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Abstract

Sparse autoencoders (SAEs) are widely used in mechanistic interpretability
research for large language models; however, the state-of-the-art method of
using k-sparse autoencoders lacks a theoretical grounding for selecting the
hyperparameter k that represents the number of nonzero activations, often
denoted by ℓ0. In this paper, we reveal a theoretical link that the ℓ2-norm
of the sparse feature vector can be approximated with the ℓ2-norm of the
dense vector with a closed-form error, which allows sparse autoencoders
to be trained without the need to manually determine ℓ0. Specifically, we
validate two applications of our theoretical findings. First, we introduce
a new methodology that can assess the feature activations of pre-trained
SAEs by computing the theoretically expected value from the input embed-
ding, which has been overlooked by existing SAE evaluation methods and
loss functions. Second, we introduce a novel activation function, top-AFA,
which builds upon our formulation of approximate feature activation (AFA).
This function enables top-k style activation without requiring a constant
hyperparameter k to be tuned, dynamically determining the number of acti-
vated features for each input. By training SAEs on three intermediate layers
to reconstruct GPT2 hidden embeddings for over 80 million tokens from
the OpenWebText dataset, we demonstrate the empirical merits of this ap-
proach and compare it with current state-of-the-art k-sparse autoencoders.
Our code is available at: https://github.com/SewoongLee/top-afa-sae.

1 Introduction

Language models pack meaning into dense vectors, but what if we could unpack them
into separate, understandable pieces? To make this possible, sparse autoencoders (SAEs)
have brought significant advances to mechanistic interpretability by demonstrating that
dense embeddings inside language models can be effectively decomposed into a linear
combination of human-interpretable feature vectors (Elhage et al., 2022; Bricken et al., 2023;
Huben et al., 2023; Lieberum et al., 2024). Despite recent advances in sparse autoencoder
evaluation, a crucial aspect has remained overlooked: the relationship between input
embeddings and sparse feature vectors. Existing approaches enforce sparsity – either by
limiting the number of active units or by penalizing the number of nonzero values – with
little justification. In other words, although existing methods aim to construct sparse features
corresponding to inputs, the selection of sparsity levels in these methods is independent of
the inputs themselves. This missing link – between the input and its feature representation –
is at the heart of what sparse autoencoders are supposed to recover and is the focus of this
paper.

To address this issue, we take a fundamentally different approach: rather than evaluating
SAEs based solely on sparsity or reconstruction error, we focus on the underlying relationship
between input embeddings and their corresponding feature activations. This shift in per-
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spective leads us to develop a new theoretical approximation for feature activation, along
with practical tools for evaluating and designing sparse autoencoders under this framework.
Our approach applies to pretrained SAEs commonly used in mechanistic interpretability,
including models based on different sparsity penalties, such as GPT-2 Small (Bloom, 2024)
and Gemma Scope (Lieberum et al., 2024). Furthermore, when training SAEs from scratch,
our approach achieves reconstruction loss better than that of state-of-the-art k-sparse SAEs
(Makhzani & Frey, 2013; Gao et al., 2024; Bussmann et al., 2024), without requiring the
hyperparameter k to be tuned. Our findings not only bridge a theoretical gap in current
SAE evaluations but also open the door to novel avenues for experimental exploration.

The contributions of this paper are:

• We introduce Approximate Feature Activation (AFA), a closed-form estimation of
the magnitude of sparse feature activations with provable error bounds.

• We present the ZF Plot to visualize and diagnose over- or under-activation of
features based on the theoretical framework of AFA.

• We formalize ε-quasi-orthogonality as a geometric constraint arising from the su-
perposition hypothesis, connecting it to the Johnson–Lindenstrauss Lemma, and
propose εLBO, the lower bound of quasi-orthogonality, a novel metric for evaluating
SAE feature space.

• We propose top-AFA, a norm-matching activation function that adaptively selects
the number of active features for each input vector without tuning k. Combined
with a norm-matching loss LAFA, this leads to a new SAE architecture, top-AFA
SAE, that achieves better reconstruction performance compared to state-of-the-art
top-k and batch top-k SAEs, while also offering stronger theoretical justification.

2 Preliminaries

Notation We write vectors in bold as v = (v1, v2, . . . , vn) and refer to their scalar compo-
nents vi in italics. We use vi to denote the i-th vector in a collection of vectors, and use v(·)
to denote a function that returns a vector-valued output. Ai,j denotes the (i, j)-th entry of a
matrix A.

2.1 Sparse Autoencoders

The hidden embeddings of language models are densely packed with information, encoding
overlapping features in high-dimensional space (Elhage et al., 2022). Individual dimensions
do not correspond to specific, human-understandable concepts. To unpack these embed-
dings into more interpretable pieces, sparse autoencoders (SAEs) learn to decompose them
into sparse activation vectors that weight learned feature directions.

Formally, we denote an input sequence by x, which is transformed to an embedding vector
z(l)(x) ∈ Rd in LLMs, which is taken from the residual stream, the hidden embedding
vector passed through the residual connections between transformer layers, of the last token
index at layer l (see Appendix B for details). This embedding is used as the input to the
SAE, and we write it as z(x) or z for simplicity when the layer index and input are clear
from context.

An SAE consists of an encoder and decoder, defined as:
f(z) = σ(Wencz + benc), ẑ = Wdecf(z) + bdec,

where f(z) ∈ Rh is a sparse latent vector and ẑ ∈ Rd is the reconstruction of z. The encoder
matrix Wenc ∈ Rh×d, decoder matrix Wdec ∈ Rd×h, and biases benc ∈ Rh, bdec ∈ Rd are
learned. The decoder matrix Wdec is often referred to as a dictionary, as it contains the
directions for reconstructing the input from the feature space. The activation function σ(·)
(e.g., ReLU or Top-k (Makhzani & Frey, 2013)) enforces non-negativity or sparsity. Training
minimizes a loss function that balances reconstruction and sparsity:

L(z) = ∥z− ẑ∥2
2 + λsparsityS(f(z)) + αLaux, (1)
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where S(f) is a sparsity penalty (e.g., ∥f∥1, ∥f∥0).1 λsparsity controls the strength of the
sparsity constraint, and Laux is an auxiliary loss that prevents latent units from becoming
inactive via Ghost Grads (Adam Jermyn, 2024).

