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ABSTRACT

In this paper, we revisit stochastic gradient descent (SGD) with AdaGrad-type
preconditioning. Our contributions are twofold. First, we develop a unified con-
vergence analysis of SGD with adaptive preconditioning under anisotropic or ma-
trix smoothness and noise assumptions. This allows us to recover state-of-the-
art convergence results for several popular adaptive gradient methods, including
AdaGrad-Norm, AdaGrad, and ASGO/One-sided Shampoo. In addition, we es-
tablish the fundamental connection between two recently proposed algorithms,
Scion and DASGO, and provide the first theoretical guarantees for the latter. Sec-
ond, we show that the convergence of methods like AdaGrad and DASGO can
be provably accelerated beyond the best-known rates using Nesterov momentum.
Consequently, we obtain the first theoretical justification that AdaGrad-type al-
gorithms can simultaneously benefit from both diagonal preconditioning and mo-
mentum, which may provide an ultimate explanation for the practical efficiency
of Adam.

1 INTRODUCTION

The optimization community has shown strong interest in adaptive stochastic gradient optimization
methods over recent years (Duchi et al., 2011} [Tieleman, 2012; [Kingma & Bal 2014} |Gupta et al.,
2018 |Reddi et al.l [2019) due to their applications in deep learning (LeCun et al 2015). This re-
search direction has notably led to the development of Adam (Kingma & Bal [2014) and AdamW
(Loshchilov & Hutter| 2017)), algorithms with remarkable performance in training deep neural net-
works. Unfortunately, despite almost a decade of research, these algorithms continue to be the
preferred choice for most deep learning tasks, particularly in the training of large language mod-
els (Achiam et al., [2023}; [Liu et al., [2024a; |Grattafiori et al., 2024; |Anil et al.l 2023). The lack of
worthy contenders to Adam and AdamW may be attributed to insufficient theoretical understanding
of adaptive optimization algorithms. Therefore, the primary objective of this paper is to enhance
the theoretical comprehension of this research area. Formally speaking, we consider the following
optimization problem:

min f(x), (1)

zeX

where X is a finite-dimensional Euclidean space, and f(x): X — R is a continuous convexE] objec-
tive function. We assume that problem (I) has a solution z* € X.

1.1 BASELINE ALGORITHM: ADAGRAD

The starting point for the development of Adam and AdamW was the gradient descent (GD) with
the AdaGrad-Norm stepsizes (Streeter & McMahan, [2010). Given the parameter 17 > 0 and the past
gradients g; € Of (x;) fori =0,. .., k, this algorithm performs the following update:

Tky1 = Tp — Nkgk, Where mnp = W )
i=0119i

It is well known that AdaGrad-Norm can achieve the convergence rate O(1/K’) of GD with fixed
stepsizes for smooth functions with Lipschitz-continuous gradients and the rate O(1/v/K) of GD

"We discuss the justification for using the convexity assumption in Appendix
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with diminishing step sizes for non-smooth Lipschitz functions or when only stochastic gradients
are available (Orabona, [2023} L1 & Orabona, [2019; |Levy et al.,2018). However, the main benefit of
this algorithm is that it can achieve both rates with the single parameter choice 7 o ||«*||. In other
words, it can adapt to the level of smoothness and gradient noise of the function f(x), which is called
“universality” (Nesterov, 2015). Furthermore, Duchi et al.| (2011); [McMahan & Streeter| (2010)
proposed the AdaGrad method, which performs a coordinate-wise variant of the update (2), aiming
to exploit the potential sparsity of the gradients g;. Although they provided a limited theoretical
justification for the benefits of coordinate-wise updates compared to scalar stepsizes (2), AdaGrad
and its modifications, such as RMSProp (Tieleman, [2012) and Adam, have proven to be highly
efficient in practice.

1.2  ADAPTIVE GRADIENT METHODS WITH STRUCTURED PRECONDITIONING

Motivated by the success of AdaGrad, many adaptive optimization algorithms has been developed
that fall into the category of gradient methods with preconditioning. Such algorithms use the update
rule of the form

Tp41 = argmin(gy, z) + 3|z — mk”ir“ 3)
zeEX k

where H;, € S, is a symmetric positive definite preconditioning operator X — X. Besides
AdaGrad, which uses a diagonal preconditioning matrix, notable examples of such algorithms in-
clude Shampoo (Gupta et al.,|2018) and its theoretically streamlined variants: One-sided Shampoo
(Xie et al., [2025) and ASGO (An et al., 2025). Motivated by the structure of neural networks, these
algorithms are specifically designed for optimizing the function f(X): R™*"™ — R of an m X n ma-
trix argument and use preconditioners that respect the function’s structure. In particular, One-sided

Shampoo and ASGO use the preconditioner Hy: G — (Zf:o G:G])~V2G, where G € R™*"
and G; € Jf(X;). Overall, the practical performance of Shampoo and its Adam-like modification,
SOAP (Vyas et al.} 2024), is comparable to that of Adam and sometimes exceeds it.

Here, we come to the following issue: every time an adaptive preconditioned gradient method is
developed, one has to provide a separate convergence proof, even though the update rules in such
algorithms, as well as the convergence proofs, often have a similar structure. Consequently, we
arrive to the following question:

Q1. Can we develop a unified convergence analysis that would cover most existing adaptive
preconditioned gradient methods, including AdaGrad, Shampoo, ASGO, etc.?

A positive answer to this question was partially provided by the unified approach of |Gupta et al.
(2017)), who showed that the preconditioner operator Hj, can be defined as a solution to a certain
optimization problem over a linear subspace of self-adjoint operators 7 C S. For instance, the
update rule for AdaGrad-Norm and AdaGrad can be obtained by choosing H to be the space of
multiples of the identity and the space of diagonal operators, respectively. Unfortunately, the unified
approach of (Gupta et al.| (2017) has major flaws: it still requires separate convergence proofs for
different algorithms, provides convergence guarantees only for non-smooth functions, and offers no
explanation for the benefits of using general preconditioning operators.

1.3 MATRIX SMOOTHNESS AND ACCELERATION

Matrix smoothness. In an attempt to find a theoretical justification for the success of adaptive
preconditioned gradient methods, a considerable amount of recent research has focused on devel-
oping theoretical analyses of such methods under the assumption that the function smoothness, as
well as the gradient noise level, is measured in terms of the weighted Euclidean norm || - || g, where
B € S, is a self-adjoint positive definite operator. For instance, Liu et al. (2024b)); Jiang et al.
(2024) provided an analysis of AdaGrad under anisotropic smoothness, i.e., in the case of the di-
agonal operator B: 2 + b ® x, where b,z € R?. When the vector b is sparse, they managed to
prove substantially better theoretical convergence guarantees for AdaGrad compared to AdaGrad-
Norm, thus obtaining theoretical justification for the practical benefits of diagonal preconditioning.
Similarly, |An et al.[(2025); Xie et al.| (2025) considered the matrix smoothness, i.e., the case where
the operator B: X — BX, where the matrix B € R™*™ is symmetric and positive definite, and
X € R™*™  This allowed them to theoretically justify the practical success of Shampoo-like al-
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gorithms. However, Question [T discussed above is relevant here: a separate convergence proof is
required for each algorithm, even though they share many similarities.

Momentum acceleration. Besides diagonal preconditioning, momentum is another key component
that contributes to the efficiency of Adam. It is well-known that Nesterov momentum (Nesterov,
1983) can accelerate the convergence of GD for smooth convex (Nesterov, 2013) and convex-like
(Hinder et al., 2020) functions up to the rate O(1/T?). Consequently, there is an array of works
that aim to establish theoretical guarantees for AdaGrad-type methods with Nesterov acceleration,
including the works of [Levy et al.| (2018)); (Cutkosky| (2019); Kavis et al.[(2019); Rodomanov et al.
(2024); Kreisler et al.| (2024). However, to the best of our knowledge, all such algorithms achieve ac-
celerated theoretical convergence rates only for scalar stepsizes. Therefore, another natural question
appears:

Q2. Can we design an adaptive preconditioned gradient method that provably benefits from both
diagonal AdaGrad-type preconditioning and momentum?

