(⟨·,Sk⟩+ ⟨I, ϕ(·)⟩)(Hk)
(a)
= Sk + ϕ′(Hk)

(b)
= Sk + δI− η2H−2

k

(c)
= Sk − projH(Sk)

∈ H⊥.

where (a) uses the standard operator function calculus (Carlen, 2010); (b) uses eq. (7); (c) uses
eq. (8). Next, we can show that the solution Hk is unique. Indeed, by Theorem 2.10 of Carlen
(2010), the function ⟨I, ϕ(H)⟩ is strictly convex, because the function ϕ(h) defined in eq. (7) is
strictly convex. Finally, we can prove eq. (9). It follows from the operator monotonicity of the
function h 7→ −1/

√
h, which is implied by Löwner-Heinz Theorem (Carlen, 2010, Theorem 2.6),

and the ordering projH(Sk+1) ⪰ projH(Sk), which is implied by Property A1.1 and the definition
of Sk in eq. (5).

E.3 PROOF OF LEMMA 3

Assumption 2 implies the following inequality for all x ∈ X and ∇f(x) ∈ ∂f(x):

f(x∗) ≤ f(x) + ⟨∇f(x), x∗ − x⟩+ 1
1+ν ∥L∥

1−ν
2

tr ∥x∗ − x∥1+ν
L . (40)

In the case ν ∈ (0, 1], we can minimize the right-hand side in x, which gives the following:

∥∇f(x)∥
1+ν
ν

L−1 ≤
(
1+ν
ν

)
∥L∥

1−ν
2ν

tr (f(x)− f(x∗)) . (41)

Taking both sides in the power 2ν
1+ν gives the desired inequality in the case ν ∈ (0, 1]. Finally, in

the case ν = 0, minimizing the right-hand side of the previous upper bound on f(x∗) gives the
following:

f(x∗) ≤ f(x) +

{
0 ∥∇f(x)∥2L−1 ≤ ∥L∥tr
−∞ ∥∇f(x)∥2L−1 > ∥L∥tr

. (42)

It remains to use the fact that both f(x) and f(x∗) are finite to obtain the desired inequality in the
case ν = 0.
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E.4 PROOF OF LEMMA 4

(i) Non-negativity. It is obvious.
(ii) Absolute homogenity. For arbitrary t ∈ R we can obtain the following:

R(tx)
(a)
= ∥projH(t2X)∥1/2op

(b)
= |t| · ∥projH(X)∥1/2op

(c)
= |t| · R(x),

where (a) and (c) use the definition of R(x) in eq. (12); (b) uses the linearity of the projec-
tion onto H and the absolute homogentiy of ∥ · ∥op.

(iii) Positive definiteness. Let R(x) = 0. Then projH(X) = 0, which implies the following:

0 = ⟨I,projH(X)⟩ (a)
= ⟨I,X⟩ (b)

= ∥x∥2

where (a) uses the fact that I ∈ H due to Property A1.2; (b) uses the definition of X in
eq. (12). Hence, we get x = 0.

(iv) Subadditivity. Let x, y ∈ X . Then we can obtain the following:

R(x+ y)
(a)
= ∥projH((x+ y)⟨x+ y, ·⟩)∥1/2op

(b)
= ∥projH((1 + c2)x⟨x, ·⟩+ (1 + 1/c2)y⟨y, ·⟩ − (cx− y/c)⟨cx− y/c, ·⟩)∥1/2op

(c)
≤ ∥(1 + c2) projH(x⟨x, ·⟩) + (1 + 1/c2) projH(y⟨y, ·⟩)∥1/2op

(d)
≤ ((1 + c2)∥projH(x⟨x, ·⟩)∥op + (1 + 1/c2)∥projH(y⟨y, ·⟩)∥op)1/2

(e)
= ∥projH(x⟨x, ·⟩)∥1/2op + ∥projH(y⟨y, ·⟩)∥1/2op

(f)
= R(x) +R(y).

where (a) and (f) use the definition of R(x) in eq. (12); (b) uses the bilinearity of the
mapping x 7→ x⟨x, ·⟩ and an arbitrary constant c ∈ R; (c) uses Property A1.1, the linearity
of the projection onto H, and the fact that ∥ · ∥op is order-preserving on S+; (d) uses the
subadditivity and absolute homogenity of ∥ · ∥op; (e) can be obtain by minimizing in c.

