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Abstract

VLM-based mobile GUI agents excel in GUI
interaction by employing a Chain of Action-
Planning Thoughts (CoaT) paradigm, which
is like System 2 CoT reasoning. Meanwhile,
self-training methods are widely used to op-
timize the CoT process. However, the lack
of diverse CoaT data restricts the agent’s out-
put space and limits its generalization ability,
which is crucial for the self-training sampling
stage. Multiple correct answers in the GUI
field also make it challenging to train the pro-
cess reward model, further hindering the op-
timization of the CoaT process. To address

these problems, we first enhance the diversity

of agents’ output space through three-stage in-
struction evolution, then obtain high-quality

positive and negative pairs at the CoaT action

level using a rule-based value calculation algo-
rithm, and leverage iterative DPO training to

optimize the agents’ preference between differ-
ent action types. Experiments are performed on

the latest CoaT dataset AITZ, long-trajectory

dataset AMEX, and comprehensive dataset An-

droidControl. Our agent MobileIPL achieves
the SoTA results on AITZ, AMEX, and An-
droidControl, while also demonstrating strong
generalization performance on the out-domain
subsets of AndroidControl.

1 Introduction

VLM-based mobile agents (Wang et al., 2023;
Ding, 2024) gain considerable attention due to their
ability to seamlessly interact with mobile graphic
user interfaces (GUIs) and their potential for han-
dling daily tasks autonomously. Since actions can-
not be directly inferred from user instructions, GUI
agents must decide based on their thoughts corre-
sponding to current GUIs. This Chain Of Action-
Planning Thought (CoaT) pattern is similar to the
slow-thinking System 2 paradigm CoT in general
domains(Xiong et al., 2024). Recent studies based
on self-training (Luong et al., 2024) and solution
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Figure 1: Unlike ReFT, which samples the entire trajec-
tories, and ReST, which performs tree search over all
steps in the action space, our method performs sampling
at the action level based on CoaT thinking patterns.

exploration (Xie et al., 2024) can further enhance
the quality of this CoT process in complex tasks
such as math and code generation. These methods
provide additional insights when the performance
of pre-training models plateaus, namely the two-
stage training framework. The first stage focuses
on learning the generation format and building fun-
damental capabilities, while the second optimizes
the reasoning process for greater diversity and qual-
ity beyond the original CoT data.

However, with the high cost of human annota-
tion, there are no widely available CoaT trajecto-
ries in the GUI agent domain (Rawles et al., 2024;
Lu et al., 2024), restricting existing agents to Ac-
tion Models (Lin et al., 2024; Wu et al., 2024a;
Shen et al., 2024). At the same time, due to the
lack of GUI domain tasks during the pre-training
stage, the general VLM’s receptive field is limited
to regions closely related to the fine-tuning instruc-
tions(Zhang et al., 2024b,c). This results in a nar-
row reasoning space and fixed thinking patterns
of agents, further hindering their generalization
abilities. The previous GUI agent RL works (Bai



Stagel: Instruction Evolution —» Stage2: CoaT Action-Level Sampling =—» Stage3: Preference Learning

Multi-Round = Contrastive Pairs Filter

Instruction IV

Instruction I

- UBLIGDOMNNG

N
Instruction IT

S iGHERDESS 4|

Instruction ITT

&_'i';
B
E B

f=y0E8

-— Be—

L=

Instruction IV

Figure 2: Overview of iterative preference learning framework. The left part presents the process of warm-up
fine-tuning a general VLM to a mobile GUI domain agent with basic capabilities. The mid and right parts represent
the iterative CoaT action-level sampling and DPO self-training process.

et al., 2024; Wang et al., 2024c¢) rely primarily on
MCTS search over the entire trajectory, neglect-
ing detailed reasoning for individual actions. As
shown in Figure 1, the CoaT paradigm has fixed
output stages and a specific purpose for each stage,
which is different from the unstable CoT output for-
mat in general domains. Additionally, the agent’s
sampling space contains enough potentially cor-
rect outputs, but there is still no suitable training
method to let the agents fully express this potential
during the greedy decoding stage.

To address these limitations, we make the fol-
lowing improvements : (1) Instruction Evolution:
To prevent the agent from collapsing to regions
strongly associated with the instructions, we pro-
pose an instruction evolution algorithm (Luo et al.,
2024) to construct higher-quality CoaT trajectories
and knowledge database on existing datasets such
as AITZ, AMEX (Chai et al., 2024), and Android-
Control (Li et al., 2024a). (2) Action Level Sam-
pling: Unlike the overall CoT sampling or MCTS
(Yu et al., 2024; Putta et al., 2024) over the entire
trajectory, we construct tree sampling at the CoaT
action level, of which value is computed by pre-
defined rules. (3) Iterative Preference Learning:
We sample diversified CoaT positive and negative
examples by rules and use them for DPO training
iteratively. Each stage of the CoaT output has pos-
itive and negative examples that are used to train
preferences separately. For a completely wrong
sampling space, the final ground truth is provided
to help the agent to refine the reasoning process.

Overall, our main contributions are as follows:

e We propose an instruction evolution algorithm

in the GUI agent domain, which can effectively en-
hance self-training sampling diversity. We propose
higher-quality CoaT datasets named AMEX-CoaT
and AndroidControl-CoaT.

e We propose a CoaT Action-level sampling and
value calculation method, where the Tree-structure
values can be calculated accurately without PRM.

e We propose a GUI agent named MobilelPL,
which achieves SoTA results on AITZ, AMEX,
and AndroidControl compared to other continu-
ous pre-training agents. MobileIPL achieves im-
provements of over 6.7%, 3.2%, and 13.4% on
out-domain subsets of AndroidControl.

2 Related Work
2.1 GUI Agent

With the rapid development of vision-language
models (VLMs), researchers build mobile GUI
agents (Yang et al., 2023; Zheng et al., 2024; Qin
et al., 2025; Team) and multi-agent frameworks
(Ding, 2024; Li et al., 2024b; Wang et al., 2024a)
based on closed-source VLMs. Meanwhile, some
researchers focus on training agents with stronger
element grounding (Cheng et al., 2024; Wu et al.,
2024b), page navigation (Niu et al., 2024; Lu et al.,
2024; Gou et al., 2024; Wang et al., 2025), GUI un-
derstanding (You et al., 2024; Baechler et al., 2024)
and task planning capabilities (Zhang et al., 2024d;
Nong et al., 2024; Xu et al., 2024; Qinghong Lin
et al., 2024; Dorka et al., 2024) based on open-
source VLMs. Our method organizes trajectory
data into multi-rounds of dialogues based on the
CoaT thinking pattern, preventing the agent be-
comes an action model with limited capabilities.