To the best of our knowledge, the only attempt to answer this question was made by [Trifonov et al.
(2025). However, they made additional unrealistic assumptions about the dynamics of the precon-
ditioning operator and considered only a smooth and strongly convex, non-stochastic setting. Their
theoretical results provided a highly limited explanation of the benefits of preconditioning, including
a lack of adaptation to stochasticity and matrix/anisotropic Holder smoothness.

1.4 CONTRIBUTIONS AND RELATED WORK

In this paper we give positive answers to Questions|[I]and2]and provide the following contributions:

(i) We develop a unified analysis framework for adaptive preconditioned stochastic gradient
methods under the matrix Holder smoothness and bounded variance. Using this frame-
work, in Section (3| we provide a single convergence proof that is applicable to most ex-
isting AdaGrad-type algorithms, recovering the state-of-the-art convergence guarantees for
AdaGrad-Norm, AdaGrad, and ASGO/One-sided Shampoo. Moreover, we establish con-
vergence guarantees for DASGO, a computationally efficient variant of ASGO proposed
by |An et al|(2025), and find its fundamental connection with the recently proposed Scion
method by Pethick et al.| (2025).

(ii) We develop a novel unified analysis of adaptive preconditioned stochastic gradient methods
with Nesterov acceleration under the additional assumption that the smoothness and noise
operators L and 3, commute with any preconditioner Hy,. In particular, in Section we
show that the convergence of algorithms with diagonal preconditioning, such as AdaGrad
and DASGO, can be significantly improved with no extra assumptions compared to their
non-accelerated counterparts. To the best of our knowledge, this is the first theoretical
justification that AdaGrad can benefit from both momentum and diagonal preconditioning.

We also provide a discussion of additional related work. First, we discuss the theoretical analysis
of the exponential moving average (EMA) in AdaGrad-type algorithms by [Défossez et al.| (2020).
Second, we mention several parameter-free AdaGrad-type algorithms that do not require tuning the
parameter 7). Finally, we discuss the concurrent unified analysis of AdaGrad-type algorithms by
Xie et al.| (2025), which appeared online earlier than our work but suffers from several substantial
drawbacks. The details are postponed to Appendix [B]due to the maximum page limit.

2 PRELIMINARIES

2.1 UNIFIED PRECONDITIONING FRAMEWORK

In this paper, we use the notation described in Appendix [A] The preconditioned gradient method
uses the update rule in eq. (3)), which requires the preconditioning operator H;, € S . Similar to
the approach of |Gupta et al.| (2017), we restrict the operator Hj, to belong to a certain subspace of
self-adjoint operators H C S. As discussed in Section[1.2] we can obtain most existing AdaGrad-
type methods by choosing different instances of the space H. However, to develop a single unified

?Refer to Assumptions [2|and [3|for precise definitions.
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convergence proof for these algorithms, we need to impose formal assumptions on the space .
This is done through the following Definition[T]and Assumption|[T}

Definition 1. Let 1)(h): I — R be a scalar function defined on an arbitrary interval I C R. Let
S1 C S be the set of self-adjoint operators, with eigenvalues lying in I. The corresponding operator
Sunction y(H): St — S is defined as follows:

P(H) =3 (A)Py, 4)

where H = Y. \;P; is the eigendecomposition of the operator H € Sy, that is, \; € I are the
eigenvalues of H, and P; € S are the projection operators onto the corresponding eigenspaces.

Assumption 1. The space of linear operators H C S satisfies the following properties:

(A1.1) The projection onto H is order preserving, that is, proj,,(H) € S forallH € S .

(A1.2) The space H is closed under arbitrary operator functions, that is, Y(H) € H forallH € H
and¥(h): R = R.

Next, according to |Gupta et al.| (2017)), we describe a unified way to define the preconditioning

operator Hy, € S, based on the choice of the space . Given the past gradients go, ..., gr € X,
the preconditioning operator Hy, is defined as a solution to the following optimization problem:
H), = argmin (H,Sy) + (I, ¢(H)), where S, = > gi(g;,-), (5)
HeHNS4

where ¢(h): Ry — R is a strictly convex non-negative potential function. The optimization
form of this definition allows the use of the standard tool from online optimization, the Follow-the-
Leader/Be-the-Leader (FTL-BTL) lemma (Kalai & Vempala, 2005). It can be summarized in the
following inequality:

S 1(6:) < 15(0)), where 6; = argming ol (0), (FTL-BTL)

where [_1(6),...,1;(0): © — R is an arbitrary sequence of functions defined on a domain @E]
Similar to|Gupta et al.|(2017)), we can use this result to obtain the following Lemma which is one
of the key elements in the unified analysis of Adagrad-type algorithms.

Lemma 1 ({). The preconditioner Hy, defined in eq. (3)) satisfies the following inequality:
Sisollgilif, < (Hi, Si) + (L o(Hy)). (6)

The application of Lemma |1|is not limited to a specific choice of the potential function. However,
to obtain Adagrad-type preconditioners, we will use the following potential function ¢(h), which is
given as follows:

¢(h) = 8- h+n*/h, (7

where §,17 > 0 are positive parameters. Here appears the first key difference from Gupta et al.
(2017): using our Assumption[I} we can explicitly compute the preconditioner Hy, as stated by the
following Lemma 2]

Lemma 2 @ The auxiliary problem in eq. with the potential function ¢(h) defined in eq.
has the following unique solution:

Hj, = 1 (6T + projy (Sx)) /> ®)
Moreover, the following operator inequality holds:
H;.1 <H;. 9

Overall, the assumptions that we impose on the space of preconditioning operators H (Proper-
ties and in Assumption I} are closely related to the notion of a well-structured precon-
ditioner set used by Xie et al.| (2025)). Consequently, the unified analysis of Xie et al.| (2025) shares
some similarities with ours but suffers from significant disadvantages discussed in Appendix B}

3The proof of eq. (FTL-BTL) can be found in Appendix A of (Gupta et al.{(2017).
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Table 1: The linear space X, the space of preconditioning operators H satisfying Assumption [T}
and the (possibly non-Euclidean) norm R(-) defined in eq. for AdaGrad-Norm (Streeter &
McMahan, [2010), AdaGrad (Duchi et al., 2011; McMahan & Streeter, 2010), ASGO/One-sided
Shampoo (An et al.,|2025; |Xie et al., [2025)), and DASGO (An et al., 2025).

Algorithm X H R(-)
AdaGrad-Norm R4 {9 Bg:peR} ﬁ” -l
AdaGrad R? {g—»bog:beR} [l 1o
ASGO/One-sided Shampoo ~ R™*" {G+— BG:BeS"} ﬁamax(‘)
DASGO R™" {G = diag(b)G: b € R™} =+ [l2soc

2.2  ASSUMPTIONS ON THE OBJECTIVE FUNCTION

In this section, we formalize the assumptions that we impose on the objective function f(z). The
following Assumption [2| formalizes the convexity and matrix Hélder smoothness properties of the
function f(z). Note that in the smooth case (v = 1) Assumption [2| matches the definitions used by
An et al.[(2025); Xie et al.| (2025)). In the non-smooth case (v = 0), it is more general compared to
the assumption used by |An et al.| (2025| Corollary 2). Note that Xie et al. (2025) provides no results
in the non-smooth case, and neither of the works of |An et al.| (2025); [Xie et al.| (2025) provides
results in the Holder smooth case for 0 < v < 1.

1—v
Assumption 2. The function f(x) is convex and (|L||,2 ,v)-Holder smooth with respect to the
norm || - |1, where v € [0,1] and L € H NS4 . Thatis, for all t1,x2 € X and V f(x1) € Of (1),
the following inequalities hold:

0 < f(x2) — flz1) = (Vf(21),22 — 21) < H%HLH;%H@ — oIt (10)

Additionally, using the matrix Holder smoothness property in Assumption [2} we establish the fol-
lowing Lemma 3] which will be further used in our convergence analysis.

Lemma 3 (). Forallx € X and V f(z) € 0f(x), the following inequality holds:

2v

IVF@IE 2 < (22) ™ LIS (F() — f(a") (11

where in the case v = 0, we use the convention 0° = 1.