The proof is now complete.
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F PROOFS FOR SECTION 3

F.1 PROOF OF LEMMA 5

Let rk = xk − x∗ and Rk = rk⟨rk, ·⟩. We can rewrite 1
2∥rk+1∥2H−1

k

as follows:

1
2∥rk+1∥2H−1

k

(a)
= 1

2∥rk∥
2
H−1

k

− ⟨gk, rk⟩+ 1
2∥gk∥

2
Hk
, (43)

where (a) uses eq. (3). Next, we sum these equations for k = 0, . . . ,K and get the following:∑K
k=0⟨gk, rk⟩

= 1
2

∑K
k=0∥gk∥

2
Hk

+ 1
2

∑K
k=0

(
∥rk∥2H−1

k

− ∥rk+1∥2H−1
k

)
= 1

2

∑K
k=0∥gk∥

2
Hk

+ 1
2∥r0∥

2
H−1

0
+ 1

2

∑K
k=1∥rk∥

2
H−1

k −H−1
k−1

− 1
2∥rK+1∥2H−1

K+1

≤ 1
2

∑K
k=0∥gk∥

2
Hk

+ 1
2 ⟨R0,H

−1
0 ⟩+ 1

2

∑K
k=1⟨Rk,H

−1
k −H−1

k−1⟩
(a)
= 1

2

∑K
k=0∥gk∥

2
Hk

+ 1
2 ⟨projH(R0),H

−1
0 ⟩+ 1

2

∑K
k=1⟨projH(Rk),H

−1
k −H−1

k−1⟩
(b)
≤ 1

2

∑K
k=0∥gk∥

2
Hk

+ 1
2R

2∥H−1
0 ∥tr + 1

2R
2∑K

k=1∥H
−1
k −H−1

k−1∥tr
(c)
= 1

2

∑K
k=0∥gk∥

2
Hk

+ 1
2R

2⟨I,H−1
0 ⟩+ 1

2R
2∑K

k=1⟨I,H
−1
k −H−1

k−1⟩
(d)
≤ 1

2 ⟨HK ,SK⟩+ 1
2 ⟨I, ϕ(HK)⟩+ 1

2R
2⟨I,H−1

K ⟩
(e)
= 1

2 ⟨HK ,projH(SK)⟩+ 1
2 ⟨I, ϕ(HK)⟩+ 1

2R
2⟨I,H−1

K ⟩

where (a) use the properties of the projection and the fact that H−1
k ∈ H due to Property A1.2

and eq. (8); (b) uses the Hölder’s inequality for Schatten norms, the definition of the norm R(·)
in eq. (12), and the inequality in eq. (17); (c) uses the fact that H−1

k+1 ⪰ H−1
k , which is implied by

eq. (9) and the operator monotonicity of the function h 7→ −1/h, which is implied by Löwner-Heinz
Theorem (Carlen, 2010, Theorem 2.6); (d) uses Lemma 1; (e) use the fact that H−1

k ∈ H due to
Property A1.2 and eq. (8).

Next, using the definition of the potential function ϕ(H) in eq. (7), the expression for Hk in eq. (8),
and the definition η = R, we get the following inequality:∑K

k=0⟨gk, rk⟩ ≤
1
2 ⟨HK , δI+ projH(SK)⟩+ 1

2 (η
2 +R2)⟨I,H−1

K ⟩
(a)
= 3

2R⟨I, (δI+ projH(SK))1/2⟩,
where (a) uses the definition η = R. After taking the expectation, recalling that ξk is independent
of xk, and using Property A3.1, we get∑K

k=0E[⟨∇f(xk), rk⟩] ≤
3
2RE[⟨I, (δI+ projH(SK))1/2⟩]

(a)
≤ 3

2R⟨I, (δI+ projH(E[SK ]))1/2⟩
(b)
≤ 3

2R⟨I,projH(E[SK ])1/2⟩+ 3
2

√
δR∥I∥tr

= 3
2R⟨I,projH(E[SK ])1/2⟩+ 3

2

√
δR dim(X )

where (a) uses the concavity of the function H 7→ ⟨I,H1/2⟩, which is implied by Theorem 2.10
of Carlen (2010), and the linearity of the projection onto H; (b) uses the fact that function H 7→
⟨I,H1/2⟩ is subadditive for H ∈ S+, which is implied by Lemma 3 of An et al. (2025). It remains
to use the convexity property from Assumption 2.