2.2 Hypotheses Behind Sparse Autoencoders

ẑ = Wdecf(z) + bdec︸ ︷︷ ︸
Linear Representation

, where z ∈ Rd, f(z) ∈ Rh, and h > d︸ ︷︷ ︸
Superposition

(2)

As summarized in Equation (2), the design of sparse autoencoders is built on certain
assumptions: the linear representation hypothesis and the superposition hypothesis. In this
section, we formally present these two hypotheses and provide intuition behind their roles
in motivating the architecture.

Linear Representation. In this paper, unless otherwise specified,2 we use the term linear
representation hypothesis (LRH) with the following definition as discussed in Elhage et al.
(2022); Bricken et al. (2023); Nanda et al. (2023); Lieberum et al. (2024); Smith (2024); Engels
et al. (2024b;a); Laptev et al. (2025):

Linear Representation Hypothesis Internal activations of neural networks can be
represented as linear combinations of vectors. Formally, for a given input x to the
neural network model, hidden embeddings z(x) ∈ Rd can be represented by a linear
transformationa of a feature activation vector f ∈ Rh with a constant weight matrix
W ∈ Rd×h,

z(x) = Wf

aThis hypothesis also holds under affine transformations if we define f′ = [f⊤| ∥b∥2]
⊤, where

b is the translation bias.

Superposition. In machine learning interpretability studies, the term superposition refers
to the phenomenon in which models represent more features than the dimensionality of
their representations (Elhage et al., 2022). The statement that there can be more features than
neurons in neural networks implies that neural network models can exploit the property of
high dimension supported by the Johnson-Lindenstrauss lemma (Lindenstrauss & Johnson,
1984). To formally state:

Superposition Hypothesis. Let z(x) ∈ Rd denote the hidden embeddings for a given
input x to an LLM. There exists a function Φ : Rh → Rd for feature vectors f ∈ Rh

such that:
z(x) = Φ(f), where h > d.

2.3 Theoretical Tools for High-Dimensional Analysis

Theorem 1 (Johnson-Lindenstrauss Lemma). Let Q ⊂ Rh be a set of n points. For δ ∈ (0, 1/2)
and d = 20 ln n

δ2 , there exists a linear mapping Ψ : Rh → Rd such that ∀u, v ∈ Q:

(1− δ)∥u− v∥2
2 ≤ ∥Ψ(u)−Ψ(v)∥2

2 ≤ (1 + δ)∥u− v∥2
2.

Proof of Theorem. See Lindenstrauss & Johnson (1984); Vempala (2005); Kakade (2010).
1The ℓ0-norm of a vector f, denoted as ∥f∥0, counts the number of non-zero elements in f. Although

it is not a norm in the mathematical sense, it is widely referred to as ℓ0 “norm” in this context due to
its usefulness in expressing sparsity.

2For more details on the LRH, see Appendix C.
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Definition 1 (ε-Quasi-Orthogonal Set (Kainen & Kůrková, 1993; Kainen & Kůrková, 2020)).
Let Sd−1 = {v ∈ Rd : ∥v∥2 = 1} be the unit sphere in the d-dimensional Euclidean space. For
ε ∈ [0, 1), a subset T ⊂ Sd−1 is called an ε-quasi-orthogonal set if:

u ̸= v ∈ T ⇒ |u · v| ≤ ε.

3 Related Work

Finding Interpretable Dictionaries. Initially, Lee Sharkey (2022) investigated a toy setting
where dense embeddings were explicitly constructed from combinations of ground-truth
sparse feature vectors. This reversed setup enabled testing whether SAEs can recover
known ground-truth features. The key finding was that, given a properly tuned ℓ1 sparsity
coefficient, SAEs could accurately recover the ground-truth components, identifying a
“Goldilocks zone” for sparsity regularization. This foundational insight later inspired
follow-up work by Huben et al. (2023), extending the idea to real-world settings, showing
that SAEs trained on models like Pythia-70M can discover highly interpretable features.

Pre-trained SAEs: GPT-2 Small and Gemma Scope. Building on these insights, Bloom
(2024) successfully extended sparse autoencoder training to GPT-2 Small (Radford et al.,
2019), releasing a pretrained SAE model widely used in follow-up research. While retaining
the ℓ1 sparsity penalty, their model introduced several key architectural improvements:
ghost gradients for addressing inactive features and a unit-norm decoder. GPT-2 Small
has since become a standard model for SAE research due to its manageable size and
representative embedding structure, and has been studied in follow-up works such as
Chaudhary & Geiger (2024); Bussmann et al. (2024); Minegishi et al. (2025).

Lieberum et al. (2024) introduced the Gemma Scope SAE, trained on Gemma 2’s hidden
embeddings (Gemma Team, 2024). Unlike prior SAEs that relied on ℓ1 sparsity, Gemma
Scope adopted an ℓ0 penalty to reduce shrinkage effects (Rajamanoharan et al., 2024), which
had previously led to suppression of overall activations. Furthermore, they employed
JumpReLU, an activation function that applies a non-zero threshold to mitigate interference
caused by superposition. The resulting model has become one of the most widely adopted
SAEs in the interpretability community (Lin, 2023).