The matrix smoothness in Assumption [2] is also closely related to the non-Euclidean smoothness
property, which recently received a lot of attention (Bernstein & Newhousel 2024} Pethick et al.|
2025} |[Kovalev| [2025; |Riabinin et al.l [2025) due to the practical success of the Muon optimizer
(Jordan et al., 2024)). Let function R(x): X — R be defined as follows:

R(x) = |[projy (X)[|2/%, where X = z(,"). (12)

One can verify that the function R(z) is a norm on the linear space X, as shown in Lemma
Besides, Assumption [2|implies that the function f(x) is (||L|t, »)-Holder smooth with respect to
this possibly non-Euclidean norm R(-). That is, the following inequality holds for all 21,25 € X

flaz) = f(z1) = (Vf(@1), 22 — 21) < 7= | Ll [R(z2 — 21)] (13)
We provide additional discussion of the connection between Assumption [2and the non-Euclidean
Holder smoothness in eq. in Section[3]

Lemma 4 . The function R(z) defined in eq. is a norm. That is, it is subadditive, absolutely
homogeneous, non-negative, and positive definite.

Additionally, we provide the assumptions on the stochastic gradient noise in the following Assump-
tion |3| These are more general than the assumptions used by both |An et al.|(2025) and |Xie et al.
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Algorithm 1 Adaptive SGD with Preconditioning

I: input: o € X, K € {1,2,...}

2: fork=0,...,K do

sample &, ~ D

4 compute g = V f(zk; &)
5 compute H;, € % NS4 using eqgs. () and
6: compute zx41 € & using eq. (3).
7: output: Ty = ﬁ > o Tk

(2025). In particular, they assume the ordering E¢p [n(x; &) (n(x; €), -)] < 32, which implies Prop-
erty[A3.2] and hence, is more restrictive. Moreover, similar to the connection between Assumption|2]
and the non-Euclidean Hélder smoothness (I3)), one can show that Assumption [3]implies that the
variance of the stochastic gradient estimator is bounded with respect to the non-Euclidean dual norm
R*(-). That is, the following inequality holds for all z € X:

Eeop[(R*(n(z;€)))?] < |23 (14)

Assumption 3. There exists a stochastic estimator V f(x;£) = n(x;£)+V f (x) of the (sub)gradient
Vf(x) € Of(z) of the objective function f(x), where n(x; &) is the noise and § ~ D is a random
variable. The noise n(x;§) satisfies the following properties:

(A3.1) Zero mean: E¢ pin(z;§)] =0 forall x € X.
(A3.2) Bounded variance: E¢. p||n(x;€)||5-1] < |Z|e forall z € X, where ¥ € H NSy

3  UNIFIED ANALYSIS OF ADAPTIVE SGD WITH PRECONDITIONING

3.1 GENERAL ALGORITHM AND ITS CONVERGENCE

Based on the discussion in Section [2.1} we formalize the adaptive stochastic gradient method with
preconditioning as Algorithm [I] In this section, we develop the unified convergence analysis of

this algorithm. First, we obtain an upper bound on the expected regret E[Zi{:o flzg) — f(z*)] in
the following Lemma 5] The proof of this lemma, in many ways, relies on the previously obtained
Lemmas [[land 21

Lemma 5 ({). Under the conditions of Theorem([l} the following inequality holds:
YioElf (@r) = f(a*)] < SR, projy, (E[Sk])'/?) + 3 VIR dim(X). (15)

Next, in the following Lemma[f] we establish an upper bound on the right-hand side of the inequality
in Lemma[5} using Assumption [3]and the previously obtained Lemma 3]
Lemma 6 (I). Under the conditions of Theorem([l} the following inequality holds:

v

(L projy(BIS k)% < VE T 17 LI [SI B () — £
+ VK + 1|3t

Finally, with the help of Lemmas [5|and [6] we obtain the convergence result for Algorithm [I]in the
following Theorem [I] Note that this result requires the inequality in eq. to hold almost surely,
which may not be satisfied, especially in the stochastic setting. However, this issue can be easily
resolved with an additional projection step at each iteration. Refer to Appendix [DJfor details.

Theorem 1 (). Under Assumptions|I}2|and[3] let 1 = R, where R > 0 almost surely satisfies the
following inequality:

(16)

— ") < R. 1
kzrro{?géfKR(xk ") <R (17

Then, the output Tge € X of Algorithm@]satisﬁes the following inequality:
_3ILfuR 3IB[wR | 3VOR dim(X)
T (K+1)" K+1 (K +1)

Elf (k) — f(z")] (18)
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3.2 RELATED ALGORITHMS

In this section, we discuss the connection of Algorithm [T] with existing adaptive gradient methods
with preconditioning.

Connection with AdaGrad-Norm, AdaGrad, and ASGO/One-sided Shampoo. We can ob-
tain AdaGrad-Norm, AdaGrad, ASGO/One-sided Shampoo as special instances of Algorithm [T|by
choosing the space of preconditioning operators # satisfying Assumption[T|according to Table|[I} In
the case v = 1, Theorem [T|recovers the state-of-the-art convergence guarantees for AdaGrad under
anisotropic smoothness (Liu et al., |2024b)) and for ASGO/One-sided Shampoo (An et al., [2025}; | Xie
et al.l [2025)) under matrix smoothness. However, recall that|Liu et al.| (2024b);|An et al.| (2025)); [Xie
et al.[ (2025) require a more restrictive noise variance bound as discussed in Section [2.2] and do not
cover Holder smoothness. In contrast, Theoremworks for arbitrary v € [0, 1], which implies that
Algorithm [T] can adapt to different levels of anisotropic/matrix smoothness.

Connection with DASGO. Notably, Algorithm [I| recovers DASGO, a lightweight version of
ASGO/One-sided Shampoo that uses diagonal preconditioning and was proposed by|An et al.|(2025))
without any convergence guarantees. Consequently, Theorem [I] provides the first convergence guar-
antees for DASGO, to the best of our knowledge. Moreover, in Section E} we will show that the
convergence of DASGO, as well as AdaGrad, can be accelerated using Nesterov momentum.

Connection between ASGO/One-sided Shampoo and Muon. Recently, Jordan et al.| (2024) pro-
posed using the Shampoo optimizer (Gupta et al., |2018) with gradient accumulation turned off. This
led to the development of Muon, a new optimizer with promising practical performance. The con-
vergence of Muon was analyzed from the perspective of gradient methods with the non-Euclidean
matrix spectral norm by [Bernstein & Newhouse| (2024); |Pethick et al.| (2025); |Kovalev| (2025)). No-
tably, our analysis captures the connection between ASGO/One-sided Shampoo and non-Euclidean
optimization with the spectral norm. Indeed, as discussed in Section Assumption [2| implies
the (||L||¢;, v)-Holder smoothness in eq. with respect to the norm R(-), which, according to
Table [T} coincides with the matrix spectral norm (up to constant factors). Moreover, in the case
of ASGO/One-sided Shampoo, Theorem [1| provides the convergence result in terms of the constant
|IL|ltr and the norm R(-).

