
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SGD WITH ADAPTIVE PRECONDITIONING:
UNIFIED ANALYSIS AND MOMENTUM ACCELERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we revisit stochastic gradient descent (SGD) with AdaGrad-type
preconditioning. Our contributions are twofold. First, we develop a unified con-
vergence analysis of SGD with adaptive preconditioning under anisotropic or ma-
trix smoothness and noise assumptions. This allows us to recover state-of-the-
art convergence results for several popular adaptive gradient methods, including
AdaGrad-Norm, AdaGrad, and ASGO/One-sided Shampoo. In addition, we es-
tablish the fundamental connection between two recently proposed algorithms,
Scion and DASGO, and provide the first theoretical guarantees for the latter. Sec-
ond, we show that the convergence of methods like AdaGrad and DASGO can
be provably accelerated beyond the best-known rates using Nesterov momentum.
Consequently, we obtain the first theoretical justification that AdaGrad-type al-
gorithms can simultaneously benefit from both diagonal preconditioning and mo-
mentum, which may provide an ultimate explanation for the practical efficiency
of Adam.

1 INTRODUCTION

The optimization community has shown strong interest in adaptive stochastic gradient optimization
methods over recent years (Duchi et al., 2011; Tieleman, 2012; Kingma & Ba, 2014; Gupta et al.,
2018; Reddi et al., 2019) due to their applications in deep learning (LeCun et al., 2015). This re-
search direction has notably led to the development of Adam (Kingma & Ba, 2014) and AdamW
(Loshchilov & Hutter, 2017), algorithms with remarkable performance in training deep neural net-
works. Unfortunately, despite almost a decade of research, these algorithms continue to be the
preferred choice for most deep learning tasks, particularly in the training of large language mod-
els (Achiam et al., 2023; Liu et al., 2024a; Grattafiori et al., 2024; Anil et al., 2023). The lack of
worthy contenders to Adam and AdamW may be attributed to insufficient theoretical understanding
of adaptive optimization algorithms. Therefore, the primary objective of this paper is to enhance
the theoretical comprehension of this research area. Formally speaking, we consider the following
optimization problem:

min
x∈X

f(x), (1)

where X is a finite-dimensional Euclidean space, and f(x) : X → R is a continuous convex1 objec-
tive function. We assume that problem (1) has a solution x∗ ∈ X .

1.1 BASELINE ALGORITHM: ADAGRAD

The starting point for the development of Adam and AdamW was the gradient descent (GD) with
the AdaGrad-Norm stepsizes (Streeter & McMahan, 2010). Given the parameter η > 0 and the past
gradients gi ∈ ∂f(xi) for i = 0, . . . , k, this algorithm performs the following update:

xk+1 = xk − ηkgk, where ηk = η√∑k
i=0∥gi∥2

. (2)

It is well known that AdaGrad-Norm can achieve the convergence rate O(1/K) of GD with fixed
stepsizes for smooth functions with Lipschitz-continuous gradients and the rate O(1/

√
K) of GD

1We discuss the justification for using the convexity assumption in Appendix C.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

with diminishing step sizes for non-smooth Lipschitz functions or when only stochastic gradients
are available (Orabona, 2023; Li & Orabona, 2019; Levy et al., 2018). However, the main benefit of
this algorithm is that it can achieve both rates with the single parameter choice η ∝ ∥x∗∥. In other
words, it can adapt to the level of smoothness and gradient noise of the function f(x), which is called
“universality” (Nesterov, 2015). Furthermore, Duchi et al. (2011); McMahan & Streeter (2010)
proposed the AdaGrad method, which performs a coordinate-wise variant of the update (2), aiming
to exploit the potential sparsity of the gradients gk. Although they provided a limited theoretical
justification for the benefits of coordinate-wise updates compared to scalar stepsizes (2), AdaGrad
and its modifications, such as RMSProp (Tieleman, 2012) and Adam, have proven to be highly
efficient in practice.

1.2 ADAPTIVE GRADIENT METHODS WITH STRUCTURED PRECONDITIONING

Motivated by the success of AdaGrad, many adaptive optimization algorithms has been developed
that fall into the category of gradient methods with preconditioning. Such algorithms use the update
rule of the form

xk+1 = argmin
x∈X

⟨gk, x⟩+ 1
2∥x− xk∥2H−1

k

, (3)

where Hk ∈ S++ is a symmetric positive definite preconditioning operator X → X . Besides
AdaGrad, which uses a diagonal preconditioning matrix, notable examples of such algorithms in-
clude Shampoo (Gupta et al., 2018) and its theoretically streamlined variants: One-sided Shampoo
(Xie et al., 2025) and ASGO (An et al., 2025). Motivated by the structure of neural networks, these
algorithms are specifically designed for optimizing the function f(X) : Rm×n → R of anm×nma-
trix argument and use preconditioners that respect the function’s structure. In particular, One-sided
Shampoo and ASGO use the preconditioner Hk : G 7→ (

∑k
i=0GiG

⊤
i)

−1/2G, where G ∈ Rm×n

and Gi ∈ ∂f(Xi). Overall, the practical performance of Shampoo and its Adam-like modification,
SOAP (Vyas et al., 2024), is comparable to that of Adam and sometimes exceeds it.

Here, we come to the following issue: every time an adaptive preconditioned gradient method is
developed, one has to provide a separate convergence proof, even though the update rules in such
algorithms, as well as the convergence proofs, often have a similar structure. Consequently, we
arrive to the following question:

Q1. Can we develop a unified convergence analysis that would cover most existing adaptive
preconditioned gradient methods, including AdaGrad, Shampoo, ASGO, etc.?

A positive answer to this question was partially provided by the unified approach of Gupta et al.
(2017), who showed that the preconditioner operator Hk can be defined as a solution to a certain
optimization problem over a linear subspace of self-adjoint operators H ⊂ S. For instance, the
update rule for AdaGrad-Norm and AdaGrad can be obtained by choosing H to be the space of
multiples of the identity and the space of diagonal operators, respectively. Unfortunately, the unified
approach of Gupta et al. (2017) has major flaws: it still requires separate convergence proofs for
different algorithms, provides convergence guarantees only for non-smooth functions, and offers no
explanation for the benefits of using general preconditioning operators.

1.3 MATRIX SMOOTHNESS AND ACCELERATION

Matrix smoothness. In an attempt to find a theoretical justification for the success of adaptive
preconditioned gradient methods, a considerable amount of recent research has focused on devel-
oping theoretical analyses of such methods under the assumption that the function smoothness, as
well as the gradient noise level, is measured in terms of the weighted Euclidean norm ∥ · ∥B, where
B ∈ S++ is a self-adjoint positive definite operator. For instance, Liu et al. (2024b); Jiang et al.
(2024) provided an analysis of AdaGrad under anisotropic smoothness, i.e., in the case of the di-
agonal operator B : x 7→ b ⊙ x, where b, x ∈ Rd. When the vector b is sparse, they managed to
prove substantially better theoretical convergence guarantees for AdaGrad compared to AdaGrad-
Norm, thus obtaining theoretical justification for the practical benefits of diagonal preconditioning.
Similarly, An et al. (2025); Xie et al. (2025) considered the matrix smoothness, i.e., the case where
the operator B : X 7→ BX , where the matrix B ∈ Rm×m is symmetric and positive definite, and
X ∈ Rm×n. This allowed them to theoretically justify the practical success of Shampoo-like al-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

gorithms. However, Question 1 discussed above is relevant here: a separate convergence proof is
required for each algorithm, even though they share many similarities.

Momentum acceleration. Besides diagonal preconditioning, momentum is another key component
that contributes to the efficiency of Adam. It is well-known that Nesterov momentum (Nesterov,
1983) can accelerate the convergence of GD for smooth convex (Nesterov, 2013) and convex-like
(Hinder et al., 2020) functions up to the rate O(1/T 2). Consequently, there is an array of works
that aim to establish theoretical guarantees for AdaGrad-type methods with Nesterov acceleration,
including the works of Levy et al. (2018); Cutkosky (2019); Kavis et al. (2019); Rodomanov et al.
(2024); Kreisler et al. (2024). However, to the best of our knowledge, all such algorithms achieve ac-
celerated theoretical convergence rates only for scalar stepsizes. Therefore, another natural question
appears:

Q2. Can we design an adaptive preconditioned gradient method that provably benefits from both
diagonal AdaGrad-type preconditioning and momentum?

To the best of our knowledge, the only attempt to answer this question was made by Trifonov et al.
(2025). However, they made additional unrealistic assumptions about the dynamics of the precon-
ditioning operator and considered only a smooth and strongly convex, non-stochastic setting. Their
theoretical results provided a highly limited explanation of the benefits of preconditioning, including
a lack of adaptation to stochasticity and matrix/anisotropic Hölder smoothness.

1.4 CONTRIBUTIONS AND RELATED WORK

In this paper we give positive answers to Questions 1 and 2 and provide the following contributions:

(i) We develop a unified analysis framework for adaptive preconditioned stochastic gradient
methods under the matrix Hölder smoothness and bounded variance. Using this frame-
work, in Section 3, we provide a single convergence proof that is applicable to most ex-
isting AdaGrad-type algorithms, recovering the state-of-the-art convergence guarantees for
AdaGrad-Norm, AdaGrad, and ASGO/One-sided Shampoo. Moreover, we establish con-
vergence guarantees for DASGO, a computationally efficient variant of ASGO proposed
by An et al. (2025), and find its fundamental connection with the recently proposed Scion
method by Pethick et al. (2025).

(ii) We develop a novel unified analysis of adaptive preconditioned stochastic gradient methods
with Nesterov acceleration under the additional assumption that the smoothness and noise
operators,2 L and Σ, commute with any preconditioner Hk. In particular, in Section 4, we
show that the convergence of algorithms with diagonal preconditioning, such as AdaGrad
and DASGO, can be significantly improved with no extra assumptions compared to their
non-accelerated counterparts. To the best of our knowledge, this is the first theoretical
justification that AdaGrad can benefit from both momentum and diagonal preconditioning.

We also provide a discussion of additional related work. First, we discuss the theoretical analysis
of the exponential moving average (EMA) in AdaGrad-type algorithms by Défossez et al. (2020).
Second, we mention several parameter-free AdaGrad-type algorithms that do not require tuning the
parameter η. Finally, we discuss the concurrent unified analysis of AdaGrad-type algorithms by
Xie et al. (2025), which appeared online earlier than our work but suffers from several substantial
drawbacks. The details are postponed to Appendix B due to the maximum page limit.

2 PRELIMINARIES

2.1 UNIFIED PRECONDITIONING FRAMEWORK

In this paper, we use the notation described in Appendix A. The preconditioned gradient method
uses the update rule in eq. (3), which requires the preconditioning operator Hk ∈ S++. Similar to
the approach of Gupta et al. (2017), we restrict the operator Hk to belong to a certain subspace of
self-adjoint operators H ⊂ S. As discussed in Section 1.2, we can obtain most existing AdaGrad-
type methods by choosing different instances of the space H. However, to develop a single unified

2Refer to Assumptions 2 and 3 for precise definitions.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

convergence proof for these algorithms, we need to impose formal assumptions on the space H.
This is done through the following Definition 1 and Assumption 1.