F.2 PROOF OF LEMMA 6

Let Gk,Nk ∈ S++ be defined as follows:

Gk =
∑k

i=0∇f(xk)⟨∇f(xk), ·⟩, Nk =
∑k

i=0n(xk; ξk)⟨n(xk; ξk), ·⟩. (44)
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Then, we can obtain the following:

E[Sk]
(a)
=

∑k
i=0E[(∇f(xk) + n(xk; ξk))⟨∇f(xk) + n(xk; ξk), ·⟩]

= E[Gk +Nk] +
∑k

i=0E[∇f(xk)⟨n(xk; ξk), ·⟩+ n(xk; ξk)⟨∇f(xk), ·⟩]
(b)
= E[Gk +Nk],

where (a) uses the definition of Sk in eq. (5) and Assumption 3; (b) uses Property A3.1 and the fact
that ξk is independent of xk. Using this, we obtain the following relation:

⟨I,projH(E[Sk])
1/2⟩ = ⟨I,projH(E[Gk +Nk])

1/2⟩
(a)
= ⟨I, [projH(E[Gk]) + projH(E[Nk])]

1/2⟩
(b)
≤ ⟨I,projH(E[Gk])

1/2⟩+ ⟨I,projH(E[Nk])
1/2⟩,

where (a) uses the linearity of the expectation and the projection onto H; (b) uses the fact that
function H 7→ ⟨I,H1/2⟩ is subadditive for H ∈ S+, which is implied by Lemma 3 of An et al.
(2025).

We can upper-bound ⟨I,projH(E[Nk])
1/2⟩ as follows:

⟨I,projH(E[Nk])
1/2⟩ = ⟨Σ1/2,Σ−1/2 projH(E[Nk])

1/2⟩
(a)
≤ ∥Σ1/2∥∥Σ−1/2 projH(E[Nk])

1/2∥
(b)
=

√
∥Σ∥tr⟨Σ−1,projH(E[Nk])⟩

(c)
=

√
∥Σ∥trE[⟨Σ−1,Nk⟩]

(d)
≤

√
∥Σ∥tr

∑k
i=0E[∥n(xi; ξi)∥2Σ−1 ]

(e)
≤

√
k + 1∥Σ∥tr

where (a) uses the Cauchy-Schwarz inequality; (b) uses the definition of ∥ · ∥ and ∥ · ∥tr; (c) uses
the linearity of the expectation and the fact that Σ−1 ∈ H, which is implied by Properties A1.2
and A3.2; (d) uses the definition of Nk; (e) uses Property A3.2.

Similarly, we can upper-bound ⟨I,projH(E[Gk])
1/2⟩ as follows:

⟨I,projH(E[Gk])
1/2⟩

(a)
≤

√
∥L∥tr⟨L−1,projH(E[Gk])⟩

(b)
=

√
∥L∥trE[⟨L−1,Gk⟩]

(c)
≤

√
∥L∥tr

∑k
i=0E[∥∇f(xi)∥2L−1 ]

(d)
≤ ∥L∥

1
1+ν

tr

√∑k
i=0E

[
[f(xi)− f(x∗)]

2ν
1+ν

]
(e)
≤ ∥L∥

1
1+ν

tr

√∑k
i=0 [E[f(xi)− f(x∗)]]

2ν
1+ν

(f)
≤ ∥L∥

1
1+ν

tr

√
(k + 1)

1−ν
1+ν

[∑k
i=0E[f(xi)− f(x∗)]

] 2ν
1+ν

=
√
k + 1

1−ν
1+ν ∥L∥

1
1+ν

tr

[∑k
i=0E[f(xi)− f(x∗)]

] ν
1+ν

,

where (a) uses steps similar to the above calculations; (b) uses the linearity of the expectation and
the fact that L−1 ∈ H, which is implied by Property A1.2 and Assumption 2; (c) uses the definition
of Gk; (d) uses Lemma 3; (e) and (f) use the concavity of the function t 7→ t

2ν
1+ν for ν ∈ [0, 1].

F.3 PROOF OF THEOREM 1

Using Lemmas 5 and 6, we get the following inequality:∑K
k=0E[f(xk)− f(x∗)] ≤ 3

2

√
K + 1

1−ν
1+ν R∥L∥

1
1+ν

tr

[∑K
k=0E[f(xk)− f(x∗)]

] ν
1+ν
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+ 3
2

√
K + 1R∥Σ∥tr + 3

2

√
δR dim(X ),

which implies the following inequality:∑K
k=0E[f(xk)− f(x∗)] ≤ 3

√
K + 1

1−ν
∥L∥trR1+ν

+ 3
√
K + 1∥Σ∥trR+ 3

√
δR dim(X ).