2.2 Reinforcement Learning

The RL algorithms used to align with human pref-
erences include DPO (Rafailov et al., 2024), IPO
(Azar et al., 2024), KTO (Ethayarajh et al., 2023),
and PPO (Schulman et al., 2017). ReST-MCTS*
(Zhang et al., 2024a) focuses on the higher-quality
step reward where the process reward model is im-
portant. Xie et al. (2024) labels the preference
via MCTS based on feedback from self-evaluation.
For GUI agents, Bai et al. (2024) and Wang et al.
(2024c) use online trajectory collection to improve
the generalization of agents whose process is very
slow. Wu et al. (2025) uses DPO training to com-
pare the quality of multiple actions. Our method
uses DPO to optimize the agent’s detailed thinking
process by offline sampling at the coat action level,
while the step value is calculated directly by rules
without unstable PRMs.

3 Task Formulation

Every GUI trajectory 7 contains several images u,
actions a, and a task instruction I, which can be
represented as:

T:{I7u07&0au1ad1a"' 7una&n} (1)

We formulate action a; in the CoaT reasoning pro-
cess as a multi-round dialogue a; = [s1, s2, S3, S4),
where s; represents description, thought, action-
decision, and grounding respectively. So the rea-
soning process is formulated as:

s = Descﬂption{Pl, u;} 2)
52 :ThOUght{PQ,Ui,I, d()v"' 7di71781} (3)
s3 = Action{Pg,ui, I,s1,s2} 4)

sS4 = Grounding{&,ui, I,s1,s9,s3} (5)

P represents each round of dialogue input prompt,
1 is the task instruction, w is the current GUI, and
a; is the step ¢ history action. When the reasoning
process ends, the final s, is recorded as a1, and
step ¢ moves one step forward on the trajectory
T . Without s; thinking process, the reasoning of
action a is less accurate, and directly using s; for
SFT makes the agent’s thinking pattern over rigid.

4 Methodology

As shown in Figure 2, our method uses a three-
stage instruction evolution to enhance the diversity
of each round dialogue output, avoiding the agent
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Figure 3: We process a three-stage instruction evolution
and knowledge augmentation.

focusing only on the thinking patterns contained
in the CoaT data. CoaT action-level sampling and
rule-based value calculation are used to optimize
the quality of each round of dialogue output.

4.1 Instruction Evolution

Unlike mathematical problems, due to the lack of
Mobile GUI-specific data during the pre-training
stage, agents fail to generate diverse sampling
thoughts like general domains. To address this
limitation, we supplement the existing training
screenshots in the trajectories 7 with annotated
Q&A through instruction evolution and diversify
the rewritten instructions to generate the instruction
evolution data Q. Specifically, as shown in Figure
3, the evolution process consists of three levels:
Level I: General GUI Q&A tasks. Grounding,
Reference (Ref), and Page Descriptions are aimed
at enhancing the agent’s foundational capabilities.
These tasks (Liu et al., 2024; Yang et al., 2024) are
proven to be the core capabilities of GUI agents
during the pre-training. Level II: Widget cap-
tion and relationships. Descriptions of widget
functions and the nested partition relationships be-
tween widgets. This task is designed to help the
agent understand the relationships between buttons,
as previous work (Deng et al., 2024) has found
that agents tend to click on the textview, even in
scenarios where the textview and the button are
separate. Level III: GUI advanced FAQ. The ad-
vanced FAQ includes more complex Q&A, such as
descriptions of part of the structural framework of
the page, expectations and predictions about page



navigation triggered by control interactions.

4.2 Warm-up Supervised Fine-tuning

To develop an agent with basic task capabilities
and expand the output sampling space, we mix 7
and the instruction evolution data Q, then perform
supervised fine-tuning (SFT) on D = {T, Q} =
{(u, e) }I'DI , where u represents the prior knowl-
edge (instrlllztlions, screenshot and action history)
from T or the questions from Q. e is the reasoning
process from 7 or the answer from Q which is or-
ganized into multi-round dialogues. The SFT loss

can be computed as:
Lspr(0) = —Eepllog mo(e|u)].

To ensure output diversity, we select an earlier
checkpoint with better potential correct space and
diverse output to serve as the seed policy model.
More details can be seen in Appendix A.

4.3 CoaT Action Level Sampling

After the warm-up SFT stage, agents build basic
capabilities for GUIs and can sample outputs based
on predefined inputs for each round of dialogue.
Sampling And Value Acquisition. We sample
each action on the trajectory along with the CoaT
(Zhang et al., 2024c). This allows us to build value
functions for different tasks and reduces the pres-
sure on the agent to output such long sentences at
once. The K sampling results (§;]51.;_1)" at step
t can be expressed as:

[ ak) | . K

so={G" 15050 ©
Naturally, the final step in CoaT (the leaf node in
the sampling tree) can get a value compared with
the ground truth action a*, which is then propa-
gated back to other intra-nodes. The formula for
the value of leaf nodes is as follows:

17 d(stya*)[z,y] <= dmzn
0.7 — 0,540 i)

dmaz—dmin’

d(5t7 a*)[m,y] > dmin

U(St) =402+ 0.8F17 Fy (St, a*)tezt
1, diT(St ~ a*)scroll
0.1, type(sy ~ a*)
0, else

(N
As shown in Figure 11, the value 1 is assigned
for a strict action matched (relative grounding box
distance less than 0.05 (d;nin), the F7 score of input
text beyond 0.5 or scroll direction is matched), 0

for unmatched, and other scores are scaled based
on the deviation. The recursive calculation formula
for intra-nodes is as follows:

1 (k)
K 2 0e) ®)

v(s4—1) = c-

Contrastive Data Filter. After obtaining the sam-
pling tree and node values, we evaluate the quality
of the trees and extract contrastive data. The qual-
ity of the sampling trees are R = {«, 3,7}, and
the number of «, 5, 7y are calculated as follows:

’{S(i> I Yo € S(i),vk = 1}‘

: )
S (u,e) )]
’{S(i> | Jok, v € S(i),vk =1,vp # 1}‘
p= — (10)
2imr |(u, €)@
‘{S<i) | Vvk [S S<i),’vk ;ﬁ 1}‘
Y= ; 1D
ST [(us €)@

S and vy, refer to the instruction i sampling tree
and the k-th leaf nodes value. « is considered
as perfect sampling tree, which can stably output
correct thoughts and actions with in-domain trajec-
tories, (3 represents potential correct trees that can
be used to construct contrastive data, and -y denotes
sampling trees that require refinement. 3 + - is
considered a valid sampling space. In 3, actions
with a value of 1 and as many diverse action types
as possible are extracted as positive samples. In ~,
the final ground truth action a* is used as a positive
sample, but the intermediate steps of CoaT are not
provided, and the pairs can be represented as:

5pai7’s - <§§k) Ta ‘§§k ) \H (§17 o 7§t—1)7

, (12)
v(3%) — () > 0.3)

= (@ 1,87 81,8 (13)

Ypairs

4.4 Iterative Preference Optimization

After CoaT Action-level Sampling, several posi-
tive and negative example pairs are collected. Dur-
ing this stage, the agent policy undergoes updates
through the above data-pairs, SFT loss, and CoaT-
DPO loss (Rafailov et al., 2024). Suppose the agent
gets values to pair (+, —) at CoaT stage ¢, which
are named s;” and s; ; we have the agent perform-
ing a comparison for these pairs based on the same



Algorithm 1: Iterative CoaT action-level sampling and DPO self-training.

Input: base VLM 7, advanced annotated model Rsor 4, step-level trajectory data 7, instruction evolution Q&A set O,
number of sampling K, golden action a*, value function v, the sampled CoaT data D, number of iterations N

1: fori =1to Ny do

2:  Q « instruction_evolution(Rsora, 7) // instruction evolution by GPT-40

3: Q < human_evaluation(h, Q) // human filter

4: end for

5: ms, < Warm-up_SFT(m, 7, Q) // fine-tune seed model

6: forn =1to N do

7. fori=1to|T]|do

8: D; < generate_sampling_thought(7s,, ,, 7s, K) // sample CoaT data for reference model
9: Vile“f < v(D;,aj) // match and calculate leaf node values using Eq(7)

10: yjintra <—recursive_calculate(Di,Vile“f) // recursive intra node values using Eq(8)
11: D?,D; < contrastive_data_filter(D;, V;) // filter positive and negative data using Eq(12, 13)
12: end for

13:  ms, < DPO(ws,_,,D",D7)// DPO self-training reference model

14: end for
Output: 7s, Dg, Q

thoughts s;.;—1, which can be calculated as:

o (s |s1:0-1)
Wr'ef(szr‘slrtfl)
mo(sy |S1:4-1)
Tref (8¢ 51:6-1)

(14)
The final loss combines DPO and SFT losses:

Lo-ppo = —Ei o o) | log o(Blog

—Blog

)

L = Lc-ppo + ¢ LsFT (15)

To further refine the agent’s performance post-
optimization, we employ the updated agent as the
new base agent to continue collecting contrastive
CoaT-action level pairs for additional DPO training.
This iterative process is maintained until the agent
reaches the performance bottleneck on the testset.

5 Experiments

5.1 Dataset And Evaluation

Dataset and Metrics. AITZ (Zhang et al., 2024c)
is a high-quality trajectory set filtered and re-
annotated from AITW (Rawles et al., 2024), con-
taining four subsets: general, install, single, and
google apps, which also includes five types of ac-
tions: click, input, scroll, press, and stop. It is
the first CoaT dataset for the mobile GUI domain,
where the CoaT’s description, thought, action,
grounding, and expectations align with the gen-
eral agent’s standard perception, thought, decision-
making, tool call, and reflection. AMEX (Chai
et al., 2024) uses the same apps and action space
as AITZ, but its task instructions are more com-
plex and detailed, with an average trajectory length
of 15+. AndroidControl includes different task
types compared to the previous two datasets. In

addition, it contains extra actions such as wait
and completely unseen out-of-domain test splits.
For metrics, we use Step.Acc, consistent with
Auto-GUI(Zhang and Zhang, 2023), measures the
agent’s performance and uses Action Type to as-
sess the degree of action type matching. This met-
ric effectively evaluates the model’s planning abil-
ity. We use Qwen2-VL-7B (Wang et al., 2024b)
as the base VLM aligning with baselines. We se-
lect CogAgent (Hong et al., 2024), AUTO-GUI,
Shpagent, OS-Atlas, UlGround, UI-Tars and Fed-
MobileAgent as baseline agents. GUI continuous
pre-training agents can be further divided into two
categories: (1) training the model as a GUI ground-
ing agent, such as OS-Atlas-7B. (2) training the
model as a general GUI agent, such as UI-Tars.
More details can be seen in Appendix B.

5.2 Main result

AITZ. As shown in Table 1, except for SCROLL
and PRESS, our model achieves SoTA perfor-
mance on all other metrics. The reason for the
lower PRESS Acc. is discussed in Section C and
Appendix E. Multiple rounds of DPO improve
MobileIPL by more than 10 points (55.40% ->
69.15%) compared to the seed model MobileIPL
and ablation model Qwen2-VL-7B (60.36% -
> 69.15%). Compared to Falcon-UI, which is
pre-trained on three million GUIs, MobilelPL-
R6 surpasses a performance difference of 0.05%,
approaching the performance of 72B models
(72.10%). DPO Round R1 yields the most sig-
nificant improvement, increasing performance by
nearly 10 points (55.40% -> 65.36%). The GUI
pre-training Grounding model UIGround underper-



