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Abstract001

VLM-based mobile GUI agents excel in GUI002
interaction by employing a Chain of Action-003
Planning Thoughts (CoaT) paradigm, which004
is like System 2 CoT reasoning. Meanwhile,005
self-training methods are widely used to op-006
timize the CoT process. However, the lack007
of diverse CoaT data restricts the agent’s out-008
put space and limits its generalization ability,009
which is crucial for the self-training sampling010
stage. Multiple correct answers in the GUI011
field also make it challenging to train the pro-012
cess reward model, further hindering the op-013
timization of the CoaT process. To address014
these problems, we first enhance the diversity015
of agents’ output space through three-stage in-016
struction evolution, then obtain high-quality017
positive and negative pairs at the CoaT action018
level using a rule-based value calculation algo-019
rithm, and leverage iterative DPO training to020
optimize the agents’ preference between differ-021
ent action types. Experiments are performed on022
the latest CoaT dataset AITZ, long-trajectory023
dataset AMEX, and comprehensive dataset An-024
droidControl. Our agent MobileIPL achieves025
the SoTA results on AITZ, AMEX, and An-026
droidControl, while also demonstrating strong027
generalization performance on the out-domain028
subsets of AndroidControl.029

1 Introduction030

VLM-based mobile agents (Wang et al., 2023;031

Ding, 2024) gain considerable attention due to their032

ability to seamlessly interact with mobile graphic033

user interfaces (GUIs) and their potential for han-034

dling daily tasks autonomously. Since actions can-035

not be directly inferred from user instructions, GUI036

agents must decide based on their thoughts corre-037

sponding to current GUIs. This Chain Of Action-038

Planning Thought (CoaT) pattern is similar to the039

slow-thinking System 2 paradigm CoT in general040

domains(Xiong et al., 2024). Recent studies based041

on self-training (Luong et al., 2024) and solution042
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Figure 1: Unlike ReFT, which samples the entire trajec-
tories, and ReST, which performs tree search over all
steps in the action space, our method performs sampling
at the action level based on CoaT thinking patterns.

exploration (Xie et al., 2024) can further enhance 043

the quality of this CoT process in complex tasks 044

such as math and code generation. These methods 045

provide additional insights when the performance 046

of pre-training models plateaus, namely the two- 047

stage training framework. The first stage focuses 048

on learning the generation format and building fun- 049

damental capabilities, while the second optimizes 050

the reasoning process for greater diversity and qual- 051

ity beyond the original CoT data. 052

However, with the high cost of human annota- 053

tion, there are no widely available CoaT trajecto- 054

ries in the GUI agent domain (Rawles et al., 2024; 055

Lu et al., 2024), restricting existing agents to Ac- 056

tion Models (Lin et al., 2024; Wu et al., 2024a; 057

Shen et al., 2024). At the same time, due to the 058

lack of GUI domain tasks during the pre-training 059

stage, the general VLM’s receptive field is limited 060

to regions closely related to the fine-tuning instruc- 061

tions(Zhang et al., 2024b,c). This results in a nar- 062

row reasoning space and fixed thinking patterns 063

of agents, further hindering their generalization 064

abilities. The previous GUI agent RL works (Bai 065

1



Figure 2: Overview of iterative preference learning framework. The left part presents the process of warm-up
fine-tuning a general VLM to a mobile GUI domain agent with basic capabilities. The mid and right parts represent
the iterative CoaT action-level sampling and DPO self-training process.

et al., 2024; Wang et al., 2024c) rely primarily on066

MCTS search over the entire trajectory, neglect-067

ing detailed reasoning for individual actions. As068

shown in Figure 1, the CoaT paradigm has fixed069

output stages and a specific purpose for each stage,070

which is different from the unstable CoT output for-071

mat in general domains. Additionally, the agent’s072

sampling space contains enough potentially cor-073

rect outputs, but there is still no suitable training074

method to let the agents fully express this potential075

during the greedy decoding stage.076

To address these limitations, we make the fol-077

lowing improvements : (1) Instruction Evolution:078

To prevent the agent from collapsing to regions079

strongly associated with the instructions, we pro-080

pose an instruction evolution algorithm (Luo et al.,081

2024) to construct higher-quality CoaT trajectories082

and knowledge database on existing datasets such083

as AITZ, AMEX (Chai et al., 2024), and Android-084

Control (Li et al., 2024a). (2) Action Level Sam-085

pling: Unlike the overall CoT sampling or MCTS086

(Yu et al., 2024; Putta et al., 2024) over the entire087

trajectory, we construct tree sampling at the CoaT088

action level, of which value is computed by pre-089

defined rules. (3) Iterative Preference Learning:090

We sample diversified CoaT positive and negative091

examples by rules and use them for DPO training092

iteratively. Each stage of the CoaT output has pos-093

itive and negative examples that are used to train094

preferences separately. For a completely wrong095

sampling space, the final ground truth is provided096

to help the agent to refine the reasoning process.097

Overall, our main contributions are as follows:098

• We propose an instruction evolution algorithm099

in the GUI agent domain, which can effectively en- 100

hance self-training sampling diversity. We propose 101

higher-quality CoaT datasets named AMEX-CoaT 102

and AndroidControl-CoaT. 103

• We propose a CoaT Action-level sampling and 104

value calculation method, where the Tree-structure 105

values can be calculated accurately without PRM. 106

• We propose a GUI agent named MobileIPL, 107

which achieves SoTA results on AITZ, AMEX, 108

and AndroidControl compared to other continu- 109

ous pre-training agents. MobileIPL achieves im- 110

provements of over 6.7%, 3.2%, and 13.4% on 111

out-domain subsets of AndroidControl. 112

2 Related Work 113

2.1 GUI Agent 114

With the rapid development of vision-language 115

models (VLMs), researchers build mobile GUI 116

agents (Yang et al., 2023; Zheng et al., 2024; Qin 117

et al., 2025; Team) and multi-agent frameworks 118

(Ding, 2024; Li et al., 2024b; Wang et al., 2024a) 119

based on closed-source VLMs. Meanwhile, some 120

researchers focus on training agents with stronger 121

element grounding (Cheng et al., 2024; Wu et al., 122

2024b), page navigation (Niu et al., 2024; Lu et al., 123

2024; Gou et al., 2024; Wang et al., 2025), GUI un- 124

derstanding (You et al., 2024; Baechler et al., 2024) 125

and task planning capabilities (Zhang et al., 2024d; 126

Nong et al., 2024; Xu et al., 2024; Qinghong Lin 127

et al., 2024; Dorka et al., 2024) based on open- 128

source VLMs. Our method organizes trajectory 129

data into multi-rounds of dialogues based on the 130

CoaT thinking pattern, preventing the agent be- 131

comes an action model with limited capabilities. 132
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2.2 Reinforcement Learning133

The RL algorithms used to align with human pref-134

erences include DPO (Rafailov et al., 2024), IPO135

(Azar et al., 2024), KTO (Ethayarajh et al., 2023),136

and PPO (Schulman et al., 2017). ReST-MCTS*137

(Zhang et al., 2024a) focuses on the higher-quality138

step reward where the process reward model is im-139

portant. Xie et al. (2024) labels the preference140

via MCTS based on feedback from self-evaluation.141

For GUI agents, Bai et al. (2024) and Wang et al.142

(2024c) use online trajectory collection to improve143

the generalization of agents whose process is very144

slow. Wu et al. (2025) uses DPO training to com-145

pare the quality of multiple actions. Our method146

uses DPO to optimize the agent’s detailed thinking147

process by offline sampling at the coat action level,148

while the step value is calculated directly by rules149

without unstable PRMs.150

3 Task Formulation151

Every GUI trajectory T contains several images u,152

actions â, and a task instruction I , which can be153

represented as:154

T =
{
I, u0, â0, u1, â1, · · · , un, ân} (1)155

We formulate action âi in the CoaT reasoning pro-156

cess as a multi-round dialogue âi = [s1, s2, s3, s4],157

where si represents description, thought, action-158

decision, and grounding respectively. So the rea-159

soning process is formulated as:160

s1 = Description
{
P1, ui} (2)161

162
s2 = Thought

{
P2, ui, I, â0, · · · , âi−1, s1} (3)163

164
s3 = Action

{
P3, ui, I, s1, s2} (4)165

166
s4 = Grounding

{
P4, ui, I, s1, s2, s3} (5)167

P represents each round of dialogue input prompt,168

I is the task instruction, u is the current GUI, and169

âi is the step i history action. When the reasoning170

process ends, the final s4 is recorded as ân+1, and171

step i moves one step forward on the trajectory172

T . Without si thinking process, the reasoning of173

action â is less accurate, and directly using si for174

SFT makes the agent’s thinking pattern over rigid.175

4 Methodology176

As shown in Figure 2, our method uses a three-177

stage instruction evolution to enhance the diversity178

of each round dialogue output, avoiding the agent179

Where can you find the app rating in the image?