Top-k Activation. Gao et al. (2024) demonstrated the effectiveness of k-sparse autoencoders
(Makhzani & Frey, 2013), which use a sparsity-enforcing activation function that retains
only the k largest pre-activations per input. This approach eliminates the need for a separate
sparsity penalty so that λsparsity = 0 in Equation (1). They also discovered a scaling law
between sparsity, measured by ℓ0, and reconstruction error, measured by mean square
error (MSE), suggesting that there exists a empirical boundary that SAEs cannot surpass.
However, the main limitation of top-k is its reliance on a fixed k, which lacks a principled
justification. To address this, Bussmann et al. (2024) proposed batch top-k, a variant that
enforces sparsity on average across a batch rather than per input. Their method enables
dynamic per-input activation while maintaining a fixed average sparsity, resulting in better
reconstruction.

Evaluation of Sparse Autoencoders The question of what makes a good SAE has been
actively explored and remains open. Till (2024) explained that since there are infinitely many
ways to decompose a dense embedding, failing to ensure near-orthogonality may hinder
the recovery of the true underlying features. Although this work proposed orthogonality as
a key geometric criterion, it lacked formalization or empirical validation. Simple structural
metrics, such as pairwise cosine similarity between decoder vectors, are easy to compute
but remain model-centric and fail to capture data-driven behavior. To address this, recent
efforts, such as SAE Bench (Karvonen et al., 2025), have introduced both supervised (e.g.,
using LLM judges) and unsupervised metrics to evaluate SAE quality from an input-driven
perspective.
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fz ẑ

(Batch) Top-K
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Figure 1: (a) Comparison of SAE evaluation approaches. Existing unsupervised metrics,
such as SAE Bench (Karvonen et al., 2025), assess either reconstruction quality (i.e., the
relationship between z and ẑ) or the sparsity of f in isolation. Our proposed AFA-based
evaluation fills this gap by introducing a way to assess the alignment between input em-
beddings and feature activations. (b) Comparison of fixed-k activation (e.g., top-k, batch
top-k) with our adaptive top-AFA. While top-k uses a constant sparsity level, top-AFA
dynamically selects the number of active features per input by matching the activation norm
with the input norm.

4 Approximating Feature Activation

Can we define an input-driven, theoretically justifiable metric that reflects feature activation
quality, even under superposition? In this section, we define Approximate Feature Acti-
vation (AFA) as the closed-form solution that approximates the ℓ2 norm of a ground-truth
sparse feature vector. In our study, we derive a specific form called linear-AFA under the sim-
plified setting where the linear representation hypothesis is assumed to hold – e.g., in SAEs
with a one-layer decoder, as commonly used in recent work (Bloom, 2024; Lieberum et al.,
2024; He et al., 2024; Nabeshima, 2024; Bart Bussmann, 2024; Gao et al., 2024; Bussmann
et al., 2024).

First, we propose the notion of an ε-quasi-identity matrix, denoted as I≤ε, which utilizes the
definition of ε-quasi-orthogonality and serves as a useful tool for quantifying superposition
in high-dimensional spaces.

Definition 2 (ε-Quasi-Identity Matrix). A matrix I≤ε ∈ Rh×h is called an ε-quasi-identity
matrix if it satisfies the following properties:

I≤ε
i,j =

{
1, if i = j,
εi,j, if i ̸= j, where |εi,j| ≤ ε,

where each εi,j is a scalar satisfying |εi,j| ≤ ε, for some fixed ε ∈ [0, 1) which represents the maximum
off-diagonal deviation from the identity matrix for all i, j ∈ [h].

Now, let D ∈ Rd×h be a decoder (dictionary) matrix. If its columns are normalized, then
the Gram matrix D⊤D becomes the ε-quasi-identity matrix I≤ε for some ε, which is the
maximum inner product magnitude between distinct dictionary column vectors. Formally,

Definition 3 (Quasi-Orthogonality of a Dictionary). We define the quasi-orthogonality of a
dictionary D as:

ε := max
i ̸=j

∣∣∣∣∣ D⊤·,i D·,j
∥D·,i∥2 · ∥D·,j∥2

∣∣∣∣∣ .
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In practice, pre-trained SAE decoders often do not satisfy this unit-norm constraint. How-
ever, without loss of generality, we can construct an equivalent decomposition by normaliz-
ing each decoder column and scaling the index of the corresponding feature vector with the
decoder column’s norm. This transformation allows us to formalize the following theorem:

Theorem 2 (Linear-AFA). For a given input x, if an embedding vector z(x) ∈ Rd satisfies the
linear representation hypothesis (LRH), then ∥z(x)∥2

2 approximates ∥f∥2
2, the square of ℓ2-norm

of feature activations f ∈ Rh, with an error bound ∥f∥2
2 ∈

[
∥z(x)∥2

2
1+ε(h−1) , ∥z(x)∥

2
2

1−ε(h−1)

]
, where ε is the

quasi-orthogonality of the dictionary D ∈ Rd×h used by the features, such that z(x) = D · f.

Proof of Theorem. Since D is a ε-quasi-orthogonal dictionary, D⊤D = I≤ε, where I≤ε is a
ε-quasi-identity matrix. Then,

∥z(x)∥2
2 = z(x)⊤z(x) = (Df)⊤(Df) = f⊤(D⊤D)f = f⊤(I≤ε)f =

h

∑
i=1

h

∑
j=1

fi f j I
≤ε
i,j .

By using Definition 2 and applying Cauchy-Schwarz (3),

∣∣∣∥z(x)∥2
2 − ∥f∥2

2

∣∣∣ =
∣∣∣∣∣∣ ∑
i∈[h]

∑
j∈[h]

fi f j I
≤ε
i,j − ∑

i∈[h]
f 2
i

∣∣∣∣∣∣ ≤ ∑
i∈[h]

∑
j∈[h];
j ̸=i

| fi|| f j||εi,j| ≤ ε(∥f∥2
1 − ∥f∥2

2)

≤ ε(h∥f∥2
2 − ∥f∥2

2) = ε(h− 1)∥f∥2
2 ⇒ ∥z(x)∥2

2 ∈
[
(1− ε(h− 1))∥f∥2

2, (1 + ε(h− 1))∥f∥2
2

]
.