Atomic

Mode Model

| |scroLr, | CHICK | TYPE | pppes | grop | Total
‘ ‘ type match‘ type match‘ ‘ type match
7S CogAgent-18B 56.41 79.90 51.50 | 67.40 34.00 | 48.30 4.76 | 65.86 44.52
+CoaT 70.22 88.23 66.15 | 4580 21.80 | 4595 | 24.60 | 72.59 53.28
FT AUTO-GUI 74.88 4437 12.72 | 73.00 67.80 | 49.09 | 60.12 | 73.79 34.46
+CoaT 61.40 74.56 3220 | 87.20 81.40 | 57.70 | 74.40 | 82.98 47.69
FT Qwen2-VL-7B 47.50 81.53 59.72 | 81.96 73.85 | 5822 | 67.39 | 7426 60.36
Qwen2-VL-72B - - - - - - - 89.60 72.10
UI-Tars-7B 52.50 83.03 6427 | 89.97 8276 | 61.87 | 7435 | 77.59 65.61
PF Falcon-UI-7B - - - - - - - 84.70  69.10
UIGround-7B 58.22 80.94 5848 | 82.56 73.85 5822 | 68.78 | 74.54 60.19
MobileIPL-Seed 42.83 8248 53.16 | 82.56 7529 | 56.65 | 61.82 | 73.14 55.40
IPL +R1 45.83 92,52 71.12 | 87.77 81.23 2349 | 73.55 | 78.74 65.36
+R3 49.83 91.64 71.01 | 87.97 83.16 | 49.86 | 77.93 | 81.37 68.62
+R6 51.08 91.73 7145 | 88.20 83.40 | 51.69 | 78.17 | 81.90 69.15

Table 1: Main results of AITZ dataset. ZS, FT, PF, and IPL are short for zero-shot, fine-tuning, specific domain
pre-training, and iterative preference learning, respectively. ‘-’ represents that the agent or evaluation prompt is not
open-sourced. Seed means the seed model for sampling and DPO training.

Model ‘ Training Data ‘ Gmail Booking Music SHEIN News CM ToDo Signal Yelp ‘ Overall
SeeClick-7B AITW-+External | 28.2 294 18.1 20.0 30.0 53.1 307 37.1 274 | 3044
SphAgent-7B AITW 32.1 459 46.1 35.1 483 61.1 559 433 429 | 4563
SphAgent-7B AMEX 61.7 68.2 71.7 72.0 719 646 79.6 71.3 69.6 | 70.71
0OS-Atlas-7B AMEX 61.1 73.5 77.9 61.6 752 664 710 759 72.0 | 7033
UIGround-7B AMEX 70.9 68.8 72.7 63.7 777 6777 63.7 80.1 67.6 | 69.12
SphAgent-7B AITW + AMEX | 624 68.1 76.3 71.9 68.6 673 77.6 66.0 64.1 69.14
Qwen2-VL-7B AMEX 58.0 70.1 76.6 63.8 794 668 67.8 80.2 76.6 | 69.01
W + CoaT 75.9 68.1 77.7 66.2 76.8 664 775 79.6  65.6 | 7093
AMEX (Seed) 57.0 60.2 68.8 63.1 750 502 656 777 62,6 | 62.19
. +R1 70.4 72.5 75.8 63.2 83.0 68.1 67.8 80.2 70.6 | 72.02
MobilelPL-7B +R3 770 722 786 680 858 704 726 821 743 | 7414
+R4 71.3 71.8 80.0 68.4 853 713 735 821 718 | 74.29

Table 2: Main results on AMEX. Seed means the seed model for sampling.

forms its base model Qwen2-VL on AITZ down-
stream tasks (60.19% < 60.36%), but UI-Tars per-
forms better (65.61% > 60.36%) because of its
more various pre-training tasks.

AMEX. As shown in Table 2, except for the SHEIN
and ToDo applications, our agent achieves SOTA
performance on all other applications, surpassing
the previous SoTA pre-training SphAgent by 3.58%
(70.71% -> 74.29%). This demonstrates the ef-
fectiveness of our method. The CoaT reasoning
process significantly improves Qwen2-VL perfor-
mance (69.01% -> 70.93%), which is nearly on par
with the GUI domain pretraining model SphAgent
(70.71% wvs. 70.93%). Meanwhile, IPL Round R1
yields the most significant improvement, increas-
ing performance by nearly 10 points (62.19% ->
72.02%). R3 and R4 show gradual convergence,
and RS results in negative optimization. Notably,
UIGround-7B, which also employs GUI pretrain-
ing, fails on the AMEX downstream task, showing

equal performance compared to the ablation model
Qwen2-VL-7B (69.12% vs. 69.01%).

AndroidControl. Table 3 and Table 4 present
the results on the AndroidControl in-domain and
out-domain test sets, respectively. In the IDD
subset, MobileIPL achieves SoTA in both TYPE
and Step.Acc (85.8%, 73.6%), surpassing con-
tinual pre-training models of the GUI domain
such as OS-Atlas (+2.4%), Ul-Tars (+1.1%) and
Falcon-UI (+0.9%). However, since these models
gain Grounding capabilities during the pretraining
phase, MobilelPL still underperforms in element
grounding compared to OS-Atlas (-2.8%) and UlI-
Tars (-4.8%). Similar to AITZ and AMEX, the
model achieves the most significant performance
improvement in IPL-R1 (63.4% -> 72.0%). In out-
domain subsets, the pre-trained model OS-Atlas
shows only limited improvements over Qwen2-
VL (-0.7%, +2.1%, -7.7%), whereas MobileIPL
achieves significant gains (+6.0%, +5.3%, +5.7%).



Mode Model Type Grounding Step.Acc
75 Claude* 74.3 0.0 12.5
GPT-40 66.3 0.0 20.8
Aria-UI-7B - 432 10.2
InternVL-2-4B 84.1 72.7 66.7
FT Aguvis-7B - - 61.5
PaLM 2S(full) - - 65.5
Qwen2-VL-7B 81.6 68.5 69.1
Seeclick-7B 82.9 62.9 59.1
PF OS-Atlas-7B 85.2 78.5 71.2
Falcon-UI-7B - - 72.7
UI-Tars-7B 83.7 80.5 72.5
MobileIPL-7B (Seed)  79.7 66.1 63.4
IPL +R1 85.5 74.5 72.0
+R2 85.8 75.2 72.7
+R3 85.8 75.7 73.6

Table 3: High-level instruction experiment results on
AndroidControl IDD.