Connection between DASGO and Scion. Recently, Pethick et al.| (2025) proposed Scion, a new
variant of Muon, which, instead of the spectral norm, can use the matrix norm || - ||2—00: the maxi-
mal Euclidean norm of a row of a matrix. Note that in the case of DASGO, the norm R(-) defined
in eq. coincides with the norm || - ||2— 0 up to multiplicative constants, according to Table
Hence, Scion with the norm || - ||2—~ can be obtained by turning off the gradient accumulation in
DASGO, that is, choosing Sy, = gk (g, ) in eq. . In other words, DASGO is connected to Scion
in the same way as ASGO/(One-sided) Shampoo is connected to Muon. It is important to highlight
that the iterations of Shampoo are not cheap and require matrix inversions, which triggered the de-
velopment of the computationally effective alternative, Muon, by Jordan et al.|(2024). However, the
iterations of DASGO are not only inexpensive, but they also utilize adaptive preconditioning and
have much more attractive theoretical convergence properties compared to Scion. Hence, it is worth
trying to use DASGO in the practical scenarios identified by [Pethick et al.| (2025) to benefit from
using the non-Euclidean norm || - ||2— oo-

4 SGD WITH PRECONDITIONING AND ACCELERATION

4.1 GENERAL ACCELERATED ALGORITHM AND ITS CONVERGENCE

In this section, we develop accelerated adaptive SGD with preconditioning, which is summarized in
Algorithm 2] and provide its unified convergence analysis. First, to simplify the analysis, we use the
interpretation of Nesterov momentum acceleration (Nesterov, |1983)) by Kovalev & Borodich|(2024).
The idea is that we define the functions fi(x): X — R as follows:

fe(@) =a;? flagr + (1 — ax)Ty), where a; € (0,1] and Tj € X, (19)

where T, € X is updated according to line [/ at each iteration. We then apply the preconditioned
SGD iterations in eq. to this “time-varying” function fi(x). With this approach, we can upper-
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Algorithm 2 Accelerated Adaptive SGD with Preconditioning
I: input: ©p =7p € X, K € {1,2,...}
2: fork=0,...,K do
3: sample &, ~ D
4: compute g = V fi(zk; &k ), where fi(z) is defined in eq.
5: compute H;, € % NS4 using eqgs. () and
6: compute zx41 € & using eq. (3).
7.
8:

compute Tp4+1 = pTrt1 + (1 — ax)Tk
output: Tr 1

bound the expected objective function suboptimality E[f (T 1) — f(z*)] using the expected regret-
like sum ZfZO]E[fk (g+1) — fe(z*)] in the following Lemma
Lemma 7 ({). Under the conditions of Theorem[2] the following inequality holds:

LK +22E[f(@xr1) — f(2")] € S p oBlfe(zasr) — fula™)]. (20)

Next, we proceed with the additional Assumption [4| on the operators L, 3 € H defined in As-
sumptions [2] and [3] It is important to highlight that this assumption always holds when the space
of preconditioners H contains only diagonal operators. Hence, this assumption is automatically
satisfied for algorithms with diagonal preconditioning like AdaGrad and DASGO.

Assumption 4. The operators L € H in Assumption[2land X € H in Assumption 3| commute with
the space H, that is, LH = HL and ¥XH = HX forall H € H.

The key idea for the analysis of Algorithm [2is that under Assumptionf] the square of the precondi-
tion operator Hy,, defined in eq. (8), is a solution to the optimization problem in eq. (1)), as indicated
by Lemma [§] Hence, similar to the analysis of the non-accelerated Algorithm[I] we can utilize the
FTL-BTL lemma and obtain one of the key inequalities in Lemma[9]

Lemma 8 . Under Assumption the operator H defined by eq. (8) is a solution to the following
problem, where B =L or B = X:

H? ¢ argmin (Q,BS;) + (B,6Q — 7*In(Q)). (21)
QEHNS 4+
Lemma 9 ({). Under Assumption] the following inequality holds for B = L or B = X:
_ 2
B[S ollgilEue] < w2 IBllein [$0? (BIH 1)) (22)

Finally, using the inequality in Lemma [9} we obtain the key upper bound on the regret-like sum
E[fr(zk+1) — fr(z*)] in Lemma[10]
Lemma 10 ({). Under the conditions of Theorem[2] the following inequality holds:

301

S Ef(@rsn) — fiu(@®)] < 20k (K +2)" 7 LR
+ 1Cx (K +2) 3| 2[R + VR dim(X).

(23)

Now, all that remains is to combine Lemma [_115] with Lemma [7| and obtain the main convergence
result for Algorithm[2]in Theorem 2] Similar to the non-accelerated result in Theorem [T} we require
the inequality in eq. to hold almost surely. This can be easily guaranteed by an additional
projection step at each iteration, as discussed in Appendix [D}

Theorem 2. Under Assumptions BlandH| let n = 2R, where R > 0 satisfies eq. (I7), and let
ar = 2/(k + 2). Then, the output Trg 1 € X ofAlgorithm[Z]satisﬁes the following inequality:

_ CxlLfuR™  Cx|[E[wR | 4VOR dim(X)

E[f(z — f(z* , 24
where the constant Cx > 0 satisfies the following relation:
Cxk=0 (1 +In K I LR gy, ”f/'gr) . 25)
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4.2 ADAGRAD AND DASGO WITH MOMENTUM ACCELERATION

In this section, we provide a detailed discussion of our results for two special instances of adaptive
gradient methods with diagonal preconditioning: AdaGrad and DASGO. In the case of DASGO,
let X = R™*™ be the space of m x n matrices and consider the following special instance of
problem (T)):

min f(X). (26)

X ERmX*n

We choose the space H of preconditioning operators R™*" — R™*" for DASGO according to
Table[l] Thatis, H = {G > diag(b)G : b € R™}, which obviously satisfies Assumption|[I] Note
that AdaGrad can be obtained from DASGO by simply choosing n = 1. Henceforth, for simplicity,
we will consider only DASGO.

Next, we specialize Assumptions [2] and [3] to the setting of DASGO. In particular, we define the
operator L € H in Assumption s L: X — n"z diag(l)X, where I = (Iy,...,1,,) € R,
and X € R™*", For example, in the case v = 1 and n = 1, Assumption [2| exactly matches the
anisotropic smoothness assumption used by [Liu et al.|(2024b). In the general case v € [0, 1] and
n > 1, Assumption [2| implies the (||l||1,~)-Holder smoothness with respect to the non-Euclidean
norm || - ||2— 0, that is, the following special instance of the inequality in eq. holds:

0 < f(Xo) = f(X1) = (VF(X1), X — X3) < H%Hlllll%uHXz - X124 @7

— 2—00"

Similarly, we define the operator ¥ € H in Property as : X — n~2 diag(e) X, where
o= (01,...,0,) € RT_and X € R™*". Consequently, the variance bound in Property
turns into the following inequality:

EgND[ZZ’ll(l/ai)HNin] <|le|l1, where [Ni,...,N,]" = VF(X;¢) - VF(X). (28)

This inequality is implied, for instance, by the anisotropic noise assumption used by Liu et al.
(2024b)), and hence, it is more general.

Further, for simplicity in the presentation of the results, we use the convergence guarantees from
Appendix [D] for the algorithms with projection steps. Using Theorem [3|and assuming § < 1, we
obtain the following convergence guarantees for AdaGrad and DASGO:

e A LN e ||0||1||X*||2—>oo>
Elf( Xg)— f(XH] <O e .

This matches the result of [Liu et al.| (2024b) for AdaGrad in the smooth case (v = 1 and n = 1),
but also provides convergence guarantees for DASGO. Similarly, using Theorem [d] we establish
convergence guarantees for AdaGrad and DASGO with Nesterov momentum:

2112 1% 1555 ||0||1||X*||2aoo>
K5 K+1 ’

which substantially improves upon the non-accelerated result above. We can also compare this result
with the state-of-the-art result of |[Kavis et al.| (2019); Rodomanov et al.| (2024) for scalar AdaGrad-
type stepsizes under the above assumptions:

(29)

E[f (K1) — F(X)] < O ( (30)

l ~ X* 1+v . X*
W0 | Sl an

E[f(Xk41) — f(X7)] <@( T K+ 1

Our result in eq. is substantially better than the existing result in eq. as long as ||I||; ~
1]loos loll1 ~ |lo]|c0» and || X*|| > ||X*||2—c0. For instance, in the AdaGrad case (n = 1), this
holds when I and o are sparse and X * is dense, which aligns with the conclusions made by |Liu et al.
(2024b)) for AdaGrad without momentum acceleration.
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Appendix

A  NOTATION

In this paper, we use the following notation: dim(X’) is the dimension of the space X’; L is the space
of linear operators X — X, for arbitrary operator A € L, A* € L denotes its adjoint operator,
I € L and O € L denote the identity and the zero operators, respectively; S C L is the space of self-
adjoint linear operators, S, ,S; C S are the spaces of positive definite and positive semi-definite
self-adjoint operators, respectively; <, <, >, > denote the standard Léwner order on S; (-, ) and
|| - || denote the standard inner product and Euclidean norm on X or L, depending on the context, in
particular, (A, B) = tr(AB*) for A,B € L; for arbitrary H € S, ., || - || denotes the weighted
Euclidean norm in X, i.e., ||z||}; = (z,Hz) forz € X; || - ||op and | - ||s» denote the operator and

trace norm on L, respectively, i.e., |Alop = max|,<1||Az| and ||All;; = tr(vVAA*) for all
A € L; for arbitrary y,z € X, by z(y,-) € L we denote the rank-1 linear operator z — (z,y)z;
by S ¢ R4*¢ we denote the space of d x d symmetric matrices; by ®, we denote the Hadamard
vector or matrix product.

