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ABSTRACT

Time-series foundation models have the ability to run inference, mainly forecast-
ing, on any type of time series data, thanks to the informative representations
comprising waveform features. Wearable sensing data, on the other hand, con-
tain more variability in both patterns and frequency bands of interest and gen-
erally emphasize more on the ability to infer healthcare-related outcomes. The
main challenge of crafting a foundation model for wearable sensing physiological
signals is to learn generalizable representations that support efficient adaptation
across heterogeneous sensing configurations and applications. In this work, we
propose NORMWEAR, a step toward such a foundation model, aiming to extract
generalized and informative wearable sensing representations. NORMWEAR has
been pretrained on a large set of physiological signals, including PPG, ECG, EEG,
GSR, and IMU, from various public resources. For a holistic assessment, we per-
form downstream evaluation on 11 public wearable sensing datasets, spanning
18 applications in the areas of mental health, body state inference, biomarker
estimations, and disease risk evaluations. We demonstrate that NORMWEAR
achieves a better performance improvement over competitive baselines in general
time series foundation modeling. In addition, leveraging a novel representation-
alignment-match-based method, we align physiological signals embeddings with
text embeddings. This alignment enables our proposed foundation model to per-
form zero-shot inference, allowing it to generalize to previously unseen wearable
signal-based health applications. Finally, we perform nonlinear dynamic analysis
on the waveform features extracted by the model at each intermediate layer. This
analysis quantifies the model’s internal processes, offering clear insights into its
behavior and fostering greater trust in its inferences among end users.

1 INTRODUCTION

Mobile and wearable sensors have been shown to be valuable for the field of healthcare by pas-
sively and continuously tracking physiological signals such as photoplethysmography (PPG) for
pulse, electrocardiography (ECG) for heart activity, galvanic skin response (GSR), and electroen-
cephalography (EEG) for brain activity. These time series signals are beneficial for early diagnosis,
personalized health insights, and remote patient monitoring (Zhang et al., 2024a).

Recently, various foundation models on time series have been proposed (Ansari et al., 2024; Ab-
baspourazad et al., 2023; Woo et al., 2024; Foumani et al., 2024). Another common approach
for signal modeling involves converting raw signal series into 2D images or spectrograms, using
fixed-size sliding windows, followed by the use of visual encoders like Vision Transformers (ViT)
to extract representations for making inferences (Semenoglou et al., 2023; Wimmer & Rekabsaz,
2023; Vishnupriya & Meenakshi, 2018; Chun et al., 2016; Krishnan et al., 2020; Dosovitskiy et al.,
2020). These works have significantly advanced the field and provided valuable insights, yet two
main issues still exists which need further exploration to fully understand their potential in wearable
scenarios. First, contrastive learning-based foundation models (Abbaspourazad et al., 2023) rely on
a predefined set of input signal types, making them unsuitable when transferring to scenarios with
different types and numbers of sensors. Second, while both time series foundation models (Ansari
et al., 2024; Zhang et al., 2022; Woo et al., 2024) and spectral-based approaches (Semenoglou et al.,
2023; Wimmer & Rekabsaz, 2023) attempt to address this issue by training a generic encoder that
can handle type-agnostic series, they remain limited to processing only univariate series. Because of
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Figure 1: The role of our framework. Several icons from Freepik (n.d.); Zhang et al. (2024a).)

this constraint, these previous works fail to account for the heterogeneity of multivariate input data;
specifically, they do not capture the complex relationships between signals from sensors located
on different body parts. These two limitations of recent approaches hinder their generalization and
usefulness for wearable health monitoring.

Moreover, Wearable-based multimodal physiological signals present unique challenges that distin-
guish them from general time series data, such as stock prices or weather patterns. Wearable signal
modalities, such as PPG and EEG, vary in characteristics like dimensionality, sampling rate, and
resolution, often requiring modality-specific preprocessing. Existing methods tokenize raw signals
(Ansari et al., 2024; Zhang et al., 2022) or convert them into image or spectral representations (Wu
et al., 2023; Mathew et al., 2024; Vaid et al., 2023). While effective for specific tasks, these ap-
proaches lack generalizability and fail to provide a consistent preprocessing pipeline across multiple
modalities. A consistent framework that accommodates diverse signal requirements is essential for
training deep learning-based foundation models and advancing multimodal signal analysis. Finally,
digital healthcare applications emphasize model interpretability and robustness, which reveals an
unignorable research gap in recent literature on studying the intrinsic behaviors of their proposed
models.