Mode Model IDD app-UN task-UN categ-UN
PalLM 2S(full) 65.5 58.7 59.7 58.2
FT PaLLM 2S(LoRA) 70.8 58.5 59.6 57.4
Qwen2-VL-7B 69.1 61.4 64.1 62.5
FedMobileAgent 54.1 52.3 51.2 49.2
PF SphAgent-7B 69.4 57.1 62.9 50.0
0OS-Atlas-7B 71.2 60.7 66.2 54.8
MobileIPL-7B (Seed) 63.4 59.1 60.6 59.5
IPL +RI1 72.0 67.0 69.2 67.9
+R2 72.7 67.3 69.2 67.9
+R3 73.6 67.4 69.4 68.2

Table 4: High-level instruction results on AndroidCon-
trol and three unseen out-domain subsets.

Additionally, compared to in-domain data, Mo-
bileIPL exhibits less performance degradation in
the out-domain setting. For example, OS-Atlas ex-
periences a 16.4% drop in the Unseen Category
subset (71.2% -> 54.8%), while MobileIPL only
decreases by 5.4% (73.6% -> 68.2%).

5.3 Ablation Study

Since our method incorporates the Instruction Evo-
lution (Evo), we conduct an ablation study to an-
alyze the contribution of each component. As
shown in Table 5, removing IPL leads to a sig-
nificant drop in overall performance from 69.2%
to 60.4%, demonstrating that IPL plays a crucial
role. In contrast, removing Evo results in only a
marginal performance decrease (-0.1%), indicating
that Evo does not directly enhance the model’s per-
formance. We also examine the effects of dialogue
(Dia) and history (His) information. Removing his-
torical data leads to a notable decline in the Stop
metric (-5.7%), suggesting a strong link between
stopping decisions and historical context. Addi-
tionally, we remove negative samples from IPL-R1,
training the model using only fully correct samples
for SFT. This results in a 4.0% performance drop,

Model Scroll Click Type Press Stop Total
MobileIPL-R6 51.1 715 834 517 782 692
-IPL 469 594 786 554 672 604
- IPL, Evo 475 597 739 582 674 603
- IPL, Evo, Dia. 46.8 557 81.8 592 71.0 592
-IPL, Evo, Dia., His. 479 568 79.0 56.6 653 589
MobileIPL-R1 458 71.1 812 235 735 654

- IPL Negative Data 469 61.1 742 566 722 614

Table 5: Ablation Study on AITZ.

suggesting that negative samples help the model
learn how to reason rather than merely memorize
(SFT). Furthermore, compared to training on the
original dataset with CoaT data (-IPL), the model’s
performance improves from 60.4% to 61.4%, due
to eliminating noise introduced by CoaT in the
original dataset.

6 Discussion and Analysis

6.1 Output space sampling

To evaluate the instruction evolution, we analyze
the diversity of the sampling space for Random
1000 steps, the standard deviation of encoded em-
beddings, the dimensionality-reduced distribution,
and the distribution of S(?) mentioned in Section
4.3. As shown in Figure 4, the thoughts after in-
struction evolution exhibit a broader space than
direct SFT. Additionally, the embedding standard

Set 1: Action Thought without Evolution Set 2: Action Thought with Evolution
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SFele

Evoluted Thought Embeddings

-200 -150 -100 -5 0 50 100 150
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Figure 4: The top figures show the t-SNE dimension-
ality reduction distribution of outputs before and after
instruction evolution, while the bottom figures present
the distribution of standard deviation and accuracy.

deviation within each tree increases significantly
compared to the original data (+ 0.158). The diver-
sified outputs do not negatively impact the agent’s
reasoning process, while the proportion of action
sampling that includes the correct answer improves
from 72.7% to 77.9%. The bottom-right subplot
reflects the distribution of output accuracy. Con-



sistently Correct indicates that all samples for the
current step match the golden answer, while Con-
sistently Error is the opposite. Both represents
cases where some samples are correct while oth-
ers are incorrect, which serves as an ideal source
for constructing DPO pairs. Compared to 47% on
the evolved data, the agent achieves 68.7% conver-
gence on the original data but exhibits a strong po-
larization(4%). Three-stage instruction evolution
significantly expands the sampling space (from 4%
to 31%), enabling the self-training process to be
effective. More details can be seen in Appendix D.

6.2 IPL Scaling

Although the total Step.Acc steadily increases with
IPL iterations, not all action types follow this up-
ward trend. As shown in Figure 5, from the seed
model to the first round of IPL, the accuracy of
PRESS drops significantly (58.22% — 23.49%),
while CLICK increases (53.26% — 71.12%). In-
spired by action equivalence matching in Android-
Control, we attempt to analyze the reasons behind
this phenomenon. In fact, multiple actions on the

0.9
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Figure 5: The upper sub-figure shows the changes in
Step.Acc for action types in AITZ as the number of
IPL iterations increases. The lower section presents
the proportion of incorrect CLICK actions when the
ground truth action is PRESS.

same GUI can result in an equivalent outcome. For
example, after entering a search query, PRESS EN-
TER and directly click on a dropdown suggestion
with the same keyword both navigate to the same
page. We analyze the proportion of steps where the
ground truth action is PRESS, but the model out-
puts a different action. We find that when PRESS
accuracy drops to 23.49%, CLICK accounts for
85.10% of the errors in the lower part of the figure.

As more positive PRESS pairs (14.5% -> 18.7%)
and less CLICK data (43.3% -> 37.4%) are sam-
pled in subsequent IPL iterations, this error propor-
tion gradually decreases to 73.7%, and PRESS Acc.
increases to 47.78%. For detailed statistical data,
please refer to Appendix C.

6.3 GUI Continuous Pre-training Agent

As discussed in the previous experimental anal-
ysis, continuous pre-training in the GUI domain
provides the agents with a stronger base model.
However, we still need to explore the compatibility
between post-training IPL, instruction evolution,
and pre-training. As shown in Figure 6, UI-Tars
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Figure 6: The blue line represents the performance of
Ul-Tars-7B on AITZ as the seed model and with multi-
round IPL training, while the purple line represents
Qwen2-VL-7B.

outperforms Qwen2-VL-7B in all training stages,
demonstrating better performance during the in-
struction evolution phase (62.7% > 55.4%). After
four rounds of IPL, UI-Tars Step.Acc improves by
1.4% compared to MobileIPL (69.2% to 70.6%).
More importantly, UI-Tars nearly converges after
the first round of IPL, significantly reducing the
number of sampling and preference learning iter-
ations, thereby keeping the computational cost of
post-training within an acceptable range.

