
Under review as a conference paper at ICLR 2023

SEMI-SUPERVISED NODE CLASSIFICATION WITH IMBALANCED
RECEPTIVE FIELD

Anonymous authors
Paper under double-blind review

ABSTRACT

The imbalanced data classification problem has aroused lots of concerns from both academia and
industrial since data imbalance is a widespread phenomenon in many real-world scenarios. Although
this problem has been well researched from the view of imbalanced class samples, we further argue
that graph neural networks (GNNs) expose a unique source of imbalance from the influenced nodes of
different classes of labeled nodes, i.e., labeled nodes are imbalanced in terms of the number of nodes
they influenced during the influence propagation in GNNs. To tackle this previously unexplored
influence-imbalance issue, we connect social influence maximization with the imbalanced node
classification problem, and propose balanced influence maximization (BIM). Specifically, BIM
greedily assigns the pseudo label to the node which can maximize the number of influenced nodes in
GNN training while making the influence of each class more balance. Experiments on four public
datasets demonstrate the effectiveness of our method in relieving influence-imbalance issue. For
example, when training a GCN with the imbalance ratio of 0.1, BIM significantly outperforms the
state-of-the-art baseline ReNode by 8.9%-13.5% in four public datasets in terms of the F1 score.

1 INTRODUCTION

Graph Neural Networks (GNNs) have achieved great success in many graph-based applications Zhang et al. (2020); Wu
et al. (2020a;b); Guo et al. (2021); Wang et al. (2019). One common graph task is semi-supervised node classification,
in which a small ratio of nodes are labeled. Despite the effectiveness and popularity, most GNNs assume a balanced
label distribution Wu et al. (2019); Velickovic et al. (2018); Gasteiger et al. (2019), while this assumption is hard to be
tenable due to the time-intensive and resource-expensive data annotation process. In many real-world scenarios, node
classes are imbalanced in graphs, i.e., some classes have significantly fewer samples than other classes.

Take fake account detection as an example, the majority of users in a social network platform are real users while only
a small portion of them are bots Salazar et al. (2018). As for the topic classification for website pages, the materials
for some topics are scarce, compared to those on-trend topics. Due to the influence propagation in GNNs, the class
for each node is no longer simply determined by its respective features but is also strongly impacted by its connected
nodes Wang & Zhang (2007), and the majority class will influence more nodes. The topological interplay makes the
imbalance node classification problem more serious. As a result, applying GNNs directly to imbalanced graph data
tends to bias to majority classes in semi-supervised node classification.

While the imbalanced data classification problem has been well-studied previously Sun et al. (2009; 2007); Haixiang
et al. (2017); Johnson & Khoshgoftaar (2019), most works ignore key characteristics of GNNs and make this problem
still under-explored. A few methods are particularly proposed for GNNs to bridge this gap. For example, both
DR-GCN Shi et al. (2020) and ReNode Chen et al. (2021) introduce more carefully designed loss functions during the
training process. Motivated by the classical SMOTE algorithm Chawla et al. (2002), GraphSMOTE Zhao et al. (2021)
re-balances the graph data by generating more pseudo nodes and edges. Although the above methods can alleviate the
issue of imbalanced node classes, they ignore the influence propagation of GNNs, leading to sub-optimal performance.

Due to the recursive neighborhood expansion in the propagation process, the learned representation of each labeled
node will be influenced by itself and its K-hop neighbors, i.e., nodes in its receptive field (RF) Ma et al. (2021); Zhang
et al. (2021a). Consequently, a K-layer GNN can incorporate the unlabeled nodes within the RF of the labeled nodes
into the model training, and thus benefits from such a semi-supervised training process Zhang et al. (2021c). Besides
the well-studied problem of imbalanced class samples, GNNs especially suffer from the issue of imbalanced RF in
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(b) The impact of imbalanced class samples and RF
Figure 1: The imbalance RF and its impact on the node classification performance of GCN.

the semi-supervised node classification task, but this issue has not been investigated before. As shown in Figure 1(a),
compared with the labeled node with class 2, the labeled node with class 1 lies in a denser region and can influence
more unlabeled nodes in a 2-layer GNN, leading to the issue of imbalanced RF.

To measure the impact of the imbalanced class distribution and imbalanced RF on the semi-supervised node classification
task of GNNs, we randomly select various labeled sets and train a 2-layer Graph Convolution Networks (GCN) for
binary classification task on the Cora dataset Kipf & Welling (2017). Note that the class sample imbalance ratio is
the proportion of minority class samples to majority class samples, and the RF imbalance ratio is calculated by the
number of nodes influenced by different classes of samples. A smaller imbalance ratio represents a higher imbalance
degree. Specifically, we fix the minority class size to 3 and RF to 165, and then vary the majority class size. As
expected, the experimental results in the Figure 1(b)(left) show that a small imbalance ratio of the class sample will
significantly decrease the F1 score on the test set. On the contrary, in the right figure, we control all the class sizes
equally as 8 and train the GCN model on the node sets with various RF imbalance ratios. Surprisingly, we also find a
similar phenomenon of performance degradation from the imbalanced RF. In fact, the problem of imbalanced RF will
degenerate into the imbalanced class sample if we remove all edges from the graph data, thus it can be seen as a more
general type of problem for imbalanced classification.

We name the nodes with large influence magnitude in RF as influenced nodes (See definition 2), and propose a fundamen-
tally new imbalanced node classification method for GNN–balanced influence maximization (BIM)–by simultaneously
maximizing and balancing the number of influenced nodes. By connecting social influence maximization Li et al.
(2018); Golovin & Krause (2011); Chen & Krause (2013) with imbalanced node classification, BIM consists of both the
influence maximization and influence balance. For influence maximization, BIM greedily assigns the pseudo label to the
node which can incorporate more unlabeled nodes into the GNN training (i.e., maximize the influence). Considering the
influence balance, BIM also requires this node to make the number of influenced nodes in each class more balanced.