∴ ∥f∥2
2 ∈

[
∥z(x)∥2

2/(1 + ε(h− 1)), ∥z(x)∥2
2/(1− ε(h− 1))

]
.

5 How to Measure ε: Quasi-Orthogonality of Dictionary

Although Theorem 2 provides a principled connection between z and f, it relies on the
quasi-orthogonality constant ε, which is unknown in practice. To address this, we introduce
two approaches to obtain the range of ε.

Upper Bound Approach based on the JL Lemma. The JL lemma (Theorem 1) has often
been suggested as a mathematical intuition that machine learning models gain an advantage
in high-dimensional representation due to the exponential growth of almost orthogonal
vectors (Elhage et al., 2022; Ghilardi et al., 2024). However, there is a lack of formulation
regarding the closed form bound using the JL lemma. By deriving |ε| ≤ δ =

√
20 ln[h]/d

from the JL lemma using the method described in Appendix F, we can define:

εJL :=

√
20 ln h

d
.

Although the JL lemma ensures the existence of a quasi-orthogonal basis within a bounded
error, we find that pretrained SAE decoders often exceed this bound (see Appendix G). This
reveals a key limitation: even state-of-the-art SAEs fail to learn decoders that achieve the
theoretically permitted level of quasi-orthogonality, making their use unreliable.

Lower Bound Approach with Pre-trained SAE Features. A tighter and more practical
bound can be obtained from SAE feature vectors for each input, from the lower end. The
closed-form error bound derived in Theorem 2 provides a way to estimate the quasi-
orthogonality constant ε. Specifically, we use a lower bound of ε, based on the inequality∣∣∥z(x)∥2

2 − ∥f∥2
2

∣∣ /(h− 1)∥f∥2
2 ≤ ε. However, this time, the ground-truth f is not accessible.
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Figure 2: ZF Plots. ZF plots shows the relationship between dense embedding vector norm
(∥z∥2) and the learned feature activation norm (∥f∥2) by layers. Each point corresponds to a
sequence input to the language model, allowing us to compare the magnitude and error
direction (i.e., over- or under-activation) of the SAE’s features compared to the red dashed
reference line, input by input (For more details, see Fig. 3). The shaded region visualizes
the error bound based on ε(h− 1) derived in Theorem 2, where ε is the quasi-orthogonality
of dictionaries and h is the dimensionality of the corresponding SAE feature vector. These
plots are drawn using 1k input sequences of length 128 from the OpenWebText dataset. The
phenomenon of increasing norm in higher layers is explained in Hex & Turn (2023).

In this case, we can leverage the fact that SAEs are designed to estimate f, and denote this
estimate as fSAE. Thus, we can compute the epsilon lower bound:

εLBO(x) :=

∣∣∥z(x)∥2
2 − ∥fSAE(x)∥2

2

∣∣
(h− 1)∥fSAE(x)∥2

2

In layman’s terms, this bound represents the minimum ε of quasi-orthogonality that any
decoder must have in order to reconstruct the observed feature activations from the em-
bedding. Since εLBO is computed directly from the feature vectors – the very structure that
SAEs ultimately aim to uncover – it offers a decoder-agnostic alternative that is free from
the decoder-induced noise discussed in the upper bound approach.

6 Evaluation Metric: Missing Link between z and f

Despite recent advances in SAE evaluation methods such as SAE Bench (Karvonen et al.,
2025), Figure 1-(a) shows a key limitation in current metrics: they either evaluate the rela-
tionship between the input embedding z and reconstructed embedding ẑ, or they measure
the sparsity of the feature vector f alone. Attempts to bridge z and f have remained limited
to measuring decoder cosine similarities, which do not assess their actual relationship based
on inputs. In contrast, our approach introduces an evaluation metric that directly links z and
f, enabling us to assess whether the feature activations are appropriately aligned with the
input representation. This relationship between z and f can be visualized using pretrained
SAEs, as shown in Figure 2. The geometrical intuition that is explained in Figure 3 allows for
a fundamentally different perspective: instead of treating sparsity as an isolated property,
we evaluate whether the activations themselves are justified by the input.

If we apply this finding to the evaluation of GPT-2 Small and Gemma Scope 2B, Figure 4
shows that εLBO offers a different perspective compared to mean squared error (MSE),
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e.g., ||z|| = 5
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||f(b)|| > 5,
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the hidden embedding
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Line
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with perfect reconstruction
(b)

5 ||z||

||f||

5 (a) Activated with desired norm

: LLM Hidden embedding vector

: Case (a) : Case (b)

SAE’s Linear Decomposition

Figure 3: Geometrical intuition behind ZF plots. A dense embedding vector (blue dashed)
can be perfectly reconstructed using an over-activated set of SAE features (light orange
solid), even when their norm is misaligned. This leads to a discrepancy between the norm
of the input (∥z∥) and the reconstructed activation norm (∥f∥). On the right, the ZF plot
visualizes this mismatch per input, with the red dashed line indicating ideal alignment.
Case (b) shows an over-activated decomposition; Farther distance from the reference line
indicates either excessive activation despite seemingly good reconstruction or the absence
of a low-ε dictionary that can reconstruct the input.