Instruction Evolution

Seed : AITZ Annotations

Level I : Core Basic Capabilities

Level II : Widget Functionality & Relationships

Level III : GUI Advanced FAQ

Q: What is the function of the 'Install' button in 
the image?

A: The 'Install' button is used to download and 
install the DuckDuckGo Privacy Browser app.

Q: Where can you find the app rating in the image?

A: The app rating '4.6*' is located at coordinates 
<|box_start|>(62,214),(151,228)<|box_end|>.

“Instruction": “Install app \"DuckDuckGo Privacy 
Browser\"",
“Action": "click on the \"Install\" button located 
at the left and upper middle part of the screen."

Q : What elements are included in the 'Website Protection' screenshot?

A : The 'Website Protection' screenshot includes an image of a website 
and text indicating it blocks hidden trackers.

Q : What is the layout of the 'Tools' and 'Browsers' buttons?

A : The 'Tools' and 'Browsers' buttons are positioned horizontally 
next to each other below the 'About this app' section.

Figure 3: We process a three-stage instruction evolution
and knowledge augmentation.

focusing only on the thinking patterns contained 180

in the CoaT data. CoaT action-level sampling and 181

rule-based value calculation are used to optimize 182

the quality of each round of dialogue output. 183

4.1 Instruction Evolution 184

Unlike mathematical problems, due to the lack of 185

Mobile GUI-specific data during the pre-training 186

stage, agents fail to generate diverse sampling 187

thoughts like general domains. To address this 188

limitation, we supplement the existing training 189

screenshots in the trajectories T with annotated 190

Q&A through instruction evolution and diversify 191

the rewritten instructions to generate the instruction 192

evolution data Q. Specifically, as shown in Figure 193

3, the evolution process consists of three levels: 194

Level I: General GUI Q&A tasks. Grounding, 195

Reference (Ref), and Page Descriptions are aimed 196

at enhancing the agent’s foundational capabilities. 197

These tasks (Liu et al., 2024; Yang et al., 2024) are 198

proven to be the core capabilities of GUI agents 199

during the pre-training. Level II: Widget cap- 200

tion and relationships. Descriptions of widget 201

functions and the nested partition relationships be- 202

tween widgets. This task is designed to help the 203

agent understand the relationships between buttons, 204

as previous work (Deng et al., 2024) has found 205

that agents tend to click on the textview, even in 206

scenarios where the textview and the button are 207

separate. Level III: GUI advanced FAQ. The ad- 208

vanced FAQ includes more complex Q&A, such as 209

descriptions of part of the structural framework of 210

the page, expectations and predictions about page 211

3



navigation triggered by control interactions.212

4.2 Warm-up Supervised Fine-tuning213

To develop an agent with basic task capabilities
and expand the output sampling space, we mix T
and the instruction evolution data Q, then perform
supervised fine-tuning (SFT) on D =

{
T ,Q

}
={

(u, e)(i)
}|D|

i=1
, where u represents the prior knowl-

edge (instructions, screenshot and action history)
from T or the questions from Q. e is the reasoning
process from T or the answer from Q which is or-
ganized into multi-round dialogues. The SFT loss
can be computed as:

LSFT (θ) = −Ee∼D[log πθ(e|u)].

To ensure output diversity, we select an earlier214

checkpoint with better potential correct space and215

diverse output to serve as the seed policy model.216

More details can be seen in Appendix A.217

4.3 CoaT Action Level Sampling218

After the warm-up SFT stage, agents build basic219

capabilities for GUIs and can sample outputs based220

on predefined inputs for each round of dialogue.221

Sampling And Value Acquisition. We sample222

each action on the trajectory along with the CoaT223

(Zhang et al., 2024c). This allows us to build value224

functions for different tasks and reduces the pres-225

sure on the agent to output such long sentences at226

once. The K sampling results (ŝt|ŝ1:t−1)
K at step227

t can be expressed as:228

ŝt =
{
(ŝ

(k)
t | ŝ0, · · · , ŝt−1)

}K

k=1
(6)229

Naturally, the final step in CoaT (the leaf node in230

the sampling tree) can get a value compared with231

the ground truth action a∗, which is then propa-232

gated back to other intra-nodes. The formula for233

the value of leaf nodes is as follows:234

v(st) =



1, d(st, a
∗)[x,y] <= dmin

0.7− 0.5
d(st,a

∗)[x,y]

dmax−dmin
,

d(st, a
∗)[x,y] > dmin

0.2 + 0.8F1, F1(st, a
∗)text

1, dir(st ∼ a∗)scroll
0.1, type(st ∼ a∗)

0, else
(7)235

As shown in Figure 11, the value 1 is assigned236

for a strict action matched (relative grounding box237

distance less than 0.05 (dmin), the F1 score of input238

text beyond 0.5 or scroll direction is matched), 0239

for unmatched, and other scores are scaled based 240

on the deviation. The recursive calculation formula 241

for intra-nodes is as follows: 242

v(st−1) = c · 1

K

K∑
i=1

v(s
(k)
t ) (8) 243

Contrastive Data Filter. After obtaining the sam- 244

pling tree and node values, we evaluate the quality 245

of the trees and extract contrastive data. The qual- 246

ity of the sampling trees are R = {α, β, γ}, and 247

the number of α, β, γ are calculated as follows: 248

α =

∣∣∣{S(i) | ∀vk ∈ S(i), vk = 1
}∣∣∣∑|T |

i=1 |(u, e)(i)|
(9) 249

250

β =

∣∣∣{S(i) | ∃vk, vk′ ∈ S(i), vk = 1, vk′ ̸= 1
}∣∣∣∑|T |

i=1 |(u, e)(i)|
(10) 251

252

γ =

∣∣∣{S(i) | ∀vk ∈ S(i), vk ̸= 1
}∣∣∣∑|T |

i=1 |(u, e)(i)|
(11) 253

S(i) and vk refer to the instruction i sampling tree 254

and the k-th leaf nodes value. α is considered 255

as perfect sampling tree, which can stably output 256

correct thoughts and actions with in-domain trajec- 257

tories, β represents potential correct trees that can 258

be used to construct contrastive data, and γ denotes 259

sampling trees that require refinement. β + γ is 260

considered a valid sampling space. In β, actions 261

with a value of 1 and as many diverse action types 262

as possible are extracted as positive samples. In γ, 263

the final ground truth action a∗ is used as a positive 264

sample, but the intermediate steps of CoaT are not 265

provided, and the pairs can be represented as: 266

βpairs = ⟨ŝ(k)t ↑, ŝ(k
′)

t ↓| (ŝ1, . . . , ŝt−1),

v(ŝ
(k)
t )− v(ŝ

(k′)
t ) > 0.3⟩

(12) 267

268

γpairs = ⟨a∗ ↑, ŝ(k)t ↓| ŝ1, . . . , ŝt−1⟩ (13) 269

4.4 Iterative Preference Optimization 270

After CoaT Action-level Sampling, several posi- 271

tive and negative example pairs are collected. Dur- 272

ing this stage, the agent policy undergoes updates 273

through the above data-pairs, SFT loss, and CoaT- 274

DPO loss (Rafailov et al., 2024). Suppose the agent 275

gets values to pair ⟨+,−⟩ at CoaT stage t, which 276

are named s+t and s−t ; we have the agent perform- 277

ing a comparison for these pairs based on the same 278
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Algorithm 1: Iterative CoaT action-level sampling and DPO self-training.
Input: base VLM π, advanced annotated model RSoTA, step-level trajectory data T , instruction evolution Q&A setQ,

number of sampling K, golden action a∗, value function v, the sampled CoaT data D, number of iterationsN .
1: for i = 1 to N0 do
2: Q∗ ← instruction_evolution(RSoTA, T ) // instruction evolution by GPT-4o
3: Q ← human_evaluation(h,Q∗) // human filter
4: end for
5: πS0 ←Warm-up_SFT(π, T ,Q) // fine-tune seed model
6: for n = 1 toN do
7: for i = 1 to |T | do
8: Di ← generate_sampling_thought(πSn−1 , Ti, K) // sample CoaT data for reference model