Definition 1. Let ψ(h) : I → R be a scalar function defined on an arbitrary interval I ⊂ R. Let
SI ⊂ S be the set of self-adjoint operators, with eigenvalues lying in I . The corresponding operator
function ψ(H) : SI → S is defined as follows:

ψ(H) =
∑

iψ(λi)Pi, (4)

where H =
∑

i λiPi is the eigendecomposition of the operator H ∈ SI , that is, λi ∈ I are the
eigenvalues of H, and Pi ∈ S are the projection operators onto the corresponding eigenspaces.

Assumption 1. The space of linear operators H ⊂ S satisfies the following properties:

(A1.1) The projection onto H is order preserving, that is, projH(H) ∈ S++ for all H ∈ S++.

(A1.2) The space H is closed under arbitrary operator functions, that is, ψ(H) ∈ H for all H ∈ H
and ψ(h) : R → R.

Next, according to Gupta et al. (2017), we describe a unified way to define the preconditioning
operator Hk ∈ S++ based on the choice of the space H. Given the past gradients g0, . . . , gk ∈ X ,
the preconditioning operator Hk is defined as a solution to the following optimization problem:

Hk = argmin
H∈H∩S++

⟨H,Sk⟩+ ⟨I, ϕ(H)⟩, where Sk =
∑k

i=0gi⟨gi, ·⟩, (5)

where ϕ(h) : R++ → R is a strictly convex non-negative potential function. The optimization
form of this definition allows the use of the standard tool from online optimization, the Follow-the-
Leader/Be-the-Leader (FTL-BTL) lemma (Kalai & Vempala, 2005). It can be summarized in the
following inequality:∑k

i=−1li(θi) ≤
∑k

i=−1li(θk), where θi = argminθ∈Θli(θ), (FTL-BTL)

where l−1(θ), . . . , lk(θ) : Θ → R is an arbitrary sequence of functions defined on a domain Θ.3
Similar to Gupta et al. (2017), we can use this result to obtain the following Lemma 1, which is one
of the key elements in the unified analysis of Adagrad-type algorithms.

Lemma 1 (↓). The preconditioner Hk defined in eq. (5) satisfies the following inequality:∑k
i=0∥gi∥

2
Hi

≤ ⟨Hk,Sk⟩+ ⟨I, ϕ(Hk)⟩. (6)

The application of Lemma 1 is not limited to a specific choice of the potential function. However,
to obtain Adagrad-type preconditioners, we will use the following potential function ϕ(h), which is
given as follows:

ϕ(h) = δ · h+ η2/h, (7)

where δ, η > 0 are positive parameters. Here appears the first key difference from Gupta et al.
(2017): using our Assumption 1, we can explicitly compute the preconditioner Hk, as stated by the
following Lemma 2.

Lemma 2 (↓). The auxiliary problem in eq. (5) with the potential function ϕ(h) defined in eq. (7)
has the following unique solution:

Hk = η (δI+ projH(Sk))
−1/2

. (8)

Moreover, the following operator inequality holds:

Hk+1 ⪯ Hk. (9)

Overall, the assumptions that we impose on the space of preconditioning operators H (Proper-
ties A1.1 and A1.2 in Assumption 1) are closely related to the notion of a well-structured precon-
ditioner set used by Xie et al. (2025). Consequently, the unified analysis of Xie et al. (2025) shares
some similarities with ours but suffers from significant disadvantages discussed in Appendix B.

3The proof of eq. (FTL-BTL) can be found in Appendix A of Gupta et al. (2017).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: The linear space X , the space of preconditioning operators H satisfying Assumption 1,
and the (possibly non-Euclidean) norm R(·) defined in eq. (12) for AdaGrad-Norm (Streeter &
McMahan, 2010), AdaGrad (Duchi et al., 2011; McMahan & Streeter, 2010), ASGO/One-sided
Shampoo (An et al., 2025; Xie et al., 2025), and DASGO (An et al., 2025).

Algorithm X H R(·)
AdaGrad-Norm Rd {g 7→ βg : β ∈ R} 1√

d
∥ · ∥

AdaGrad Rd {g 7→ b⊙ g : b ∈ Rd} ∥ · ∥∞
ASGO/One-sided Shampoo Rm×n {G 7→ BG : B ∈ Sm} 1√

n
σmax(·)

DASGO Rm×n {G 7→ diag(b)G : b ∈ Rm} 1√
n
∥ · ∥2→∞

2.2 ASSUMPTIONS ON THE OBJECTIVE FUNCTION

In this section, we formalize the assumptions that we impose on the objective function f(x). The
following Assumption 2 formalizes the convexity and matrix Hölder smoothness properties of the
function f(x). Note that in the smooth case (ν = 1) Assumption 2 matches the definitions used by
An et al. (2025); Xie et al. (2025). In the non-smooth case (ν = 0), it is more general compared to
the assumption used by An et al. (2025, Corollary 2). Note that Xie et al. (2025) provides no results
in the non-smooth case, and neither of the works of An et al. (2025); Xie et al. (2025) provides
results in the Hölder smooth case for 0 < ν < 1.

Assumption 2. The function f(x) is convex and (∥L∥
1−ν
2

tr , ν)-Hölder smooth with respect to the
norm ∥ · ∥L, where ν ∈ [0, 1] and L ∈ H∩ S++. That is, for all x1, x2 ∈ X and ∇f(x1) ∈ ∂f(x1),
the following inequalities hold:

0 ≤ f(x2)− f(x1)− ⟨∇f(x1), x2 − x1⟩ ≤ 1
1+ν ∥L∥

1−ν
2

tr ∥x2 − x1∥1+ν
L . (10)

Additionally, using the matrix Hölder smoothness property in Assumption 2, we establish the fol-
lowing Lemma 3, which will be further used in our convergence analysis.
Lemma 3 (↓). For all x ∈ X and ∇f(x) ∈ ∂f(x), the following inequality holds:

∥∇f(x)∥2L−1 ≤
(
1+ν
ν

) 2ν
1+ν ∥L∥

1−ν
1+ν

tr (f(x)− f(x∗))
2ν

1+ν , (11)

where in the case ν = 0, we use the convention 00 = 1.

The matrix smoothness in Assumption 2 is also closely related to the non-Euclidean smoothness
property, which recently received a lot of attention (Bernstein & Newhouse, 2024; Pethick et al.,
2025; Kovalev, 2025; Riabinin et al., 2025) due to the practical success of the Muon optimizer
(Jordan et al., 2024). Let function R(x) : X → R+ be defined as follows:

R(x) = ∥projH(X)∥1/2op , where X = x⟨x, ·⟩. (12)

One can verify that the function R(x) is a norm on the linear space X , as shown in Lemma 4.
Besides, Assumption 2 implies that the function f(x) is (∥L∥tr, ν)-Hölder smooth with respect to
this possibly non-Euclidean norm R(·). That is, the following inequality holds for all x1, x2 ∈ X :

f(x2)− f(x1)− ⟨∇f(x1), x2 − x1⟩ ≤ 1
1+ν ∥L∥tr [R(x2 − x1)]

1+ν
. (13)

We provide additional discussion of the connection between Assumption 2 and the non-Euclidean
Hölder smoothness in eq. (13) in Section 3.
Lemma 4 (↓). The function R(x) defined in eq. (12) is a norm. That is, it is subadditive, absolutely
homogeneous, non-negative, and positive definite.

Additionally, we provide the assumptions on the stochastic gradient noise in the following Assump-
tion 3. These are more general than the assumptions used by both An et al. (2025) and Xie et al.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Adaptive SGD with Preconditioning
1: input: x0 ∈ X , K ∈ {1, 2, . . .}
2: for k = 0, . . . ,K do
3: sample ξk ∼ D
4: compute gk = ∇f(xk; ξk)
5: compute Hk ∈ H ∩ S++ using eqs. (5) and (8)
6: compute xk+1 ∈ X using eq. (3).
7: output: xK = 1

K+1

∑K
k=0 xk

(2025). In particular, they assume the ordering Eξ∼D[n(x; ξ)⟨n(x; ξ), ·⟩] ⪯ Σ2, which implies Prop-
erty A3.2, and hence, is more restrictive. Moreover, similar to the connection between Assumption 2
and the non-Euclidean Hölder smoothness (13), one can show that Assumption 3 implies that the
variance of the stochastic gradient estimator is bounded with respect to the non-Euclidean dual norm
R∗(·). That is, the following inequality holds for all x ∈ X :

Eξ∼D
[
(R∗(n(x; ξ)))2

]
≤ ∥Σ∥2tr. (14)

Assumption 3. There exists a stochastic estimator ∇f(x; ξ) = n(x; ξ)+∇f(x) of the (sub)gradient
∇f(x) ∈ ∂f(x) of the objective function f(x), where n(x; ξ) is the noise and ξ ∼ D is a random
variable. The noise n(x; ξ) satisfies the following properties:

(A3.1) Zero mean: Eξ∼D[n(x; ξ)] = 0 for all x ∈ X .

(A3.2) Bounded variance: Eξ∼D[∥n(x; ξ)∥2Σ−1] ≤ ∥Σ∥tr for all x ∈ X , where Σ ∈ H ∩ S++.

3 UNIFIED ANALYSIS OF ADAPTIVE SGD WITH PRECONDITIONING

3.1 GENERAL ALGORITHM AND ITS CONVERGENCE

Based on the discussion in Section 2.1, we formalize the adaptive stochastic gradient method with
preconditioning as Algorithm 1. In this section, we develop the unified convergence analysis of
this algorithm. First, we obtain an upper bound on the expected regret E[

∑K
k=0f(xk) − f(x∗)] in

the following Lemma 5. The proof of this lemma, in many ways, relies on the previously obtained
Lemmas 1 and 2.
Lemma 5 (↓). Under the conditions of Theorem 1, the following inequality holds:∑K

k=0E[f(xk)− f(x∗)] ≤ 3
2R⟨I,projH(E[SK])1/2⟩+ 3

2

√
δR dim(X). (15)

Next, in the following Lemma 6, we establish an upper bound on the right-hand side of the inequality
in Lemma 5, using Assumption 3 and the previously obtained Lemma 3.
Lemma 6 (↓). Under the conditions of Theorem 1, the following inequality holds:

⟨I,projH(E[SK])1/2⟩ ≤
√
K + 1

1−ν
1+ν ∥L∥

1
1+ν

tr

[∑K
k=0E[f(xk)− f(x∗)]

] ν
1+ν

+
√
K + 1∥Σ∥tr.

(16)

Finally, with the help of Lemmas 5 and 6, we obtain the convergence result for Algorithm 1 in the
following Theorem 1. Note that this result requires the inequality in eq. (17) to hold almost surely,
which may not be satisfied, especially in the stochastic setting. However, this issue can be easily
resolved with an additional projection step at each iteration. Refer to Appendix D for details.
Theorem 1 (↓). Under Assumptions 1, 2 and 3, let η = R, where R > 0 almost surely satisfies the
following inequality:

max
k=0,...,K

R(xk − x∗) ≤ R. (17)

Then, the output xK ∈ X of Algorithm 1 satisfies the following inequality:

E[f(xK)− f(x∗)] ≤ 3∥L∥trR1+ν

(K + 1)
1+ν
2

+
3∥Σ∥trR√
K + 1

+
3
√
δR dim(X)

(K + 1)
. (18)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

3.2 RELATED ALGORITHMS

In this section, we discuss the connection of Algorithm 1 with existing adaptive gradient methods
with preconditioning.