Algorithm 1 Top-AFA Activation Function

Require: z ∈ RB×d, Wenc ∈ Rd×h, Wdec ∈ Rh×d, benc ∈ Rd, bdec ∈ Rd ▷ B: batch size
Ensure: Reconstructed embedding ẑ

1: zcent ← z− benc
2: a← ∥zcent∥2

2
3: f← ReLU(zcent Wenc)
4: s← (f⊙ ∥Wdec∥2)

2 ▷ ⊙: elementwise multiplication
5: π ← argsort(s, descending)
6: C ← cumsum(s[π]); set C[−1]← κ ▷ κ is a large constant
7: atarget ←

√
a, C ←

√
C

8: k← argmink{|Ck − atarget|}+ 1
9: Construct mask m that retains the top k indices in π

10: ftopk ← f⊙m
11: ẑ← ftopk Wdec + bdec
12: return ẑ

which is the most commonly used metric for evaluating sparse autoencoders (Gao et al.,
2024; Bussmann et al., 2024). While overall trends are similar, there are differences in
distributional shape (e.g., long tails), modality (e.g., unimodal vs. bimodal), and ranking
order (MSE-based ranking vs. εLBO-based ranking).

7 Designing a Novel Sparse Autoencoder

Activation Function. Top-k based activations suffer from a fundamental limitation: the
expected sparsity level E[ℓ0] remains unknown and theoretically unjustified (Gao et al.,
2024). To address this, we propose the top-AFA, an activation function that adaptively selects
the number of active features per input by matching the activation norm to a theoretically
grounded target derived from the input embedding norm. This removes the need to
manually set or estimate k, and instead provides an indirect estimate of E[ℓ0]. The core
idea behind top-AFA is to activate the minimum number of features such that the sparse
feature vector norm approximates the AFA target ∥z∥2, as described in Figure 1-(b) and
Algorithm 1. From this perspective, sparsity and reconstruction are no longer in a trade-off
relationship. Instead, sparsity can be chosen for reconstruction.
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Figure 4: Violin Plots for Comparing Different Evaluations of SAEs (Lower values are bet-
ter). Blue violins (left) represent the normalized MSE (NMSE), which reflects reconstruction
loss, while orange violins (right) correspond to εLBO, which measures quasi-orthogonality.
Distributions are computed over 1k input sequences of length 128 from the OpenWeb-
Text dataset, and the region of each violin captures 99% of the distribution to mitigate the
influence of extreme outliers. Higher εLBO values imply that no sufficiently orthogonal dic-
tionary can explain the feature activation, suggesting poor separation among the activated
features. While overall trends across layers are similar, the best- and worst-ranked layers
and the distributional shapes vary, showing differences between NMSE and εLBO. These
results show that the two evaluation metrics yield different evaluations of the same models.

Loss Function. Can we design an SAE loss function that accounts for the amount of
feature activation expected based on each input vector? A natural option would be to
directly use εLBO; however, it has certain limitations when applied as a training loss (see
Appendix H). Given that our key theoretical takeaway is limε→0 ∥f∥2 = ∥z∥2, we define the
following simple loss function: LAFA = (∥f∥2 − ∥z∥2)

2. Adding LAFA to the standard loss
in Equation (1) yields the following objective:3

L(x) = ∥x− x̂∥2
2 + αLaux + λAFALAFA.

Note that this additional loss term does not shift the optimum of the reconstruction objective,
since the ℓ2 reconstruction loss is minimized when Df = z, and under this condition,
Theorem 2 guarantees that Eε[∥f∥2] = ∥z∥2.

Experimental Results. We follow the experimental setup of Bussmann et al. (2024), using
h = 16× d, but extend the evaluation to layers 6 and 7 in addition to layer 8. Figure 5
presents results for GPT-2, comparing Top-AFA with top-k and batch top-k. Notably, Top-
AFA achieves better reconstruction performance than top-k-based baselines and exceeds the
scaling law boundary observed by Gao et al. (2024).4 This suggests that adaptively selecting
activations based on AFA can lead to improvements beyond what fixed-sparsity approaches
can achieve. However, as shown in Appendix I, the effectiveness of Top-AFA depends on
proper tuning of the coefficient associated with the AFA loss LAFA, and a stable coefficient
value of 1/16 was observed across all layers.5

3We follow prior work in setting the auxiliary loss weight α to 1/32, a commonly used value in
SAE training (Gao et al., 2024; Bussmann et al., 2024).

4Layer 8 was used in Bussmann et al. (2024) to validate the performance of batch top-k.
5While Top-AFA introduces a new hyperparameter λAFA, it differs fundamentally from the fixed

sparsity hyperparameter k used in top-k activations. Specifically, λAFA is a training-time regularization
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Figure 5: Reconstruction performance of Top-AFA compared to top-k and batch top-k
activation functions on GPT-2 layers 6, 7, and 8. These layers were chosen to represent the
model’s middle depth, with layer 6 positioned at the center of GPT-2’s 12-layer architecture.
Layer 8 was also used in Bussmann et al. (2024), allowing for a direct comparison with prior
work. The SAE with minimum reconstruction loss at each layer is marked with a star (⋆).
Top-AFA outperforms other baselines on all tested layers, where its MSE (reconstruction loss)
surpasses the scaling law boundary reported by Gao et al. (2024) These findings demonstrate
that adaptively selecting activations can surpass the limitations of fixed-sparsity approaches.
Detailed settings and results are provided in Appendix I.