9: V leaf
i ← v(Di, a

∗
i ) // match and calculate leaf node values using Eq(7)

10: V intra
i ← recursive_calculate(Di, V

leaf
i ) // recursive intra node values using Eq(8)

11: D+
i , D

−
i ← contrastive_data_filter(Di, Vi) // filter positive and negative data using Eq(12, 13)

12: end for
13: πSn ← DPO(πSk−1 , D

+, D−) // DPO self-training reference model
14: end for
Output: πS , DG,Q

thoughts s1:t−1, which can be calculated as:279

LC-DPO = −E(s1:t−1,s
−
t ,s+t )∼Ts

[
log σ(β log

πθ(s
+
t |s1:t−1)

πref (s
+
t |s1:t−1)

−β log
πθ(s

−
t |s1:t−1)

πref (s
−
t |s1:t−1)

)

]
,

(14)280

The final loss combines DPO and SFT losses:281

L = LC-DPO + c · LSFT (15)282

To further refine the agent’s performance post-283

optimization, we employ the updated agent as the284

new base agent to continue collecting contrastive285

CoaT-action level pairs for additional DPO training.286

This iterative process is maintained until the agent287

reaches the performance bottleneck on the testset.288

5 Experiments289

5.1 Dataset And Evaluation290

Dataset and Metrics. AITZ (Zhang et al., 2024c)291

is a high-quality trajectory set filtered and re-292

annotated from AITW (Rawles et al., 2024), con-293

taining four subsets: general, install, single, and294

google apps, which also includes five types of ac-295

tions: click, input, scroll, press, and stop. It is296

the first CoaT dataset for the mobile GUI domain,297

where the CoaT’s description, thought, action,298

grounding, and expectations align with the gen-299

eral agent’s standard perception, thought, decision-300

making, tool call, and reflection. AMEX (Chai301

et al., 2024) uses the same apps and action space302

as AITZ, but its task instructions are more com-303

plex and detailed, with an average trajectory length304

of 15+. AndroidControl includes different task305

types compared to the previous two datasets. In306

addition, it contains extra actions such as wait 307

and completely unseen out-of-domain test splits. 308

For metrics, we use Step.Acc, consistent with 309

Auto-GUI(Zhang and Zhang, 2023), measures the 310

agent’s performance and uses Action Type to as- 311

sess the degree of action type matching. This met- 312

ric effectively evaluates the model’s planning abil- 313

ity. We use Qwen2-VL-7B (Wang et al., 2024b) 314

as the base VLM aligning with baselines. We se- 315

lect CogAgent (Hong et al., 2024), AUTO-GUI, 316

Shpagent, OS-Atlas, UIGround, UI-Tars and Fed- 317

MobileAgent as baseline agents. GUI continuous 318

pre-training agents can be further divided into two 319

categories: (1) training the model as a GUI ground- 320

ing agent, such as OS-Atlas-7B. (2) training the 321

model as a general GUI agent, such as UI-Tars. 322

More details can be seen in Appendix B. 323

5.2 Main result 324

AITZ. As shown in Table 1, except for SCROLL 325

and PRESS, our model achieves SoTA perfor- 326

mance on all other metrics. The reason for the 327

lower PRESS Acc. is discussed in Section C and 328

Appendix E. Multiple rounds of DPO improve 329

MobileIPL by more than 10 points (55.40% -> 330

69.15%) compared to the seed model MobileIPL 331

and ablation model Qwen2-VL-7B (60.36% - 332

> 69.15%). Compared to Falcon-UI, which is 333

pre-trained on three million GUIs, MobileIPL- 334

R6 surpasses a performance difference of 0.05%, 335

approaching the performance of 72B models 336

(72.10%). DPO Round R1 yields the most sig- 337

nificant improvement, increasing performance by 338

nearly 10 points (55.40% -> 65.36%). The GUI 339

pre-training Grounding model UIGround underper- 340
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Mode Model
Atomic

SCROLL CLICK TYPE PRESS STOP Total

type match type match type match

ZS
CogAgent-18B 56.41 79.90 51.50 67.40 34.00 48.30 4.76 65.86 44.52

+CoaT 70.22 88.23 66.15 45.80 21.80 45.95 24.60 72.59 53.28

FT
AUTO-GUI 74.88 44.37 12.72 73.00 67.80 49.09 60.12 73.79 34.46

+CoaT 61.40 74.56 32.20 87.20 81.40 57.70 74.40 82.98 47.69

FT
Qwen2-VL-7B 47.50 81.53 59.72 81.96 73.85 58.22 67.39 74.26 60.36
Qwen2-VL-72B - - - - - - - 89.60 72.10

PF
UI-Tars-7B 52.50 83.03 64.27 89.97 82.76 61.87 74.35 77.59 65.61

Falcon-UI-7B - - - - - - - 84.70 69.10
UIGround-7B 58.22 80.94 58.48 82.56 73.85 58.22 68.78 74.54 60.19

IPL

MobileIPL-Seed 42.83 82.48 53.16 82.56 75.29 56.65 61.82 73.14 55.40
+R1 45.83 92.52 71.12 87.77 81.23 23.49 73.55 78.74 65.36
+R3 49.83 91.64 71.01 87.97 83.16 49.86 77.93 81.37 68.62
+R6 51.08 91.73 71.45 88.20 83.40 51.69 78.17 81.90 69.15

Table 1: Main results of AITZ dataset. ZS, FT, PF, and IPL are short for zero-shot, fine-tuning, specific domain
pre-training, and iterative preference learning, respectively. ‘-’ represents that the agent or evaluation prompt is not
open-sourced. Seed means the seed model for sampling and DPO training.

Model Training Data Gmail Booking Music SHEIN News CM ToDo Signal Yelp Overall

SeeClick-7B AITW+External 28.2 29.4 18.1 20.0 30.0 53.1 30.7 37.1 27.4 30.44
SphAgent-7B AITW 32.1 45.9 46.1 35.1 48.3 61.1 55.9 43.3 42.9 45.63
SphAgent-7B AMEX 61.7 68.2 77.7 72.0 71.9 64.6 79.6 71.3 69.6 70.71
OS-Atlas-7B AMEX 61.1 73.5 77.9 61.6 75.2 66.4 71.0 75.9 72.0 70.33
UIGround-7B AMEX 70.9 68.8 72.7 63.7 77.7 67.7 63.7 80.1 67.6 69.12
SphAgent-7B AITW + AMEX 62.4 68.1 76.3 71.9 68.6 67.3 77.6 66.0 64.1 69.14

Qwen2-VL-7B
AMEX 58.0 70.1 76.6 63.8 79.4 66.8 67.8 80.2 76.6 69.01
+ CoaT 75.9 68.1 77.7 66.2 76.8 66.4 77.5 79.6 65.6 70.93

MobileIPL-7B

AMEX (Seed) 57.0 60.2 68.8 63.1 75.0 50.2 65.6 77.7 62.6 62.19
+ R1 70.4 72.5 75.8 68.2 83.0 68.1 67.8 80.2 70.6 72.02
+ R3 77.0 72.2 78.6 68.0 85.8 70.4 72.6 82.1 74.3 74.14
+ R4 77.3 71.8 80.0 68.4 85.3 71.3 73.5 82.1 71.8 74.29

Table 2: Main results on AMEX. Seed means the seed model for sampling.