In this work, we present NORMWEAR, a normative foundation model, aiming to learn effective
wearable sensing representations, addressing the above-discussed research gaps. NORMWEAR
has been pretrained on more than 2.5 million multivariate wearable sensing segments, compris-
ing total of 14,943 hours of sensor signal series, using publicibly avaliable datasets. We evaluated
NORMWEAR on 18 public downstream tasks against competitive baselines under both linear prob-
ing and zero-shot inference. Overall, our contributions with the proposed NORMWEAR healthcare
modeling framework can be summarized as follows:

• To our knowledge, we are the first to develop a foundation model specifically designed for
wearable sensing data, capable of processing arbitrary configuration of multivariate signals
from sources such as the heart, skin, brain, and physical body.

• NORMWEAR comprises novel methodologies built upon the advanced practice in both the
fields of signal processing and deep learning, including (a) continuous wavelet transform
(CWT) based multi-scale representations for modality- and number-agnostic tokenization,
(b) channel-aware attention layer that enables the model to process arbitrary multivariate
inputs, and (c) zero-shot inference with human sensing adapted fusion mechanism for im-
proved efficacy.

• We are also the first to integrate and process a comprehensive wearable signals dataset
with varied number of input channels for training self-supervised learning algorithms, with
thorough downstream evaluation. These datasets cover key health applications, including
mental and physical state inference, biomarker estimation, and disease risk evaluation. We
make the preprocessed data, codebase, and model weights publicly available.

• We perform a comprehensive interpretability analysis and visualization to elucidate the
model’s inner workings and decision-making processes, and we are the first to quantify the
analysis with nonlinear-dynamic-analysis of the waveform features extracted by the models
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at each intermediate layer, offering insights into NORMWEAR’s neural activity patterns
across various sensing signal types and tasks. This is crucial for validating the reliability of
downstream applications and building trust with end users.

Our proposed NORMWEAR aims to provide a generalized data representation solution for smart
health monitoring, benefiting the general public, and serving as a fundamental tool for researchers
and professionals to address future healthcare challenges.

2 METHOD

Table 1: Downstream evaluation data. All these
data are unseen during pretraining.

Downstream Dataset Sensor Tasks #Samp. (#Subj.)
WESAD
(Schmidt et al., 2018)

IMU, PPG,
ECG, GSR

Stress
Detection 11050(15)

UCI-HAR
(Reyes-Ortiz et al., 2012) IMU HAR 10299(30)

DriverFatigue
(Min et al., 2017) EEG Fatigue

Detection 2400(12)

Activity Recognition Total - - 23749(57)
Epilepsy
(Andrzejak et al., 2023) EEG State

Recognize 11500(500)

GAMEEMO
(Alakus et al., 2020) EEG Valence-

Arousal 5600(28)

EEG Main Tasks Total - - 17100(528)
ECG-Abnormal
(Bousseljot et al., 2009) ECG Abnormal

Detection 11640(249)

PPG-BP
(Liang et al., 2018) PPG Risk of

Diseases 657(219)

PhysioNet EMG
(Goldberger et al., 2000) EMG Muscular

Diseases 163(3)

Risk Evaluation Total - - 12460(471)
Noninvasive-BP
(Esmaili et al., 2017) PPG BP

Estimate 125(26)

PPG-Hgb
(Esmaili et al., 2017) PPG Hgb

Estimate 68(68)

Fetal-fPCG
(Bhaskaran et al., 2022) PCG Fetal HR

Estimate 47(47)

Vital Signs Total - - 240(141)
Total All - - 53549(1197)

Table 2: Baselines and pretraining data.
Baseline Methods Modeling Strategies

TF-C (Zhang et al., 2022)
SoTA in TS SSL; modeling
time and frequency domain
information at same time.