8 Conclusion

We present a new theoretical and practical framework for SAEs by addressing a core lim-
itation of top-k activations: the lack of principled k selection. Our Approximate Feature
Activation (AFA) formulation provides a closed-form estimate of the ℓ2-norm of sparse
activations, leading to εLBO, the first metric linking input embeddings to activation magni-
tudes. Building on this, we propose top-AFA SAE, an SAE that adaptively selects active
features by matching activation norms to dense embedding norms, removing the need to
tune k. Experiments on GPT-2 show that top-AFA SAE outperforms top-k and batch top-k
SAE. In conclusion, our research sheds light on a key limitation in the existing literature –
the inaccessibility of E[ℓ0] – by taking a simple yet novel approach: approximating E[ℓ2]
ultimately provides a path towards obtaining ℓ0.
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coefficient whose influence is limited to the optimization phase, whereas k directly relates to inference-
time because it refers to the number of active features for each input example.
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A Limitations and Future Work

Theoretically, our analysis is limited to the linear representation hypothesis; extending AFA
to more general superposition settings – such as when Φ(·) is a two-layer neural network
or other recent SAE variants such as Matryoshka SAEs (Nabeshima, 2024; Bart Bussmann,
2024) – remains an open question. The JL lemma does not play a key role, but depending on
the assumptions and claims, there are multiple versions of it that can be used (Har-Peled,
2005). It’s also possible to explore tighter versions with more assumptions that we haven’t
used. Additionally, we do make a simplifying assumption by treating the embedding norm
as its expectation; removing this assumption could lead to a more rigorous but possibly
looser bound.

Empirically, in Figure 5, we identified two limitations in the design of top-AFA SAE: (1)
the necessity of introducing a new hyperparameter λAFA instead of k and (2) the resulting
high ℓ0 values in this setting. Despite these limitations, our approach allows the model to
adaptively determine the effective number of active features for each input, rather than
enforcing a fixed k across all inputs. This reflects the intuition that different examples may
require different amounts of feature activation, which a fixed k cannot capture. Nevertheless,
a deeper investigation into the necessity of the loss coefficient remains a direction for future
work.

B Additional Terminology

Residual Stream The residual stream refers to the hidden embedding vectors that flows
through transformer layers via residual connections, typically updated as z(l+1)(x) =

T (l)(z(l)(x)) + z(l)(x), where T (l)(·) is the l-th Transformer block (Vaswani et al., 2017) in
language models.

Overcompleteness Dictionary is sometimes referred to as an “overcomplete basis” due to
the intuition of using more vectors than the dimension. However, since a basis cannot be
overcomplete by definition, we adopt the more precise term “dictionary” in this paper.

C Further Classification of LRH

It is notable that the validity of the linear representation hypothesis (LRH) depends on
factors such as the dictionary size h relative to the embedding dimension d, and the domain
of inputs x over which it is applied. For instance, in the limit as h → ∞, each column of
W can memorize a specific input, and the feature vector f can trivially become one-hot
vector (Gao et al., 2024; Smith, 2024). A non-trivial hypothesis is when the dictionary size
h is constrained. In practical implementation of SAEs, h = 16× d in GPT-2 Small (Bloom,
2024), whereas in Gemma Scope 2B, it ranges from 8 to 28 times the embedding dimension
(Lieberum et al., 2024).
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Depending on the range of x, we can classify LRH assumptions as follows:6

• Weak LRH: This version states that some features, though not necessarily all, can
be represented as a linear combination human-interpretable features. Weak LRH
has been widely supported by research (Nanda et al., 2023; Lieberum et al., 2024).

• Strong LRH: This version states that all features can be represented as a linear
combination. However, this stronger claim has been widely disproved Smith (2024);
Engels et al. (2024a).

Comparison between SH and LRH. In both cases, the feature vector f ∈ Rh is assumed to
result from a latent decomposition of the embedding vector z ∈ Rd, although the ground
truth of such decompositions may not exist in the real-world language models. Under the
SH, there are no structural assumptions on the encoder function Φ, except that the feature
space is higher-dimensional than the input space (i.e., h > d). The LRH, in contrast, assumes
that Φ(·) is a linear matrix W ∈ Rd×h but does not place any constraints on the relative
dimensionality of the feature and input spaces.

D Proof Tools

Theorem 3 (ℓ1-ℓ2 Norm Inequality). For all h ∈N, f ∈ Rh,

∥f∥1 ≤
√

h∥f∥2.

Proof. Define the vectors:

u = (|f1|, |f2|, . . . , |fh|), v = (1, 1, . . . , 1) ∈ Rh.

Then,

u · v =
h

∑
i=1
|fi| = ∥f∥1.

Applying the Cauchy-Schwarz inequality,

∥f∥1 = u · v ≤ ∥u∥2∥v∥2 ≤
√

h∥f∥2.

E Corollary of Theorem 2

Corollary 1. If f ∈ {0, 1}h, then ∥z(x)∥2
2 approximates the number of activated features with the

same error bound of the theorem.

Proof of Corollary. If f ∈ {0, 1}h, ∥f∥2
2 = ∑h

j=1 f 2
j = ∑ f j ̸=0;j∈[h]{1} =

∣∣{j | f j > 0, j ∈ [h]}
∣∣.

6Causal Linear Representation Hypothesis: Another interpretation of the linear representation
hypothesis is suggested by Park et al. (2023), demonstrating that causal inner product can unify the
representation in both embedding and unembedding, which satisfies Riesz isomorphism even through
non-linear softmax unembedding layer. However, interpreting LRH to incorporate the causality
diverges from widely investigated context of SAE which does not involve softmax-invariance and
thus Riesz isomorphism is trivially achieved by one-layer weights vectors of autoencoder network.
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F Derivation of Upper Bound based on the JL Lemma

We consider a high-dimensional space where h > d. Let {bi}h
i=1 ⊂ Rh be an orthonormal

basis, satisfying ∥bi∥2 = 1, and bi ⊥ bj for i ̸= j, where i, j ∈ [h]. By the JL lemma 1,
there exists a linear mapping Ψ(·) such that 2(1− δ) ≤ ∥Ψ(bi)−Ψ(bj)∥2

2 ≤ 2(1 + δ). Let
Ψ(bi) = vi. Then, ∥Ψ(bi)−Ψ(bj)∥2

2 = ∥vi − vj∥2
2 = ∥vi∥2

2 + ∥vj∥2
2 − 2vi · vj. The JL lemma

is typically proven using f (bi) = 1√
d

Abi, where Ai,j ∼ N (0, 1), as shown in Kakade
(2010). Taking expectation, we obtain E[∥vi∥2] = 1. If we assume ∥vi∥2 = 1 as a baseline,
then

2− 2δ ≤ 2− 2ε ≤ 2 + 2δ ⇐⇒ |ε| ≤ δ,
where ε denotes the quasi-orthogonality of h vectors vi in d-dimensional space by Defini-
tion 1. Based on the JL Lemma constant (Theorem 1), we can define:

εJL := δ =

√
20 ln h

d
.