B ADDITIONAL RELATED WORK

Exponential moving average. AdaGrad-type algorithms, like RMSProp, often utilize the exponen-
tial moving average (EMA): they replace the cumulative sum of the squared gradients ZLOH gil)?

in eq. (2) with the exponential moving average Zf:o B%1g:|1>. Notably, EMA is the third key com-
ponent of Adam, in addition to diagonal preconditioning and momentum. Moreover, |Défossez et al.
(2020) showed how to analyze AdaGrad with EMA and explained that it is related to the standard
AdaGrad in the same way as fixed stepsize SGD is related to decaying stepsize SGD. Consequently,
we can develop EMA versions of our algorithms as well as their convergence proofs. However,
Défossez et al.| (2020) could not justify the benefits of using momentum. Hence, our theoretical
justification of the benefits of momentum and diagonal preconditioning, combined with the analysis
of EMA by |Défossez et al.|(2020), may provide the ultimate explanation for the efficiency of Adam.

Parameter-free algorithms. There is an important research direction aimed at designing parameter-
free variants of AdaGrad, which can avoid tuning the parameter 7 o ||z*|| in eq. (2). This includes
the works of |Cutkosky & Orabonal (2018)); |(Orabona & Pall (2021)); |Defazio & Mishchenko| (2023);
Mishchenko & Defaziol (2023)); [Ivgi et al.| (2023); Khaled et al.| (2023); Kreisler et al. (2024)@
However, to the best of our knowledge, the existing results are applicable only to scalar stepsizes,
which are rarely used in practice. Designing parameter-free gradient methods with diagonal or
matrix preconditioning is an interesting question for future work.

Concurrent unified analysis framework. Xie et al| (2025) developed a unified analysis for
AdaGrad-type methods, where they also adopt the matrix smoothness assumption. We found their
work during the preparation of our literature review, at a point when our results had already been
finalized. Although the results of Xie et al.| (2025)) share some similarities with ours and are capa-
ble of providing a partially positive answer to Question [1} their analysis has substantial differences
and drawbacks. Specifically, it only covers the smooth case and lacks adaptation to non-smooth
or Holder smooth functions. In addition, it requires a more restrictive stochastic gradient noise as-
sumption and, most importantly, does not contain any results about using momentum acceleration,
thus completely missing an answer to the fundamental Question 2}

C MOTIVATION FOR CONVEX SETTING

In this paper, we focus on the case where the objective function f(x) in problem is convex.
There are multiple reasons for this assumption. First, optimization algorithms for convex functions
hold substantial practical interest because empirical studies (Zhou et al., [2019; Kleinberg et al.,
2018) suggest that deep neural networks may adhere to convexity or its variants. Second, for gen-

* Additional references can be found in the overview of |Orabona (2023).
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Algorithm 3 Adaptive SGD with Preconditioning and Weight Clipping
1: input: zp € Or, K € {1,2,...}
2: fork=0,...,K do

sample &, ~ D

4 compute g = V f(zk;&k)

5 compute H;, € % NS4 using eqgs. () and

6: compute x4 € & using eq. (32)

7:

e, — 1 K
output: T = 5 D 1 Tk

Algorithm 4 Accelerated Adaptive SGD with Preconditioning and Weight Clipping
I: input: 20 =Ty € Or, K € {1,2,...}
2: fork=0,...,K do
3: sample &, ~ D
4: compute gy = V fr(zx; &), where fi(z) is defined in eq.
5: compute Hy, € H NS, using egs. (5) and
6: compute Tj11 € X and 741 /5 € X using eq. (32)
7
8:

: compute Ty41 = pZyp1/2 + (1 — ap)Ty
output: Tr

eral non-convex functions, it is impossible to achieve meaningful global convergence beyond vague
first-order stationarity (Carmon et al., 2020). However, in practice, it is typically desirable to achieve
small values of the objective function, which can only be guaranteed under additional assumptions,
such as gradient domination (Fatkhullin et al. 2022), star/quasar convexity (Hinder et al., [2020),
etc. Such assumptions are, in turn, relaxations of the convexity property itself. Hence, it is natural
to consider the convex setting first before trying to relax it. Finally, convex optimization serves as a
large source of inspiration for designing efficient optimization algorithms. Notably, many optimiza-
tion techniques that have practical benefits were initially theoretically justified for convex functions.
These include momentum acceleration (Nesterov, [2013), local training (Mishchenko et al., [2022),
and AdaGrad (Duchi et al.,[2011), on which Adam itself is based.

D ALGORITHMS WITH WEIGHT CLIPPING

The upper bounds on the expected functional suboptimality in Theorem [I] for Algorithm [I] and in
Theorem [2] for Algorithm [2] require the inequality in eq. to hold almost surely. However, this
requirement may not be satisfied, for instance, in the stochastic case. It is important to higlight that
such issue is not an artifact of our analysis but a common phenomenon in AdaGrad-type algorithms
(Duchi et al 20115 |Gupta et al.l 2018; [Liu et al.l |2024b; |An et al.l 2025; Xie et al., 2025). To
bypass this issue, a typical approach is to modify the preconditioned gradient update rule in eq.
by adding an extra projection step onto the set Qg = {x € X' : R(z) < R}, where R > R(x*).
The modified update rule is given as follows:

Tpy1 = arg min%”x — wkﬂﬂ”ir“ Tpq1/2 = argmin(gy, ) + %Hx — xk”irl' (32)
T€EQR k reX ke

Note that the set O is convex and hence the projection step is well-defined. Also, note that the
projection is performed with respect to the weighted Euclidean norm | - ||H;1, which may be ex-

pensive, for instance, when the preconditioner Hj, is dense. However, this projection step can be
computed efficiently when the preconditioner Hy, is diagonal. For instance, the projection is equiv-
alent to the coordinate-wise clipping ¢ — min{R, max{—R,t}} in AdaGrad, and to the row-wise
or column-wise norm-clipping z — min{1, R/||z||}# in DASGO. Below, we discuss the modified
update rule eq. (32) in relation to the non-accelerated Algorithm[I]and the accelerated Algorithm 2]
in detail, including the additional modifications in Algorithms [[]and 2] and the modifications in the
convergence proofs.

Non-accelerated Algorithm [ — Algorithm [3} The only modifications to Algorithm [T] are the
initialization zo € Q on line [I] and the modified update rule on line [6] in Algorithm [3] as
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discussed above. We also modify the proof of Lemma5]in Appendix [F.I]by obtaining the following:
2 B 2

@

1 2 1 1 1 2
ek =2 gs < gllenpaye =270 = glloe =27 — (g6 20 —27) + 3 llgrll,, G3)
where () uses the update rule for ., in eq. (32)), the non-expansiveness of the projection, and the
fact that ™ € Qr; (b) uses the update rule for x5 in €q. @ One can observe that this eq.
coincides with eq. in Appendix [FI] Moreover, the inequality eq. (I7) holds almost surely due

to the projection step in eq. (32)). Therefore, the rest of the proof of Theorem [I]remains unchanged,
and we obtain the following Theorem 3]

Theorem 3. Under Assumptions @ and 3| let n = R, where R > R(x*). Then, the output
Tx € X of Algorithm 3] satisfies the following inequality:
_3ILwR™ | 3IB]WR 3VOR dim(X)

Accelerated Algorithm |Z| — Algorithm @ Similarly, to the non-accelerated algorithm, the accel-
erated Algorithm E| contains the modified initialization xy = To € Qx on line |I| and the modified
update rule (32) on line [f]in Algorithnﬁ In addition to the modified eq. (33), we also modify the
first inequality in the proof of Lemma[T0]in Appendix [G.4]as follows:

1—v
Elfi(ws12)] < B[ filwr) = ol + (o Hogi) + 0y L sl ] G9)

Here, the only difference is the left-hand side E[fi(2441/2)] compared to E[fx(xx41)] in Ap-
pendix which means that we also have to modify the update rule for Tj; on line [/| of Al-
gorithm [4| and apply trivial changes to Lemma The rest of the proof of Theorem [2] remains
unchanged and we obtain the following Theorem

Theorem 4. Under Assumptions IZI and let n = 2R, where R > R(z*), and let oy, =
2/(k + 2). Then, the output Tgc 1 € X ofAlgorithmsatisﬁes the following inequality:

< Cx|LlwR™  Ci|E[uR | 4VOR dim(X)

E[f(z — * , 36
where the constant Cxc > 0 satisfies the following relation:
Cx = O (1 +In K I LRy ”EJ'(‘;) . 37)
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E PROOFS FOR SECTION 2]

E.1 PROOF OF LEMMA(I]

Let functions I_; (H), ..., I, (H): S;+ — R be defined as follows:

1(H) = (Lo(H)),  L(H) = |lg;[[§x for i=0,....k (38)
LetH_; € H NS4 be defined as follows:
H_; = argmin (I, ¢(H)). 39)
HeHNS1+

From eq. (§), it is easy to verify that the following relation holds for all i = —1,..., k:

H, = argmin Z I;(H).

HeHﬂS++

1=—1"7

Next, we get the following inequality:

@ ()

k k k

Zizoli(Hi) < Zi:—lli(Hi) < Zi——lli(Hk)~

where @) uses the assumption that the potential function ¢(h) is non-negative; @ uses eq. m
[BTL). It remains to to do rearranging and use the definition of the functions /;(H).

E.2 PROOF OF LEMMA 2]

First, using Properties[AT.T|and[AT.2} we can show that H;, € H NS, . Next, we show that Hj, in
eq. (8) is a solution to the problem in eq. (3] by verifying the first-order optimality condition:
V() + (Lo()) () & i+ o/ (H)
By, +o1—n2m;2
Bg, — proj,(s
= Sy — projy(Sk)
S

where (a) uses the standard operator function calculus (Carlen| [2010); (b) uses eq. uses
eq. (8). Next, we can show that the solution Hy, is unique. Indeed, by Theorem 2. 10 of Carlen
(2010), the function (I, o(H)) is strictly convex, because the function ¢(h) defined in eq. (7) is
strictly convex. Finally, we can prove eq. (9). It follows from the operator monotonicity 0f the

function h — —1/ \/E, which is implied by Lowner-Heinz Theorem (Carlen, 2010, Theorem 2.6),
and the ordering projq, (Sk+1) = projy, (Sk), which is implied by Property and the definition
of Sy, in eq. (9). O

E.3 PROOF OF LEMMA[3]
Assumption [2]implies the following inequality for all z € X and V f(z) € O (2):
1—v
F@) < f@) + (Vf(@),2" = 2) + gLl [l = 2™ (40)
In the case v € (0, 1], we can minimize the right-hand side in x, which gives the following:

\\Vf(z)\li < (%) IILHtlﬁ;”V (f(x) - f(z*))- (41

(0, 1]. Finally, in
the case v = 0, minimizing the rlght -hand side of the previous upper bound on f(z*) gives the
following:

* 0 IVF@IE < Ll
fle) < fla) + {—oo IVF@IE 2 > L

It remains to use the fact that both f(x) and f(z*) are finite to obtain the desired inequality in the
case v = (. 0

(42)
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E.4 PROOF OF LEMMA [4]

@
(i)

(iii)

(iv)

Non-negativity. It is obvious.

Absolute homogenity. For arbitrary ¢ € R we can obtain the following:
R(tz) @ [[projs, (12X) 152 & 1] - projs (X112 £ 1) R(a),
where @) and (c) use the definition of R(z) in eq. ; @ uses the linearity of the projec-

tion onto # and the absolute homogentiy of || - ||op.
Positive definiteness. Let R (z) = 0. Then proj,, (X) = 0, which implies the following:

0 = (L,proj5,(X)) @ (1.X) B |z
where () uses the fact that I € 7 due to Property [AT.2} (B) uses the definition of X in
eq. (12). Hence, we get = 0.
Subadditivity. Let x, y € X. Then we can obtain the following:

Rz +y) @ |[projs, (& + y) (@ + v, )[4

op

B 1 projs (1 + )alz, ) + (1 + 1/Aly, ) — (cx — y/e)(ex — y/e, )42

L+ €) projpy (e, ) + (14 1/¢%) prode(y(y. ) I3

@ (1 + ) Iproja (2, ))llop + (1 +1/¢2)[[proja (y(y, -))llop)

B 1 projy (@ (z, NI + [projy (yly, )14

DR )+ R(y).

where (a) and (f) use the definition of R(z) in eq. ; (b) uses the bilinearity of the
mapping x — x(x, -) and an arbitrary constant ¢ € R; (c) uses Property the linearity
of the projection onto H, and the fact that || - ||op is order-preserving on S ; @) uses the
subadditivity and absolute homogenity of || - [|op: (€) can be obtain by minimizing in c.

The proof is now complete. O
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F PROOFS FOR SECTION[3]

F.1 PROOF OoF LEMMA[3

Let rp = x, — «* and Ry, = ri(rg, -). We can rewrite %HrkHH;_l as follows:
k

Yl & Hirnl = (gnre) + Slnl, (43)
where (a) uses eq. (3). Next, we sum these equations for k = 0, ..., K and get the following:
ZkK:0<gk,7“k>
3 olgnllis, + 3550 (el = lresal? )
= 3 collgrlFr, + glmollf + 3k lrelfs g, — glrrcellf
< 3 olloklif, + 3(Ro, Hy ') + 3570 (Ry, H — HY)
B 5k ollgllz, + 5 rojs(Ro). Hy) + 534 (projy, (Ry), Hy,  — H L)
I ollgnlIFr, + SRS e + FRZIHL = H o
I ook, + SRALHGY + SRS (L H - H L)

2 3(Hk,Sk) + 3(L ¢(Hg)) + R*(L H)
8 1 (Hy, proj(Sx)) + LI o(Hg)) + SR> (L H)

where GED use the properties of the projection and the fact that H,;l € H due to Property
and eq. (3); (@) uses the Holder’s inequality for Schatten norms, the definition of the norm R (-

in eq. (12), and the inequality in eq. ; uses the fact that H,;l_l - H;l’ which is implied by
eq. (E[) and the operator monotonicity of the function 4 — —1/h, which is implied by Léwner-Heinz
Theorem (Carlen, 2010, Theorem 2.6); @) uses Lemma use the fact that H,;l € H due to

Property [AT.2[and eq. (8).

Next, using the definition of the potential function ¢(H) in eq. , the expression for Hy, in eq. ,
and the definition n = R, we get the following inequality:

S o{gr, k) < 3 (Hpe, 61+ projy (Sk)) + L (n* + R?)(LHEY)
B 321, (51 + proj, (Sx))/2),

where (a) uses the definition 7 = R. After taking the expectation, recalling that &, is independent
of xj,, and using Property [A3.1] we get

e BV f (k) )]

SRE[(T, (61 + projy (Sk))"/?)]
R

SRAL, (1 + projy (E[Sk]))'/?)

ING INE A

SR(L, projy (E[Sk])?) + VORI ir
SR(I, projy (E[Sk])"/?) + 2V6R dim(X)

where @) uses the concavity of the function H + (I, H/2), which is implied by Theorem 2.10
of [Carlen| (2010), and the linearity of the projection onto H; (b) uses the fact that function H
(I, H'/2) is subadditive for H € S, which is implied by Lemma 3 of |An et al. (2025). It remains
to use the convexity property from Assumption 2] O

F.2 PROOF OF LEMMA [
Let G, Ny € S be defined as follows:
G =Y Vi@ (VF(xr),), Np=F n(ew &) (nler; &), ). (44)
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Then, we can obtain the following:
ESi] & S B[V (2x) + nler €)Y S (@) + nlew; &), )]
= E[Gk + Ni] + S B[V £(r) (n(h; &), ) + nl@; &)V F ), )]

8 E[Gj + Ny,

where () uses the definition of Sy, in eq. (5) and Assumption 3} (b) uses Property [A3.T]and the fact
that &, is independent of x;. Using this, we obtain the following relation:

(L, projy, (E[Sk])'/?) = (I projy (E[Gy. + Ni])'/?)
g . .
(L. [projs, (EIG]) + projy (EIN,])]'/*)
(2] . :
< (L, projy (E[G])'/?) + (I, projy, (E[Ny])'/2),
where (a) uses the linearity of the expectation and the projection onto #; (b) uses the fact that

function H ~— (I, H'/?) is subadditive for H € S, which is implied by Lemma 3 of An et al.
(2025).