CLAP (Wu et al., 2023) SoTA in audio modeling;
process signal as spectrogram

Chronos (Ansari et al., 2024) SoTA in TS forecasting,
leverage LLM for modeling

Statistical approach Reserve full interpretability

Pretrain Dataset Sensors #Samp (hours).
Cuff-Less-BP
(Kachuee et al., 2016) ECG, PPG 42934(72)

PPG-Dalia
(Reiss Attila, 2019)

ECG, PPG
IMU, GSR 42606(71)

Auditory-EEG
(Alzahab et al., 2022) EEG 13601(23)

PhyAAt
(Bajaj et al., 2020) EEG 19550(33)

MAUS
(Beh et al., 2021)

ECG, PPG
GSR 13068(22)

Mendeley-YAAD
(Dar et al., 2022) ECG, GSR 2964(5)

Brain-Cognitive
(Dar et al., 2022) EEG 51201(85)

EPHNOGRAM
(Dar et al., 2022) ECG, PCG 36611(61)

BIDMC
(Dar et al., 2022) ECG, PPG 8427(14)

Num Segments (# Segm.) - 230,962(385)
# Segm. w/ Augment - 2,576,418(4,294)
Num Sensor Signals (# Sign.) - 802,019(1,337)
# Sign. w/ Augment - 8,965,538(14,943)

2.1 DATASET CONSTRUCTION FOR MODEL PRE-TRAINING AND DOWNSTREAM EVALUATION

We curated a collection of 9 publicly available datasets (Table 2) exclusively for model pre-training,
resulting in approximately 230,962 multivariate time series segments, comprising 4,294 hours of
total sensor signal series, across various modalities, including PPG, ECG, EEG, GSR, PCG, and
inertial measurement unit (IMU) data. To address the dataset size limitation, we then applied herustic
data augmentation (algorithm 1) to expand the pre-train dataset to 2.5 million segments, comprising
14,943 hours of total sensor signal series. Notably, each sample segment may contain a variable
number of input channels depending on the sensor signals provided by the respective datasets. This
input configuration aligns seamlessly with our model’s design, which is optimized to flexibly handle
arbitrary numbers and configurations of sensor signal inputs.

To prevent potential data leakage in downstream tasks, we evaluate our model’s transferability using
an additional 11 publicly available datasets encompassing 18 modeling tasks, which include affec-
tive state classification, physical state recognition, biological estimation, and disease risk evaluation.
Details about the datasets is presented in Table 1.

2.2 TOKENIZATION

Tokenization is a fundamental term widely used in natural language processing. In the context of
wearable sensing, we leverage this term to represent the stage of signal processing before sending the
processed data to the deep learning-based encoder. Spectral methods, which utilize the short-time
Fast Fourier Transform (FFT) (Brigham, 1988) with a sliding window to compute spectrograms, are
widely regarded as the benchmark approach for tokenization. However, due to the inherent trade-
off between time and frequency resolution, the spectral representation with a fixed window size
cannot be generalized. This is because the window size has to be modulated accordingly when the
modality varies. To enhance transferability, we propose a well-designed signal processing pipeline
that preserves information in both the frequency and time domains across multiple scales. We begin
by calculating the first and second derivatives for each single signal series, as suggested by Slapničar
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Figure 2: Overview of the pretrain pipeline.

et al. (2019), followed by computing the continuous wavelet transform (CWT) on both the raw and
derivative series, resulting in three scalograms. Then, we stack the three scalograms to form data
in RGB-image-like format. The derivatives capture the rate of signal change at different moments,
while the wavelet transform provides a multi-resolution encoding that preserves information from
both the time and frequency domains Torrence & Compo (1998). For the wavelet transform, we
use the Mexican Hat wavelet for signal convolution, as recommended by previous studies (Burke &
Nasor, 2004; Hosni & Atef, 2023; Hassani, 2021; Negi et al., 2024; Nedorubova et al., 2021b). We
apply scales ranging from 1 to 64, following the guidance of (Sengupta et al., 2022; Nedorubova
et al., 2021a), which sufficiently covers most frequency bands of interest for physiological signals.
Finally, this RGB-like scalogram is divided into patches, which is treated in the same way as tokens
in an ViT (Dosovitskiy et al., 2020). In this way, this tokenization approach can be applied to various
types of sensing signals without sensor-specific adjustments or reconfigurations.