forms its base model Qwen2-VL on AITZ down-341

stream tasks (60.19% < 60.36%), but UI-Tars per-342

forms better (65.61% > 60.36%) because of its343

more various pre-training tasks.344

AMEX. As shown in Table 2, except for the SHEIN345

and ToDo applications, our agent achieves SoTA346

performance on all other applications, surpassing347

the previous SoTA pre-training SphAgent by 3.58%348

(70.71% -> 74.29%). This demonstrates the ef-349

fectiveness of our method. The CoaT reasoning350

process significantly improves Qwen2-VL perfor-351

mance (69.01% -> 70.93%), which is nearly on par352

with the GUI domain pretraining model SphAgent353

(70.71% vs. 70.93%). Meanwhile, IPL Round R1354

yields the most significant improvement, increas-355

ing performance by nearly 10 points (62.19% ->356

72.02%). R3 and R4 show gradual convergence,357

and R5 results in negative optimization. Notably,358

UIGround-7B, which also employs GUI pretrain-359

ing, fails on the AMEX downstream task, showing360

equal performance compared to the ablation model 361

Qwen2-VL-7B (69.12% vs. 69.01%). 362

AndroidControl. Table 3 and Table 4 present 363

the results on the AndroidControl in-domain and 364

out-domain test sets, respectively. In the IDD 365

subset, MobileIPL achieves SoTA in both TYPE 366

and Step.Acc (85.8%, 73.6%), surpassing con- 367

tinual pre-training models of the GUI domain 368

such as OS-Atlas (+2.4%), UI-Tars (+1.1%) and 369

Falcon-UI (+0.9%). However, since these models 370

gain Grounding capabilities during the pretraining 371

phase, MobileIPL still underperforms in element 372

grounding compared to OS-Atlas (-2.8%) and UI- 373

Tars (-4.8%). Similar to AITZ and AMEX, the 374

model achieves the most significant performance 375

improvement in IPL-R1 (63.4% -> 72.0%). In out- 376

domain subsets, the pre-trained model OS-Atlas 377

shows only limited improvements over Qwen2- 378

VL (-0.7%, +2.1%, -7.7%), whereas MobileIPL 379

achieves significant gains (+6.0%, +5.3%, +5.7%). 380
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Mode Model Type Grounding Step.Acc

ZS
Claude* 74.3 0.0 12.5
GPT-4o 66.3 0.0 20.8

FT

Aria-UI-7B - 43.2 10.2
InternVL-2-4B 84.1 72.7 66.7

Aguvis-7B - - 61.5
PaLM 2S(full) - - 65.5
Qwen2-VL-7B 81.6 68.5 69.1

PF
Seeclick-7B 82.9 62.9 59.1
OS-Atlas-7B 85.2 78.5 71.2
Falcon-UI-7B - - 72.7

UI-Tars-7B 83.7 80.5 72.5

IPL

MobileIPL-7B (Seed) 79.7 66.1 63.4
+ R1 85.5 74.5 72.0
+ R2 85.8 75.2 72.7
+ R3 85.8 75.7 73.6

Table 3: High-level instruction experiment results on
AndroidControl IDD.

Mode Model IDD app-UN task-UN categ-UN

FT
PaLM 2S(full) 65.5 58.7 59.7 58.2

PaLM 2S(LoRA) 70.8 58.5 59.6 57.4
Qwen2-VL-7B 69.1 61.4 64.1 62.5

PF
FedMobileAgent 54.7 52.3 51.2 49.2

SphAgent-7B 69.4 57.1 62.9 50.0
OS-Atlas-7B 71.2 60.7 66.2 54.8

IPL

MobileIPL-7B (Seed) 63.4 59.1 60.6 59.5
+ R1 72.0 67.0 69.2 67.9
+ R2 72.7 67.3 69.2 67.9
+ R3 73.6 67.4 69.4 68.2

Table 4: High-level instruction results on AndroidCon-
trol and three unseen out-domain subsets.

Additionally, compared to in-domain data, Mo-381

bileIPL exhibits less performance degradation in382

the out-domain setting. For example, OS-Atlas ex-383

periences a 16.4% drop in the Unseen Category384

subset (71.2% -> 54.8%), while MobileIPL only385

decreases by 5.4% (73.6% -> 68.2%).386

5.3 Ablation Study387

Since our method incorporates the Instruction Evo-388

lution (Evo), we conduct an ablation study to an-389

alyze the contribution of each component. As390

shown in Table 5, removing IPL leads to a sig-391

nificant drop in overall performance from 69.2%392

to 60.4%, demonstrating that IPL plays a crucial393

role. In contrast, removing Evo results in only a394

marginal performance decrease (-0.1%), indicating395

that Evo does not directly enhance the model’s per-396

formance. We also examine the effects of dialogue397

(Dia) and history (His) information. Removing his-398

torical data leads to a notable decline in the Stop399

metric (-5.7%), suggesting a strong link between400

stopping decisions and historical context. Addi-401

tionally, we remove negative samples from IPL-R1,402

training the model using only fully correct samples403

for SFT. This results in a 4.0% performance drop,404

Model Scroll Click Type Press Stop Total

MobileIPL-R6 51.1 71.5 83.4 51.7 78.2 69.2
- IPL 46.9 59.4 78.6 55.4 67.2 60.4
- IPL, Evo 47.5 59.7 73.9 58.2 67.4 60.3
- IPL, Evo, Dia. 46.8 55.7 81.8 59.2 71.0 59.2
- IPL, Evo, Dia., His. 47.9 56.8 79.0 56.6 65.3 58.9

MobileIPL-R1 45.8 71.1 81.2 23.5 73.5 65.4
- IPL Negative Data 46.9 61.1 74.2 56.6 72.2 61.4

Table 5: Ablation Study on AITZ.

suggesting that negative samples help the model 405

learn how to reason rather than merely memorize 406

(SFT). Furthermore, compared to training on the 407

original dataset with CoaT data (-IPL), the model’s 408

performance improves from 60.4% to 61.4%, due 409

to eliminating noise introduced by CoaT in the 410

original dataset. 411

6 Discussion and Analysis 412

6.1 Output space sampling 413

To evaluate the instruction evolution, we analyze 414

the diversity of the sampling space for Random 415

1000 steps, the standard deviation of encoded em- 416

beddings, the dimensionality-reduced distribution, 417

and the distribution of S(i) mentioned in Section 418

4.3. As shown in Figure 4, the thoughts after in- 419

struction evolution exhibit a broader space than 420

direct SFT. Additionally, the embedding standard

Set 1: Action Thought without Evolution Set 2: Action Thought with Evolution

Comparison of Tree Standard Deviation and Accuracy Tree Sampling Diversity Distribution

V
a

lu
e

P
ro

p
o

r
ti

o
n

Figure 4: The top figures show the t-SNE dimension-
ality reduction distribution of outputs before and after
instruction evolution, while the bottom figures present
the distribution of standard deviation and accuracy. 421
deviation within each tree increases significantly 422

compared to the original data (+ 0.158). The diver- 423

sified outputs do not negatively impact the agent’s 424

reasoning process, while the proportion of action 425

sampling that includes the correct answer improves 426

from 72.7% to 77.9%. The bottom-right subplot 427

reflects the distribution of output accuracy. Con- 428
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sistently Correct indicates that all samples for the429

current step match the golden answer, while Con-430

sistently Error is the opposite. Both represents431

cases where some samples are correct while oth-432

ers are incorrect, which serves as an ideal source433

for constructing DPO pairs. Compared to 47% on434

the evolved data, the agent achieves 68.7% conver-435

gence on the original data but exhibits a strong po-436

larization(4%). Three-stage instruction evolution437

significantly expands the sampling space (from 4%438

to 31%), enabling the self-training process to be439

effective. More details can be seen in Appendix D.440

6.2 IPL Scaling441

Although the total Step.Acc steadily increases with442

IPL iterations, not all action types follow this up-443

ward trend. As shown in Figure 5, from the seed444

model to the first round of IPL, the accuracy of445

PRESS drops significantly (58.22% → 23.49%),446

while CLICK increases (53.26% → 71.12%). In-447

spired by action equivalence matching in Android-448

Control, we attempt to analyze the reasons behind449

this phenomenon. In fact, multiple actions on the

0 1 2 3 4 5 6
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

A
ct

io
n 

A
cc

Total
Type
Stop
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Scroll
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0 1 2 3 4 5 6
IPL Round

0.6
0.7
0.8
0.9

Pr
op

or
tio

n

Max: 0.851

Min: 0.618 Proportion of Error Click in PRESS ±1 Std Dev

Figure 5: The upper sub-figure shows the changes in
Step.Acc for action types in AITZ as the number of
IPL iterations increases. The lower section presents
the proportion of incorrect CLICK actions when the
ground truth action is PRESS.