It remains to use the convexity property in Assumption 2 and the definition of xK on line 7 of
Algorithm 1.
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G PROOFS FOR SECTION 4

G.1 PROOF OF LEMMA 7

We can upper-bound
∑K

k=0E[fk(x∗)− fk(xk+1)] as follows:∑K
k=0E[fk(x

∗)− fk(xk+1)]

(a)
=

∑K
k=0α

−2
k E[f(αkx

∗ + (1− αk)xk)− f(αkxk+1 + (1− αk)xk)]

(b)
≤

∑K
k=0α

−2
k E[αkf(x

∗) + (1− αk)f(xk)− f(xk+1)]

= α−2
K E[f(x∗)− f(xK+1)] + α−2

0 (1− α0)E[f(x∗)− f(x0)]

+
∑K

k=1(α
−2
k (1− αk)− α−2

k−1)E[f(xk)− f(x∗)]

(c)
≤ 1

4 (K + 2)2E[f(x∗)− f(xK+1)],

where (a) uses the definition of the functions fk(x) in eq. (19); (b) uses the definition of xk+1 on
line 7 of Algorithm 2 and the convexity property in Assumption 2; (c) uses the definition αk =
2/(k + 2).

G.2 PROOF OF LEMMA 8

Let B = L (the case B = Σ is analogous). Let Ak(Q) : S++ → R be the objective function in
eq. (21):

Ak(Q) = ⟨Q,LSk⟩+ ⟨L, δQ− η2 ln(Q)⟩. (45)
From Property A1.2, it follows that H2

k ∈ H ∩ S++. In addition, from the Löwner-Heinz Theorem
(Carlen, 2010, Theorem 2.6), it follows that the function Ak(Q) is convex. Hence, it remains to
prove that the first-order stationarity condition holds, that is, the differential of Ak(Q) is zero on H
at H2

k:
dAk(H

2
k)[H] = 0 for all H ∈ H. (46)

The following Lemma 11 will be used to compute the differential dAk(Q)[H].
Lemma 11 (↓). Under Assumption 4, let the function B(Q) : S++ → R be defined as follows:

B(Q) = ⟨L, ln(Q)⟩. (47)

Then the differential of the function B(Q) for all Q ∈ H ∩ S++ is given as follows:

dB(Q)[H] = ⟨LQ−1,H⟩ for all H ∈ H. (48)

Using Lemma 11, we can compute the differential dAk(H
2
k)[H] for H ∈ H as follows:

dAk(H
2
k)[H]

(a)
= ⟨L(Sk + δI− η2H−2

k ),H⟩
(b)
= ⟨L(Sk − projH(Sk)),H⟩
(c)
= ⟨(Sk − projH(Sk)),LH⟩
(d)
= ⟨(Sk − projH(Sk)),LH⟩

where (a) uses Lemma 11; (b) uses eq. (8); (c) uses Assumption 4; (d) uses the fact that LH ∈ H,
which is implied by the following Lemma 12.
Lemma 12 (↓). Under Assumption 4, LH ∈ H for all H ∈ H.

The proof is now complete.

G.2.1 PROOF OF LEMMA 11

Let constants a, b ∈ R be chosen to satisfy the following inequalities:

O ≺ aI ≺ Q ≺ bI. (49)
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Let H ∈ H such that ∥H − Q∥op ≤ min {(λmin(Q)− a), b− λmax(Q)}. Hence, it is easy to
verify that the following inequalities hold:

aI ⪯ Q+H ⪯ bI. (50)

Next, we fix an arbitrary ϵ > 0. By the Weierstrass approximation theorem, there exists a poly-
nomial pn(t) =

∑n
i=0 cit

i such that pn(a) = ln(a), p′n(a) = 1/a, and whose second derivative
approximates the function t 7→ −1/t2 on the segment [a, b] up to the precision ϵ:

|p′′n(t) + 1/t2| ≤ ϵ for all t ∈ [a, b]. (51)

From this, using the standard integration arguments, we can conclude that the following approxima-
tion inequalities hold for all t ∈ [a, b]:

|p′n(t)− 1/t| ≤ ϵ(b− a), |pn(t)− ln(t)| ≤ 1
2ϵ(b− a)2. (52)