2.3 MODEL ARCHITECTURE AND PRE-TRAIN STRATEGIES

Following the tokenization step, we adopt common reconstruction-based pretraining strategies from
Masked Auto Encoder (MAE) (He et al., 2021; Huang et al., 2023; Zhang et al., 2023a), which
applying masking to input tokens and and optimizing the model using mean squared error (MSE)
for reconstructing the raw time series. Inspired by Huang et al. (2023), we experiment with four
masking strategies, as shown in Figure 2 (a), including masking on (1) temporal and scale, (2) scale
only, (3) temporal only, and (4) unstructured axes. We observe that the temporal and scalar masking
yields the best performance for the downstream tasks.

For the model architecture, we construct the backbone of our proposed framework with a convolu-
tional patching layer followed by 12 standard Transformer blocks (Vaswani et al., 2023). For the
same reason, NORMWEAR uses a lightweight decoder consisting of 2 Transformer blocks, com-
bined with a linear projection layer and a convolution layer to reconstruct the raw physiological
signals both temporally and spatially. We also prepend a special token [CLS] at each signal channel,
aiming to learn and extract a generic representation for each signal.

Another important point to consider is that although empirical studies (Nie et al., 2023; Ab-
baspourazad et al., 2023) show that channel-independent structures effectively capture local patterns,
they fail to account for relationships across channels. To address this, we introduce a channel-aware
attention (fusion) layer after every other encoder block to incorporate cross-channel information.
We explore several fusion approaches as shown in Figure 2 (b), with each method described below:
(1) All-Attention Fusion: This approach involves concatenating all tokens from each modality
without considering their individual properties and fusing the information through a self-attention
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module. However, this method requires quadratic computation time, as every token passes through
the self-attention module, making it impractical for real-world applications.
(2) Cross-Attention Fusion: In addition to the cross-attention mechanism used in Cross-ViT (Chen
et al., 2021), we introduce a slight modification to fit in our problem setting. We propose a sym-
metric fusion method, using the [CLS] token from each modality as an intermediary to exchange
information between the patch tokens of another modality, then projecting the information back to
its original modality in the subsequent Transformer layer. While this strategy is efficient, it restricts
the model to handling only two time series signals or modalities, which deviates from our goal of
building a general model capable of processing an arbitrary number of channels.
(3) [CLS]-Attention Fusion The [CLS] token serves as an abstract global representation for each
signal modality. Here, we propose a hybrid fusion approach. We stack the [CLS] tokens from all sig-
nal modalities and perform feature fusion using a self-attention mechanism. The fused [CLS] token
is then reattached to its original channel, enabling the newly learned information to be propagated
to each patch token in subsequent transformer encoder layers.
(4) Mean-Pooling Fusion Similar to the [CLS]-Attention Fusion approach, we employ mean-
pooling within each channel instead of using the [CLS] token as an abstract global representation.

Our empirical results show that [CLS]-attention fusion achieves the best performance for down-
stream tasks for our proposed NORMWEAR model. Details of all the ablation studies are reported
in appendix D.

2.4 ZERO SHOT INFERENCE WITH MEMORY STREAM INSPIRED FUSION MECHANISM
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Figure 3: Memory stream inspired temporal fusion mechanism for representation alignment.

We enable zero-shot inference by introducing a novel temporal fusion mechanism that transforms
multivariate sensing data into a unified representation within a text embedding space. Unlike prior
approaches (Radford et al., 2021; Wu et al., 2023) that trained both signal encoder and text encoder
jointly from scratch, our method is lightweight, as it does not require retraining these encoders.

For the objective of representation alignment specifically, with the semantic embedding of query
sentence q and backbone output H ∈ RP×E where P is the patch size and E is the embedding size,
we will have the final fused representation f(q,H) = Ŷ ∈ RE which the fusion function f will
be described in details in the following subsections. We then leverage the semantic embedding of
ground truth sentence Y to supervise the fused output Ŷ with integrated loss function with penalty
on Manhattan distance and cosine similarity, aiming to align the physiological representation with
the same direction and magnitude as the semantic representation:

Loss(Y, Ŷ ) = λ|Y − Ŷ |+

(
1− Y · Ŷ
∥Y ∥∥Ŷ ∥

)
(1)

where λ is hyper-parameters controlling the weight of loss components. During pretraining on the
pretraining datasets stated in Table 2, we introduce both classification and regression tasks, as well
as data augmentation with multiple alternative sentence patterns for each paired datasets, in order to
allow the model to have a better estimation of the representation transformation function from the
physiological signal space to the semantic space.
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In this method, we leverage text as a common modality, mapping input signals into a unified textual
space. By inferring within this shared space, we can assess the similarity between aligned physi-
ological representations and potential ground-truth states, enabling zero-shot inference. However,
relying solely on the cross-attention (relevance) score for temporal fusion is insufficient for human
sensing tasks, as it overlooks temporal proximity, the contextual importance of each patch, and the
intrinsic variations within each representation. Human sensing tasks, such as gesture recognition
or physiological monitoring, often require prioritizing recent temporal patterns due to their stronger
correlation with immediate human actions or conditions (Chowdhury et al., 2020; Chaudhury et al.,
2021). To this end, we introduce recency scores, which assign higher weights to patches closer
to the most recent time step in the sequence. Additionally, during vector aggregation, we adopt a
variational-inspired approach (Kingma & Welling, 2022) where we compute the mean and standard
deviation of patch embeddings before sampling. This design injects stochasticity into the repre-
sentation, encouraging the model to explore and capture nuanced variations in human sensing data.

Memory stream inspired fusion mechanism (MSiTF). As mentioned above, the NormWear en-
coder have latent output shape of H ∈ RP×E . Such an embedding vectors of all the patches have
to be aggregated (average pooling by default) to form a fixed length representation suitable for non-
sequential downstream tasks including classification or regression. Inspired by the philosophy of
memory stream retrieval from the design of virtual game characters in Park et al. (2023), we imple-
mented a novel fusion mechanism named MSiTF to generate representations optimized for human
sensing, shown in Figure 3. Intuitively, MSiTF fuses the latent representations from all time steps
before the final output layer with weighted scores computed according to (1) how relevant they are
to the objective tasks, (2) how important they are to the data itself, and (3) how close they are to the
most current time step. The output layer is instructed to select the most informative representations
to optimize the objective task of representation alignment.

As outlined in Figure 3, we consider the Relevance score to be the cross-attention score between the
sentence embedding generated by the pretrained language model (Muzammil, 2021) of the query
sentence and the key representation of the embedding of each time step. For the Recency score, we
use an exponential decay function, where the further the time step to the most recent time step, the
lower the score. Finally, we consider the importance score IMP in this case to be whether to keep
the representation at each time step or not. In order to achieve this, we assign binary parameters to
each time step, denoted as θt = p(vt) ∈ R2 where vt ∈ RE is the representation vector at time step
t and p is a trainable linear transformation function which will be optimized during pretraining. We
then have the importance score for each patch defined as

Wimp(t) = argmax
i∈{0,1}

exp

((
log(θt,i) + ϵ

)
/τ

)
∑

j∈{0,1} exp

((
log(θt,j) + ϵj

)
/τ

) (2)

where ϵ is the noise term sampled from Gumbel distribution (Jang et al., 2017), and τ is the tem-
perature controlling the sharpness of the softmax function. Because argmax is not a differentiable
function, we will directly take the resulting probability corresponding to index at j = 1 to be the
importance score, with τ being set to a small number to push the result closer to one hot vector from
the softmax function. As a result, the trainable linear transformation will be optimized to determine
whether to activate the gate during forward pass on each input signals. The final score for each patch
is the summation of the three scores as described above. This score will be treated as the weight
for aggregating the representations from all the patches to form the fixed length embeded output
(vector with size of 768 in our case). This aggregated vector is then passed to the successive tasks
on representation alignment and downstream task inference.

3 EXPERIMENTS
In this section, we present a comprehensive evaluation across 11 publicly available datasets, focusing
on 18 widely-recognized digital healthcare tasks. We first assess the transferability advantage of our
proposed model compared to the solid baselines. Additionally, we examine the zero-shot capabilities
of NormWear. Finally, we conduct nonlinear dynamics analysis on the waveform features across
intermediate encoder layer to inspect model’s behaviors.

3.1 SELECTION OF BASELINES COVERING REPRESENTATIVE MODELING STRATEGIES

Modeling multivariate wearable signals with arbitrary input channels and sensor types, such as those
capturing activities of heart, brain, and body physical motions, presents unique challenges, as no
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universally recognized open-source baseline or state-of-the-art (SoTA) model exists in this domain.
To evaluate our approach, we selected diverse and representative baselines (as shown in Table 2).