Connection with AdaGrad-Norm, AdaGrad, and ASGO/One-sided Shampoo. We can ob-
tain AdaGrad-Norm, AdaGrad, ASGO/One-sided Shampoo as special instances of Algorithm 1 by
choosing the space of preconditioning operators H satisfying Assumption 1 according to Table 1. In
the case ν = 1, Theorem 1 recovers the state-of-the-art convergence guarantees for AdaGrad under
anisotropic smoothness (Liu et al., 2024b) and for ASGO/One-sided Shampoo (An et al., 2025; Xie
et al., 2025) under matrix smoothness. However, recall that Liu et al. (2024b); An et al. (2025); Xie
et al. (2025) require a more restrictive noise variance bound as discussed in Section 2.2, and do not
cover Hölder smoothness. In contrast, Theorem 1 works for arbitrary ν ∈ [0, 1], which implies that
Algorithm 1 can adapt to different levels of anisotropic/matrix smoothness.

Connection with DASGO. Notably, Algorithm 1 recovers DASGO, a lightweight version of
ASGO/One-sided Shampoo that uses diagonal preconditioning and was proposed by An et al. (2025)
without any convergence guarantees. Consequently, Theorem 1 provides the first convergence guar-
antees for DASGO, to the best of our knowledge. Moreover, in Section 4, we will show that the
convergence of DASGO, as well as AdaGrad, can be accelerated using Nesterov momentum.

Connection between ASGO/One-sided Shampoo and Muon. Recently, Jordan et al. (2024) pro-
posed using the Shampoo optimizer (Gupta et al., 2018) with gradient accumulation turned off. This
led to the development of Muon, a new optimizer with promising practical performance. The con-
vergence of Muon was analyzed from the perspective of gradient methods with the non-Euclidean
matrix spectral norm by Bernstein & Newhouse (2024); Pethick et al. (2025); Kovalev (2025). No-
tably, our analysis captures the connection between ASGO/One-sided Shampoo and non-Euclidean
optimization with the spectral norm. Indeed, as discussed in Section 2.2, Assumption 2 implies
the (∥L∥tr, ν)-Hölder smoothness in eq. (13) with respect to the norm R(·), which, according to
Table 1, coincides with the matrix spectral norm (up to constant factors). Moreover, in the case
of ASGO/One-sided Shampoo, Theorem 1 provides the convergence result in terms of the constant
∥L∥tr and the norm R(·).
Connection between DASGO and Scion. Recently, Pethick et al. (2025) proposed Scion, a new
variant of Muon, which, instead of the spectral norm, can use the matrix norm ∥ · ∥2→∞: the maxi-
mal Euclidean norm of a row of a matrix. Note that in the case of DASGO, the norm R(·) defined
in eq. (12) coincides with the norm ∥ · ∥2→∞ up to multiplicative constants, according to Table 1.
Hence, Scion with the norm ∥ · ∥2→∞ can be obtained by turning off the gradient accumulation in
DASGO, that is, choosing Sk = gk⟨gk, ·⟩ in eq. (5). In other words, DASGO is connected to Scion
in the same way as ASGO/(One-sided) Shampoo is connected to Muon. It is important to highlight
that the iterations of Shampoo are not cheap and require matrix inversions, which triggered the de-
velopment of the computationally effective alternative, Muon, by Jordan et al. (2024). However, the
iterations of DASGO are not only inexpensive, but they also utilize adaptive preconditioning and
have much more attractive theoretical convergence properties compared to Scion. Hence, it is worth
trying to use DASGO in the practical scenarios identified by Pethick et al. (2025) to benefit from
using the non-Euclidean norm ∥ · ∥2→∞.

4 SGD WITH PRECONDITIONING AND ACCELERATION

4.1 GENERAL ACCELERATED ALGORITHM AND ITS CONVERGENCE

In this section, we develop accelerated adaptive SGD with preconditioning, which is summarized in
Algorithm 2, and provide its unified convergence analysis. First, to simplify the analysis, we use the
interpretation of Nesterov momentum acceleration (Nesterov, 1983) by Kovalev & Borodich (2024).
The idea is that we define the functions fk(x) : X → R as follows:

fk(x) = α−2
k · f(αkx+ (1− αk)xk), where αk ∈ (0, 1] and xk ∈ X , (19)

where xk ∈ X is updated according to line 7 at each iteration. We then apply the preconditioned
SGD iterations in eq. (3) to this “time-varying” function fk(x). With this approach, we can upper-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Algorithm 2 Accelerated Adaptive SGD with Preconditioning
1: input: x0 = x0 ∈ X , K ∈ {1, 2, . . .}
2: for k = 0, . . . ,K do
3: sample ξk ∼ D
4: compute gk = ∇fk(xk; ξk), where fk(x) is defined in eq. (19)
5: compute Hk ∈ H ∩ S++ using eqs. (5) and (8)
6: compute xk+1 ∈ X using eq. (3).
7: compute xk+1 = αkxk+1 + (1− αk)xk
8: output: xK+1

bound the expected objective function suboptimality E[f(xK+1)−f(x∗)] using the expected regret-
like sum

∑K
k=0E[fk(xk+1)− fk(x

∗)] in the following Lemma 7.
Lemma 7 (↓). Under the conditions of Theorem 2, the following inequality holds:

1
4 (K + 2)2E[f(xK+1)− f(x∗)] ≤

∑K
k=0E[fk(xk+1)− fk(x

∗)]. (20)

Next, we proceed with the additional Assumption 4 on the operators L,Σ ∈ H defined in As-
sumptions 2 and 3. It is important to highlight that this assumption always holds when the space
of preconditioners H contains only diagonal operators. Hence, this assumption is automatically
satisfied for algorithms with diagonal preconditioning like AdaGrad and DASGO.
Assumption 4. The operators L ∈ H in Assumption 2 and Σ ∈ H in Assumption 3 commute with
the space H, that is, LH = HL and ΣH = HΣ for all H ∈ H.

The key idea for the analysis of Algorithm 2 is that under Assumption 4, the square of the precondi-
tion operator Hk, defined in eq. (8), is a solution to the optimization problem in eq. (21), as indicated
by Lemma 8. Hence, similar to the analysis of the non-accelerated Algorithm 1, we can utilize the
FTL-BTL lemma (FTL-BTL) and obtain one of the key inequalities in Lemma 9.
Lemma 8 (↓). Under Assumption 4, the operator H2

k defined by eq. (8) is a solution to the following
problem, where B = L or B = Σ:

H2
k ∈ argmin

Q∈H∩S++

⟨Q,BSk⟩+ ⟨B, δQ− η2 ln(Q)⟩. (21)

Lemma 9 (↓). Under Assumption 4, the following inequality holds for B = L or B = Σ:

E
[∑k

i=0∥gi∥
2
BH2

i

]
≤ η2∥B∥tr ln

[
1
δ η

2
(
E[∥H−1

k ∥tr]
)2]

. (22)

Finally, using the inequality in Lemma 9, we obtain the key upper bound on the regret-like sum
E[fk(xk+1)− fk(x

∗)] in Lemma 10.
Lemma 10 (↓). Under the conditions of Theorem 2, the following inequality holds:∑K

k=0E[fk(xk+1)− fk(x
∗)] ≤ 1

4CK(K + 2)
3(1−ν)

2 ∥L∥trR1+ν

+ 1
4CK(K + 2)

3
2 ∥Σ∥trR+

√
δR dim(X).

(23)

Now, all that remains is to combine Lemma 10 with Lemma 7 and obtain the main convergence
result for Algorithm 2 in Theorem 2. Similar to the non-accelerated result in Theorem 1, we require
the inequality in eq. (17) to hold almost surely. This can be easily guaranteed by an additional
projection step at each iteration, as discussed in Appendix D.
Theorem 2. Under Assumptions 1, 2, 3 and 4, let η = 2R, where R > 0 satisfies eq. (17), and let
αk = 2/(k + 2). Then, the output xK+1 ∈ X of Algorithm 2 satisfies the following inequality:

E[f(xK+1)− f(x∗)] ≤ CK∥L∥trR1+ν

(K + 2)
1+3ν

2

+
CK∥Σ∥trR√

K + 2
+

4
√
δR dim(X)

(K + 2)2
, (24)

where the constant CK > 0 satisfies the following relation:

CK = O
(
1 + lnK + ln ∥L∥trRν

√
δ

+ ln ∥Σ∥tr√
δ

)
. (25)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.2 ADAGRAD AND DASGO WITH MOMENTUM ACCELERATION

In this section, we provide a detailed discussion of our results for two special instances of adaptive
gradient methods with diagonal preconditioning: AdaGrad and DASGO. In the case of DASGO,
let X = Rm×n be the space of m × n matrices and consider the following special instance of
problem (1):

min
X∈Rm×n

f(X). (26)

We choose the space H of preconditioning operators Rm×n → Rm×n for DASGO according to
Table 1. That is, H = {G 7→ diag(b)G : b ∈ Rm}, which obviously satisfies Assumption 1. Note
that AdaGrad can be obtained from DASGO by simply choosing n = 1. Henceforth, for simplicity,
we will consider only DASGO.

Next, we specialize Assumptions 2 and 3 to the setting of DASGO. In particular, we define the
operator L ∈ H in Assumption 2 as L : X 7→ n

ν−1
2 diag(l)X , where l = (l1, . . . , lm) ∈ Rm

++

and X ∈ Rm×n. For example, in the case ν = 1 and n = 1, Assumption 2 exactly matches the
anisotropic smoothness assumption used by Liu et al. (2024b). In the general case ν ∈ [0, 1] and
n ≥ 1, Assumption 2 implies the (∥l∥1, ν)-Hölder smoothness with respect to the non-Euclidean
norm ∥ · ∥2→∞, that is, the following special instance of the inequality in eq. (13) holds:

0 ≤ f(X2)− f(X1)− ⟨∇f(X1), X2 −X1⟩ ≤ 1
1+ν ∥l∥

1−ν
2

1 ∥X2 −X1∥1+ν
2→∞. (27)

Similarly, we define the operator Σ ∈ H in Property A3.2 as Σ : X 7→ n−
1
2 diag(σ)X , where

σ = (σ1, . . . ,σm) ∈ Rm
++ and X ∈ Rm×n. Consequently, the variance bound in Property A3.2

turns into the following inequality:

Eξ∼D[
∑m

i=1(1/σi)∥Ni∥2] ≤ ∥σ∥1, where [N1, . . . , Nm]⊤ = ∇F (X; ξ)−∇F (X). (28)

This inequality is implied, for instance, by the anisotropic noise assumption used by Liu et al.
(2024b), and hence, it is more general.