We can upper-bound (I, proj,, (E[N.])!/2) as follows:
(L, projy, (E[NR])/?) = (Y2, 571/ proj,, (E[N,])/?)
@ 122172 projy, (BING) 2|
B /=T (=, proj (EN)
VISILE[(ET,N,))

@

= VIS oEln (s &) ]
)

g VEk+ 12|

where @) uses the Cauchy-Schwarz inequality; @) uses the definition of || - || and || - ||t; uses
the linearity of the expectation and the fact that 3~ € #, which is implied by Properties

and[A3.2} (d) uses the definition of N; (e) uses Property[A3.2]
Similarly, we can upper-bound (I, proj;, (E[G])'/2) as follows:

(L, projy E[G)?) 2 o/ TETw T, projn(EIGA])
B /ILI.EL T, Gy

\/”LH“Z;;OE[”VJC(%)”iﬂ}
@ IILéf”\/Zf_O]E[[f(xi) - f(m*)]{i“u}

IN

2v

L1 VS, @) — fa)
3 ks J (k+ 1)1 [SE Bl () — ()]

2v
1+v

k « a7
(S oEf @) = )]
where (@) uses steps similar to the above calculations; (b) uses the linearity of the expectation and
the fact that L=! € #, which is implied by Property and Assumption uses the definition
of Gg; (@) uses Lemma and (f)) use the concavity of the function ¢ — 7% forv € [0,1]. O

1-v 1
— VR T

F.3 PROOF OF THEOREMI[I]

Using Lemmas[5]and[6] we get the following inequality:

K GE[f (zn) — f(2¥)] <

v

1-v 1 T+v
VE T T RILIE [SI Bl (oe) — f(a)]]

[\CI[9N}
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+ 3VE + 1R||Z | + 3VOR dim(),
which implies the following inequality:
1—v
SrcoBlf(z) — f(2")] <3VE+1 LR
+3VE + 1||Z]|uR + 3VoR dim(X).

It remains to use the convexity property in Assumption [2] and the definition of Zx on line [7] of
Algorithm T}
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G PROOFS FOR SECTION[4]

G.1 PROOF OF LEMMA/[]]
We can upper-bound S r_ E[fx(2*) — fx(z)+1)] as follows:
S reoBlfx(@") = fi(wrg)]
B 54 oi Elf(ona™ + (1= o)) — fonigr + (1 - )]

QS arElanf@®) + (1 - o) fE) — F@ni)
= OéK2E[f( )= flexs1)] + aq 2(1 —ag)E[f(2") — f(T0o)]
K (01— ap) — a2 Ef (1) — f(a)]

< 1(K +2)°E[f(z") — f(UCKH)]

where @) uses the definition of the functions fj(z) in eq. . uses the definition of Ty41 on
line [7] of Algorithm [2] and the convexity property in Assumption uses the definition o =
2/(k+ 2). O

G.2 PROOF OF LEMMA [§]

Let B = L (the case B = X is analogous). Let A;(Q): S;4+ — R be the objective function in

eq. 21): ,

Ax(Q) = (Q,LSy) + (L, 6Q — n° In(Q)). (45)
From Property |A1.2] it follows that H? € H NS, . In addition, from the Lowner-Heinz Theorem
(Carlen! [2010, Theorem 2.6), it follows that the function .4;(Q) is convex. Hence, it remains to
prove that the first-order stationarity condition holds, that is, the differential of A, (Q) is zero on H
at HZ:

dAL(HZ)[H] =0 forall Hc H. (46)

The following Lemma [T1] will be used to compute the differential d.4(Q)[H].

Lemma 11 @) Under Assumption let the function B(Q): S;+ — R be defined as follows:

B(Q) = (L,In(Q)). 47)
Then the differential of the function B(Q) for all Q € H NS, is given as follows:
dB(Q)[H] = (LQ ', H) forall H ¢ H. (48)

Using Lemma we can compute the differential d.Ay, (H3)[H] for H € H as follows:

dA(H})[H] = (L(Si + 61 — n°H,?), H)
(L(Sk — projy(Sk)), H)
2 (S — projy(Sk)), LH)
((Sk — projy(Sk)), LH)

where @) uses Lemma [TT} (b) uses eq. (8); (c) uses Assumption @ (d) uses the fact that LH € H,
which is implied by the following Lemma|12]

Lemma 12 (). Under Assumptiond} LH € H for all H € H.

= \@

= =

The proof is now complete. O

G.2.1 PROOF oF LEMMA [T1]

Let constants a, b € R be chosen to satisfy the following inequalities:

O<al<Q <DL (49)
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Let H € # such that |[H — Ql[op < min{(Amin(Q) —a),b — Amax(Q)}. Hence, it is easy to
verify that the following inequalities hold:

al < Q+H =<0l (50)

Next, we fix an arbitrary ¢ > 0. By the Weierstrass approximation theorem, there exists a poly-
nomial p,(t) = Y., c;t* such that p,(a) = In(a), p},(a) = 1/a, and whose second derivative
approximates the function ¢ — —1/t on the segment [a, b] up to the precision €:

Ipih(t) +1/t?| < e forall t € [a,b]. (51)

From this, using the standard integration arguments, we can conclude that the following approxima-
tion inequalities hold for all ¢ € [a, b]:

L) —1/t| <e(b—a),  |pa(t) —In(t)| < e(b—a). (52)
Further, we obtain the following:
1B(Q +H) - B(Q) — [,(L(Q + 7H) ™!, H)dr|
@
< (L, pa(Q + H) — p,(Q)) — [(Lp,,(Q + 7H), H)dr|
+ | Lt - (3e(b—a)® + Se(b—a)?) + [|LH||¢ - (b — a)
= [(L,pn(Q + H) — p,(Q)) — [1(Lpl, (Q + 7H), H)dr| + € (b*||L]sx + b LH||1;)
o, (6| L[ + bJ| LH]}1, ) -

where (a) uses Definition [I] the approximation inequalities above, and the Holder’s inequality for
Schatten norms; @ Uses the fact that p,(t) is a polynomial and the fact that QL = LQ and
HL = LH due to Assumption 4} Next, we take the limit ¢ — 0 and use the fundamental theorem
of calculus and the continuity of the map Q — Q! on S, , which implies the following:

i BQ+7H)|— = (LQ"" H). (53)
Since the right-hand side is continuous in Q, we can conclude that the function 5(Q) is differen-

tiable and its differential is equal to the right-hand side.

G.2.2 PROOF OF LEMMA[12]

Since the operators L and H are self-adjoint and commute, they are simultaneously diagonalizeable:
L=>3% N\ uiu,-) and H =73 p;-uius,-),

where \; and p,; are the (possibly repeating) eigenvalues of the operators L and H, respectively,
{u;} C X is an orthonormal basis of the common eigenvectors in the space X'. Hence, the operator
LH is also diagonalizeable as follows:

Further, let Iy = {¢ : \; = A} and J, = {j : p; = p} for arbitrary A, € R. Let p(t) be a
polynomial such that p(\) = 1 and p(\;) = 0 for i ¢ I. Using Property[A1.2] we can conclude that

P(L) = 3 e, wiluis ) € M.