In summary, the core contributions of this paper are 1) New Problem. To the best of our knowledge, we are the first to
consider the influence imbalance issue in imbalanced node classification with GNNs; 2) New Method. Motivated by
social influence maximization, we propose a new perspective to consider the influence maximization and influence
balance in the imbalanced node classification of GNN, and the ablation study validates the effectiveness of these two
components. Furthermore, we combine influence maximization and influence balance in a unified BIM framework; 3)
SOTA Performance. The empirical study demonstrates that BIM significantly outperforms the compared baselines in
different imbalanced ratios. For example, BIM outperforms the competitive baseline ReNode by 8.9%-13.5% in terms
of F1 score when training a GCN with an imbalance ratio of 0.1.

2 PRELIMINARY

2.1 PROBLEM FORMULATION

Suppose we have a graph G = (V , E) with |V| = n nodes and |E| = m edges, the node adjacency matrix with self
loops is denoted as Ã ∈ Rn×n, the node feature matrix is X = {x1,x2...,xn} in which xi ∈ Rf represents the node
attribute vector vi, and Y = {y1,y2...,yl} is the one-hot label matrix for c classes. The entire node set V is partitioned
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into training set Vtrain (including both the labeled set Vl and unlabeled set Vu), validation set Vval and test set Vtest.
The goal is to predict the labels for nodes in the test set Vu with the supervision of labeled set Vl.

2.2 GRAPH NEURAL NETWORKS

Let X(k) be the feature matrix of k-th layer, and W(k) are the model weights of k-th GNN layer. Taking graph
convolution network (GCN) (Kipf & Welling, 2017) as an example, each GCN layer can be formulated as:

X(k+1) = δ
(
D̃− 1

2 ÃD̃− 1
2X(k)W(k)

)
, (1)

where X(0) (equals X) is the original node feature matrix, and D̃ is the diagonal node degree matrix used to normalize
Ã. Due to the influence propagation along edges, each node in GNNs can enhance its learned representation by distant
neighbours, and thus boosts the semi-supervised node classification performance. However, the influence propagation
also makes the imbalance node classification problem more severe since RF (i.e., the influenced nodes) will be extremely
imbalanced.

2.3 IMBALANCED NODE CLASSIFICATION

Recent solutions for imbalanced node classification in graph can be roughly categorized into re-sampling and re-
weighting methods. Re-sampling methods (GraphSMOTE Zhao et al. (2021) and ImGAGN Qu et al. (2021)) re-balance
the class size by generating minority class nodes in the training set. Apart from simulating the nodes’ attributes, these
methods have to learn complicated topological structure distribution at the same time and generate connections for
pseudo nodes. In terms of re-weighting methods, they adjust the model training procedure to up-weight the minority
class samples. DR-GCN Shi et al. (2020) and RA-GCN Ghorbani et al. (2022) leverage the adversarial training to learn
higher weights for under-represented classes. ReNode Chen et al. (2021) studies topology-imbalance problem and
adjusts the training weights for labeled nodes based on class boundaries. However, all these works ignore the issue of
label imbalanced influence, which is a key property in semi-supervised node classification.

3 PROPOSED METHOD

This section presents BIM, the first method that considers both the influence maximization and influence balance of the
imbalanced node classification with GNNs. To make more unlabeled nodes influenced and incorporated into the training
process, we firstly introduce the influence maximization in Sec. 3.1, and then explain how to ensure the influence
balance in Sec. 3.2. Last, we combine these two modules and introduce balanced influence maximization in Sec. 3.3.

3.1 INFLUENCE MAXIMIZATION

Inspired by Zhang et al. (2021b); Wang & Leskovec (2020); Xu et al. (2018), we measure the influence of a node vi on
vj by how much a change in the input label of vj affects the aggregated label of vi after k iterations label propagation.
Specifically, we define the influence score of node vi on node vj as the gradient of y(k)

j with respect to yi, and the final
influence score is normalized as:

I(vj , vi, k) =
Î(vj , vi, k)∑

vw∈V Î(vj , vw, k)
, Î(vj , vi, k) =

∥∥∥E[∂y(k)
j /∂yi]

∥∥∥
1
. (2)

Larger I(vj , vi, k) means that vi has more probability to arrive at vj after the k-steps random walk. Generally, the
source node vi should contribute more in measuring its influence on another node vj if its label is reliable. Considering
the influence of each class of labeled nodes, we define the node class reliability for different classes.

To enhance the label supervision and incorporate more unlabeled nodes into the GNN training, we consider both the
labeled nodes and the reliable soft label predicted by the GNN model itself.
Definition 1 (Node class reliability score). Suppose ỹi is the predicted softmax outputs of GNN models on node vi,
the node class reliability score of node vi on class n is defined as:

ri,n =

{
yi,n if vi ∈ Vl

ỹi,n if vi ∈ Vu
, (3)
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where yi = [yi,1, yi,2, ..., yi,c] is the original one-hot label, and ỹi = [ỹi,1, ỹi,2, ..., ỹi,c] is the predicted soft label by
the GNN model for c classes.