450
same GUI can result in an equivalent outcome. For451

example, after entering a search query, PRESS EN-452

TER and directly click on a dropdown suggestion453

with the same keyword both navigate to the same454

page. We analyze the proportion of steps where the455

ground truth action is PRESS, but the model out-456

puts a different action. We find that when PRESS457

accuracy drops to 23.49%, CLICK accounts for458

85.10% of the errors in the lower part of the figure.459

As more positive PRESS pairs (14.5% -> 18.7%) 460

and less CLICK data (43.3% -> 37.4%) are sam- 461

pled in subsequent IPL iterations, this error propor- 462

tion gradually decreases to 73.7%, and PRESS Acc. 463

increases to 47.78%. For detailed statistical data, 464

please refer to Appendix C. 465

6.3 GUI Continuous Pre-training Agent 466

As discussed in the previous experimental anal- 467

ysis, continuous pre-training in the GUI domain 468

provides the agents with a stronger base model. 469

However, we still need to explore the compatibility 470

between post-training IPL, instruction evolution, 471

and pre-training. As shown in Figure 6, UI-Tars

A
cc

IPL Round

Figure 6: The blue line represents the performance of
UI-Tars-7B on AITZ as the seed model and with multi-
round IPL training, while the purple line represents
Qwen2-VL-7B.

472
outperforms Qwen2-VL-7B in all training stages, 473

demonstrating better performance during the in- 474

struction evolution phase (62.7% > 55.4%). After 475

four rounds of IPL, UI-Tars Step.Acc improves by 476

1.4% compared to MobileIPL (69.2% to 70.6%). 477

More importantly, UI-Tars nearly converges after 478

the first round of IPL, significantly reducing the 479

number of sampling and preference learning iter- 480

ations, thereby keeping the computational cost of 481

post-training within an acceptable range. 482

7 Conclusion 483

In this paper, we propose Mobile Iterative Prefer- 484

ence Learning (MobileIPL), a self-training GUI 485

agent framework with instruction evolution, CoaT 486

action sampling, and value calculation. We also 487

propose two new datasets: AMEX-CoaT and 488

AndroidControl-CoaT. We extensively validate Mo- 489

bileIPL on AITZ, AMEX, and AndroidControl, 490

demonstrating its effectiveness. Furthermore, the 491

Continuous Pre-training Experiments confirm its 492

mutual reinforcement with pre-training, leading to 493

enhanced performance. 494
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Limitations495

Our iterative preference learning method involves496

multiple rounds of sampling the entire training data,497

which takes much longer compared to direct SFT,498

especially when the amount of training data is very499

large. In our experiments, since some of the con-500

tinuous pre-training models in the GUI domain do501

not provide the format and prompt of the training502

data, the reproduction results may be biased.503

Ethics Statement504

We have rigorously refined our dataset to remove505

any elements that could compromise personal pri-506

vacy, thereby guaranteeing the highest level of pro-507

tection for individual data. Instruction evolution508

was completed by AI SoTA close-sourced VLM,509

to whom we paid the necessary compensation to510

ensure that the training data was not leaked. The hu-511

man evaluation of our work was carried out through512

a meticulously randomized selection of IT profes-513

sionals. This process ensured a gender-balanced514

and educationally diverse panel, reflecting a wide515

spectrum of perspectives and expertise.516
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Cărbune, Jason Lin, Jindong Chen, and Abhanshu527
Sharma. 2024. ScreenAI: A vision-language model528
for ui and infographics understanding. arXiv preprint529
arXiv:2402.04615.530

Hao Bai, Yifei Zhou, Mert Cemri, Jiayi Pan, Alane Suhr,531
Sergey Levine, and Aviral Kumar. 2024. DigiRL:532
Training in-the-wild device-control agents with au-533
tonomous reinforcement learning. arXiv preprint534
arXiv:2406.11896.535

Yuxiang Chai, Siyuan Huang, Yazhe Niu, Han Xiao,536
Liang Liu, Dingyu Zhang, Peng Gao, Shuai Ren,537
and Hongsheng Li. 2024. AMEX: Android multi-538
annotation expo dataset for mobile gui agents. arXiv539
preprint arXiv:2407.17490.540

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu,541
Yantao Li, Jianbing Zhang, and Zhiyong Wu. 2024.542
SeeClick: Harnessing gui grounding for advanced543
visual gui agents. arXiv preprint arXiv:2401.10935.544

Shihan Deng, Weikai Xu, Hongda Sun, Wei Liu, Tao 545
Tan, Jianfeng Liu, Ang Li, Jian Luan, Bin Wang, 546
Rui Yan, et al. 2024. Mobile-Bench: An evalua- 547
tion benchmark for llm-based mobile agents. arXiv 548
preprint arXiv:2407.00993. 549

Tinghe Ding. 2024. MobileAgent: enhancing mobile 550
control via human-machine interaction and sop inte- 551
gration. arXiv preprint arXiv:2401.04124. 552

Nicolai Dorka, Janusz Marecki, and Ammar Anwar. 553
2024. Training a vision language model as smart- 554
phone assistant. arXiv preprint arXiv:2404.08755. 555

Kawin Ethayarajh, Winnie Xu, Dan Jurafsky, and 556
Douwe Kiela. 2023. Human-centered loss functions 557
(halos). Technical report, Technical report, Contex- 558
tual AI. 559

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, 560
Cheng Chang, Yiheng Shu, Huan Sun, and Yu Su. 561
2024. Navigating the digital world as humans do: 562
Universal visual grounding for gui agents. arXiv 563
preprint arXiv:2410.05243. 564

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng 565
Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan Wang, 566
Yuxiao Dong, Ming Ding, et al. 2024. CogAgent: A 567
visual language model for gui agents. In Proceedings 568
of the IEEE/CVF Conference on Computer Vision 569
and Pattern Recognition, pages 14281–14290. 570

Wei Li, William E Bishop, Alice Li, Christopher Rawles, 571
Folawiyo Campbell-Ajala, Divya Tyamagundlu, and 572
Oriana Riva. 2024a. On the effects of data scale on 573
ui control agents. In The Thirty-eight Conference on 574
Neural Information Processing Systems Datasets and 575
Benchmarks Track. 576

Yanda Li, Chi Zhang, Wanqi Yang, Bin Fu, Pei Cheng, 577
Xin Chen, Ling Chen, and Yunchao Wei. 2024b. 578
AppAgent-V2: Advanced agent for flexible mobile 579
interactions. arXiv preprint arXiv:2408.11824. 580

Kevin Qinghong Lin, Linjie Li, Difei Gao, Zhengyuan 581
Yang, Zechen Bai, Weixian Lei, Lijuan Wang, and 582
Mike Zheng Shou. 2024. ShowUI: One vision- 583
language-action model for generalist gui agent. In 584
NeurIPS 2024 Workshop on Open-World Agents. 585

Xiao Liu, Bo Qin, Dongzhu Liang, Guang Dong, Hanyu 586
Lai, Hanchen Zhang, Hanlin Zhao, Iat Long Iong, 587
Jiadai Sun, Jiaqi Wang, et al. 2024. AutoGLM: Au- 588
tonomous foundation agents for guis. arXiv preprint 589
arXiv:2411.00820. 590

Quanfeng Lu, Wenqi Shao, Zitao Liu, Fanqing Meng, 591
Boxuan Li, Botong Chen, Siyuan Huang, Kaipeng 592
Zhang, Yu Qiao, and Ping Luo. 2024. GUI Odyssey: 593
A comprehensive dataset for cross-app gui navigation 594
on mobile devices. arXiv preprint arXiv:2406.08451. 595

Run Luo, Haonan Zhang, Longze Chen, Ting-En Lin, 596
Xiong Liu, Yuchuan Wu, Min Yang, Minzheng Wang, 597
Pengpeng Zeng, Lianli Gao, et al. 2024. MMEvol: 598
Empowering multimodal large language models with 599
evol-instruct. arXiv preprint arXiv:2409.05840. 600

9



Trung Quoc Luong, Xinbo Zhang, Zhanming Jie, Peng601
Sun, Xiaoran Jin, and Hang Li. 2024. ReFT: Rea-602
soning with reinforced fine-tuning. arXiv preprint603
arXiv:2401.08967.604