Similarly, by constructing a polynomial ¢(¢)such that g(x) = 1 and g(p;) = 0 for j ¢ J and using
Property [AT.2] we can show that the following inclusion holds:

q(H) = > e, ui(uj,-) € H.
Hence, using Property [AT.2] we obtain the following inclusion:
p(L) +¢(H) = ZieIAAJH“i (ug, -) + QZieImJﬂui@iv 3.
Finally, we can construct a polynomial s(¢) such s(2) = 1 and s(1) = 0. Using Property [A1.2] we

can show that
s(p(L) + q(H)) = Dicp qg, wilui, <) € H.
From this fact and the above eigendecomposition of the operator LH, it follows that LH € ‘H. [
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G.3 PROOF OF LEMMA [9]

Let B = L (the case B = X is analogous). Let functions {_1(Q),...,;(Q): Sy+ NH — Rbe
defined as follows:

1-1(Q) = (L,dQ —n*In(Q)), 1(Q) = [lg:llgr for i =0,....k. (54)
Let the operators Q_1, ..., Qx € H NS, be defined as follows:
Q. 1=/, Q;=H? for i=0,...,k (55)
Using Lemma@ we can show that the following relation holds for all i = —1, ..., k:
Q; = argmin Zfz_lli(Q).
QEHNS 1+

Next, we get the following inequality:
k @ —k
S ooz & S oi(Q0)
k
=2 e 1li(Qi) —1-1(Q-1)
®
< Zizflli(Qk) - Ll(Qfl)
8 (LHZ, 01+ 8)) — 73 (L, In(H)) — n*(L. 1) + (L, In((n?/2)1)
% (LHE, 51+ projy, (1) — n*(L (H)) — n? Ll + 7 (L, n(r’L/5))
& 2L e = 9? (L. (O /7)) — 7P| L
B 32(L, (5T + projy(81))) + 7Ll In §
@ .
< 7| Llex n([]6T + projy, (Si)llop) + 77| Llex In 5
® .
< 7P| Lfler (|| (6T + proja, (Se))/?IIF,) +n?|[Ller In 5
(i) —
B2l (3o 1H 1)
where (a) and (c) use the definition of the functions /;(H), the definition of the operators Q;; (b)
uses eq. (FTL-BTL); uses Lemma Property [AT.2] and the properties of the projection onto
H; (e) and (f) use eq. (8) and Definition|I} (g) uses the Holder’s inequality for Schatten norms; (h
uses the inequality || - [lop < |- [lr3 (i) uses eq. (). It remains to take the expectation and use the

concavity of the function ¢ — In(#?) and the Jensen’s inequality. O

G.4 PROOF OF LEMMA [T0]
Let ng = g — V fix(zr) and ri, = z, — x*. We can obtain the following inequality:
(3] v v v
E[fx(zx+1)] < E{fk(ffk) + (Vi) wrpr — o) + ) LG e — 2ellph }
1—v
B g fi@n) — (Vo). Hegi) + ol T lonlii |

c) _ 1—v
gE[fk(xk) — llgrllx, + (e Higr) + mop L2 Hgkuﬁﬂ

where @) uses the definition of the function fj(x) in eq. (19) and Assumption uses eq. (3) and
Assumption [}, (c) uses the definition of ny. Next, similar to the proof of Lemma 5] we can obtain
the following inequality:

E[S o (g k)] < E[3S e olloellFr, + 3R*(LHEH], (56)

Combining this with the previous inequality gives the following:

S Elfi(@hs1) — fr(@®)]
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_ K r _ 1—v v
< ARMLEML) + SIoE [ Hige) — Slgwls, + 50y "L loxlik:]
_ K _ 1—v v
YRALEMR) + S/ oE [~ llowli, + rhvay Il lgelii: |

K mfec
+ 0B |59tz + & linell-i]

- 1-v
B 1R BHL) + SISE 1Sk 1 — Sk Hi) + ol LI okl

K mfec

+ Yo |59 ez + ol
_ K

S %R2<I,E[ 1]> %Zk 0 [<Sk717Hk71> - <Sk7Hk>]

K [ v
+ RGBT Tl gwlits + $l9e ey + & w1
Q12— )L EMEL)) + 1Yo/

K [ v c

SB[ ey I gkl + $oeliug + Elnels-]

3(R? =’ )LEEL]) + 3Vonllu + 5212w Xio(1/af)

K [ v
+ SB[l T gr It + $llow ez
i) _
< $R? = )BT + 5Bl + 4120 Zio 1)

14+v
2

(
B[S ] + o (S501/02) T LI (B[S ol
8 1(R? — )L B + 3ol + (01/02) 1214 (B[S o lonl2es )
bt (SEg1/02) 7 I (]S el
B 1R — )E[H ] + 3VEnlIT + (Zfiol/af)% I1=(1Z (IE [Ef:ngkH%HgD

14
2

N

14+v
2

1—v
K 2 o K

b (SE1/02) 7 (B[S olonlEe])
where (a) uses the Young S inequality, Assumption ] and an arbitrary constant ¢ > 0; (b) uses the
definition of Sy, in eq. uses eq. (9); (d) uses the definition of Hj, in eq (@) | uses the
definition of n;, above, Property [A3.2] and the definition of the function f;(z) in eq. (19); (@) uses
the Holder’s inequality, the concavity of the function ¢ — ¢*%", and the Jensen’s mequahty for the
expectation; (g) can be obtained by minimizing in ¢ > 0; (h) uses the definition of || - ||;,. Next,
using Lemma 9] we obtain the following technical Lemma
Lemma 13 . Under the conditions ofLemma forB=LorB =3, and forall v € (0,1),
the following inequality holds:

(2hot/a?) 1B (B[S oloilbe] )

(57
< LPEIHE ] +27 (Sio1/a?)  IBllun® In7 (c(B, 7)),
where the constant ¢(B,~y) > 0 is defined as follows:
1=y
¢, (B, ) = max {exp(l), 23+747 (Zfzol/a?) \}g||B|tm27_1} . (58)

Further, using Lemma|[13]and the fact that |||, = dim(X), we obtain the following inequality:
K *
Ek:(]E[fk<xk+1) - fk(x )]
1—v
_ 1iv (K = v y
< (3R = 1) EHZ o] +2° (2/51/02) 7 ILfan'™ In (ex (L 142))
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)

25 (S 1/02) " [Sllnin (cxe (3, 1)) + $vEn dim(X)

_|_
@ satw K o\ T 14v 14+v
< 2%% (Zizol/ai> LR In (cx (L, 1£2))

+ 2 (Zfiol/cﬂ)i qumm (cx (£, 1)) + VER dim(X)
o (S 2) LR n (e (L 1)

+23 (ZZK? 2) ISR In (cx (2, 3)) + VER dim(X)

237 (K +3) "7 | LR In (e (L, 152))
+22375(K 4 3)2|Z]|wRIn (cx (2, 1)) + VER dim(X)
<8(K +2)" 77 LR In (cx (L, 152))

+2(K +2) %2R In (cx (2, 1)) + VOR dim(X)

where (a) uses the definition = 2R; (b) uses the definition ay, = 2/(k + 2); . uses the fact that

ZZK? 2 < (K—|—3) and v < 1. Finally, we define Cx = 321n (max{cK( + ) CK (2, %)})
and verify that eq. (23) holds. O

G.4.1 PROOF OF LEMMA [13]

We start with the following inequality:

(Sho1/02) 1B (B[S ollod Bee] )

L (2 ov/a?) T IBIL T (2Bl in [ (B0 D))

)
B (sh1/0?) B (Wln[(;g)i( 55} + 220100
9 (=ov/ad) 1Bl [ (207 (55) @0 1)) o]
(S01/02) 1Bl [(207)" (25) EUEL ] + (27 ()]

where (a) uses Lemma [9} (b) uses an arbitrary constant ¢ > 0; () uses the subadditivity of the
function t — t7; @) uses the inequality In(¢) < ¢ for ¢ > 0. Next we choose the constant ¢ > 0 as
follows:

INE

. 1=y
¢ = max {expu), 257y (Zi;ol/a?) 7 ||B||tm2“} : (59)
which implies the following inequality:
k L= - k gl
(Shor/a?)IBIE (B[S loilme|)
— 1=y
< WPEIH o) +27 (Xhot/a?) Bl ' (c)

1=y
_ k
LG ] +27 (Sg1/0?) Bl In(o),

where (a)) uses the fact that In(c) > 1. O

INE1
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