Further, for simplicity in the presentation of the results, we use the convergence guarantees from
Appendix D for the algorithms with projection steps. Using Theorem 3 and assuming δ ≪ 1, we
obtain the following convergence guarantees for AdaGrad and DASGO:

E[f(XK)− f(X∗)] ≤ Õ
(
∥l∥1∥X∗∥1+ν

2→∞

K
1+ν
2

+
∥σ∥1∥X∗∥2→∞√

K + 1

)
. (29)

This matches the result of Liu et al. (2024b) for AdaGrad in the smooth case (ν = 1 and n = 1),
but also provides convergence guarantees for DASGO. Similarly, using Theorem 4, we establish
convergence guarantees for AdaGrad and DASGO with Nesterov momentum:

E[f(XK+1)− f(X∗)] ≤ Õ
(
∥l∥1∥X∗∥1+ν

2→∞

K
1+3ν

2

+
∥σ∥1∥X∗∥2→∞√

K + 1

)
, (30)

which substantially improves upon the non-accelerated result above. We can also compare this result
with the state-of-the-art result of Kavis et al. (2019); Rodomanov et al. (2024) for scalar AdaGrad-
type stepsizes under the above assumptions:

E[f(XK+1)− f(X∗)] ≤ Õ
(
∥l∥∞∥X∗∥1+ν

K
1+3ν

2

+

√
m∥σ∥∞∥X∗∥√

K + 1

)
. (31)

Our result in eq. (30) is substantially better than the existing result in eq. (31) as long as ∥l∥1 ∼
∥l∥∞, ∥σ∥1 ∼ ∥σ∥∞, and ∥X∗∥ ≫ ∥X∗∥2→∞. For instance, in the AdaGrad case (n = 1), this
holds when l and σ are sparse andX∗ is dense, which aligns with the conclusions made by Liu et al.
(2024b) for AdaGrad without momentum acceleration.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Kang An, Yuxing Liu, Rui Pan, Shiqian Ma, Donald Goldfarb, and Tong Zhang. Asgo: Adaptive
structured gradient optimization. arXiv preprint arXiv:2503.20762, 2025.

Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk,
Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly capable multimodal
models. arXiv preprint arXiv:2312.11805, 2023.

Jeremy Bernstein and Laker Newhouse. Old optimizer, new norm: An anthology. arXiv preprint
arXiv:2409.20325, 2024.

Eric Carlen. Trace inequalities and quantum entropy: an introductory course. Entropy and the
quantum, 529(73-140):146, 2010.

Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary
points i. Mathematical Programming, 184(1):71–120, 2020.

Ashok Cutkosky. Anytime online-to-batch, optimism and acceleration. In International conference
on machine learning, pp. 1446–1454. PMLR, 2019.

Ashok Cutkosky and Francesco Orabona. Black-box reductions for parameter-free online learning
in banach spaces. In Conference On Learning Theory, pp. 1493–1529. PMLR, 2018.

Aaron Defazio and Konstantin Mishchenko. Learning-rate-free learning by d-adaptation. In Inter-
national Conference on Machine Learning, pp. 7449–7479. PMLR, 2023.

Alexandre Défossez, Léon Bottou, Francis Bach, and Nicolas Usunier. A simple convergence proof
of adam and adagrad. arXiv preprint arXiv:2003.02395, 2020.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Ilyas Fatkhullin, Jalal Etesami, Niao He, and Negar Kiyavash. Sharp analysis of stochastic optimiza-
tion under global kurdyka-lojasiewicz inequality. Advances in Neural Information Processing
Systems, 35:15836–15848, 2022.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Vineet Gupta, Tomer Koren, and Yoram Singer. A unified approach to adaptive regularization in
online and stochastic optimization. arXiv preprint arXiv:1706.06569, 2017.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor opti-
mization. In International Conference on Machine Learning, pp. 1842–1850. PMLR, 2018.

Oliver Hinder, Aaron Sidford, and Nimit Sohoni. Near-optimal methods for minimizing star-convex
functions and beyond. In Conference on learning theory, pp. 1894–1938. PMLR, 2020.

Maor Ivgi, Oliver Hinder, and Yair Carmon. Dog is sgd’s best friend: A parameter-free dynamic
step size schedule. In International Conference on Machine Learning, pp. 14465–14499. PMLR,
2023.

Ruichen Jiang, Devyani Maladkar, and Aryan Mokhtari. Convergence analysis of adaptive gradient
methods under refined smoothness and noise assumptions. arXiv preprint arXiv:2406.04592,
2024.

Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks. Cited on, pp. 10, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Adam Kalai and Santosh Vempala. Efficient algorithms for online decision problems. Journal of
Computer and System Sciences, 71(3):291–307, 2005.

Ali Kavis, Kfir Y Levy, Francis Bach, and Volkan Cevher. Unixgrad: A universal, adaptive algorithm
with optimal guarantees for constrained optimization. Advances in neural information processing
systems, 32, 2019.

Ahmed Khaled, Konstantin Mishchenko, and Chi Jin. Dowg unleashed: An efficient universal
parameter-free gradient descent method. Advances in Neural Information Processing Systems,
36:6748–6769, 2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Bobby Kleinberg, Yuanzhi Li, and Yang Yuan. An alternative view: When does sgd escape local
minima? In International conference on machine learning, pp. 2698–2707. PMLR, 2018.

Dmitry Kovalev. Understanding gradient orthogonalization for deep learning via non-euclidean
trust-region optimization. arXiv preprint arXiv:2503.12645, 2025.

Dmitry Kovalev and Ekaterina Borodich. On linear convergence in smooth convex-concave
bilinearly-coupled saddle-point optimization: Lower bounds and optimal algorithms. arXiv
preprint arXiv:2411.14601, 2024.

Itai Kreisler, Maor Ivgi, Oliver Hinder, and Yair Carmon. Accelerated parameter-free stochastic
optimization. In The Thirty Seventh Annual Conference on Learning Theory, pp. 3257–3324.
PMLR, 2024.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

Kfir Y Levy, Alp Yurtsever, and Volkan Cevher. Online adaptive methods, universality and acceler-
ation. Advances in neural information processing systems, 31, 2018.

Xiaoyu Li and Francesco Orabona. On the convergence of stochastic gradient descent with adaptive
stepsizes. In The 22nd international conference on artificial intelligence and statistics, pp. 983–
992. PMLR, 2019.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Yuxing Liu, Rui Pan, and Tong Zhang. Adagrad under anisotropic smoothness. arXiv preprint
arXiv:2406.15244, 2024b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

H Brendan McMahan and Matthew Streeter. Adaptive bound optimization for online convex opti-
mization. arXiv preprint arXiv:1002.4908, 2010.

Konstantin Mishchenko and Aaron Defazio. Prodigy: An expeditiously adaptive parameter-free
learner. arXiv preprint arXiv:2306.06101, 2023.

Konstantin Mishchenko, Grigory Malinovsky, Sebastian Stich, and Peter Richtárik. Proxskip: Yes!
local gradient steps provably lead to communication acceleration! finally! In International Con-
ference on Machine Learning, pp. 15750–15769. PMLR, 2022.

Yu Nesterov. Universal gradient methods for convex optimization problems. Mathematical Pro-
gramming, 152(1):381–404, 2015.

Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of conver-
gence O(1/k2). Dokl. Akad. Nauk. SSSR, 269(3):543, 1983.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2013.

Francesco Orabona. Normalized gradients for all. arXiv preprint arXiv:2308.05621, 2023.

Francesco Orabona and Dávid Pál. Parameter-free stochastic optimization of variationally coherent
functions. arXiv preprint arXiv:2102.00236, 2021.

Thomas Pethick, Wanyun Xie, Kimon Antonakopoulos, Zhenyu Zhu, Antonio Silveti-Falls, and
Volkan Cevher. Training deep learning models with norm-constrained lmos. arXiv preprint
arXiv:2502.07529, 2025.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. arXiv
preprint arXiv:1904.09237, 2019.

Artem Riabinin, Egor Shulgin, Kaja Gruntkowska, and Peter Richtárik. Gluon: Making muon &
scion great again!(bridging theory and practice of lmo-based optimizers for llms). arXiv preprint
arXiv:2505.13416, 2025.

Anton Rodomanov, Xiaowen Jiang, and Sebastian U Stich. Universality of adagrad stepsizes for
stochastic optimization: Inexact oracle, acceleration and variance reduction. Advances in Neural
Information Processing Systems, 37:26770–26813, 2024.

Matthew Streeter and H Brendan McMahan. Less regret via online conditioning. arXiv preprint
arXiv:1002.4862, 2010.

Tijmen Tieleman. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent
magnitude. COURSERA: Neural networks for machine learning, 4(2):26, 2012.

Stepan Trifonov, Leonid Levin, Savelii Chezhegov, and Aleksandr Beznosikov. Incorporating pre-
conditioning into accelerated approaches: Theoretical guarantees and practical improvement.
arXiv preprint arXiv:2505.23510, 2025.

Nikhil Vyas, Depen Morwani, Rosie Zhao, Mujin Kwun, Itai Shapira, David Brandfonbrener, Lucas
Janson, and Sham Kakade. Soap: Improving and stabilizing shampoo using adam. arXiv preprint
arXiv:2409.11321, 2024.

Shuo Xie, Tianhao Wang, Sashank Reddi, Sanjiv Kumar, and Zhiyuan Li. Structured preconditioners
in adaptive optimization: A unified analysis. arXiv preprint arXiv:2503.10537, 2025.

Yi Zhou, Junjie Yang, Huishuai Zhang, Yingbin Liang, and Vahid Tarokh. Sgd converges to global
minimum in deep learning via star-convex path. arXiv preprint arXiv:1901.00451, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Appendix
A NOTATION

In this paper, we use the following notation: dim(X) is the dimension of the space X ; L is the space
of linear operators X → X , for arbitrary operator A ∈ L, A∗ ∈ L denotes its adjoint operator,
I ∈ L and O ∈ L denote the identity and the zero operators, respectively; S ⊂ L is the space of self-
adjoint linear operators, S++,S+ ⊂ S are the spaces of positive definite and positive semi-definite
self-adjoint operators, respectively; ≺,⪯,≻,⪰ denote the standard Löwner order on S; ⟨·, ·⟩ and
∥ · ∥ denote the standard inner product and Euclidean norm on X or L, depending on the context, in
particular, ⟨A,B⟩ = tr(AB∗) for A,B ∈ L; for arbitrary H ∈ S++, ∥ · ∥H denotes the weighted
Euclidean norm in X , i.e., ∥x∥2H = ⟨x,Hx⟩ for x ∈ X ; ∥ · ∥op and ∥ · ∥tr denote the operator and
trace norm on L, respectively, i.e., ∥A∥op = max∥x∥≤1∥Ax∥ and ∥A∥tr = tr(

√
AA∗) for all

A ∈ L; for arbitrary y, z ∈ X , by z⟨y, ·⟩ ∈ L we denote the rank-1 linear operator x 7→ ⟨x, y⟩z;
by Sd ⊂ Rd×d we denote the space of d × d symmetric matrices; by ⊙, we denote the Hadamard
vector or matrix product.

B ADDITIONAL RELATED WORK

Exponential moving average. AdaGrad-type algorithms, like RMSProp, often utilize the exponen-
tial moving average (EMA): they replace the cumulative sum of the squared gradients

∑k
i=0∥gi∥2

in eq. (2) with the exponential moving average
∑k

i=0 β
i∥gi∥2. Notably, EMA is the third key com-

ponent of Adam, in addition to diagonal preconditioning and momentum. Moreover, Défossez et al.
(2020) showed how to analyze AdaGrad with EMA and explained that it is related to the standard
AdaGrad in the same way as fixed stepsize SGD is related to decaying stepsize SGD. Consequently,
we can develop EMA versions of our algorithms as well as their convergence proofs. However,
Défossez et al. (2020) could not justify the benefits of using momentum. Hence, our theoretical
justification of the benefits of momentum and diagonal preconditioning, combined with the analysis
of EMA by Défossez et al. (2020), may provide the ultimate explanation for the efficiency of Adam.