Larger ri,n means node vi is more likely to belong to the n-th class. Considering the influence score, the n-th class
reliable influence score of node vi on node vj after k-step influence propagation is

Qn(vj , vi, k) = ri,nI(vj , vi, k). (4)

From the perspective of label propagation, node vi will have larger influence on node vj in the n-th class if (1) node
vi has large probability to have class n and (2) node vi has more chance to propagate its label information to vj after
k-step influence propagation in a k-layer GNN.
Definition 2 (Influenced nodes). Given a set of labeled seeds V ′ (including both the original labeled set Vl and pseudo
labeled set Vp), the influenced node set by class n is defined as:

σn(V ′) =
⋃

vj∈V,Qn(vj ,V′,k)>Ti

{vj}, (5)

And the full influenced nodes from different classes are

σ(V ′) =
⋃

n∈{1,...,c}

{σn(V ′)}, (6)

where Qn(vj ,V ′, k) =
∑

vi∈V′
Qn(vj , vi, k) s.t. max(ri) > Tc. Here we use the threshold Tc to filter out those

unreliable soft labels. Besides, the threshold Ti = 0 means we consider an unlabeled node v is influenced as long as it
is in RF of any labeled nodes, but the influence may be so weak for the GNN training. So, we assume an unlabeled
node is influenced if the reliable influence score is larger than Ti. By setting an appropriate Ti and maximizing σ(V ′),
more unbalanced nodes will get sufficient magnitude of influence from the labeled nodes, and thus improve the training
process.

3.2 INFLUENCE BALANCE

To measure the ratio of imbalanced influence, we first get the distribution of the number of nodes influenced by each
class. Specifically, we define the imbalance ratio of influence as:

B(V ′) =

c∑
n=1

pn(V ′)logpn(V ′)

log 1
c

, pn(V ′) =
|σn(V ′)|
c∑

n=1

|σn(V ′)|
, (7)

where pn(V ′) is the distribution score of the n-th class. B(V ′) ∈ [0, 1], and larger B(V ′) means the number of
influenced nodes by each class of nodes in V ′ is more balanced.

3.3 BALANCED INFLUENCE MAXIMIZATION

To balance and maximize all the influenced nodes in the semi-supervised GNN training, we aim to select and annotate a
subset of unlabeled nodes with pseudo soft labels and get the new labeled set V ′. Since different datasets may have
different ratios of class sample imbalance and influence imbalance, we adopt a parameter α to adjust these two terms.
Specifically, we propose to find a subset V ′ according to the following Eq. 8:

max
V′

F (V ′) =
|σ(V ′)|
|V| + αB(V ′). (8)

Pseudo labeling. We first train the initial GNN model under the label supervision of the labeled set Vl (line 1), and
then get the corresponding softmax output Ỹ(0) (line 2). With the average prediction (Ŷ(i)) of different iterations of
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Algorithm 1: Working pipeline of BIM.

Input: The adjacent matrix Ã, degree matrix D̃, feature matrix X, labeled set Vl, unlabeled set Vu, one-hot label
matrix Y, iteration number H and maximum class size M .

Output: The predicted soft label matrix Ỹ.
1 Train initial model f (0) with Vl;
2 Use f (0) to predict the soft label matrix Ỹ(0), and set Ŷ(0) = Ỹ(0);
3 Initialize pseudo labeled set Vp = ∅;
4 for i = 0 to H − 1 do
5 while Minimum class size < M do
6 Select the node vj = argmax

v
F (Vl

⋃
Vp

⋃
{v | v ∈ Vu}) with Ŷ(i) according to Eq. 8;

7 if F (Vl
⋃
Vp

⋃
{vj}) ≤ F (Vl

⋃
Vp) then

8 return The predicted soft label matrix Ỹ(i).
9 Update Vp ← Vp

⋃
{vj};

10 Remove vj from Vu;
11 Set one-hot pseudo label yj and the label reliability score rj for vj ;
12 Train f (i) with the label supervision in Vl

⋃
Vp, and get model f (i+1);

13 Use f (i+1) to get the predicted soft label matrix Ỹ(i+1);
14 if i > 0 then
15 Update Ŷ(i+1) ← average(Ỹ(i+1), ..., Ỹ(1));
16 return The predicted soft label matrix Ỹ(H).

GNN models, if one class is imbalanced (i.e., the minimum class size is smaller than M ), we select one unlabeled node
vj to maximize and balance the number of influenced nodes according to the objective function defined in Eq. 8 (line 6).
If labeling vj with the model prediction cannot increase the objective score, we directly break this algorithm and return
the predicted soft label matrix Ỹ(i) (lines 7-8). Otherwise, we add the selected node to the pseudo labeled set Vp (line
9), and remove it from the unlabeled set Vu (line 10). According to Ỹ(i), the pseudo label yj of node vj is the class
with the maximum probability score in its soft label, and we define this probability score as the label reliability rj (line
11). Larger rj means the GNN model is more confident in its prediction, and the predicted pseudo label is more reliable.
We loop the above process until we cannot further maximize the objective score (lines 5-11).

Model training. After the pseudo labeling, we train the GNN model with both the original label and the pseudo label
(line 12) and predicted the new softmax outputs (line 13). Considering that nodes with larger label reliability will
contribute more to the training process, we adopt the weighted cross-entropy loss as: L = −

∑
vi∈Vl

⋃
Vp

riyi log ỹi in
the GNN training. Since these pseudo labels can be used to train a more accurate GNN model, and a better model can
in turn generate better pseudo labels, we loop this process H times (line 4). Besides, we average the model predictions
from all previous loops to further improve the accuracy of pseudo labels (line 15).

4 EXPERIMENTS

We test BIM on five real-world graphs to verify the effectiveness and aim to answer three questions. Q1: Compared
with other state-of-the-art baselines, can BIM achieve better classification performance? Q2: How do each component
(e.g., influence maximization, influence balance, iterative optimization and weighted loss) in BIM affect the model
performance? Q3: Can BIM generalize well to different imbalanced ratios and different GNN models? Q4: How to
explain the effectiveness of BIM?