In the literature, different modeling strategies have been proposed. Firstly, early approaches involved
handcrafting statistical features, which was a widely adopted practice in signal processing (Yan
et al., 2023a; Reyes-Ortiz et al., 2012; Mikelsons et al., 2017). We include this simple baseline
as sanity check. Secondly, since sensory data can be naturally represented as time series (Woo
et al., 2024; Semenoglou et al., 2023), we benchmarked our model against Chronos (Ansari et al.,
2024) , as well as the common self-supervised framework TF-C (Zhang et al., 2022). Finally, the
spectrum-based modeling methods (Vishnupriya & Meenakshi, 2018; Chun et al., 2016; Krishnan
et al., 2020) are widely used for signal modeling. Therefore, we incorporate CLAP (Wu et al., 2023)
into baselines that has demonstrates SoTA performance in spectrogram-based modeling. These
baselines span distinct paradigms, providing a solid foundation to demonstrate the strengths of our
model in wearable signal tasks.

3.2 DOWNSTREAM EVALUATION, NORMWEAR ACHIEVES THE PEAK PERFORMANCE

We perform supervised training to evaluate the representation with linear probing on each down-
stream dataset. Performance is then assessed in the test set of these datasets. The classification
tasks are solved by Newton’s method with conjugate gradient, with AUC ROC being reported as
main metric. The regression (vital signs) tasks are solved by Cholesky’s method with closed form
solution, with relative accuracy being reported. All scores are the higher the better.

From Figure 5, Table 3, and Table 4, we observe that NormWear consistently achieves peak perfor-
mance across all task groups, including activity recognition, EEG signal analysis, disease risk eval-
uation, and vital sign estimation. Furthermore, its leading performance remains consistent across
various evaluation metrics. Based on the macro-averaged total score across task groups, NormWear
delivers a 3.6% improvement over the state-of-the-art (SoTA) time-series self-supervised learning
framework, a 5.3% improvement over the SoTA spectrum-based modeling method, a 5.6% improve-
ment over SoTA time-series forecasting models with LLM backbones, and a 5.3% improvement over
standard statistical baselines. On larger datasets, NormWear significantly outperforms the statisti-
cal baseline by 9.0% and 7.5% for activity recognition and EEG brain activity monitoring tasks,
respectively. On smaller datasets, it still achieves peak performance in disease risk evaluation. For
vital sign estimation, all methods yield comparable results, suggesting inherent challenges in these
regression tasks that warrant further investigation but are beyond the scope of this study.

These findings illustrate NormWear’s capacity to balance consistency and adaptability across a di-
verse range of tasks and conditions. By excelling across standard benchmarks while addressing the
intricacies of varied applications, NormWear exemplifies the philosophy of a foundation model: a
reliable generalist capable of performing robustly across both typical and challenging scenarios.

3.3 SCALING UP THE PRETRAINING DATA SIZE
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Figure 4: Scaling on downstream tasks.

In addition to demonstrating that NormWear outperforms
all strong baselines, we further investigate the effect of
varying pretraining data size on the model’s downstream
performance to examine whether the scaling law applies
to our proposed methodology. As shown in Figure 4, the
overall performance (measured by accuracy) significantly
improves as the pretraining data size increases from ap-
proximately 37k (62 hours) to nearly 2.5M (4000 hours)
samples of wearable signal data. This observation indi-
cates that our model adheres to the scaling law, highlight-
ing its potential scalability and suitability for future large-
scale applications.

3.4 THE FIRST ZERO-SHOT ENABLED FOUNDATION MODEL FOR WEARABLE SENSING
HEALTH APPLICATIONS

We achieve zero-shot inference by pretraining our proposed novel temporal fusion module on the
task of representation alignment following the guidance in (Zhang et al., 2024a; Liu et al., 2024)
to map the embedding from our proposed foundation model to semantic space. During test-time
inference on downstream datasets, each ground truth label is converted into a sentence (details in
appendix. B), which is transformed into a text embedding using a frozen text encoder. The sentence
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- Disease: Performance on disease risk predictions. | - EEG: Performance on main EEG tasks (mental and abnormal states prediction)
- State: State recognition, including physical and mental activies. | - Macro: Average performance over types of tasks
- Micro: Average performance over each task.

Figure 5: Overview of performance trend of NormWear against competitive baselines in downstream
tasks: (1) Disease risk predictions. (2) EEG main tasks (mental and abnormal states prediction). (3)
State recognition: physical and mental activities. (4) Macro: Average performance over types of
tasks. (5) Micro: Average performance over each task.