Runliang Niu, Jindong Li, Shiqi Wang, Yali Fu, Xiyu605
Hu, Xueyuan Leng, He Kong, Yi Chang, and606
Qi Wang. 2024. ScreenAgent: A vision language607
model-driven computer control agent. arXiv preprint608
arXiv:2402.07945.609

Songqin Nong, Jiali Zhu, Rui Wu, Jiongchao Jin, Shuo610
Shan, Xiutian Huang, and Wenhao Xu. 2024. Mo-611
bileFlow: A multimodal llm for mobile gui agent.612
arXiv preprint arXiv:2407.04346.613

Pranav Putta, Edmund Mills, Naman Garg, Sumeet614
Motwani, Chelsea Finn, Divyansh Garg, and Rafael615
Rafailov. 2024. AgentQ: Advanced reasoning and616
learning for autonomous ai agents. arXiv preprint617
arXiv:2408.07199.618

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang,619
Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao Li,620
Yunxin Li, Shijue Huang, et al. 2025. UI-TARS: Pio-621
neering automated gui interaction with native agents.622
arXiv preprint arXiv:2501.12326.623

Kevin Qinghong Lin, Linjie Li, Difei Gao, Zhengyuan624
Yang, Shiwei Wu, Zechen Bai, Weixian Lei, Lijuan625
Wang, and Mike Zheng Shou. 2024. ShowUI: One626
vision-language-action model for gui visual agent.627
arXiv e-prints, pages arXiv–2411.628

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-629
pher D Manning, Stefano Ermon, and Chelsea Finn.630
2024. Direct Preference Optimization: Your lan-631
guage model is secretly a reward model. Advances632
in Neural Information Processing Systems, 36.633

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana634
Riva, and Timothy Lillicrap. 2024. Android in the635
Wild: A large-scale dataset for android device control.636
Advances in Neural Information Processing Systems,637
36.638

John Schulman, Filip Wolski, Prafulla Dhariwal,639
Alec Radford, and Oleg Klimov. 2017. Proxi-640
mal policy optimization algorithms. arXiv preprint641
arXiv:1707.06347.642

Huawen Shen, Chang Liu, Gengluo Li, Xinlong Wang,643
Yu Zhou, Can Ma, and Xiangyang Ji. 2024. Falcon-644
UI: Understanding gui before following user instruc-645
tions. arXiv preprint arXiv:2412.09362.646

Q Team. Qwen2. 5-vl, january 2025. URL647
https://qwenlm. github. io/blog/qwen2.648

Bryan Wang, Gang Li, and Yang Li. 2023. Enabling649
conversational interaction with mobile ui using large650
language models. In Proceedings of the 2023 CHI651
Conference on Human Factors in Computing Systems,652
pages 1–17.653

Junyang Wang, Haiyang Xu, Haitao Jia, Xi Zhang, 654
Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang, 655
and Jitao Sang. 2024a. Mobile-Agent-v2: Mo- 656
bile device operation assistant with effective navi- 657
gation via multi-agent collaboration. arXiv preprint 658
arXiv:2406.01014. 659

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi- 660
hao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin 661
Wang, Wenbin Ge, et al. 2024b. Qwen2-vl: Enhanc- 662
ing vision-language model’s perception of the world 663
at any resolution. arXiv preprint arXiv:2409.12191. 664

Taiyi Wang, Zhihao Wu, Jianheng Liu, Jianye Hao, 665
Jun Wang, and Kun Shao. 2024c. DistRL: An asyn- 666
chronous distributed reinforcement learning frame- 667
work for on-device control agents. arXiv preprint 668
arXiv:2410.14803. 669

Wenhao Wang, Zijie Yu, William Liu, Rui Ye, Tian 670
Jin, Siheng Chen, and Yanfeng Wang. 2025. Fed- 671
MobileAgent: Training mobile agents using decen- 672
tralized self-sourced data from diverse users. arXiv 673
preprint arXiv:2502.02982. 674

Qinzhuo Wu, Wei Liu, Jian Luan, and Bin Wang. 2025. 675
ReachAgent: Enhancing mobile agent via page reach- 676
ing and operation. arXiv preprint arXiv:2502.02955. 677

Qinzhuo Wu, Weikai Xu, Wei Liu, Tao Tan, Jian- 678
feng Liu, Ang Li, Jian Luan, Bin Wang, and Shuo 679
Shang. 2024a. MobileVLM: A vision-language 680
model for better intra-and inter-ui understanding. 681
arXiv preprint arXiv:2409.14818. 682

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, 683
Qiushi Sun, Chengyou Jia, Kanzhi Cheng, Zichen 684
Ding, Liheng Chen, Paul Pu Liang, et al. 2024b. Os- 685
Atlas: A foundation action model for generalist gui 686
agents. arXiv preprint arXiv:2410.23218. 687

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen 688
Kan, Timothy P Lillicrap, Kenji Kawaguchi, and 689
Michael Shieh. 2024. Monte carlo tree search boosts 690
reasoning via iterative preference learning. arXiv 691
preprint arXiv:2405.00451. 692

Weimin Xiong, Yifan Song, Xiutian Zhao, Wenhao Wu, 693
Xun Wang, Ke Wang, Cheng Li, Wei Peng, and Su- 694
jian Li. 2024. Watch every step! llm agent learning 695
via iterative step-level process refinement. arXiv 696
preprint arXiv:2406.11176. 697

Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tian- 698
bao Xie, Amrita Saha, Doyen Sahoo, Tao Yu, and 699
Caiming Xiong. 2024. Aguvis: Unified pure vision 700
agents for autonomous gui interaction. arXiv preprint 701
arXiv:2412.04454. 702

Yuhao Yang, Yue Wang, Dongxu Li, Ziyang Luo, Bei 703
Chen, Chao Huang, and Junnan Li. 2024. Aria-UI: 704
Visual grounding for gui instructions. arXiv preprint 705
arXiv:2412.16256. 706

10



Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Ze-707
biao Huang, Bin Fu, and Gang Yu. 2023. AppA-708
gent: Multimodal agents as smartphone users. arXiv709
preprint arXiv:2312.13771.710

Keen You, Haotian Zhang, Eldon Schoop, Floris Weers,711
Amanda Swearngin, Jeffrey Nichols, Yinfei Yang,712
and Zhe Gan. 2024. Ferret-UI: Grounded mobile ui713
understanding with multimodal llms. arXiv preprint714
arXiv:2404.05719.715

Xiao Yu, Baolin Peng, Vineeth Vajipey, Hao Cheng,716
Michel Galley, Jianfeng Gao, and Zhou Yu. 2024.717
ExACT: Teaching ai agents to explore with reflective-718
mcts and exploratory learning. arXiv preprint719
arXiv:2410.02052.720

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue,721
Yuxiao Dong, and Jie Tang. 2024a. ReST-MCTS*:722
Llm self-training via process reward guided tree723
search. arXiv preprint arXiv:2406.03816.724

Jiaqi Zhang, Chen Gao, Liyuan Zhang, Yong Li, and725
Hongzhi Yin. 2024b. SmartAgent: Chain-of-user-726
thought for embodied personalized agent in cyber727
world. arXiv preprint arXiv:2412.07472.728

Jiwen Zhang, Jihao Wu, Yihua Teng, Minghui Liao,729
Nuo Xu, Xiao Xiao, Zhongyu Wei, and Duyu Tang.730
2024c. Android in the Zoo: Chain-of-action-thought731
for gui agents. arXiv preprint arXiv:2403.02713.732

Li Zhang, Shihe Wang, Xianqing Jia, Zhihan Zheng,733
Yunhe Yan, Longxi Gao, Yuanchun Li, and Mengwei734
Xu. 2024d. LlamaTouch: A faithful and scalable735
testbed for mobile ui task automation. arXiv preprint736
arXiv:2404.16054.737

Zhuosheng Zhang and Aston Zhang. 2023. You only738
look at screens: Multimodal chain-of-action agents.739
arXiv preprint arXiv:2309.11436.740

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and741
Yu Su. 2024. GPT-4V(ision) is a generalist web742
agent, if grounded. arXiv preprint arXiv:2401.01614.743