4.1 EXPERIMENT SETTINGS

Datasets and Baselines. We evaluate BIM on five real-world networks: Cora, Citeseer, PubMed Kipf & Welling (2017),
Ogbn-arxiv Hu et al. (2020) and Amazon-computers Shchur et al. (2018). Following the setting of previous works Zhao
et al. (2021), all majority classes of training data have 20 nodes and minority classes include 20×imbalance ratio
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Table 1: Performance of different compared baselines with GCN as the base model. The best performance is bold

Cora Citeseer PubMed Ogbn-arxiv Amazon-computers
Method F1 score AUC-ROC F1 score AUC-ROC F1 score AUC-ROC F1 score AUC-ROC F1 score AUC-ROC

GCN 52.9±2.1 87.5±0.9 21.7±0.4 74.7±1.2 51.8±2.5 85.2±5.9 30.1±1.4 80.0±0.6 73.9±1.1 96.0±0.1
ROS 53.0±3.8 85.7±1.3 22.6±0.4 75.1±0.6 61.5±0.7 87.3±0.9 35.8±1.5 82.3±1.7 74.5±1.2 96.0±0.2
SMOTE 53.3±3.2 86.1±2.0 22.4±0.4 75.0±0.8 60.6±0.9 87.1±0.5 34.1±1.6 82.0±1.7 73.5±0.9 95.7±0.8
Reweight 55.9±1.4 88.1±0.5 22.1±0.4 75.3±1.2 59.4±1.2 88.4±0.6 33.7±1.2 80.7±0.7 76.0±0.1 95.9±0.3
DR-GCN 53.3±1.6 83.5±1.1 22.5±2.3 75.0±4.1 57.5±7.2 88.3±1.8 30.2±1.4 82.7±1.3 76.1±1.3 95.8±0.6
GraphSMOTE 58.9±2.0 87.4±0.4 22.2±0.3 75.3±0.1 68.2±0.9 85.4±0.3 39.7±1.6 79.3±1.2 76.7±0.9 96.9±0.4
ReNode 60.3±2.3 88.7±1.4 35.2±4.5 77.1±1.6 68.8±1.3 90.3±0.2 36.7±1.1 81.8±0.8 77.2±0.6 96.6±0.2

BIM w/o IO 63.7±3.1 87.5±1.7 39.8±5.6 78.4±2.3 77.6±1.7 90.8±0.9 45.1±1.9 83.8±1.2 78.1±0.8 96.1±0.2
BIM 68.9±2.2 89.6±1.1 48.7±7.1 82.0±2.7 78.6±0.6 91.2±0.4 45.6±1.9 84.2±1.4 78.9±1.3 96.7±0.1

nodes. If not specified otherwise, imbalance ratio is set to 0.1 for all datasets and experiments. The other properties
of these datasets are summarized in Appendix A.1.

We compare representative and state-of-the-art methods for the class imbalance problem, which include: (1) Ran-
dom over-sampling(ROS): sample the nodes and their edges in minority classes to re-balance the classes; (2)
SMOTE Chawla et al. (2002): interpolate a minority sample and its nearest neighbors in the same class. The edge of
the synthetic minority sample is set to be the same as the target node; (3) Reweight Ren et al. (2018): a cost-sensitive
method by increasing the category weight of classification loss function; (4) DR-GCN Shi et al. (2020): a representation
learning method that enhances the separation of nodes from different classes by conditional adversarial training and
distribution alignment; (5) GraphSMOTE Zhao et al. (2021): synthesize new minority nodes in graph embedding
space and generate edges by training an edge generator; (6) ReNode Chen et al. (2021): address the topology-imbalance
issue in the graph by re-weighting the influence of labeled nodes based on their relative positions to class boundaries.

Implementations. For a fair comparison, all these methods are tested on the same base GNN model. Besides, we
tune or follow the original papers to find the optimal hyper-parameters for each baseline. To eliminate randomness,
we repeat each experiment 10 times and report the average test accuracy and standard deviation. The implementation
details are shown in Appendix A.2,

Evaluation metrics. The performance of each baseline is evaluated by three classification task criteria: classification
accuracy(ACC), AUC-ROC score and F1 score. ACC is the ratio of corrected samples among test samples. AUC-ROC
score shows the probability that the corrected class is ranked higher than other classes. F1 score is the harmonic mean
of precision and recall for each class. Note that, because the AUC-ROC score and F-measure are the non-weighted
averages over each class, they can avoid the majority classes dominating the final performance.

4.2 EXPERIMENT RESULTS

Imbalanced Classification Performance. To answer Q1, we use GCN as the base model and compare BIM with 7
baselines on five graph datasets. The average F1 and AUC results with standard deviation are shown in Table 1, and the
ACC results can be found in Appendix A.3. From the tables, we observe that BIM consistently outperforms baselines
in all datasets on different evaluation metrics, which validates the effectiveness of BIM. Compared with the naive
GCN model, ROS, SMOTE and DR-GCN perform up and downs but ReNode, Reweight, and GraphSMOTE show
performance improvement on different metrics. This indicates that cost-sensitive learning and re-sampling method
designed for graph data could mitigate the class imbalance problem well. However, when ignoring graph structure
information, simply duplicating the minority samples or distribution alignment approaches are counterproductive.
Furthermore, compared with the generation model GraphSMOTE and DR-GCN, BIM considers the semi-supervised
learning process and avoids introducing noises by referring to original unlabeled nodes and edges in the graph,
contributing to better classification performance in imbalanced scenarios.

Ablation Study. BIM aims to maximize the influence and balance each class’s influence at the same time. To answer
Q2 and verify the necessity of these two components, BIM is evaluated on the same base model while disabling one
component at a time when the imbalance ratio is 0.1. Firstly, we compare BIM with pseudo label random selection
strategy(RS) which selects pseudo labels until classes are balanced. Then, we evaluate BIM: (i) without influence
maximization when selecting the pseudo labels (called “w/o IM”); (ii) without the influence balance when selecting
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Table 2: Ablation study results on the Cora and Citeseer datasets. Note that the base model used here is GCN and the
best performance is bold.