Table 3: Performance on various downstream wearable-signal-based health related applications
under linear probing evaluation.

Downstream Tasks Statistical Chronos CLAP TF-C NormWear (Ours)
WESAD 66.213 71.489 72.383 69.865 76.060
UCI-HAR 95.784 91.593 96.420 96.892 98.954
DriverFatigue 63.249 76.722 61.889 66.882 74.292
Activity Recognition Avg. 75.082 79.935 76.897 77.880 83.102
Epilepsy (eye open) 82.489 82.41 85.094 89.153 92.743
Epilepsy (eye close) 87.457 88.218 89.867 94.416 94.828
Epilepsy (health area) 86.274 81.08 83.711 85.619 88.541
Epilepsy (tumor area) 82.816 81.034 83.644 86.348 87.197
Epilepsy (seizure) 88.272 97.572 97.734 93.998 97.053
GAMEEMO 51.009 53.747 52.551 56.275 54.937
EEG Main Tasks Avg. 79.720 80.677 82.100 84.302 85.883
ECG-Abnormal 97.092 98.585 97.23 98.275 99.140
PPG-BP (HTN) 59.499 52.425 56.757 65.229 62.341
PPG-BP (DM) 47.823 51.164 42.455 57.883 55.893
PPG-BP (CVA) 71.25 50.278 51.667 58.125 70.625
PPG-BP (CVD) 51.219 58.31 50.91 58.674 51.773
PhysioNet EMG 99.309 61.6 98.627 78.308 99.216
Risk Evaluation Avg. 71.032 62.060 66.274 69.416 73.165
Noninvasive-BP 92.31 91.79 91.922 87.481 92.420
PPG-Hgb 94.219 95.005 94.291 93.408 94.632
Fetal-fPCG 98.929 99.048 99.195 99.077 99.072
Vital Signs Avg. 95.153 95.281 95.136 93.322 95.375
Micro Avg. 78.623 76.782 78.130 79.773 82.762
Macro Avg. 80.247 79.488 80.103 81.230 84.381

with the closest distance with the embedding from our foundation model is used as the final infer-
ential result. We also include the SoTA spectral-based model CLAP Wu et al. (2023) as a baseline
to provide a more comprehensive comparison of the results. For CLAP, we experimented with both
Manhattan distance (MD) and dot product (DP) as similarity metrics during inference. From table
5, we could observe that overall, the models equipped with our temporal proposed novel fusion
mechanism outperform the baselines including leveraging the vanilla attention fusion mechanism.
Although the final performance may not surpass that of linear probing, our work offers a significant
contribution as an initial attempt to enable zero-shot inference through a lightweight pipeline across
various wearable sensing healthcare tasks, without the need to rely on existing generative language
models. We present this outcome to demonstrate that, even without fine-tuning, the model is ca-
pable of learning informative representations that can be directly leveraged for downstream tasks.
Furthermore, as shown in Section 3.2, even a straightforward adaptation, such as linear probing, can
yield notably improved results.
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Table 4: [Updated] Details of Incidental Performance Metrics.
Task Group Methods AUC ROC AUC PR Accuracy Precision Recall F1 Score

Statistical 75.082 63.996 65.298 61.450 61.56 61.034
Activity Chronos 79.935 65.622 66.175 62.044 61.512 60.522
Recognition CLAP 76.897 67.026 66.349 62.790 62.826 62.435

TF-C 77.880 68.228 67.175 64.967 64.798 64.783
NormWear (Ours) 83.102 76.232 75.254 72.606 72.177 72.053
Statistical 79.720 50.172 73.921 63.567 57.529 57.948

EEG Main Chronos 80.677 55.507 75.285 72.442 52.520 47.671
Tasks CLAP 82.100 57.518 76.391 68.506 61.961 62.650

TF-C 84.302 61.864 76.825 71.702 65.517 67.889
NormWear (Ours) 85.883 66.841 79.182 72.485 69.158 69.698
Statistical 71.032 53.783 79.688 52.718 53.235 50.807

Disease Risk Chronos 62.060 40.673 71.910 45.512 43.739 40.569
Evaluation CLAP 66.274 48.232 81.327 53.028 54.721 52.804