Parameter-free algorithms. There is an important research direction aimed at designing parameter-
free variants of AdaGrad, which can avoid tuning the parameter η ∝ ∥x∗∥ in eq. (2). This includes
the works of Cutkosky & Orabona (2018); Orabona & Pál (2021); Defazio & Mishchenko (2023);
Mishchenko & Defazio (2023); Ivgi et al. (2023); Khaled et al. (2023); Kreisler et al. (2024).4
However, to the best of our knowledge, the existing results are applicable only to scalar stepsizes,
which are rarely used in practice. Designing parameter-free gradient methods with diagonal or
matrix preconditioning is an interesting question for future work.

Concurrent unified analysis framework. Xie et al. (2025) developed a unified analysis for
AdaGrad-type methods, where they also adopt the matrix smoothness assumption. We found their
work during the preparation of our literature review, at a point when our results had already been
finalized. Although the results of Xie et al. (2025) share some similarities with ours and are capa-
ble of providing a partially positive answer to Question 1, their analysis has substantial differences
and drawbacks. Specifically, it only covers the smooth case and lacks adaptation to non-smooth
or Hölder smooth functions. In addition, it requires a more restrictive stochastic gradient noise as-
sumption and, most importantly, does not contain any results about using momentum acceleration,
thus completely missing an answer to the fundamental Question 2.

C MOTIVATION FOR CONVEX SETTING

In this paper, we focus on the case where the objective function f(x) in problem (1) is convex.
There are multiple reasons for this assumption. First, optimization algorithms for convex functions
hold substantial practical interest because empirical studies (Zhou et al., 2019; Kleinberg et al.,
2018) suggest that deep neural networks may adhere to convexity or its variants. Second, for gen-

4Additional references can be found in the overview of Orabona (2023).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Algorithm 3 Adaptive SGD with Preconditioning and Weight Clipping
1: input: x0 ∈ QR, K ∈ {1, 2, . . .}
2: for k = 0, . . . ,K do
3: sample ξk ∼ D
4: compute gk = ∇f(xk; ξk)
5: compute Hk ∈ H ∩ S++ using eqs. (5) and (8)
6: compute xk+1 ∈ X using eq. (32)
7: output: xK = 1

K+1

∑K
k=0 xk

Algorithm 4 Accelerated Adaptive SGD with Preconditioning and Weight Clipping
1: input: x0 = x0 ∈ QR, K ∈ {1, 2, . . .}
2: for k = 0, . . . ,K do
3: sample ξk ∼ D
4: compute gk = ∇fk(xk; ξk), where fk(x) is defined in eq. (19)
5: compute Hk ∈ H ∩ S++ using eqs. (5) and (8)
6: compute xk+1 ∈ X and xk+1/2 ∈ X using eq. (32)
7: compute xk+1 = αkxk+1/2 + (1− αk)xk
8: output: xK+1

eral non-convex functions, it is impossible to achieve meaningful global convergence beyond vague
first-order stationarity (Carmon et al., 2020). However, in practice, it is typically desirable to achieve
small values of the objective function, which can only be guaranteed under additional assumptions,
such as gradient domination (Fatkhullin et al., 2022), star/quasar convexity (Hinder et al., 2020),
etc. Such assumptions are, in turn, relaxations of the convexity property itself. Hence, it is natural
to consider the convex setting first before trying to relax it. Finally, convex optimization serves as a
large source of inspiration for designing efficient optimization algorithms. Notably, many optimiza-
tion techniques that have practical benefits were initially theoretically justified for convex functions.
These include momentum acceleration (Nesterov, 2013), local training (Mishchenko et al., 2022),
and AdaGrad (Duchi et al., 2011), on which Adam itself is based.

D ALGORITHMS WITH WEIGHT CLIPPING

The upper bounds on the expected functional suboptimality in Theorem 1 for Algorithm 1 and in
Theorem 2 for Algorithm 2 require the inequality in eq. (17) to hold almost surely. However, this
requirement may not be satisfied, for instance, in the stochastic case. It is important to higlight that
such issue is not an artifact of our analysis but a common phenomenon in AdaGrad-type algorithms
(Duchi et al., 2011; Gupta et al., 2018; Liu et al., 2024b; An et al., 2025; Xie et al., 2025). To
bypass this issue, a typical approach is to modify the preconditioned gradient update rule in eq. (3)
by adding an extra projection step onto the set QR = {x ∈ X : R(x) ≤ R}, where R > R(x∗).
The modified update rule is given as follows:

xk+1 = argmin
x∈QR

1
2∥x− xk+1/2∥2H−1

k

, xk+1/2 = argmin
x∈X

⟨gk, x⟩+ 1
2∥x− xk∥2H−1

k

. (32)

Note that the set QR is convex and hence the projection step is well-defined. Also, note that the
projection is performed with respect to the weighted Euclidean norm ∥ · ∥H−1

k
, which may be ex-

pensive, for instance, when the preconditioner Hk is dense. However, this projection step can be
computed efficiently when the preconditioner Hk is diagonal. For instance, the projection is equiv-
alent to the coordinate-wise clipping t 7→ min{R,max{−R, t}} in AdaGrad, and to the row-wise
or column-wise norm-clipping z 7→ min{1,R/∥z∥}z in DASGO. Below, we discuss the modified
update rule eq. (32) in relation to the non-accelerated Algorithm 1 and the accelerated Algorithm 2
in detail, including the additional modifications in Algorithms 1 and 2 and the modifications in the
convergence proofs.

Non-accelerated Algorithm 1 → Algorithm 3. The only modifications to Algorithm 1 are the
initialization x0 ∈ Q on line 1 and the modified update rule (32) on line 6 in Algorithm 3, as

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

discussed above. We also modify the proof of Lemma 5 in Appendix F.1 by obtaining the following:

1
2∥xk+1 − x∗∥2

H−1
k

(a)
≤ 1

2∥xk+1/2 − x∗∥2
H−1

k

(b)
= 1

2∥xk − x∗∥2
H−1

k

− ⟨gk, xk − x∗⟩+ 1
2∥gk∥

2
Hk
, (33)

where (a) uses the update rule for xk+1 in eq. (32), the non-expansiveness of the projection, and the
fact that x∗ ∈ QR; (b) uses the update rule for xk+1/2 in eq. (32). One can observe that this eq. (33)
coincides with eq. (43) in Appendix F.1. Moreover, the inequality eq. (17) holds almost surely due
to the projection step in eq. (32). Therefore, the rest of the proof of Theorem 1 remains unchanged,
and we obtain the following Theorem 3.
Theorem 3. Under Assumptions 1, 2 and 3, let η = R, where R > R(x∗). Then, the output
xK ∈ X of Algorithm 3 satisfies the following inequality:

E[f(xK)− f(x∗)] ≤ 3∥L∥trR1+ν

(K + 1)
1+ν
2

+
3∥Σ∥trR√
K + 1

+
3
√
δR dim(X)

(K + 1)
. (34)

Accelerated Algorithm 2 → Algorithm 4. Similarly, to the non-accelerated algorithm, the accel-
erated Algorithm 4 contains the modified initialization x0 = x0 ∈ QR on line 1 and the modified
update rule (32) on line 6 in Algorithm 4. In addition to the modified eq. (33), we also modify the
first inequality in the proof of Lemma 10 in Appendix G.4 as follows:

E[fk(xk+1/2)] ≤ E
[
fk(xk)− ∥gk∥2Hk

+ ⟨nk,Hkgk⟩+ 1
1+να

ν−1
k ∥L∥

1−ν
2

tr ∥gk∥1+ν
LH2

k

]
. (35)

Here, the only difference is the left-hand side E[fk(xk+1/2)] compared to E[fk(xk+1)] in Ap-
pendix G.4, which means that we also have to modify the update rule for xk+1 on line 7 of Al-
gorithm 4 and apply trivial changes to Lemma 7. The rest of the proof of Theorem 2 remains
unchanged and we obtain the following Theorem 4.
Theorem 4. Under Assumptions 1, 2, 3 and 4, let η = 2R, where R > R(x∗), and let αk =
2/(k + 2). Then, the output xK+1 ∈ X of Algorithm 4 satisfies the following inequality:

E[f(xK+1)− f(x∗)] ≤ CK∥L∥trR1+ν

(K + 2)
1+3ν

2

+
CK∥Σ∥trR√

K + 2
+

4
√
δR dim(X)

(K + 2)2
, (36)

where the constant CK > 0 satisfies the following relation:

CK = O
(
1 + lnK + ln ∥L∥trRν

√
δ

+ ln ∥Σ∥tr√
δ

)
. (37)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

E PROOFS FOR SECTION 2

E.1 PROOF OF LEMMA 1

Let functions l−1(H), . . . , lk(H) : S++ → R be defined as follows:

l−1(H) = ⟨I, ϕ(H)⟩, li(H) = ∥gi∥2H for i = 0, . . . , k. (38)

Let H−1 ∈ H ∩ S++ be defined as follows:

H−1 = argmin
H∈H∩S++

⟨I, ϕ(H)⟩. (39)

From eq. (5), it is easy to verify that the following relation holds for all i = −1, . . . , k:

Hi = argmin
H∈H∩S++

∑k
i=−1li(H).

Next, we get the following inequality:∑k
i=0li(Hi)

(a)
≤

∑k
i=−1li(Hi)

(b)
≤

∑k
i=−1li(Hk).

where (a) uses the assumption that the potential function ϕ(h) is non-negative; (b) uses eq. (FTL-
BTL). It remains to to do rearranging and use the definition of the functions li(H).

E.2 PROOF OF LEMMA 2

First, using Properties A1.1 and A1.2, we can show that Hk ∈ H∩ S++. Next, we show that Hk in
eq. (8) is a solution to the problem in eq. (5) by verifying the first-order optimality condition:

∇(⟨·,Sk⟩+ ⟨I, ϕ(·)⟩)(Hk)
(a)
= Sk + ϕ′(Hk)

(b)
= Sk + δI− η2H−2

k

(c)
= Sk − projH(Sk)

∈ H⊥.

where (a) uses the standard operator function calculus (Carlen, 2010); (b) uses eq. (7); (c) uses
eq. (8). Next, we can show that the solution Hk is unique. Indeed, by Theorem 2.10 of Carlen
(2010), the function ⟨I, ϕ(H)⟩ is strictly convex, because the function ϕ(h) defined in eq. (7) is
strictly convex. Finally, we can prove eq. (9). It follows from the operator monotonicity of the
function h 7→ −1/

√
h, which is implied by Löwner-Heinz Theorem (Carlen, 2010, Theorem 2.6),

and the ordering projH(Sk+1) ⪰ projH(Sk), which is implied by Property A1.1 and the definition
of Sk in eq. (5).