Cora Citeseer
Method F1 score ACC AUC-ROC F1 score ACC AUC-ROC

RS 66.5±1.2 71.5±1.3 89.5±0.8 47.3±2.9 52.2±2.2 81.7±1.0
BIM w/o IB 66.4±4.0 72.4±2.8 88.5±1.6 47.8±8.2 52.4±6.9 82.0±3.0
BIM w/o IM 66.9±2.6 72.3±2.1 89.6±1.3 46.7±6.3 51.0±5.8 80.7±2.7
BIM w/o WL 68.0±1.3 73.8±1.2 90.2±0.9 47.0±5.2 51.2±4.7 82.0±1.6
BIM 68.9±2.2 74.0±1.9 89.6±1.1 48.7±7.1 53.2±6.2 82.0±2.7

0 1 2 3 4 5 6
Stage

0.54

0.58

0.62

0.66

0.70

0.74

F1
 sc

or
e

Validation set
Test set

0 1 2 3 4 5 6
Stage

0.86

0.88

0.90

R
O

C
-A

U
C

Validation set
Test set

Figure 2: Iterative optimization of BIM on the Cora dataset.

the pseudo labels (called “w/o IB”); (iii) without the weighted loss in the training procedure (called “w/o WL”); (iv)
without the iterative optimization for multiple times (called “w/o IO”). Table 2 displays the results of these settings.

First, the classification results will decrease on all three metrics if influence maximization is ignored. The F1 score
gap in Citeseer dataset is as large as 2% if influence maximization is unused since adopting influence maximization
can incorporate more unlabeled nodes to the GNN training under the semi-supervised training process. Besides,
the influence balance component avoids the skewed label influence from different classes, contributing to a 2.5%
improvement in the F1 score in Cora. Besides, RS achieves very competitive performance if we adopt BIM without
influence maximization or influence balance. This means that both IM and IB are important objectives in our proposed
algorithm, and we should not optimize one of them individually.

Due to the imbalanced training data distribution and weak presentation ability of the initial model, the confidence scores
will be inaccurate and there will be lots of noise introduced in the pseudo label. To improve the reliability of pseudo
labels, we use iterative optimization in the pseudo labeling procedure and weighted loss in the training procedure. The
experimental results with the iterative optimization procedure are shown in Figure 2. With the increase of the iteration
stage H (defined in Algorithm 1), both F1 score and AUC-ROC score increase gradually and then become stable,
indicating the significant effect of iterative optimization on the noise handling ability of BIM. Furthermore, we compare
BIM without iterative optimization(called "w/o IO") with the SOTA methods in Table1 and 7. Although iterative
optimization helps improve classification performance, BIM w/o IO achieves competitive results on different metrics.
As for training procedure, we evaluate BIM without weighted loss (called “w/o WL”) and performance decrease in
Table 2 verifies the anti-noise ability of weighted loss strategy.

Varying Imbalance Ratio. To answer Q3, we test the performance of different methods with respect to the imbalance
ratio on the Cora dataset. All methods are based on GCN and the imbalance ratio varies as 0.1, 0.3, 0.5, 0.7. The
experimental results are shown in Table 3. We observe that, among the traditional methods (i.e., ROS, SMOTE, and
Reweight), Reweight has the best performance with different imbalance ratios. Our proposed method BIM could
successfully generalize to different imbalance ratios and consistently outperforms other compared methods on all three
evaluation metrics. Especially for the extreme imbalance scenario, the performance gain of BIM is more significant. For
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Table 3: Experiment results of different compared baselines on Cora under various imbalance ratios. The base model
used here is GCN.

Imbalance ratios

0.1 0.3 0.5 0.7
Method F1 score ACC AUC-ROC F1 score ACC AUC-ROC F1 score ACC AUC-ROC F1 score ACC AUC-ROC
GCN 52.9±2.1 62.7±1.4 87.5±0.9 69.8±0.7 73.3±0.6 95.0±0.2 76.3±0.8 77.6±0.7 96.1±0.1 80.1±0.6 81.1±0.5 96.4±0.1
ROS 53.0±3.8 63.4±2.3 85.7±1.3 73.2±1.1 75.5±0.7 94.9±0.2 77.3±1.0 78.4±0.8 95.9±0.1 80.5±0.6 81.4±0.5 96.5±0.1
SMOTE 53.3±3.2 63.5±2.1 86.1±2.0 70.7±0.9 73.7±0.8 94.9±0.2 77.4±0.9 78.6±0.8 95.9±0.2 80.3±0.5 81.3±0.5 96.5±0.1
Reweight 55.9±1.4 65.3±1.0 88.1±0.5 75.4±0.9 77.0±0.9 95.4±0.2 78.2±0.7 79.4±0.6 96.2±0.1 80.8±0.4 81.5±0.6 96.7±0.1
DR-GCN 53.3±1.6 63.4±1.5 83.5±1.1 72.9±1.9 75.4±1.8 95.4±0.4 78.1±1.3 79.3±1.5 95.9±0.1 80.9±0.6 81.5±0.6 96.2±0.2
GraphSMOTE 58.9±2.0 67.8±1.5 87.4±0.4 72.8±1.4 73.9±1.0 91.4±0.8 79.1±1.4 80.0±1.3 96.3±0.3 80.4±0.6 81.2±0.5 96.3±0.2
ReNode 60.3±2.3 67.2±2.5 88.7±1.4 76.3±1.5 78.0±1.3 95.4±0.5 79.1±1.1 80.0±1.2 96.4±0.4 81.2±0.8 81.8±0.8 96.8±0.1
BIM 68.9±2.2 74.0±1.9 89.6±1.1 79.2±1.4 80.2±1.5 95.6±0.3 81.1±0.9 82.0±0.8 96.4±0.3 82.1±0.7 82.8±0.7 96.8±0.1

Table 4: Experiment results on Cora with GraphSAGE as base model.