7 Conclusion

In this paper, we propose Mobile Iterative Prefer-
ence Learning (MobileIPL), a self-training GUI
agent framework with instruction evolution, CoaT
action sampling, and value calculation. We also
propose two new datasets: AMEX-CoaT and
AndroidControl-CoaT. We extensively validate Mo-
bileIPL on AITZ, AMEX, and AndroidControl,
demonstrating its effectiveness. Furthermore, the
Continuous Pre-training Experiments confirm its
mutual reinforcement with pre-training, leading to
enhanced performance.



Limitations

Our iterative preference learning method involves
multiple rounds of sampling the entire training data,
which takes much longer compared to direct SFT,
especially when the amount of training data is very
large. In our experiments, since some of the con-
tinuous pre-training models in the GUI domain do
not provide the format and prompt of the training
data, the reproduction results may be biased.

Ethics Statement

We have rigorously refined our dataset to remove
any elements that could compromise personal pri-
vacy, thereby guaranteeing the highest level of pro-
tection for individual data. Instruction evolution
was completed by Al SoTA close-sourced VLM,
to whom we paid the necessary compensation to
ensure that the training data was not leaked. The hu-
man evaluation of our work was carried out through
a meticulously randomized selection of IT profes-
sionals. This process ensured a gender-balanced
and educationally diverse panel, reflecting a wide
spectrum of perspectives and expertise.
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A Selection of Seed Policy Model

In our preliminary experimental exploration, we
discovered that for the seed policy model, better
performance in the SFT phase does not necessar-
ily translate to a higher upper bound in the sub-
sequent IPL phase. This is because as training
progresses, the model’s output space becomes in-
creasingly aligned with the training data, reducing
its diversity in sampling. Consequently, for incor-
rect instances, the model tends to generate erro-
neous outputs regardless of the sampling attempts.
To address this, we propose a sampling-oriented
selection method for the seed policy model, incor-
porating the following two evaluation metrics:

Sampling Accuracy(Accg), which requires the
model to hit more correct actions a in the sampled
output space S.

{ey) [a® ~ €]
T i
S 8O
Sampling Diversity(Divg), which requires the
model to have a more diverse and extensive sam-

pling space. Standard deviation calculation of a
single sampled tree Dev g

.
POt

e(i)7 egi) € S(i)}‘
(16)

Accs =

T
Devgii = %Z StdDev (E(gﬁ’“’) lk=1,..., K)
t=1

a7
Among them, E(§§k)) represents the representation
of the kth sample output of the tth step after the
encoder. Calculation of the standard deviation of
the set Divg:

N
, 1
Divg = N z; Devg) (18)
1=
where [V is the number of sampled trees in the set
R.

B Experiment Setup

Models. Unlike AITZ, we do not compare the
CoaT result with the expected page and decide
whether to roll back because most actions in real-
device scenarios cannot be rolled back without cost.
Previous work conducted continual pretraining on
Qwen2-VL-7B using GUI domain data, resulting
in a stronger base model. In our ablation study,
we discuss the impact of continuous pretraining on
IPL.

Setup. We conduct hyperparameter searches on
AITZ to reproduce the baseline results and find that
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the optimal learning rate ranges from 3e-5 to 3e-
6. Therefore, all baseline fine-tuning experiments
adopt this setting. Before IPL, during the instruc-
tion evolution stage, we apply LoRA fine-tuning
with a LoRA rank of 128. For IPL Stage 1, we
use a learning rate between le-6 and le-7. In sub-
sequent stages, we apply a constant learning rate
of le-7. The batch size is consistently set to 128.
During fine-tuning (including baseline fine-tuning),
we enable ViT training, whereas in the IPL phase,
we experiment with freezing ViT. For AITZ train-
ing, we followed the Falcons’ approach, utilizing a
maximum 1540x1540 resolution. For other exper-
iments, we reduce the resolution to 1280x720 to
optimize computational efficiency. The maximum
context length is set to 32K for all experiments.
The fine-tuning experiments are conducted for 2
epochs, while IPL training is performed for 1 epoch.
Since the large volume of Android control data, we
sample 1/5 of the dataset for each IPL training iter-
ation.

CoaT Multi-round Dialogue Prompts.

1. Page Description. Based on the mobile
screenshot: Image URL, identify and describe
the key elements visible on the screen, includ-
ing any text, buttons, icons, input fields, or

other interactive components.

. CoaT Action Thought. Given the task: in-
struction, and considering the contextual de-
tails from the image alongside the full history
of previous actions: action history, determine
the most logical and effective next step. Focus
on providing a clear, actionable, and goal-
oriented response to advance the task.

. CoaT Action Description. Task: Determine
the Most Appropriate Next Step. Based on
the previous analysis and the objective, deter-
mine the most appropriate next step to achieve
the goal. Choose from the following options:
- ¥¥click**: Select a button or specific Ul
element by specifying it clearly (e.g., ‘click
xxx’, where ‘xxx’ is the button name or identi-
fier). - **scroll**: Perform a scrolling action
if the required element is not visible, speci-
fying the direction (e.g., ‘scroll up’, ‘scroll
down’). - **type**: Input specific text into a
field or search bar, specifying the text clearly
(e.g., type “content”). - **press**: Interact
with device-level buttons such as Home, Back,
or Enter, specifying the button (e.g., “press
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Figure 7: The proportion of CLICK and PRESS actions selected as positive data during the first four rounds of IPL.

Thought Embeddings Density Map (2D Histogram)

‘Thought Embeddings Density Map (2D Histogram)

[
- 500§
H

50 100 0 0 % 100 130

Figure 8: The heatmap at the left represents the sam-
pling before instruction evolution, while the one at the
right represents the sampling after instruction evolution.