E.3 PROOF OF LEMMA 3

Assumption 2 implies the following inequality for all x ∈ X and ∇f(x) ∈ ∂f(x):

f(x∗) ≤ f(x) + ⟨∇f(x), x∗ − x⟩+ 1
1+ν ∥L∥

1−ν
2

tr ∥x∗ − x∥1+ν
L . (40)

In the case ν ∈ (0, 1], we can minimize the right-hand side in x, which gives the following:

∥∇f(x)∥
1+ν
ν

L−1 ≤
(
1+ν
ν

)
∥L∥

1−ν
2ν

tr (f(x)− f(x∗)) . (41)

Taking both sides in the power 2ν
1+ν gives the desired inequality in the case ν ∈ (0, 1]. Finally, in

the case ν = 0, minimizing the right-hand side of the previous upper bound on f(x∗) gives the
following:

f(x∗) ≤ f(x) +

{
0 ∥∇f(x)∥2L−1 ≤ ∥L∥tr
−∞ ∥∇f(x)∥2L−1 > ∥L∥tr

. (42)

It remains to use the fact that both f(x) and f(x∗) are finite to obtain the desired inequality in the
case ν = 0.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

E.4 PROOF OF LEMMA 4

(i) Non-negativity. It is obvious.
(ii) Absolute homogenity. For arbitrary t ∈ R we can obtain the following:

R(tx)
(a)
= ∥projH(t2X)∥1/2op

(b)
= |t| · ∥projH(X)∥1/2op

(c)
= |t| · R(x),

where (a) and (c) use the definition of R(x) in eq. (12); (b) uses the linearity of the projec-
tion onto H and the absolute homogentiy of ∥ · ∥op.

(iii) Positive definiteness. Let R(x) = 0. Then projH(X) = 0, which implies the following:

0 = ⟨I,projH(X)⟩ (a)
= ⟨I,X⟩ (b)

= ∥x∥2

where (a) uses the fact that I ∈ H due to Property A1.2; (b) uses the definition of X in
eq. (12). Hence, we get x = 0.

(iv) Subadditivity. Let x, y ∈ X . Then we can obtain the following:

R(x+ y)
(a)
= ∥projH((x+ y)⟨x+ y, ·⟩)∥1/2op

(b)
= ∥projH((1 + c2)x⟨x, ·⟩+ (1 + 1/c2)y⟨y, ·⟩ − (cx− y/c)⟨cx− y/c, ·⟩)∥1/2op

(c)
≤ ∥(1 + c2) projH(x⟨x, ·⟩) + (1 + 1/c2) projH(y⟨y, ·⟩)∥1/2op

(d)
≤ ((1 + c2)∥projH(x⟨x, ·⟩)∥op + (1 + 1/c2)∥projH(y⟨y, ·⟩)∥op)1/2

(e)
= ∥projH(x⟨x, ·⟩)∥1/2op + ∥projH(y⟨y, ·⟩)∥1/2op

(f)
= R(x) +R(y).

where (a) and (f) use the definition of R(x) in eq. (12); (b) uses the bilinearity of the
mapping x 7→ x⟨x, ·⟩ and an arbitrary constant c ∈ R; (c) uses Property A1.1, the linearity
of the projection onto H, and the fact that ∥ · ∥op is order-preserving on S+; (d) uses the
subadditivity and absolute homogenity of ∥ · ∥op; (e) can be obtain by minimizing in c.

The proof is now complete.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

F PROOFS FOR SECTION 3

F.1 PROOF OF LEMMA 5

Let rk = xk − x∗ and Rk = rk⟨rk, ·⟩. We can rewrite 1
2∥rk+1∥2H−1

k

as follows:

1
2∥rk+1∥2H−1

k

(a)
= 1

2∥rk∥
2
H−1

k

− ⟨gk, rk⟩+ 1
2∥gk∥

2
Hk
, (43)

where (a) uses eq. (3). Next, we sum these equations for k = 0, . . . ,K and get the following:∑K
k=0⟨gk, rk⟩

= 1
2

∑K
k=0∥gk∥

2
Hk

+ 1
2

∑K
k=0

(
∥rk∥2H−1

k

− ∥rk+1∥2H−1
k

)
= 1

2

∑K
k=0∥gk∥

2
Hk

+ 1
2∥r0∥

2
H−1

0
+ 1

2

∑K
k=1∥rk∥

2
H−1

k −H−1
k−1

− 1
2∥rK+1∥2H−1

K+1

≤ 1
2

∑K
k=0∥gk∥

2
Hk

+ 1
2 ⟨R0,H

−1
0 ⟩+ 1

2

∑K
k=1⟨Rk,H

−1
k −H−1

k−1⟩
(a)
= 1

2

∑K
k=0∥gk∥

2
Hk

+ 1
2 ⟨projH(R0),H

−1
0 ⟩+ 1

2

∑K
k=1⟨projH(Rk),H

−1
k −H−1

k−1⟩
(b)
≤ 1

2

∑K
k=0∥gk∥

2
Hk

+ 1
2R

2∥H−1
0 ∥tr + 1

2R
2∑K

k=1∥H
−1
k −H−1

k−1∥tr
(c)
= 1

2

∑K
k=0∥gk∥

2
Hk

+ 1
2R

2⟨I,H−1
0 ⟩+ 1

2R
2∑K

k=1⟨I,H
−1
k −H−1

k−1⟩
(d)
≤ 1

2 ⟨HK ,SK⟩+ 1
2 ⟨I, ϕ(HK)⟩+ 1

2R
2⟨I,H−1

K ⟩
(e)
= 1

2 ⟨HK ,projH(SK)⟩+ 1
2 ⟨I, ϕ(HK)⟩+ 1

2R
2⟨I,H−1

K ⟩

where (a) use the properties of the projection and the fact that H−1
k ∈ H due to Property A1.2

and eq. (8); (b) uses the Hölder’s inequality for Schatten norms, the definition of the norm R(·)
in eq. (12), and the inequality in eq. (17); (c) uses the fact that H−1

k+1 ⪰ H−1
k , which is implied by

eq. (9) and the operator monotonicity of the function h 7→ −1/h, which is implied by Löwner-Heinz
Theorem (Carlen, 2010, Theorem 2.6); (d) uses Lemma 1; (e) use the fact that H−1

k ∈ H due to
Property A1.2 and eq. (8).

Next, using the definition of the potential function ϕ(H) in eq. (7), the expression for Hk in eq. (8),
and the definition η = R, we get the following inequality:∑K

k=0⟨gk, rk⟩ ≤
1
2 ⟨HK , δI+ projH(SK)⟩+ 1

2 (η
2 +R2)⟨I,H−1

K ⟩
(a)
= 3

2R⟨I, (δI+ projH(SK))1/2⟩,
where (a) uses the definition η = R. After taking the expectation, recalling that ξk is independent
of xk, and using Property A3.1, we get∑K

k=0E[⟨∇f(xk), rk⟩] ≤
3
2RE[⟨I, (δI+ projH(SK))1/2⟩]

(a)
≤ 3

2R⟨I, (δI+ projH(E[SK]))1/2⟩
(b)
≤ 3

2R⟨I,projH(E[SK])1/2⟩+ 3
2

√
δR∥I∥tr

= 3
2R⟨I,projH(E[SK])1/2⟩+ 3

2

√
δR dim(X)

where (a) uses the concavity of the function H 7→ ⟨I,H1/2⟩, which is implied by Theorem 2.10
of Carlen (2010), and the linearity of the projection onto H; (b) uses the fact that function H 7→
⟨I,H1/2⟩ is subadditive for H ∈ S+, which is implied by Lemma 3 of An et al. (2025). It remains
to use the convexity property from Assumption 2.

F.2 PROOF OF LEMMA 6

Let Gk,Nk ∈ S++ be defined as follows:

Gk =
∑k

i=0∇f(xk)⟨∇f(xk), ·⟩, Nk =
∑k

i=0n(xk; ξk)⟨n(xk; ξk), ·⟩. (44)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Then, we can obtain the following:

E[Sk]
(a)
=

∑k
i=0E[(∇f(xk) + n(xk; ξk))⟨∇f(xk) + n(xk; ξk), ·⟩]

= E[Gk +Nk] +
∑k

i=0E[∇f(xk)⟨n(xk; ξk), ·⟩+ n(xk; ξk)⟨∇f(xk), ·⟩]
(b)
= E[Gk +Nk],

where (a) uses the definition of Sk in eq. (5) and Assumption 3; (b) uses Property A3.1 and the fact
that ξk is independent of xk. Using this, we obtain the following relation:

⟨I,projH(E[Sk])
1/2⟩ = ⟨I,projH(E[Gk +Nk])

1/2⟩
(a)
= ⟨I, [projH(E[Gk]) + projH(E[Nk])]

1/2⟩
(b)
≤ ⟨I,projH(E[Gk])

1/2⟩+ ⟨I,projH(E[Nk])
1/2⟩,

where (a) uses the linearity of the expectation and the projection onto H; (b) uses the fact that
function H 7→ ⟨I,H1/2⟩ is subadditive for H ∈ S+, which is implied by Lemma 3 of An et al.
(2025).

We can upper-bound ⟨I,projH(E[Nk])
1/2⟩ as follows:

⟨I,projH(E[Nk])
1/2⟩ = ⟨Σ1/2,Σ−1/2 projH(E[Nk])

1/2⟩
(a)
≤ ∥Σ1/2∥∥Σ−1/2 projH(E[Nk])

1/2∥
(b)
=

√
∥Σ∥tr⟨Σ−1,projH(E[Nk])⟩

(c)
=

√
∥Σ∥trE[⟨Σ−1,Nk⟩]

(d)
≤

√
∥Σ∥tr

∑k
i=0E[∥n(xi; ξi)∥2Σ−1]

(e)
≤

√
k + 1∥Σ∥tr

where (a) uses the Cauchy-Schwarz inequality; (b) uses the definition of ∥ · ∥ and ∥ · ∥tr; (c) uses
the linearity of the expectation and the fact that Σ−1 ∈ H, which is implied by Properties A1.2
and A3.2; (d) uses the definition of Nk; (e) uses Property A3.2.

Similarly, we can upper-bound ⟨I,projH(E[Gk])
1/2⟩ as follows:

⟨I,projH(E[Gk])
1/2⟩

(a)
≤

√
∥L∥tr⟨L−1,projH(E[Gk])⟩

(b)
=

√
∥L∥trE[⟨L−1,Gk⟩]

(c)
≤

√
∥L∥tr

∑k
i=0E[∥∇f(xi)∥2L−1]

(d)
≤ ∥L∥

1
1+ν

tr

√∑k
i=0E

[
[f(xi)− f(x∗)]

2ν
1+ν

]
(e)
≤ ∥L∥

1
1+ν

tr

√∑k
i=0 [E[f(xi)− f(x∗)]]

2ν
1+ν

(f)
≤ ∥L∥

1
1+ν

tr

√
(k + 1)

1−ν
1+ν

[∑k
i=0E[f(xi)− f(x∗)]

] 2ν
1+ν

=
√
k + 1

1−ν
1+ν ∥L∥

1
1+ν

tr

[∑k
i=0E[f(xi)− f(x∗)]

] ν
1+ν

,

where (a) uses steps similar to the above calculations; (b) uses the linearity of the expectation and
the fact that L−1 ∈ H, which is implied by Property A1.2 and Assumption 2; (c) uses the definition
of Gk; (d) uses Lemma 3; (e) and (f) use the concavity of the function t 7→ t

2ν
1+ν for ν ∈ [0, 1].