Methods F1 score ACC AUC-ROC

GraphSAGE 52.5±3.5 61.0±2.6 83.9±1.4
ROS 53.0±2.7 61.4±1.4 84.1±1.2
SMOTE 53.4±2.8 62.6±1.7 81.8±2.2
Reweight 55.1±2.2 62.8±1.2 85.3±1.2
GraphSMOTE 65.8±0.5 70.5±0.4 88.4±0.2
ReNode 58.9±2.4 66.2±1.5 88.9±1.2
BIM 66.1±1.4 70.9±1.6 89.0±0.9

example, BIM exceeds the the best baseline, i.e., ReNode, by a margin of 8.6%, 2.8%, and 0.9% in terms of the F1 score,
ACC and AUC-ROC, respectively. Under a high imbalance ratio scenario, generation methods (i.e., GraphSMOTE and
DR-GCN) have to generate a large number of pseudo nodes and edges, but the noise will also be introduced to decrease
the learning performance. On the contrary, BIM still has a stable performance gain on all three metrics, which indicates
the superiority of introducing original unlabeled nodes and edges into the training procedure.

Influence of Base Model. To answer Q3 and validate the generalization ability of BIM, we set the imbalance ratio is
set as 0.1 and test BIM with another widely used GNN model GraphSAGE. For a fair comparison, other model-free
methods, including ROS, SMOTE, Reweight, ReNode, and GraphSMOTE, all adopt GraphSAGE as the base model.
The experimental results on the Cora dataset are shown in Table 4. Similar to the results in GCN, all these compared
baselines can alleviate the imbalance issue and improve the classification performance of GraphSAGE. Moreover, the
graph-specific over-sampling method (i.e., GraphSMOTE) is more effective and gets a higher performance gain when
using GraphSAGE as base model. Compared with all these methods, BIM consistently reaches the highest classification
results on all three evaluation metrics. For example, it outperforms the competitive baseline ReNode by a margin of
7.2% and 4.7% in F1 score and ACC, respectively.

Parameter Sensitivity Analysis. In this part, we analyze the influence of hyper-parameters on BIM. The experiment
is conducted on Cora and the base model is selected as GCN. As shown in Figure 3, Tc is quite important which
could significantly affect the classification result. For example, Tc should be controlled between 0.7 and 1 to get better
performance. Small Tc will introduce lots of noise to the pseudo labels and lead to performance degradation. Following
the increase of α, the model performance first increases and then decreases. This verified the effectiveness of both
influence maximization and influence balance, and the best results can be obtained with the appropriate value. To
sum up, BIM gets stable and high classification performance when α ranges from 1 to 5 and Tc ranges from 0.7 to 1,
indicating that the performance of BIM is robust to different parameters. More analyzes of other hyper-parameters are
summarized in Appendix A.4

Interpretability. To answer Q4, we intuitively explain the effectiveness of the proposed BIM from the perspective
of influence maximization and influence balance. Specifically, we set the imbalance ratio to 0.1, and evaluate the
distribution of all the influenced nodes and influenced nodes by minority classes for GCN and BIM on Cora. As shown
in Figure 4, the number of all influenced nodes can be increased by a large extent if we adopt BIM in GCN, which means
more unlabeled nodes can get sufficient influence and contribute to the training process. Besides, we also find that the
influenced nodes by minority classes in GCN can all be effectively increased with BIM. This means the influence of
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Figure 3: Parameter sensitivity results on the Cora dataset.

Figure 4: Influenced nodes of the Cora dataset for GCN and BIM. (a) Full Influenced nodes for GCN. (b) Influenced
nodes by minority class 1 for GCN. (c) Influenced nodes by minority class 2 for GCN. (d) Influenced nodes by minority
class 3 for GCN. (e) Full influenced nodes for BIM. (f) Influenced nodes by minority class 1 for BIM. (g) Influenced
nodes by minority class 2 for BIM. (h) Influenced nodes by minority class 3 for BIM.

minority classes is enhanced, and the influence imbalance issue can be effectively alleviated. The balanced and large
number of influenced nodes explains why BIM is effective to improve the performance of GCN in imbalanced node
classification. Besides the visualization of influenced nodes, we also visualize the node embeddings in Appendix A.6.

5 CONCLUSION

In this work, we investigate the imbalanced node classification problem with GNNs. Besides the widely known class
sample imbalance issue, we further find that the influence-imbalance issue widely exists in GNNs and hinders the
learning of semi-supervised node classification, but this issue has not been well studied before. By considering both
the influence maximization and influence balance, we propose BIM, a unified framework to maximize and balance
the influenced nodes of GNNs. Specifically, BIM greedily assigns the pseudo label to the node which can maximize
the number of influenced nodes in GNN training while making the influence of each class more balance. Extensive
empirical results have verified the effectiveness of BIM in four public graph datasets. For future work, we are extending
BIM to heterogeneous graphs so that it can adapt to more scenarios.
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A APPENDIX

The appendix is organized as follows:

A.1 More details about the datasets.

A.2 More details about the experimental implementation.

A.3 Accuracy comparison of different methods in different datasets.

A.4 Hyperparameter sensitivity analysis.

A.5 The analysis of time complexity.

A.6 The visualization of node embeddings.

A.7 More related works about social influence maximization.

A.1 DATASETS DETAILS

We select five well-known benchmark graph datasets to verify our proposed method, including Cora, Citeseer, PubMed,
Ogbn-arxiv and Amazon-computers. In these graphs, papers from different topics are considered as nodes, and edges
are citations among the papers. Each paper’s topic is regarded as a node class. For the first three datasets, the node
attributes are binary word vectors. For ogbn-arxiv, the papers’ feature vectors are obtained by averaging the embeddings
of words in their title and abstract, and 10 classes with the maximum class size are selected for more flexible control
of experimental settings. In Amazon-computers network, nodes represent goods and edges represent that two goods
are frequently bought together. Given product reviews as bag-of-words node features, the task is to map goods to
their respective product category. The properties of these datasets are summarized in Table 5. We follow the public
validation/test split in GCN Kipf & Welling (2017), where 500 nodes for validation and 1000 nodes for the test.
Following the setting of previous works Zhao et al. (2021), all majority classes of training data have 20 nodes and
minority classes include 20×imbalance ratio nodes. If not specified otherwise, imbalance ratio is set to 0.1 for all
datasets and experiments.