G Unreliable Quasi-Orthogonalities of Pre-trained SAE Decoders

Since the JL lemma guarantees the existence of a linear transformation within a certain
error range, the quasi-orthogonality of the ground-truth dictionary should not exceed
this bound for a given hidden embedding. Our formalization based on the JL lemma
answer the following question; why not simply use the quasi-orthogonality of the pre-
trained decoder? While this seems reasonable, empirical evidence suggests otherwise. As
in Leask et al. (2025), the maximum pairwise cosine similarity of SAE decoder weights
tends to be very high, and thus exceeds the loose upper bound εJL which can be easily
calculated (Appendix F). This indicates that SAEs are unable to learn decoders that achieve
quasi-orthogonal decomposition to the extent permitted by the available dimensionality,
suggesting the pre-trained decoders can be highly unreliable.

H Why εLBO Cannot Be a Loss Function

Ignoring the normalization effect from the denominator, the numerator of εLBO takes the
form ∥z∥2

2 − ∥f∥2
2, which can be factorized as (∥z∥2 − ∥f∥2)(∥z∥2 + ∥f∥2). Minimizing the

second term (∥z∥2 + ∥f∥2) in this factorization is not only meaningless to reduce, but also
introduces vulnerability to shrinkage effects (Rajamanoharan et al., 2024).

I Detailed Experimental Results

We performed all experiments on a single NVIDIA A100 GPU. Following Bussmann et al.
(2024), each training iteration used 4,096 tokens from OpenWebText. We trained the models
for 20k iterations (81,920,960 tokens in total). Table 1, 2, and 3 were measured using the last
100 batches.

J Evaluating the Designed Sparse Autoencoder: Top-AFA with εLBO

In Figure 4, one may ask whether the multi-modal or long-tailed shape of the εLBO dis-
tribution indicates not a more granular evaluation, but rather a noisier metric. While it is
true that εLBO is a lower bound theoretically susceptible to noise induced by superposition
interference, such questions can be partially addressed by evaluating the proposed SAE
using our proposed metric. Figure 6 highlights two observations: (1) εLBO can be better
minimized to lower values with Top-AFA, and (2) existing activation functions exhibit
significantly poorer εLBO distributions, not simply attributable to noise. Therefore, εLBO
reveals the presence of a theoretically grounded objective that current SAE training methods
have neglected.
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Layer Activation k λAFA Sparsity (L0) Normalized MSE ±σ
6 Top-AFA – 1/128 331.62 0.127769± 0.002493
6 Top-AFA – 1/64 1118.46 0.034370± 0.003631
6 Top-AFA – 1/32 2037.74 0.000179± 0.000044
6 Top-AFA – 1/24 2133.73 0.000179± 0.000047
6 Top-AFA – 1/16 2344.23 0.000176± 0.000041
6 Top-AFA – 1/8 2862.85 0.000231± 0.000098
6 Batch Top-k 32 – 32.00 0.061787± 0.000583
6 Batch Top-k 64 – 64.00 0.048710± 0.000464
6 Batch Top-k 128 – 128.00 0.036358± 0.000348
6 Batch Top-k 256 – 256.00 0.023379± 0.000231
6 Batch Top-k 512 – 512.00 0.008044± 0.000121
6 Batch Top-k 1024 – 1024.00 0.000202± 0.000021
6 Batch Top-k 2048 – 2048.00 0.000207± 0.000019
6 Batch Top-k 4096 – 2968.77 0.000221± 0.000031
6 Batch Top-k 8192 – 2949.76 0.000224± 0.000019
6 Top-k 32 – 31.98 0.063715± 0.000661
6 Top-k 64 – 63.94 0.050356± 0.000508
6 Top-k 128 – 127.84 0.038570± 0.000388
6 Top-k 256 – 255.99 0.026100± 0.000253
6 Top-k 512 – 512.00 0.008793± 0.000075
6 Top-k 1024 – 1023.46 0.000199± 0.000020
6 Top-k 2048 – 2044.35 0.000207± 0.000018
6 Top-k 4096 – 2970.86 0.000219± 0.000021
6 Top-k 8192 – 2949.76 0.000224± 0.000019

Table 1: Detailed results for layer 6 in Figure 5.