F.3 PROOF OF THEOREM 1

Using Lemmas 5 and 6, we get the following inequality:∑K
k=0E[f(xk)− f(x∗)] ≤ 3

2

√
K + 1

1−ν
1+ν R∥L∥

1
1+ν

tr

[∑K
k=0E[f(xk)− f(x∗)]

] ν
1+ν

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

+ 3
2

√
K + 1R∥Σ∥tr + 3

2

√
δR dim(X),

which implies the following inequality:∑K
k=0E[f(xk)− f(x∗)] ≤ 3

√
K + 1

1−ν
∥L∥trR1+ν

+ 3
√
K + 1∥Σ∥trR+ 3

√
δR dim(X).

It remains to use the convexity property in Assumption 2 and the definition of xK on line 7 of
Algorithm 1.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

G PROOFS FOR SECTION 4

G.1 PROOF OF LEMMA 7

We can upper-bound
∑K

k=0E[fk(x∗)− fk(xk+1)] as follows:∑K
k=0E[fk(x

∗)− fk(xk+1)]

(a)
=

∑K
k=0α

−2
k E[f(αkx

∗ + (1− αk)xk)− f(αkxk+1 + (1− αk)xk)]

(b)
≤

∑K
k=0α

−2
k E[αkf(x

∗) + (1− αk)f(xk)− f(xk+1)]

= α−2
K E[f(x∗)− f(xK+1)] + α−2

0 (1− α0)E[f(x∗)− f(x0)]

+
∑K

k=1(α
−2
k (1− αk)− α−2

k−1)E[f(xk)− f(x∗)]

(c)
≤ 1

4 (K + 2)2E[f(x∗)− f(xK+1)],

where (a) uses the definition of the functions fk(x) in eq. (19); (b) uses the definition of xk+1 on
line 7 of Algorithm 2 and the convexity property in Assumption 2; (c) uses the definition αk =
2/(k + 2).

G.2 PROOF OF LEMMA 8

Let B = L (the case B = Σ is analogous). Let Ak(Q) : S++ → R be the objective function in
eq. (21):

Ak(Q) = ⟨Q,LSk⟩+ ⟨L, δQ− η2 ln(Q)⟩. (45)
From Property A1.2, it follows that H2

k ∈ H ∩ S++. In addition, from the Löwner-Heinz Theorem
(Carlen, 2010, Theorem 2.6), it follows that the function Ak(Q) is convex. Hence, it remains to
prove that the first-order stationarity condition holds, that is, the differential of Ak(Q) is zero on H
at H2

k:
dAk(H

2
k)[H] = 0 for all H ∈ H. (46)

The following Lemma 11 will be used to compute the differential dAk(Q)[H].
Lemma 11 (↓). Under Assumption 4, let the function B(Q) : S++ → R be defined as follows:

B(Q) = ⟨L, ln(Q)⟩. (47)

Then the differential of the function B(Q) for all Q ∈ H ∩ S++ is given as follows:

dB(Q)[H] = ⟨LQ−1,H⟩ for all H ∈ H. (48)

Using Lemma 11, we can compute the differential dAk(H
2
k)[H] for H ∈ H as follows:

dAk(H
2
k)[H]

(a)
= ⟨L(Sk + δI− η2H−2

k),H⟩
(b)
= ⟨L(Sk − projH(Sk)),H⟩
(c)
= ⟨(Sk − projH(Sk)),LH⟩
(d)
= ⟨(Sk − projH(Sk)),LH⟩

where (a) uses Lemma 11; (b) uses eq. (8); (c) uses Assumption 4; (d) uses the fact that LH ∈ H,
which is implied by the following Lemma 12.
Lemma 12 (↓). Under Assumption 4, LH ∈ H for all H ∈ H.

The proof is now complete.

G.2.1 PROOF OF LEMMA 11

Let constants a, b ∈ R be chosen to satisfy the following inequalities:

O ≺ aI ≺ Q ≺ bI. (49)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Let H ∈ H such that ∥H − Q∥op ≤ min {(λmin(Q)− a), b− λmax(Q)}. Hence, it is easy to
verify that the following inequalities hold:

aI ⪯ Q+H ⪯ bI. (50)

Next, we fix an arbitrary ϵ > 0. By the Weierstrass approximation theorem, there exists a poly-
nomial pn(t) =

∑n
i=0 cit

i such that pn(a) = ln(a), p′n(a) = 1/a, and whose second derivative
approximates the function t 7→ −1/t2 on the segment [a, b] up to the precision ϵ:

|p′′n(t) + 1/t2| ≤ ϵ for all t ∈ [a, b]. (51)

From this, using the standard integration arguments, we can conclude that the following approxima-
tion inequalities hold for all t ∈ [a, b]:

|p′n(t)− 1/t| ≤ ϵ(b− a), |pn(t)− ln(t)| ≤ 1
2ϵ(b− a)2. (52)

Further, we obtain the following:

|B(Q+H)− B(Q)−
∫ 1

0
⟨L(Q+ τH)−1,H⟩dτ |

(a)
≤ |⟨L, pn(Q+H)− pn(Q)⟩ −

∫ 1

0
⟨Lp′n(Q+ τH),H⟩dτ |

+ ∥L∥tr ·
(
1
2ϵ(b− a)2 + 1

2ϵ(b− a)2
)
+ ∥LH∥tr · ϵ(b− a)

= |⟨L, pn(Q+H)− pn(Q)⟩ −
∫ 1

0
⟨Lp′n(Q+ τH),H⟩dτ |+ ϵ

(
b2∥L∥tr + b∥LH∥tr

)
(b)
= ϵ

(
b2∥L∥tr + b∥LH∥tr

)
.

where (a) uses Definition 1, the approximation inequalities above, and the Hölder’s inequality for
Schatten norms; (b) Uses the fact that pn(t) is a polynomial and the fact that QL = LQ and
HL = LH due to Assumption 4. Next, we take the limit ϵ → 0 and use the fundamental theorem
of calculus and the continuity of the map Q 7→ Q−1 on S++, which implies the following:

d
dτ B(Q+ τH)|τ=0 = ⟨LQ−1,H⟩. (53)

Since the right-hand side is continuous in Q, we can conclude that the function B(Q) is differen-
tiable and its differential is equal to the right-hand side.

G.2.2 PROOF OF LEMMA 12

Since the operators L and H are self-adjoint and commute, they are simultaneously diagonalizeable:

L =
∑

iλi · ui⟨ui, ·⟩ and H =
∑

iµi · ui⟨ui, ·⟩,
where λi and µi are the (possibly repeating) eigenvalues of the operators L and H, respectively,
{ui} ⊂ X is an orthonormal basis of the common eigenvectors in the space X . Hence, the operator
LH is also diagonalizeable as follows:

LH =
∑

iλiµi · ui⟨ui, ·⟩.
Further, let Iλ = {i : λi = λ} and Jµ = {j : µj = µ} for arbitrary λ, µ ∈ R. Let p(t) be a
polynomial such that p(λ) = 1 and p(λi) = 0 for i /∈ I . Using Property A1.2, we can conclude that

p(L) =
∑

i∈Iλ
ui⟨ui, ·⟩ ∈ H.

Similarly, by constructing a polynomial q(t)such that q(µ) = 1 and q(µj) = 0 for j /∈ J and using
Property A1.2, we can show that the following inclusion holds:

q(H) =
∑

j∈Jµ
uj⟨uj , ·⟩ ∈ H.

Hence, using Property A1.2, we obtain the following inclusion:

p(L) + q(H) =
∑

i∈Iλ△Jµ
ui⟨ui, ·⟩+ 2

∑
i∈Iλ∩Jµ

ui⟨ui, ·⟩.

Finally, we can construct a polynomial s(t) such s(2) = 1 and s(1) = 0. Using Property A1.2, we
can show that

s(p(L) + q(H)) =
∑

i∈Iλ∩Jµ
ui⟨ui, ·⟩ ∈ H.

From this fact and the above eigendecomposition of the operator LH, it follows that LH ∈ H.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

G.3 PROOF OF LEMMA 9

Let B = L (the case B = Σ is analogous). Let functions l−1(Q), . . . , lk(Q) : S++ ∩ H → R be
defined as follows:

l−1(Q) = ⟨L, δQ− η2 ln(Q)⟩, li(Q) = ∥gi∥2QL for i = 0, . . . , k. (54)

Let the operators Q−1, . . . ,Qk ∈ H ∩ S++ be defined as follows:

Q−1 = (η2/δ)I, Qi = H2
i for i = 0, . . . , k. (55)

Using Lemma 8, we can show that the following relation holds for all i = −1, . . . , k:

Qi = argmin
Q∈H∩S++

∑k
i=−1li(Q).

Next, we get the following inequality:∑k
i=0∥gi∥

2
LH2

i

(a)
=

∑k
i=0li(Qi)

=
∑k

i=−1li(Qi)− l−1(Q−1)

(b)
≤

∑k
i=−1li(Qk)− l−1(Q−1)

(c)
= ⟨LH2

k, δI+ Sk⟩ − η2⟨L, ln(H2
k)⟩ − η2⟨L, I⟩+ η2⟨L, ln((η2/δ)I)⟩

(d)
= ⟨LH2

k, δI+ projH(Sk)⟩ − η2⟨L, ln(H2
k)⟩ − η2∥L∥tr + η2⟨L, ln(η2I/δ)⟩

(e)
= η2∥L∥tr − η2⟨L, ln(δH2

k/η
2)⟩ − η2∥L∥tr

(f)
= η2⟨L, ln(δI+ projH(Sk))⟩+ η2∥L∥tr ln 1

δ

(g)
≤ η2∥L∥tr ln(∥δI+ projH(Sk)∥op) + η2∥L∥tr ln 1

δ

(h)
≤ η2∥L∥tr ln(∥(δI+ projH(Sk))

1/2∥2tr) + η2∥L∥tr ln 1
δ

(i)
= η2∥L∥tr ln

(
1
δ η

2∥H−1
k ∥2tr

)
,

where (a) and (c) use the definition of the functions li(H), the definition of the operators Qi; (b)
uses eq. (FTL-BTL); (d) uses Lemma 12, Property A1.2, and the properties of the projection onto
H; (e) and (f) use eq. (8) and Definition 1; (g) uses the Hölder’s inequality for Schatten norms; (h)
uses the inequality ∥ · ∥op ≤ ∥ · ∥tr; (i) uses eq. (8). It remains to take the expectation and use the
concavity of the function t 7→ ln(t2) and the Jensen’s inequality.