Table 5: Properties of five datasets.

Dataset # Nodes # Edges # Features # Classes # Minority
Classes

Cora 2708 5429 1433 7 3
Citeseer 3327 4732 3703 6 3
PubMed 19717 44338 500 3 1
Ogbn-arxiv 13515 23801 128 10 5
Amazon-computers 13752 491722 767 10 5
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A.2 IMPLEMENTATION DETAILS

The experiments are conducted on an Ubuntu 16.04 system with Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz, 4
NVIDIA GeForce GTX 1080 Ti GPUs and 256 GB DRAM. All the experiments are implemented in Python 3.9 with
Pytorch 1.12.1 on CUDA 10.1, and we use the ADAM optimization algorithm to train all the models. The model that
performs best on the validation set will be evaluated by test set. The hyper-parameters used in experiments are searched
by the grid search method or follow the original papers. The values for Tc, Ti, α and M are searched from {0.6, 0.65,
0.7, 0.75, 0.80, 0.85, 0.90, 0.95}, {1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3}, {0.1, 0.2, 0.5, 1, 2, 5, 10} and {20, 22, 24, 26,
28, 30} respectively. For the GCN-based model, we set the hidden embedding size as 64, the L2 norm regularization
weight decay as 1e-5. The values for learning rate, dropout rate, epoch, Tc, Ti, α and M are listed in Table 6. For the
GraphSAGE-based model, we set the hidden embedding size as 64, the dropout rate as 0.3, the L2 norm regularization
weight decay as 1e-5, and the learning rate as 0.05. The values for epoch, Tc, Ti, α and M are set as 500, 0.95, 1e-4, 0.2
and 20. Moreover, to eliminate randomness, each method is repeated ten times and the mean test accuracy and standard
deviation are reported.

Table 6: Hyper-parameters for tested datasets.

Cora Citeseer PubMed Ogbn-arxiv Amazon-
computers

Learning rate 0.08 0.08 0.09 0.03 0.08
Dropout 0.2 0.3 0.5 0.5 0.5
#Epochs 300 500 300 1000 300
Tc 0.85 0.65 0.65 0.80 0.60
Ti 5e-5 1e-5 5e-5 1e-4 5e-5
α 10 2 5 2 1
M 30 20 20 20 20

A.3 ACCURACY COMPARISON

Due to page limitations, we list the ACC comparison results in Table 7. We use GCN as the base model and imbalance
ratio=0.1. BIM is compared with 7 baselines on five graph datasets and achieves the best performance. Notice that even
without iterative optimization(BIM w/o IO), our proposed method shows competitive classification results.

Table 7: Accuracy performance of different compared baselines with GCN as the base model.

Cora Citeseer PubMed Ogbn-arxiv Amazon-
computers

GCN 62.7±1.4 30.5±0.5 56.6±0.9 37.4±0.8 74.7±1.3
ROS 63.4±2.3 31.0±0.3 63.5±0.5 40.4±0.9 75.2±1.2
SMOTE 63.5±2.1 30.9±0.2 62.7±0.6 38.7±1.6 76.1±1.2
Reweight 65.3±1.0 30.9±0.4 61.9±1.0 39.4±0.6 76.7±0.3
DR-GCN 63.4±1.5 31.2±1.8 60.8±5.0 38.0±1.2 76.3±1.6
GraphSMOTE 67.8±1.5 30.7±0.4 68.8±0.6 41.9±1.1 76.6±1.2
ReNode 67.2±2.5 38.4±3.7 69.6±1.2 41.8±1.1 77.7±0.5

BIM w/o IO 70.2±2.5 45.3±4.8 78.1±1.8 47.0±1.3 79.2±0.6
BIM 74.0±1.9 53.2±6.2 79.2±0.6 47.1±1.7 79.7±0.1

A.4 PARAMETER SENSITIVITY ANALYSIS

Apart from Tc and α, we also analyze the effect of hyper-parameter Ti and M on BIM. The experiment is conducted on
Cora and the base model is GCN. As shown in Figure 5, limiting Ti to a smaller range works best. A larger Ti means a
more strict constraint for influenced nodes, leading to an inaccurate measurement of the information diffusion and only
a small number of nodes can be influenced by each class. Thus, Ti should be selected smaller than 0.2. The results in
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terms of M show that increasing class size could help enhance the classification performance, but also introduce more
unreliable labels in model training. M should be controlled in the range of [20, 30] for better performance.
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Figure 5: Parameter sensitivity results on Cora.

A.5 TIME COMPLEXITY

We analyze the time complexity of BIM from 2 aspects: (i) overall running time comparison and (ii) pseudo labeling
time complexity.

Overall running time comparison. BIM has two procedures: model training and pseudo labeling. As a model-
free method, model training time is equal to base-model. We conduct the running time experiments on the Cora
dataset and compare BIM with baselines. We evaluate two versions of our proposed method: BIM without iterative
optimization(called “BIM w/o IO”) and BIM optimized for 6 iterations (called “BIM”). The imbalance ratio is set as
0.1. For GCN, GraphSMOTE, DR-GCN, and ReNode, we use the codes released by their authors. ROS and SMOTE
are implemented based on GCN code. For a fair comparison, the training epoch for a single GCN is set as 300. The
running time and the corresponding F1 scores are shown in Table 8. Experiments are repeated 3 times and the average
time is reported. For traditional ML methods, ROS and SMOTE show similar running times with GCN but only have a
slight classification performance increase. GraphSMOTE and DR-GCN are two generative models and require more
training epochs(1000 epochs) to reach convergence and higher F1 scores. Even for 300 epochs, these methods are quite
time-consuming. Based on PyG Fey & Lenssen (2019), ReNode shows competitive results for both running time and F1
score. BIM w/o IO achieves a great balance between running time and classification performance. As for BIM, iterative
optimization not only could help achieve a better F1 score, but also controls the running time lower than generative
models.