11



A Selection of Seed Policy Model744

In our preliminary experimental exploration, we745

discovered that for the seed policy model, better746

performance in the SFT phase does not necessar-747

ily translate to a higher upper bound in the sub-748

sequent IPL phase. This is because as training749

progresses, the model’s output space becomes in-750

creasingly aligned with the training data, reducing751

its diversity in sampling. Consequently, for incor-752

rect instances, the model tends to generate erro-753

neous outputs regardless of the sampling attempts.754

To address this, we propose a sampling-oriented755

selection method for the seed policy model, incor-756

porating the following two evaluation metrics:757

Sampling Accuracy(AccS), which requires the758

model to hit more correct actions a in the sampled759

output space S.760

AccS =

∑|T |
i=1

∣∣∣{e(i)j | a
(i) ∼ e

(i)
j , e

(i)
j ∈ S

(i)
}∣∣∣∑|T |

i=1 |S(i)|
(16)761

Sampling Diversity(DivR), which requires the762

model to have a more diverse and extensive sam-763

pling space. Standard deviation calculation of a764

single sampled tree DevS(i) :765

DevS(i) =
1

T

T∑
t=1

StdDev
(
E(ŝ

(k)
t ) | k = 1, . . . ,K

)
(17)766

Among them, E(ŝ
(k)
t ) represents the representation767

of the kth sample output of the tth step after the768

encoder. Calculation of the standard deviation of769

the set DivS :770

DivR =
1

N

N∑
i=1

DevS(i) (18)771

where N is the number of sampled trees in the set772

R.773

B Experiment Setup774

Models. Unlike AITZ, we do not compare the775

CoaT result with the expected page and decide776

whether to roll back because most actions in real-777

device scenarios cannot be rolled back without cost.778

Previous work conducted continual pretraining on779

Qwen2-VL-7B using GUI domain data, resulting780

in a stronger base model. In our ablation study,781

we discuss the impact of continuous pretraining on782

IPL.783

Setup. We conduct hyperparameter searches on784

AITZ to reproduce the baseline results and find that785

the optimal learning rate ranges from 3e-5 to 3e- 786

6. Therefore, all baseline fine-tuning experiments 787

adopt this setting. Before IPL, during the instruc- 788

tion evolution stage, we apply LoRA fine-tuning 789

with a LoRA rank of 128. For IPL Stage 1, we 790

use a learning rate between 1e-6 and 1e-7. In sub- 791

sequent stages, we apply a constant learning rate 792

of 1e-7. The batch size is consistently set to 128. 793

During fine-tuning (including baseline fine-tuning), 794

we enable ViT training, whereas in the IPL phase, 795

we experiment with freezing ViT. For AITZ train- 796

ing, we followed the Falcons’ approach, utilizing a 797

maximum 1540×1540 resolution. For other exper- 798

iments, we reduce the resolution to 1280×720 to 799

optimize computational efficiency. The maximum 800

context length is set to 32K for all experiments. 801

The fine-tuning experiments are conducted for 2 802

epochs, while IPL training is performed for 1 epoch. 803

Since the large volume of Android control data, we 804

sample 1/5 of the dataset for each IPL training iter- 805

ation. 806

CoaT Multi-round Dialogue Prompts. 807

1. Page Description. Based on the mobile 808

screenshot: Image URL, identify and describe 809

the key elements visible on the screen, includ- 810

ing any text, buttons, icons, input fields, or 811

other interactive components. 812

2. CoaT Action Thought. Given the task: in- 813

struction, and considering the contextual de- 814

tails from the image alongside the full history 815

of previous actions: action history, determine 816

the most logical and effective next step. Focus 817

on providing a clear, actionable, and goal- 818

oriented response to advance the task. 819

3. CoaT Action Description. Task: Determine 820

the Most Appropriate Next Step. Based on 821

the previous analysis and the objective, deter- 822

mine the most appropriate next step to achieve 823

the goal. Choose from the following options: 824

- **click**: Select a button or specific UI 825

element by specifying it clearly (e.g., ‘click 826

xxx’, where ‘xxx’ is the button name or identi- 827

fier). - **scroll**: Perform a scrolling action 828

if the required element is not visible, speci- 829

fying the direction (e.g., ‘scroll up’, ‘scroll 830

down’). - **type**: Input specific text into a 831

field or search bar, specifying the text clearly 832

(e.g., type “content”). - **press**: Interact 833

with device-level buttons such as Home, Back, 834

or Enter, specifying the button (e.g., “press 835
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Figure 7: The proportion of CLICK and PRESS actions selected as positive data during the first four rounds of IPL.

Figure 8: The heatmap at the left represents the sam-
pling before instruction evolution, while the one at the
right represents the sampling after instruction evolution.

Back”). - **stop**: Conclude the task, indi-836

cating that the objective has been achieved.837

Provide the chosen action in the specified for-838

mat and ensure it aligns with the analysis and839

the visible UI elements.840

4. Click Action Grounding. As discussed ear-841

lier, your task now is to identify the pre-842

cise screen region coordinates to tap for the843

action coat action. The coordinates must844

be integers and strictly within the range845

of 0 to 1000 for both axes. Please pro-846

vide your response in the required format:847

<|box_start|>(top_x, top_y),(bottom_x, bot-848

tom_y)<|box_end|>. Ensure your output ad-849

heres to these constraints and remains con-850

cise.851

Instruction evolution Prompts.852

1. Page Description Annotation. I will provide853

you with a mobile page. Please describe the854

current page. Your description should include855

the content of the page and its general func-856

tionality. Please note that the descriptions you857

generate should be of moderate length. Your858

page description should match the actual im-859

age.860

2. Action Thought Annotation. **QUERY**:861

task, **ACTION HISTORY**: To proceed862

with the query, your past actions include: ac- 863

tion history, **NEXT ACTION**: This is 864

the next action you need to take: coat ac- 865

tion, **TASK**: Given the screen and the 866

above information, you have three tasks to 867

do. First, you have to analyze what you have 868

done. Second, you should analyze the screen 869

for relevant details that might pertain to the 870

given query. This includes checking for spe- 871

cific applications, icons, or buttons that are 872

visible and any information or results that 873

are currently displayed on the screen. Tip: 874

If the screen does not have the information 875

you need, you can scroll left or scroll up to 876

try to get the information. Don’t answer this 877

logic question by saying that because the pro- 878

vided **NEXT ACTION** is..., therefore, the 879

next action is... You need to think carefully 880

on your own. You must answer the question 881

with suitable lengths and the following for- 882

mat: ’Think: I have done..., Current screen 883

is..., I need to... So the next action is ...’ Your 884

final action should be the same as the NEXT 885

ACTION above. 886

3. Q&A Annotation. Your goal is to draw in- 887

spiration from the given images and image de- 888

scription information to create multiple new 889

questions and answers. This new creation is 890

closely related to the given image and infor- 891

mation, but the answers involved should be di- 892

rectly derived from the given information, be- 893

cause UI positions and UI text are one-to-one 894

correspondence. Specifically, you should con- 895

struct the following three types of questions 896

and answers, a total of 15: 1. the function 897

of some elements in the image. 2. Ground- 898

ing questions and answers (the coordinates 899

and approximate location of the target in the 900

image). 3. Partial detailed information ques- 901

tions and answers (the structural relationship 902
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between multiple elements, type, style, etc.).903