Layer Activation k λAFA Sparsity (L0) Normalized MSE ±σ
7 Top-AFA – 1/128 1533.98 0.004476± 0.000346
7 Top-AFA – 1/64 1930.60 0.000221± 0.000028
7 Top-AFA – 1/32 2066.28 0.000199± 0.000042
7 Top-AFA – 1/24 2180.70 0.000197± 0.000057
7 Top-AFA – 1/16 2382.96 0.000193± 0.000049
7 Top-AFA – 1/8 3016.48 0.000239± 0.000082
7 Batch Top-k 32 – 32.00 0.071729± 0.000614
7 Batch Top-k 64 – 64.00 0.056417± 0.000491
7 Batch Top-k 128 – 128.00 0.042214± 0.000361
7 Batch Top-k 256 – 256.00 0.026796± 0.000234
7 Batch Top-k 512 – 512.00 0.009608± 0.000134
7 Batch Top-k 1024 – 1024.00 0.000215± 0.000016
7 Batch Top-k 2048 – 2048.00 0.000222± 0.000015
7 Batch Top-k 4096 – 2974.06 0.000236± 0.000022
7 Batch Top-k 8192 – 2956.95 0.000239± 0.000020
7 Top-k 32 – 32.00 0.073273± 0.000660
7 Top-k 64 – 63.88 0.057877± 0.000517
7 Top-k 128 – 127.81 0.044168± 0.000393
7 Top-k 256 – 255.79 0.029050± 0.000246
7 Top-k 512 – 512.00 0.009737± 0.000073
7 Top-k 1024 – 1023.45 0.000214± 0.000024
7 Top-k 2048 – 2045.20 0.000221± 0.000026
7 Top-k 4096 – 2975.86 0.000239± 0.000026
7 Top-k 8192 – 2956.95 0.000239± 0.000020

Table 2: Detailed results for layer 7 in Figure 5.
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Layer Activation k λAFA Sparsity (L0) Normalized MSE ±σ
8 Top-AFA – 1/128 1577.59 0.003457± 0.000286
8 Top-AFA – 1/64 1973.62 0.000230± 0.000026
8 Top-AFA – 1/32 2103.63 0.000203± 0.000050
8 Top-AFA – 1/24 2195.08 0.000197± 0.000047
8 Top-AFA – 1/16 2420.21 0.000193± 0.000039
8 Top-AFA – 1/8 3019.70 0.000223± 0.000042
8 Batch Top-k 32 – 32.00 0.079982± 0.000662
8 Batch Top-k 64 – 64.00 0.063075± 0.000524
8 Batch Top-k 128 – 128.00 0.047696± 0.000392
8 Batch Top-k 256 – 256.00 0.029998± 0.000254
8 Batch Top-k 512 – 512.00 0.009727± 0.000151
8 Batch Top-k 1024 – 1024.00 0.000222± 0.000044
8 Batch Top-k 2048 – 2048.00 0.000236± 0.000057
8 Batch Top-k 4096 – 2950.05 0.000243± 0.000023
8 Batch Top-k 8192 – 2951.90 0.000247± 0.000027
8 Top-k 32 – 31.99 0.081479± 0.000693
8 Top-k 64 – 63.83 0.064612± 0.000539
8 Top-k 128 – 127.84 0.049319± 0.000415
8 Top-k 256 – 256.00 0.032053± 0.000268
8 Top-k 512 – 512.00 0.009610± 0.000073
8 Top-k 1024 – 1023.30 0.000220± 0.000027
8 Top-k 2048 – 2044.45 0.000228± 0.000025
8 Top-k 4096 – 2960.06 0.000247± 0.000029
8 Top-k 8192 – 2951.90 0.000247± 0.000027

Table 3: Detailed results for layer 8 in Figure 5.
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Figure 6: Violin Plots for Comparing Different Activation Functions (Lower values
are better). Distributions are computed over 300 input sequences of length 128 from the
OpenWebText dataset. The region of each violin captures 99% of the distribution to mitigate
the influence of extreme outliers. The hyperparameter used for each layer corresponds
to those that achieved the best reconstruction (the lowest NMSE) on the last batch of 20k
training iterations. Interestingly, the εLBO of Top-AFA can converge to a low value through
training, while other activation functions, Top-k and Batch Top-k, fail to achieve a low εLBO.

K Complexity Analysis

Table 4 shows that Top-AFA achieves similar or better NMSE compared to other methods
with training time that remains in a comparable range. To support our claim and explain
the empirical results, we also conducted the complexity analysis. The time complexity of
the encoding and decoding stages is summarized in Table 5. The key difference lies in the
top-k selection mechanism, where sorting dominates, as detailed in Table 6. Since k < h, the
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Layer Activation L0 NMSE Time (min)

6 Top-AFA 2037.29 0.000164 69.40
6 Batch Top-k 1024 0.000165 136.63
6 Top-k 1023.49 0.000174 69.98

7 Top-AFA 1930.10 0.000195 139.75
7 Batch Top-k 2957.23 0.000181 138.88
7 Top-k 2957.23 0.000181 70.61

8 Top-AFA 2195.77 0.000166 142.04
8 Batch Top-k 1024 0.000187 74.45
8 Top-k 1023.32 0.000177 71.90

Table 4: Layer-wise training time and reconstruction performance (NMSE), including L0
with the lowest NMSE on the last batch of 20k iterations. These results demonstrate that
Top-AFA achieves training times comparable to those of other methods.

Stage Operation Time Complexity

Encoding x ·Wenc O(Bdh)
Decoding f ·Wdec O(Bkd)

Table 5: Time complexity for encoding and decoding stages.

leading term for Top-AFA is O(Bhd + Bh log h), which is not higher than other activation
methods.

The memory complexity for each method is compared in Table 7, showing that all methods
exhibit comparable complexity.
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Method Top-k Selection Method Time Complexity

Top-k Sort per input (B samples) O(Bh log h)
Batch Top-k Sort across batch (Bh entries) O(Bh log(Bh))
Top-AFA Sort + cumulative sum + argmin per input O(Bh log h)

Table 6: Time complexity of top-k selection mechanisms.

Variable Shape Memory (Batch) Top-k Top-AFA

Input x B× d O(Bd) ✓ ✓
Hidden activations f B× h O(Bh) ✓ ✓
Reconstructed output ẑ B× d O(Bd) ✓ ✓
Encoder weights Wenc d× h O(dh) ✓ ✓
Decoder weights Wdec h× d O(dh) ✓ ✓
Top-k indices / mask ≤ B× h O(Bh) ✓ ✓
Sort buffer B× h O(Bh) — ✓

Table 7: Memory complexity comparison across methods.
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