Further, we obtain the following:

|B(Q+H)− B(Q)−
∫ 1

0
⟨L(Q+ τH)−1,H⟩dτ |

(a)
≤ |⟨L, pn(Q+H)− pn(Q)⟩ −

∫ 1

0
⟨Lp′n(Q+ τH),H⟩dτ |

+ ∥L∥tr ·
(
1
2ϵ(b− a)2 + 1

2ϵ(b− a)2
)
+ ∥LH∥tr · ϵ(b− a)

= |⟨L, pn(Q+H)− pn(Q)⟩ −
∫ 1

0
⟨Lp′n(Q+ τH),H⟩dτ |+ ϵ

(
b2∥L∥tr + b∥LH∥tr

)
(b)
= ϵ

(
b2∥L∥tr + b∥LH∥tr

)
.

where (a) uses Definition 1, the approximation inequalities above, and the Hölder’s inequality for
Schatten norms; (b) Uses the fact that pn(t) is a polynomial and the fact that QL = LQ and
HL = LH due to Assumption 4. Next, we take the limit ϵ → 0 and use the fundamental theorem
of calculus and the continuity of the map Q 7→ Q−1 on S++, which implies the following:

d
dτ B(Q+ τH)|τ=0 = ⟨LQ−1,H⟩. (53)

Since the right-hand side is continuous in Q, we can conclude that the function B(Q) is differen-
tiable and its differential is equal to the right-hand side.

G.2.2 PROOF OF LEMMA 12

Since the operators L and H are self-adjoint and commute, they are simultaneously diagonalizeable:

L =
∑

iλi · ui⟨ui, ·⟩ and H =
∑

iµi · ui⟨ui, ·⟩,
where λi and µi are the (possibly repeating) eigenvalues of the operators L and H, respectively,
{ui} ⊂ X is an orthonormal basis of the common eigenvectors in the space X . Hence, the operator
LH is also diagonalizeable as follows:

LH =
∑

iλiµi · ui⟨ui, ·⟩.
Further, let Iλ = {i : λi = λ} and Jµ = {j : µj = µ} for arbitrary λ, µ ∈ R. Let p(t) be a
polynomial such that p(λ) = 1 and p(λi) = 0 for i /∈ I . Using Property A1.2, we can conclude that

p(L) =
∑

i∈Iλ
ui⟨ui, ·⟩ ∈ H.

Similarly, by constructing a polynomial q(t)such that q(µ) = 1 and q(µj) = 0 for j /∈ J and using
Property A1.2, we can show that the following inclusion holds:

q(H) =
∑

j∈Jµ
uj⟨uj , ·⟩ ∈ H.

Hence, using Property A1.2, we obtain the following inclusion:

p(L) + q(H) =
∑

i∈Iλ△Jµ
ui⟨ui, ·⟩+ 2

∑
i∈Iλ∩Jµ

ui⟨ui, ·⟩.

Finally, we can construct a polynomial s(t) such s(2) = 1 and s(1) = 0. Using Property A1.2, we
can show that

s(p(L) + q(H)) =
∑

i∈Iλ∩Jµ
ui⟨ui, ·⟩ ∈ H.

From this fact and the above eigendecomposition of the operator LH, it follows that LH ∈ H.
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G.3 PROOF OF LEMMA 9

Let B = L (the case B = Σ is analogous). Let functions l−1(Q), . . . , lk(Q) : S++ ∩ H → R be
defined as follows:

l−1(Q) = ⟨L, δQ− η2 ln(Q)⟩, li(Q) = ∥gi∥2QL for i = 0, . . . , k. (54)

Let the operators Q−1, . . . ,Qk ∈ H ∩ S++ be defined as follows:

Q−1 = (η2/δ)I, Qi = H2
i for i = 0, . . . , k. (55)

Using Lemma 8, we can show that the following relation holds for all i = −1, . . . , k:

Qi = argmin
Q∈H∩S++

∑k
i=−1li(Q).