Please try to keep your questions and answers904

diverse and informative, and ignore the mes-905

sage in the device status bar. Here is the in-906

formation related to the image: UI positions:907

{ui positions}, UI text: {ui text}, coat screen908

desc: {coat screen desc}, Please provide the909

following information in JSON format with910

the key questions and answers, and Don’t add911

annotation parsing:912

C IPL Scaling Analysis913

In the first four rounds of DPO pairs, the number914

of CLICK positive samples is 1731, 1496, 1485,915

1475, while the number of PRESS positive samples916

is 580, 749, 579, 315. During the first round of IPL,917

when PRESS accuracy dropped to 10.18%, CLICK918

has the highest count at 1731. In the following919

round, CLICK decreased by 235 (1731 → 1496),920

while PRESS increased by 169 (580 → 749). After921

this round of training, PRESS Acc. recovers to922

31.07%, leading to a gradual decline in the propor-923

tion of this action type in the following round of924

sampling. In subsequent rounds, their ratio gradu-925

ally stabilizes. For detailed sampling data changes,926

please refer to Figure 7.927

D CoaT Action Level Sampling928

As shown in Figure 8, before instruction evolution,929

the distribution is highly concentrated, with only930

8 points exceeding 1000 (including 3 points above931

1200). After instruction evolution, the distribution932

becomes more balanced, with 20 points exceeding933

1000 (including 2 points above 1500).934

Potential correct space ratio. The proportion of935

|α|+ |β| represents the potential correct space on936

the training data, and the change of this metric937

can clearly express the agent’s ability to repair and938

reason out the correct process based on the correct939

answer.940

E Case Study941

Unstable annotation preferences. As shown in942

Figure 9, the left section illustrates two different943

annotation preferences when searching for an app944

from the Home Page: SCROLL UP and SCROLL945

LEFT, leading to different destination pages. The946

right part shows the overall preference distribution947

when annotators need to find an app. In rare cases,948

the annotation involves clicking on Google Play949

Store to perform a search. This phenomenon is 950

quite common because, fundamentally, the task 951

completion paths for a UI Agent are diverse. This 952

is also the key difference between online evaluation 953

and offline data evaluation. From this, we observe 954

that RL training on data with unstable preferences 955

performs worse than SFT (e.g., AITZ SCROLL). 956

This is because the DPO pair training method inher- 957

ently attempts to correct errors in sampled prefer- 958

ences. As a result, the agent oscillates between two 959

decisions when encountering the same GUI and 960

instruction, failing to achieve consistent alignment. 961

Action Equivalence. Unlike Unstable Annotation 962

Preferences, where different actions lead to differ- 963

ent but equivalent pages, the issue here arises from 964

annotators’ random labeling habits in the training 965

data, preventing the model from learning a con- 966

sistent preference. Action Equivalence refers to 967

the phenomenon where multiple actions on the 968

same page can lead to the target page. However, 969

since only one action is annotated as correct, other 970

valid actions are mistakenly treated as incorrect. As 971

shown in Figure 10, after entering a search query, 972

clicking on a suggested item in the recommenda- 973

tion bar, and pressing the Enter key on the keyboard 974

produce the same effect. Similarly, when navigat- 975

ing back, clicking the on-screen back button and 976

pressing the hardware back button yield the same 977

outcome. 978

Action Level Sampling. As shown in Figure 4, 979

unlike mathematical reasoning, the CoaT process 980

may not exhibit clear logical or computational er- 981

rors. For a given action, a sampling CoaT data may 982

produce hallucinations (Page Description) due to 983

insufficient detail in the page description or fabri- 984

cated elements; generate repetitive thoughts (Ac- 985

tion Thought) due to neglecting action history; de- 986

scribe the wrong relative position of the correct 987

element (CoaT Action); or misgrounding an ele- 988

ment (Grounding), which is then classified as a 989

negative sample. At the same time, outputs with 990

more detailed and accurate descriptions, diversified 991

thoughts, and different ways of describing the same 992

widget are classified as positive samples. Negative 993

examples may be disadvantageous compared to 994

positive examples, for example, because the de- 995

scription of the page is not detailed enough or the 996

positioning of the elements is not accurate enough. 997

At the same time, the wrong process may also give 998

the correct result, but this is a very rare case. In 999

this example, negative samples are generated due 1000

to the following three reasons: (1) Rough page 1001
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Figure 9: The left figure shows an example of unstable annotation preferences in AMEX, while the right figure
presents the proportion of this type of annotation.

description: The page contains eight app icons,1002

but the agent’s description includes only four apps:1003

Play Store, Gmail, Phone, and YouTube; (2) Hal-1004

lucinated Thought: The agent is unclear about its1005

current page location. In reality, it is on the Home1006

page, but it mistakenly believes it is in the Play1007

Store (e.g., "The Play Store app is already open").1008

(3) Fabricated Position and Elements: The agent1009

generates the action "Click on the ’Spotify’ app",1010

even though there is no Spotify icon on the current1011

page. This hallucination may stem from the instruc-1012

tion. Additionally, the Play Store icon should be1013

located at the lower left part of the screen, but the1014

agent incorrectly describes it as being in the middle1015

and lower middle part.1016
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Figure 10: An example from AITZ demonstrates that when the task and image are the same, multiple actions may
navigate to the same page.
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Instruction : Install app \”Spotify\”

Page Description (0.325) Page Description (0.7) Page Description (1)

This is a screenshot of a smartphone 
home screen displaying a clean and 
simple layout. At the top, the status bar 
shows the time as 5:01 and various icons 
indicating network signal, Wi-Fi 
connection, and battery status. Below 
the status bar, there is a search bar for 
quick web searches. The main part of 
the screen shows a grid of app icons, 
including the Google, Gmail, Google 
Photos, and YouTube, along with a dock 
at the bottom containing the Phone app, 
Messages, Google Chrome, and Google 
Maps. The top of the screen has a menu 
with options for \"Home settings,\" 
\"Widgets,\" and \"Wallpapers,\" 
suggesting quick access to these 
settings.

This is a screenshot of a smartphone 
home screen displaying a clean and 
simple layout. At the top, the status 
bar shows the time as 5:51 and various 
icons indicating network strength, 
battery life, and more. Below the 
status bar, there's a search bar for 
quick web searches. The main part of 
the screen shows a grid of app icons, 
including the Play Store, Gmail, Phone, 
and YouTube, suggesting a focus on 
communication, media, and 
entertainment. There are also three 
quick settings options available: 
\"Home settings,\" \"Widgets,\" and 
\"Wallpapers,\" which likely provide 
quick access to customization options 
for the home screen. 

This is a screenshot of a smartphone 
home screen displaying a clean and 
simple layout. At the top, the status 
bar shows the time as 5:51 and various 
icons indicating network signal, Wi-Fi, 
and battery status. Below the status 
bar, there's a search bar for Google. 
The main part of the screen features 
a dock with five app icons: Play Store, 
Gmail, Phone, Chrome, and YouTube, 
and above the dock, there are three 
quick settings options: \"Home 
settings,\" \"Widgets,\" and 
\"Wallpapers.\" The navigation bar at 
the bottom includes a back button, 
home button, and a recent apps button 
for multitasking.

Ground Truth: Click on the 
Play Store app located at the 
left and lower middle part of 
the screen.

Action Thought (0.55)

The Play Store app is already 
open, indicating that the next 
step is to search for and install 
the \"Spotify\" app. Possible 
actions are to tap on the Play 
Store icon to continue with the 
installation process.

Click on the 
Play Store app 
located at the 
left and lower 
middle part of 
the screen.

CoaT Action (1)

Click on the 
Play Store icon 
located at the 
middle and 
lower middle 
part.

CoaT Action (0.1)

The Play Store icon is visible on 
the dock, which is relevant for 
the given query to install Spotify. 
Possible actions are to tap on the 
Play Store icon to open it and 
then use the search function 
within the Play Store to find and 
install the Spotify app.

The Play Store icon is visible on 
the dock, which is relevant to the 
given query of installing Spotify. 
Possible actions are to tap on the 
Play Store icon to open it and then 
use the search function within the 
Play Store to find and install 
Spotify.

Action Thought (0.1)

The Play Store app is already 
open, and the next logical step is 
to search for and install the 
\"Spotify\" app. Possible actions 
are to use the search bar at the 
bottom of the screen to type in 
\"Spotify\" and proceed with 
the installation process.",

Click on the 
\"Spotify\" app 
located at the 
lower middle left 
part of the 
screen.

Click on the 
\"Spotify\"
app located at 
the lower 
right.

CoaT Action (0.1)

Action Thought (1) Action Thought (1)

Click on the 
Play Store 
app located 
at the lower 
left.

Click on the 
Play Store app 
located at the 
lower left part 
of the screen.

Click on the Play 
Store app located 
at the left and 
lower middle part 
of the screen.

Click on the Play 
Store app

CoaT Action (1) CoaT Action (1) CoaT Action (1) CoaT Action (1)CoaT Action (0.1)

Groundning (1) Groundning (1) Groundning (0.1) Groundning (0.1) Groundning (1) Groundning (1)

(174,604),(194,624) (158,623),(178,643) (386,664),(406,684) (410,668),(430,688) (165,618),(185,638) (155,623),(175,643)

Groundning (1) Groundning (1)

(132,579),(152,599)(161,584),(181,604)

Figure 11: A sampling tree from AITZ demonstrates how the value is calculated.
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