Table 8: The running time comparison on Cora. The F1 score in parentheses is under epoch=1000.

Running time(s) F1 score

GCN 9.03±1.72 52.9±2.1
ROS 9.97±2.08 53.0±3.8
SMOTE 10.73±1.41 53.3±3.2
GraphSMOTE 91.55±3.55 56.7±1.3 (58.9±2.0)
DR-GCN 79.69±5.77 52.1±0.2 (53.3±1.6)
ReNode 6.73±0.30 60.3±2.3
BIM w/o IO 21.73±2.96 63.7±3.1
BIM 70.69±7.95 68.9±2.2

Pseudo labeling time complexity. During the pseudo labeling procedure and labeling for one pseudo node, all
unlabelled nodes should be visited, and the time complexity is O(|Vu|), which is linear with the unlabeled data size.
Assume that if we label m nodes to achieve class balance, the time complexity for pseudo labeling is O(m |Vu|).
However, not all unlabelled nodes should be measured according to the objective function in Eq.8. There are two
constraints in the node selection procedure. (i) Unlabelled nodes will be filtered by their class reliability score.
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According to Eq.6, only nodes with class reliability score max(ri) > Tc is selected as trustworthy candidates. (ii)
Trustworthy candidates will be further filtered by their pseudo labels. According to line 5 in Algorithm 1, the nodes
with the majority class pseudo-labels are not included in the selection procedure.

As a result, only a small number of left nodes will be treated as candidates and measured by Eq. 8. In the Table 9, we
show the number of nodes at above stages in the node selection procedure on PubMed (The largest one among our
tested datasets). Compared with 42 training nodes, there are more than 18000 unlabelled nodes in the dataset. It could
be observed that nodes are successfully filtered, and the number of nodes decreases rapidly. During the 7th pseudo node
selection, there are only 30 nodes that should be ranked according to the objective function Eq.8.

Table 9: The node selection procedure on PubMed.

Selected
node index

#Unlabeled
nodes

#Trustworthy
nodes

#Nodes with minority
class pseudo-label

#Ranked
nodes

1 18157 11333 1168 1162
4 18154 11330 1165 298
7 18151 11327 1162 30
10 18148 11324 1159 27
13 18145 11321 1156 23
16 18141 11318 1153 19

Benefiting from the above constraints, the node selection time will not present a significant overhead compared with the
time-consuming GNN training. Specifically, the concrete time of line 6 in Algorithm 1 and the full process in different
datasets are as Tabel 10. For PubMed, the node selection time is only 9.3% of the total time. As for the smaller dataset
Cora, there are 1122 unlabeled nodes, and the pseudo labeling time is negligibly small, which is only 1.5%.

Table 10: The running time of pseudo labeling procedure.

Total running
time(s)

Pseudo labeling
time(s)

Pseudo label-
ing time ratio

Pseudo labeling
time per node(s)

PubMed 160.59±0.79 14.97±0.35 9.32% 0.83±0.12
Cora 70.69±7.95 1.10±0.01 1.54% 0.02±0.01

A.6 INTERPRETABILITY OF EMBEDDINGS

Besides the visualization of influenced nodes, we set the imbalance ratio to 0.1, and use t-SNE to map the embeddings
of Cora generated by GCN and BIM into 2-dimensional space for visualization. As shown in Figure 6, we observe that
GCN shows poor representation ability for minority classes (class 5, 6, and 7), and the embedding of different classes
of nodes is hard to distinguish. On the contrary, BIM learns more discriminative embeddings, contributing to a better
classification result.

A.7 SOCIAL INFLUENCE MAXIMIZATION

The goal of social influence maximization is to select a subset of B influential seed nodes that can maximize the
influence propagation in a social network (Aral & Dhillon, 2018). Specifically, given the full node set V and the seeding
budget B, the node selection process can be formulated as:

max
S
|σ(S)|, s.t. S ⊆ V, |S| = B, (9)

where σ(S) is a set of nodes influenced by the seed set S under the influence propagation models, such as linear
threshold (LT) and independent cascade (IC) models (Kempe et al., 2003). This node selection process in Eq. 9 is known
to be NP-hard, and a greedy algorithm can provide an approximation guarantee of (1− 1

e ) if σ(S) is nondecreasing and
submodular with respect to S (Nemhauser et al., 1978).
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Figure 6: Embedding visualization on Cora. (a) GCN embeddings. (b)BIM embeddings.

Recently, a line of work proposes to maximize the influence while balancing the influence for the different users from
subpopulations. For fairness in influence maximization, (Tsang et al., 2019) modifies the classic influence maximization
problem with additional fairness provisions based on legal and game theoretic concepts. Besides, (Farnad et al., 2020)
studies the trade-offs between enforcing fairness and the loss of total influence, and (Gershtein et al., 2018) introduces
the balance constraint as a two-stage problem. Although we also propose to maximize the influence, our work differs
from these previous studies in two perspectives. 1) Different motivations of influence balance. Previous works are
proposed to address fairness-aware influence maximization problems, while our method is specifically to balance the
influence from a different class of labeled nodes. 2) Different utilizations of influence balance. As explained in Section
3.2, we especially defined a new influence balance concept for GNN in the semi-supervised node classification setting.

Following these previous work, we propose to maximize the number of influenced nodes and make these influenced
nodes balanced in our BIM framework.
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