Back”). - **stop**: Conclude the task, indi-
cating that the objective has been achieved.
Provide the chosen action in the specified for-
mat and ensure it aligns with the analysis and
the visible Ul elements.

. Click Action Grounding. As discussed ear-

lier, your task now is to identify the pre-
cise screen region coordinates to tap for the
action coat action. The coordinates must
be integers and strictly within the range
of 0 to 1000 for both axes. Please pro-
vide your response in the required format:
<lbox_startl>(top_x, top_y),(bottom_x, bot-
tom_y)<l|box_endl|>. Ensure your output ad-
heres to these constraints and remains con-
cise.

Instruction evolution Prompts.

1. Page Description Annotation. [ will provide

you with a mobile page. Please describe the
current page. Your description should include
the content of the page and its general func-
tionality. Please note that the descriptions you
generate should be of moderate length. Your
page description should match the actual im-
age.

. Action Thought Annotation. **QUERY**:

task, **ACTION HISTORY**: To proceed
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with the query, your past actions include: ac-
tion history, **NEXT ACTION**: This is
the next action you need to take: coat ac-
tion, **TASK**: Given the screen and the
above information, you have three tasks to
do. First, you have to analyze what you have
done. Second, you should analyze the screen
for relevant details that might pertain to the
given query. This includes checking for spe-
cific applications, icons, or buttons that are
visible and any information or results that
are currently displayed on the screen. Tip:
If the screen does not have the information
you need, you can scroll left or scroll up to
try to get the information. Don’t answer this
logic question by saying that because the pro-
vided **NEXT ACTION** is..., therefore, the
next action is... You need to think carefully
on your own. You must answer the question
with suitable lengths and the following for-
mat: 'Think: I have done..., Current screen
is..., I need to... So the next action is ... Your
final action should be the same as the NEXT
ACTION above.

. Q&A Annotation. Your goal is to draw in-

spiration from the given images and image de-
scription information to create multiple new
questions and answers. This new creation is
closely related to the given image and infor-
mation, but the answers involved should be di-
rectly derived from the given information, be-
cause Ul positions and Ul text are one-to-one
correspondence. Specifically, you should con-
struct the following three types of questions
and answers, a total of 15: 1. the function
of some elements in the image. 2. Ground-
ing questions and answers (the coordinates
and approximate location of the target in the
image). 3. Partial detailed information ques-
tions and answers (the structural relationship



between multiple elements, type, style, etc.).
Please try to keep your questions and answers
diverse and informative, and ignore the mes-
sage in the device status bar. Here is the in-
formation related to the image: Ul positions:
{ui positions}, Ul text: {ui text}, coat screen
desc: {coat screen desc}, Please provide the
following information in JSON format with
the key questions and answers, and Don’t add
annotation parsing:

C [IPL Scaling Analysis

In the first four rounds of DPO pairs, the number
of CLICK positive samples is 1731, 1496, 1485,
1475, while the number of PRESS positive samples
is 580, 749, 579, 315. During the first round of IPL,
when PRESS accuracy dropped to 10.18%, CLICK
has the highest count at 1731. In the following
round, CLICK decreased by 235 (1731 — 1496),
while PRESS increased by 169 (580 — 749). After
this round of training, PRESS Acc. recovers to
31.07%, leading to a gradual decline in the propor-
tion of this action type in the following round of
sampling. In subsequent rounds, their ratio gradu-
ally stabilizes. For detailed sampling data changes,
please refer to Figure 7.

D CoaT Action Level Sampling

As shown in Figure 8, before instruction evolution,
the distribution is highly concentrated, with only
8 points exceeding 1000 (including 3 points above
1200). After instruction evolution, the distribution
becomes more balanced, with 20 points exceeding
1000 (including 2 points above 1500).

Potential correct space ratio. The proportion of
|| + | 3] represents the potential correct space on
the training data, and the change of this metric
can clearly express the agent’s ability to repair and
reason out the correct process based on the correct
answer.

E Case Study

Unstable annotation preferences. As shown in
Figure 9, the left section illustrates two different
annotation preferences when searching for an app
from the Home Page: SCROLL UP and SCROLL
LEFT, leading to different destination pages. The
right part shows the overall preference distribution
when annotators need to find an app. In rare cases,
the annotation involves clicking on Google Play
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Store to perform a search. This phenomenon is
quite common because, fundamentally, the task
completion paths for a UI Agent are diverse. This
is also the key difference between online evaluation
and offline data evaluation. From this, we observe
that RL training on data with unstable preferences
performs worse than SFT (e.g., AITZ SCROLL).
This is because the DPO pair training method inher-
ently attempts to correct errors in sampled prefer-
ences. As a result, the agent oscillates between two
decisions when encountering the same GUI and
instruction, failing to achieve consistent alignment.
Action Equivalence. Unlike Unstable Annotation
Preferences, where different actions lead to differ-
ent but equivalent pages, the issue here arises from
annotators’ random labeling habits in the training
data, preventing the model from learning a con-
sistent preference. Action Equivalence refers to
the phenomenon where multiple actions on the
same page can lead to the target page. However,
since only one action is annotated as correct, other
valid actions are mistakenly treated as incorrect. As
shown in Figure 10, after entering a search query,
clicking on a suggested item in the recommenda-
tion bar, and pressing the Enter key on the keyboard
produce the same effect. Similarly, when navigat-
ing back, clicking the on-screen back button and
pressing the hardware back button yield the same
outcome.