G.4 PROOF OF LEMMA 10

Let nk = gk −∇fk(xk) and rk = xk − x∗. We can obtain the following inequality:

E[fk(xk+1)]
(a)
≤ E

[
fk(xk) + ⟨∇fk(xk), xk+1 − xk⟩+ 1

1+να
ν−1
k ∥L∥

1−ν
2

tr ∥xk+1 − xk∥1+ν
L

]
(b)
= E

[
fk(xk)− ⟨∇fk(xk),Hkgk⟩+ 1

1+να
ν−1
k ∥L∥

1−ν
2

tr ∥gk∥1+ν
LH2

k

]
(c)
= E

[
fk(xk)− ∥gk∥2Hk

+ ⟨nk,Hkgk⟩+ 1
1+να

ν−1
k ∥L∥

1−ν
2

tr ∥gk∥1+ν
LH2

k

]
where (a) uses the definition of the function fk(x) in eq. (19) and Assumption 2; (b) uses eq. (3) and
Assumption 4; (c) uses the definition of nk. Next, similar to the proof of Lemma 5, we can obtain
the following inequality:

E[
∑K

k=0⟨gk, rk⟩] ≤ E[12
∑K

k=0∥gk∥
2
Hk

+ 1
2R

2⟨I,H−1
K ⟩], (56)

Combining this with the previous inequality gives the following:∑K
k=0E[fk(xk+1)− fk(x

∗)]

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

≤ 1
2R

2⟨I,E[H−1
K]⟩+

∑K
k=0E

[
⟨nk,Hkgk⟩ − 1

2∥gk∥
2
Hk

+ 1
1+να

ν−1
k ∥L∥

1−ν
2

tr ∥gk∥1+ν
LH2

k

]
(a)
≤ 1

2R
2⟨I,E[H−1

K]⟩+
∑K

k=0E
[
− 1

2∥gk∥
2
Hk

+ 1
1+να

ν−1
k ∥L∥

1−ν
2

tr ∥gk∥1+ν
LH2

k

]
+
∑K

k=0E
[
c
2∥gk∥

2
ΣH2

k
+ 1

2c∥nk∥
2
Σ−1

]
(b)
= 1

2R
2⟨I,E[H−1

K]⟩+
∑K

k=0E
[
1
2 ⟨Sk−1 − Sk,Hk⟩+ 1

1+να
ν−1
k ∥L∥

1−ν
2

tr ∥gk∥1+ν
LH2

k

]
+
∑K

k=0E
[
c
2∥gk∥

2
ΣH2

k
+ 1

2c∥nk∥
2
Σ−1

]
(c)
≤ 1

2R
2⟨I,E[H−1

K]⟩+ 1
2

∑K
k=0E[⟨Sk−1,Hk−1⟩ − ⟨Sk,Hk⟩]

+
∑K

k=0E
[

1
1+να

ν−1
k ∥L∥

1−ν
2

tr ∥gk∥1+ν
LH2

k
+ c

2∥gk∥
2
ΣH2

k
+ 1

2c∥nk∥
2
Σ−1

]
(d)
= 1

2 (R
2 − η2)⟨I,E[H−1

K]⟩+ 1
2

√
δη∥I∥tr

+
∑K

k=0E
[

1
1+να

ν−1
k ∥L∥

1−ν
2

tr ∥gk∥1+ν
LH2

k
+ c

2∥gk∥
2
ΣH2

k
+ 1

2c∥nk∥
2
Σ−1

]
(e)
≤ 1

2 (R
2 − η2)⟨I,E[H−1

K]⟩+ 1
2

√
δη∥I∥tr + 1

2c∥Σ∥tr
∑K

k=0(1/α
2
k)

+
∑K

k=0E
[

1
1+να

ν−1
k ∥L∥

1−ν
2

tr ∥gk∥1+ν
LH2

k
+ c

2∥gk∥
2
ΣH2

k

]
(f)
≤ 1

2 (R
2 − η2)⟨I,E[H−1

K]⟩+ 1
2

√
δη∥I∥tr + 1

2c∥Σ∥tr
∑K

k=0(1/α
2
k)

+ c
2E

[∑K
k=0∥gk∥

2
ΣH2

k

]
+ 1

1+ν

(∑K
i=01/α

2
i

) 1−ν
2 ∥L∥

1−ν
2

tr

(
E
[∑K

k=0∥gk∥
2
LH2

k

]) 1+ν
2

(g)
= 1

2 (R
2 − η2)⟨I,E[H−1

K]⟩+ 1
2

√
δη∥I∥tr +

(∑K
i=01/α

2
i

) 1
2 ∥Σ∥

1
2
tr

(
E
[∑K

k=0∥gk∥
2
ΣH2

k

]) 1
2

+ 1
1+ν

(∑K
i=01/α

2
i

) 1−ν
2 ∥L∥

1−ν
2

tr

(
E
[∑K

k=0∥gk∥
2
LH2

k

]) 1+ν
2

(h)
= 1

2 (R
2 − η2)E[∥H−1

K ∥tr] + 1
2

√
δη∥I∥tr +

(∑K
i=01/α

2
i

) 1
2 ∥Σ∥

1
2
tr

(
E
[∑K

k=0∥gk∥
2
ΣH2

k

]) 1
2

+ 1
1+ν

(∑K
i=01/α

2
i

) 1−ν
2 ∥L∥

1−ν
2

tr

(
E
[∑K

k=0∥gk∥
2
LH2

k

]) 1+ν
2

,

where (a) uses the Young’s inequality, Assumption 4, and an arbitrary constant c > 0; (b) uses the
definition of Sk in eq. (5); (c) uses eq. (9); (d) uses the definition of Hk in eq. (8); (e) uses the
definition of nk above, Property A3.2, and the definition of the function fk(x) in eq. (19); (f) uses
the Hölder’s inequality, the concavity of the function t 7→ t

1+ν
2 , and the Jensen’s inequality for the

expectation; (g) can be obtained by minimizing in c > 0; (h) uses the definition of ∥ · ∥tr. Next,
using Lemma 9, we obtain the following technical Lemma 13.
Lemma 13 (↓). Under the conditions of Lemma 10, for B = L or B = Σ, and for all γ ∈ (0, 1),
the following inequality holds:(∑k

i=01/α
2
i

)1−γ

∥B∥1−γ
tr

(
E
[∑k

i=0∥gi∥
2
BH2

i

])γ

≤ 1
8η

2E[∥H−1
k ∥tr] + 2γ

(∑k
i=01/α

2
i

)1−γ

∥B∥trη2γ lnγ(ck(B, γ)),
(57)

where the constant c(B, γ) > 0 is defined as follows:

ck(B, γ) = max

{
exp(1), 23+γγγ

(∑k
i=01/α

2
i

)1−γ
1√
δ
∥B∥trη2γ−1

}
. (58)

Further, using Lemma 13 and the fact that ∥I∥tr = dim(X), we obtain the following inequality:∑K
k=0E[fk(xk+1)− fk(x

∗)]

≤
(
1
2R

2 − 1
4η

2
)
E[∥H−1

K ∥tr] + 2
1+ν
2

(∑K
i=01/α

2
i

) 1−ν
2 ∥L∥trη1+ν ln

(
cK

(
L, 1+ν

2

))
24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

+ 2
1
2

(∑K
i=01/α

2
i

) 1
2 ∥Σ∥trη ln

(
cK

(
Σ, 12

))
+ 1

2

√
δη dim(X)

(a)
≤ 2

3(1+ν)
2

(∑K
i=01/α

2
i

) 1−ν
2 ∥L∥trR1+ν ln

(
cK

(
L, 1+ν

2

))
+ 2

3
2

(∑K
i=01/α

2
i

) 1
2 ∥Σ∥trR ln

(
cK

(
Σ, 12

))
+

√
δR dim(X)

(b)
≤ 2

1+5ν
2

(∑K+2
i=1 i

2
) 1−ν

2 ∥L∥trR1+ν ln
(
cK

(
L, 1+ν

2

))
+ 2

1
2

(∑K+2
i=1 i

2
) 1

2 ∥Σ∥trR ln
(
cK

(
Σ, 12

))
+
√
δR dim(X)

(c)
≤ 2

1+5ν
2 3

ν−1
2 (K + 3)

3(1−ν)
2 ∥L∥trR1+ν ln

(
cK

(
L, 1+ν

2

))
+ 2

1
2 3−

1
2 (K + 3)

3
2 ∥Σ∥trR ln

(
cK

(
Σ, 12

))
+

√
δRdim(X)

≤ 8(K + 2)
3(1−ν)

2 ∥L∥trR1+ν ln
(
cK

(
L, 1+ν

2

))
+ 2(K + 2)

3
2 ∥Σ∥trR ln

(
cK

(
Σ, 12

))
+

√
δR dim(X)

where (a) uses the definition η = 2R; (b) uses the definition αk = 2/(k + 2); (c) uses the fact that∑K+2
i=1 i2 ≤ 1

3 (K +3)3 and ν ≤ 1. Finally, we define CK = 32 ln
(
max{cK

(
L, 1+ν

2

)
, cK

(
Σ, 12

)
}
)

and verify that eq. (25) holds.

G.4.1 PROOF OF LEMMA 13

We start with the following inequality:(∑k
i=01/α

2
i

)1−γ

∥B∥1−γ
tr

(
E
[∑k

i=0∥gi∥
2
BH2

i

])γ

(a)
≤

(∑k
i=01/α

2
i

)1−γ

∥B∥1−γ
tr

(
η2∥B∥tr ln

[
1
δ η

2
(
E[∥H−1

k ∥tr]
)2])γ

(b)
=

(∑k
i=01/α

2
i

)1−γ

∥B∥tr
(
2γη2 ln

[(
η

c
√
δ

) 1
γ (

E[∥H−1
k ∥tr]

) 1
γ

]
+ 2η2 ln(c)

)γ

(c)
≤

(∑k
i=01/α

2
i

)1−γ

∥B∥tr
[(

2γη2 ln

[(
η

c
√
δ

) 1
γ (

E[∥H−1
k ∥tr]

) 1
γ

])γ

+
(
2η2 ln(c)

)γ]
(d)
≤

(∑k
i=01/α

2
i

)1−γ

∥B∥tr
[(
2γη2

)γ (η

c
√
δ

)
E[∥H−1

k ∥tr] +
(
2η2 ln(c)

)γ]
where (a) uses Lemma 9; (b) uses an arbitrary constant c > 0; (c) uses the subadditivity of the
function t 7→ tγ ; (d) uses the inequality ln(t) ≤ t for t > 0. Next, we choose the constant c > 0 as
follows:

c = max

{
exp(1), 23+γγγ

(∑k
i=01/α

2
i

)1−γ
1√
δ
∥B∥trη2γ−1

}
, (59)

which implies the following inequality:(∑k
i=01/α

2
i

)1−γ

∥B∥1−γ
tr

(
E
[∑k

i=0∥gi∥
2
BH2

i

])γ

≤ 1
8η

2E[∥H−1
k ∥tr] + 2γ

(∑k
i=01/α

2
i

)1−γ

∥B∥trη2γ lnγ(c)
(a)
≤ 1

8η
2E[∥H−1

k ∥tr] + 2γ
(∑k

i=01/α
2
i

)1−γ

∥B∥trη2γ ln(c),

where (a) uses the fact that ln(c) ≥ 1.

25

	Introduction
	Baseline Algorithm: AdaGrad
	Adaptive Gradient Methods with Structured Preconditioning
	Matrix Smoothness and Acceleration
	Contributions and Related Work

	Preliminaries
	Unified Preconditioning Framework
	Assumptions on the Objective Function

	Unified Analysis of Adaptive SGD with Preconditioning
	General Algorithm and its Convergence
	Related Algorithms

	SGD with Preconditioning and Acceleration
	General Accelerated Algorithm and its Convergence
	AdaGrad and DASGO with Momentum Acceleration

	Notation
	Additional Related Work
	Motivation for Convex Setting
	Algorithms with Weight Clipping
	Proofs for Section 2
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4

	Proofs for Section 3
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Theorem 1

	Proofs for Section 4
	Proof of Lemma 7
	Proof of Lemma 8
	Proof of Lemma 11
	Proof of Lemma 12

	Proof of Lemma 9
	Proof of Lemma 10
	Proof of Lemma 13