Next, we get the following inequality:∑k
i=0∥gi∥

2
LH2

i

(a)
=

∑k
i=0li(Qi)

=
∑k

i=−1li(Qi)− l−1(Q−1)

(b)
≤

∑k
i=−1li(Qk)− l−1(Q−1)

(c)
= ⟨LH2

k, δI+ Sk⟩ − η2⟨L, ln(H2
k)⟩ − η2⟨L, I⟩+ η2⟨L, ln((η2/δ)I)⟩

(d)
= ⟨LH2

k, δI+ projH(Sk)⟩ − η2⟨L, ln(H2
k)⟩ − η2∥L∥tr + η2⟨L, ln(η2I/δ)⟩

(e)
= η2∥L∥tr − η2⟨L, ln(δH2

k/η
2)⟩ − η2∥L∥tr

(f)
= η2⟨L, ln(δI+ projH(Sk))⟩+ η2∥L∥tr ln 1

δ

(g)
≤ η2∥L∥tr ln(∥δI+ projH(Sk)∥op) + η2∥L∥tr ln 1

δ

(h)
≤ η2∥L∥tr ln(∥(δI+ projH(Sk))

1/2∥2tr) + η2∥L∥tr ln 1
δ

(i)
= η2∥L∥tr ln

(
1
δ η

2∥H−1
k ∥2tr

)
,

where (a) and (c) use the definition of the functions li(H), the definition of the operators Qi; (b)
uses eq. (FTL-BTL); (d) uses Lemma 12, Property A1.2, and the properties of the projection onto
H; (e) and (f) use eq. (8) and Definition 1; (g) uses the Hölder’s inequality for Schatten norms; (h)
uses the inequality ∥ · ∥op ≤ ∥ · ∥tr; (i) uses eq. (8). It remains to take the expectation and use the
concavity of the function t 7→ ln(t2) and the Jensen’s inequality.

G.4 PROOF OF LEMMA 10

Let nk = gk −∇fk(xk) and rk = xk − x∗. We can obtain the following inequality:

E[fk(xk+1)]
(a)
≤ E

[
fk(xk) + ⟨∇fk(xk), xk+1 − xk⟩+ 1

1+να
ν−1
k ∥L∥

1−ν
2

tr ∥xk+1 − xk∥1+ν
L

]
(b)
= E

[
fk(xk)− ⟨∇fk(xk),Hkgk⟩+ 1

1+να
ν−1
k ∥L∥

1−ν
2

tr ∥gk∥1+ν
LH2

k

]
(c)
= E

[
fk(xk)− ∥gk∥2Hk

+ ⟨nk,Hkgk⟩+ 1
1+να

ν−1
k ∥L∥

1−ν
2

tr ∥gk∥1+ν
LH2

k

]
where (a) uses the definition of the function fk(x) in eq. (19) and Assumption 2; (b) uses eq. (3) and
Assumption 4; (c) uses the definition of nk. Next, similar to the proof of Lemma 5, we can obtain
the following inequality:

E[
∑K

k=0⟨gk, rk⟩] ≤ E[ 12
∑K

k=0∥gk∥
2
Hk

+ 1
2R

2⟨I,H−1
K ⟩], (56)

Combining this with the previous inequality gives the following:∑K
k=0E[fk(xk+1)− fk(x

∗)]
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≤ 1
2R

2⟨I,E[H−1
K ]⟩+

∑K
k=0E

[
⟨nk,Hkgk⟩ − 1

2∥gk∥
2
Hk

+ 1
1+να

ν−1
k ∥L∥

1−ν
2

tr ∥gk∥1+ν
LH2

k

]
(a)
≤ 1

2R
2⟨I,E[H−1

K ]⟩+
∑K

k=0E
[
− 1

2∥gk∥
2
Hk

+ 1
1+να

ν−1
k ∥L∥

1−ν
2

tr ∥gk∥1+ν
LH2

k

]
+
∑K

k=0E
[
c
2∥gk∥

2
ΣH2

k
+ 1

2c∥nk∥
2
Σ−1

]
(b)
= 1

2R
2⟨I,E[H−1

K ]⟩+
∑K

k=0E
[
1
2 ⟨Sk−1 − Sk,Hk⟩+ 1

1+να
ν−1
k ∥L∥

1−ν
2

tr ∥gk∥1+ν
LH2

k

]
+
∑K

k=0E
[
c
2∥gk∥

2
ΣH2

k
+ 1

2c∥nk∥
2
Σ−1

]
(c)
≤ 1

2R
2⟨I,E[H−1

K ]⟩+ 1
2

∑K
k=0E[⟨Sk−1,Hk−1⟩ − ⟨Sk,Hk⟩]