Action Level Sampling. As shown in Figure 4,
unlike mathematical reasoning, the CoaT process
may not exhibit clear logical or computational er-
rors. For a given action, a sampling CoaT data may
produce hallucinations (Page Description) due to
insufficient detail in the page description or fabri-
cated elements; generate repetitive thoughts (Ac-
tion Thought) due to neglecting action history; de-
scribe the wrong relative position of the correct
element (CoaT Action); or misgrounding an ele-
ment (Grounding), which is then classified as a
negative sample. At the same time, outputs with
more detailed and accurate descriptions, diversified
thoughts, and different ways of describing the same
widget are classified as positive samples. Negative
examples may be disadvantageous compared to
positive examples, for example, because the de-
scription of the page is not detailed enough or the
positioning of the elements is not accurate enough.
At the same time, the wrong process may also give
the correct result, but this is a very rare case. In
this example, negative samples are generated due
to the following three reasons: (1) Rough page
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Figure 9: The left figure shows an example of unstable annotation preferences in AMEX, while the right figure

presents the proportion of this type of annotation.

description: The page contains eight app icons,
but the agent’s description includes only four apps:
Play Store, Gmail, Phone, and YouTube; (2) Hal-
lucinated Thought: The agent is unclear about its
current page location. In reality, it is on the Home
page, but it mistakenly believes it is in the Play
Store (e.g., "The Play Store app is already open").
(3) Fabricated Position and Elements: The agent
generates the action "Click on the *Spotify’ app”,
even though there is no Spotify icon on the current
page. This hallucination may stem from the instruc-
tion. Additionally, the Play Store icon should be
located at the lower left part of the screen, but the
agent incorrectly describes it as being in the middle
and lower middle part.
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Ins: Search for “weather like in Seoul”
in google chrome, I pay special
attention to today's weather
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Current Page Description:

This is a mobile search interface
where the user has entered
"weather like in Seoul" in the
search bar. Below the search bar,
a list of suggested queries is
displayed, including variations
like "weather like in Korea" and
"does it snow in Seoul".

Current Action Thought:

On the current page, I have
entered "weather like in Seoul"
into the search box. The next
step is to search for this
content and check today's
weather.

So the next Action is:

Click on "weather like in

Seoul" in the search

suggestion box in the
upper middle part of the ()

sCreen

PRESS ENTER
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Current Page Description:

This is a Google search results page
for "What's on the menu at
Chipotle?". It displays the Chipotle
Mexican Grill menu, categorized into
"Entrees," "Lifestyle Bowls," and
"Sides," along with prices. There are
navigation options like "Overview,"
"Locations," and "Menu," as well as a
"Full menu" button at the bottom.
The top includes the Google logo,
search bar, and system status icons.
Current Action Thought:
The task requires opening a search
for Music event in New York, but the
current page is not related to it. T
need to return to the main interface
of the app first.

So the next Action is:

Click on home button in the
upper left part of the screen

PRESS the Back button

&



Instruction : Install app \"Spotify\"”

Page Description (0.325)

This is a screenshot of a smartphone

Page Description (0.7)

This is a screenshot of a smartphone

home screen displaying a ileii iid home screen displaying a clean and

imple | A p,

and various icons
indicating network signal, Wi-Fi
connection, and battery status. Below
the status bar, there is a search bar for
quick web searches. The main part of
the screen shows a grid of app icons,
including the Google, Gmail, Google
Photos, and YouTube, along with a dock

simple layout. At the top, the status
bar shows the time as 5:51 and various
icons indicating network strength,
battery life, and more. Below the
status bar, there's a search bar for
quick web searches. The main part of

the screen shows a grid of app icons.
suggesting a focus on

Page Description (1)

This is a screenshot of a smartphone
home screen displaying a clean and
simple layout. At the top, the status
bar shows the time as 5:51 and various
icons indicating network signal, Wi-Fi,
and battery status. Below the status
bar, there's a search bar for Google.
The main part of the screen features
a dock with five app icons: Play Store,
Gmail, Phone, Chrome, and YouTube,
and above the dock, there are three

communication, media, and
entertainment. There are also three
quick settings options available:
\"Home settings,\" \"Widgets,\" and
\"Wallpapers,\" which likely provide
quick access fo customization options
for the home screen.

o

Action Thought (0.55) Action Thought (0.1)

quick settings options: \"Home
settings,\" \"Widgets,\" and
\"Wallpapers.\" The navigation bar at
the bottom includes a back button,
home button, and a recent apps button
for multitasking.

af the bottom containing the Phone app,
Messages, Google Chrome, and Google
Maps. The top of the screen has a menu
with options for \"Home settings,\"
\"Widgets,\" and \"Wallpapers \"
suggesting quick access to these
settings.

Ground Truth: Click on the
Play Store app located at the
ft and lower middle part of
thexgcreen.

Action Thought (1) Action Thought (1)

The Play Store icon is visible on
the dock, which is relevant to the
given query of installing Spotify.
Possible actions are to tap on the
Play Store icon to open it and then
use the search function within the
Play Store to find and install
Spotify.

The Play Store icon is visible on
the dock, which is relevant for
the given query to install Spotify.
Possible actions are to tap on the
Play Store icon to open it and
then use the search function
within the Play Store to find and
install the Spotify app.

Possible actions
are fo use the search bar at the
bottom of the screen to type in
\"Spotify\" and proceed with
the installation process.",

. Possible
actions are to tap on the Play
Store icon to continue with the
installation process.

CoaT Action (1) CoaT Action (0.1)XoaT Action (0.1) CoaT Action (0.1) CoaT Action (1) CoaT Action (1) CoaT Action (1) CoaT Action (1)

Click on the Click on the Cli i Click on the Play Click on the Click on the Click on the Play
Play Store app Play Store icon app  Store app Play Store Play Store app Store app located
located at the located at the at the left and

left and lower
middle part of

p
he app located at located at the app located
the lower lower middle left at the lower
right. part of the left.
the screen. K %

Groundning (1)  Groundning (1)  Groundning (0.1) Groundning (0.1) 6roundning (1) Groundning (1) 6Gr

lower middle part

lower left part
of the screen.

of the screen.

dning (1)  Groundning (1)

(174,604),(194,624) (158,623),(178,643) (386,664),(406,684) (410,668),(430,688) (161,584),(181,604)132,579),(152,599) (165,618),(185,638) (155,623),(175,643)

Figure 11: A sampling tree from AITZ demonstrates how the value is calculated.

17



	Introduction
	Related Work
	GUI Agent
	Reinforcement Learning

	Task Formulation
	Methodology
	Instruction Evolution
	Warm-up Supervised Fine-tuning
	CoaT Action Level Sampling
	Iterative Preference Optimization

	Experiments
	Dataset And Evaluation
	Main result
	Ablation Study

	Discussion and Analysis
	Output space sampling
	IPL Scaling
	GUI Continuous Pre-training Agent

	Conclusion
	Selection of Seed Policy Model
	Experiment Setup
	IPL Scaling Analysis
	CoaT Action Level Sampling
	Case Study