+
∑K

k=0E
[

1
1+να

ν−1
k ∥L∥

1−ν
2

tr ∥gk∥1+ν
LH2

k
+ c

2∥gk∥
2
ΣH2

k
+ 1

2c∥nk∥
2
Σ−1

]
(d)
= 1

2 (R
2 − η2)⟨I,E[H−1

K ]⟩+ 1
2

√
δη∥I∥tr

+
∑K

k=0E
[

1
1+να

ν−1
k ∥L∥

1−ν
2

tr ∥gk∥1+ν
LH2

k
+ c

2∥gk∥
2
ΣH2

k
+ 1

2c∥nk∥
2
Σ−1

]
(e)
≤ 1

2 (R
2 − η2)⟨I,E[H−1

K ]⟩+ 1
2

√
δη∥I∥tr + 1

2c∥Σ∥tr
∑K

k=0(1/α
2
k)

+
∑K

k=0E
[

1
1+να

ν−1
k ∥L∥

1−ν
2

tr ∥gk∥1+ν
LH2

k
+ c

2∥gk∥
2
ΣH2

k

]
(f)
≤ 1

2 (R
2 − η2)⟨I,E[H−1

K ]⟩+ 1
2

√
δη∥I∥tr + 1

2c∥Σ∥tr
∑K

k=0(1/α
2
k)

+ c
2E

[∑K
k=0∥gk∥

2
ΣH2

k

]
+ 1

1+ν

(∑K
i=01/α

2
i

) 1−ν
2 ∥L∥

1−ν
2

tr

(
E
[∑K

k=0∥gk∥
2
LH2

k

]) 1+ν
2

(g)
= 1

2 (R
2 − η2)⟨I,E[H−1

K ]⟩+ 1
2

√
δη∥I∥tr +

(∑K
i=01/α

2
i

) 1
2 ∥Σ∥

1
2
tr

(
E
[∑K

k=0∥gk∥
2
ΣH2

k

]) 1
2

+ 1
1+ν

(∑K
i=01/α

2
i

) 1−ν
2 ∥L∥

1−ν
2

tr

(
E
[∑K

k=0∥gk∥
2
LH2

k

]) 1+ν
2

(h)
= 1

2 (R
2 − η2)E[∥H−1

K ∥tr] + 1
2

√
δη∥I∥tr +

(∑K
i=01/α

2
i

) 1
2 ∥Σ∥

1
2
tr

(
E
[∑K

k=0∥gk∥
2
ΣH2

k

]) 1
2

+ 1
1+ν

(∑K
i=01/α

2
i

) 1−ν
2 ∥L∥

1−ν
2

tr

(
E
[∑K

k=0∥gk∥
2
LH2

k

]) 1+ν
2

,

where (a) uses the Young’s inequality, Assumption 4, and an arbitrary constant c > 0; (b) uses the
definition of Sk in eq. (5); (c) uses eq. (9); (d) uses the definition of Hk in eq. (8); (e) uses the
definition of nk above, Property A3.2, and the definition of the function fk(x) in eq. (19); (f) uses
the Hölder’s inequality, the concavity of the function t 7→ t

1+ν
2 , and the Jensen’s inequality for the

expectation; (g) can be obtained by minimizing in c > 0; (h) uses the definition of ∥ · ∥tr. Next,
using Lemma 9, we obtain the following technical Lemma 13.
Lemma 13 (↓). Under the conditions of Lemma 10, for B = L or B = Σ, and for all γ ∈ (0, 1),
the following inequality holds:(∑k

i=01/α
2
i

)1−γ

∥B∥1−γ
tr

(
E
[∑k

i=0∥gi∥
2
BH2

i

])γ

≤ 1
8η

2E[∥H−1
k ∥tr] + 2γ

(∑k
i=01/α

2
i

)1−γ

∥B∥trη2γ lnγ(ck(B, γ)),
(57)

where the constant c(B, γ) > 0 is defined as follows:

ck(B, γ) = max

{
exp(1), 23+γγγ

(∑k
i=01/α

2
i

)1−γ
1√
δ
∥B∥trη2γ−1

}
. (58)

Further, using Lemma 13 and the fact that ∥I∥tr = dim(X ), we obtain the following inequality:∑K
k=0E[fk(xk+1)− fk(x

∗)]

≤
(
1
2R

2 − 1
4η

2
)
E[∥H−1

K ∥tr] + 2
1+ν
2

(∑K
i=01/α

2
i

) 1−ν
2 ∥L∥trη1+ν ln

(
cK

(
L, 1+ν

2

))
24
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+ 2
1
2

(∑K
i=01/α

2
i

) 1
2 ∥Σ∥trη ln

(
cK

(
Σ, 12

))
+ 1

2

√
δη dim(X )

(a)
≤ 2

3(1+ν)
2

(∑K
i=01/α

2
i

) 1−ν
2 ∥L∥trR1+ν ln

(
cK

(
L, 1+ν

2

))
+ 2

3
2

(∑K
i=01/α

2
i

) 1
2 ∥Σ∥trR ln

(
cK

(
Σ, 12

))
+

√
δR dim(X )

(b)
≤ 2

1+5ν
2

(∑K+2
i=1 i

2
) 1−ν

2 ∥L∥trR1+ν ln
(
cK

(
L, 1+ν

2

))
+ 2

1
2

(∑K+2
i=1 i

2
) 1

2 ∥Σ∥trR ln
(
cK

(
Σ, 12

))
+
√
δR dim(X )

(c)
≤ 2

1+5ν
2 3

ν−1
2 (K + 3)

3(1−ν)
2 ∥L∥trR1+ν ln

(
cK

(
L, 1+ν

2

))
+ 2

1
2 3−

1
2 (K + 3)

3
2 ∥Σ∥trR ln

(
cK

(
Σ, 12

))
+

√
δRdim(X )

≤ 8(K + 2)
3(1−ν)

2 ∥L∥trR1+ν ln
(
cK

(
L, 1+ν

2

))
+ 2(K + 2)

3
2 ∥Σ∥trR ln

(
cK

(
Σ, 12

))
+

√
δR dim(X )

where (a) uses the definition η = 2R; (b) uses the definition αk = 2/(k + 2); (c) uses the fact that∑K+2
i=1 i2 ≤ 1

3 (K +3)3 and ν ≤ 1. Finally, we define CK = 32 ln
(
max{cK

(
L, 1+ν

2

)
, cK

(
Σ, 12

)
}
)

and verify that eq. (25) holds.

G.4.1 PROOF OF LEMMA 13

We start with the following inequality:(∑k
i=01/α

2
i

)1−γ

∥B∥1−γ
tr

(
E
[∑k

i=0∥gi∥
2
BH2

i

])γ

(a)
≤

(∑k
i=01/α

2
i

)1−γ

∥B∥1−γ
tr

(
η2∥B∥tr ln

[
1
δ η

2
(
E[∥H−1

k ∥tr]
)2])γ

(b)
=

(∑k
i=01/α

2
i

)1−γ

∥B∥tr
(
2γη2 ln

[(
η

c
√
δ

) 1
γ (

E[∥H−1
k ∥tr]

) 1
γ

]
+ 2η2 ln(c)

)γ

(c)
≤

(∑k
i=01/α

2
i

)1−γ

∥B∥tr
[(

2γη2 ln

[(
η

c
√
δ

) 1
γ (

E[∥H−1
k ∥tr]

) 1
γ

])γ

+
(
2η2 ln(c)

)γ]
(d)
≤

(∑k
i=01/α

2
i

)1−γ

∥B∥tr
[(
2γη2

)γ ( η

c
√
δ

)
E[∥H−1

k ∥tr] +
(
2η2 ln(c)

)γ]
where (a) uses Lemma 9; (b) uses an arbitrary constant c > 0; (c) uses the subadditivity of the
function t 7→ tγ ; (d) uses the inequality ln(t) ≤ t for t > 0. Next, we choose the constant c > 0 as
follows:

c = max

{
exp(1), 23+γγγ

(∑k
i=01/α

2
i

)1−γ
1√
δ
∥B∥trη2γ−1

}
, (59)

which implies the following inequality:(∑k
i=01/α

2
i

)1−γ

∥B∥1−γ
tr

(
E
[∑k

i=0∥gi∥
2
BH2

i

])γ

≤ 1
8η

2E[∥H−1
k ∥tr] + 2γ

(∑k
i=01/α

2
i

)1−γ

∥B∥trη2γ lnγ(c)
(a)
≤ 1

8η
2E[∥H−1

k ∥tr] + 2γ
(∑k

i=01/α
2
i

)1−γ

∥B∥trη2γ ln(c),

where (a) uses the fact that ln(c) ≥ 1.
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