TF-C 69.416 46.312 78.929 52.123 52.352 51.349
NormWear (Ours) 73.165 51.666 81.530 54.133 56.314 54.428
Statistical 75.317 51.596 74.503 58.804 56.618 55.709

Micro Chronos 73.082 51.596 72.113 59.590 50.806 47.401
Average CLAP 74.729 55.705 76.357 61.171 59.238 58.669

TF-C 77.063 56.916 75.737 62.523 60.107 60.652
NormWear (Ours) 80.240 62.649 79.336 65.168 64.624 64.061
Statistical 75.278 55.983 72.969 59.245 57.441 56.596

Macro Chronos 74.224 53.934 71.123 59.999 52.590 49.587
Average CLAP 75.091 57.592 74.689 61.441 59.836 59.296

TF-C 77.199 58.801 74.310 62.931 60.889 61.340
NormWear (Ours) 80.717 64.913 78.656 66.408 65.883 65.393

Table 5: Zero-shot performance on the downstream datasets, with AUC ROC being reported. The
last two columns show the average across the tasks and across group types respectively.
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CLAP - MD 45.3 62.8 58.5 53.1 44.9 45.1 47.6 30.5 84.9 59.4 41.8 46.0 57.4 22.9 55.4 50.4 51.2
CLAP - DP 50.7 52.3 61.1 51.6 54.4 41.9 58.6 46.4 74.3 52.2 41.4 50.6 58.9 42.7 38.3 51.7 52.2

NORMWEAR

w/ MSiTF
55.9 71.4 54.9 50.2 54.0 56.4 66.9 57.4 53.7 56.5 53.2 65.0 63.1 74.3 65.7 59.9 60.1

- w/o IMP 56.2 70.3 55.4 49.8 54.0 56.5 66.9 57.3 52.9 56.5 54.3 61.7 60.7 73.4 65.2 59.4 59.6
- w/o text aug 54.8 65.8 55.2 49.2 31.0 58.4 58.6 32.8 58.1 50.2 52.6 50.8 50.6 47.7 33.6 50.0 51.4

3.5 QUANTIFY THE OBSERVED INTRINSIC BEHAVIORS: NONLINEAR DYNAMICS ANALYSIS
ON THE FEATURES FROM EACH LAYER

Understanding the representations extracted by intermediate layers is crucial to interpreting our
model’s behavior. To quantify the meaningfulness of these representations, we conducted a nonlin-
ear dynamics analysis inspired by chaos theory. This method analyzes the features’ intrinsic behav-
iors through metrics like the Lyapunov exponent (Wolf et al., 1985) (sensitivity to initial conditions),
Hurst exponent (Qian & Rasheed, 2004) (self-correlation/seasonality), and persistence entropy (Yan
et al., 2023b) (unpredictability in system states). We obtain the following key observations:

1. Deeper Layers Capture Higher-Order Complexity.
• For signals such as GSR, EEG, and ACC, deeper layers show lower self-correlation (DFA

(Hu et al., 2001)) and higher unpredictability (persistence entropy), indicating a transition
to representations that are less periodic and more chaotic.

• The decrease in the Lyapunov exponent across layers suggests reduced variation in ex-
tracted features, aligning with the idea that deeper layers capture more abstract, long-term
patterns with broader receptive fields.

2. Modalities with Simpler Dynamics. In contrast, PPG and ECG signals, dominated by regular
heart activity, exhibit more stable patterns across layers. This aligns with their simpler waveform
structures and less complex dynamics compared to signals related to neural and physical activities.

9
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These visualizations reveal that the model progressively transforms raw sensory data into repre-
sentations aligned with the complexity of each signal. For GSR and EEG, deeper layers exhibit
increased unpredictability and reduced periodicity, highlighting the extraction of nuanced, higher-
order patterns critical for human sensing. In contrast, the stability of representations for PPG and
ECG reflects their simpler dynamics, demonstrating the model’s adaptability to varying signal char-
acteristics. This analysis confirms that the intermediate representations are purposefully optimized
to capture the temporal and structural nuances of each modality, supporting the conclusion that the
model learns meaningful features tailored to human sensing tasks.
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Figure 6: Nonlinear dynamic analysis on the waveforms extract at different layers of our model.

4 LIMITATIONS AND CONCLUSION

In this work, we mainly propose a foundation model for wearable physiological signals. There are
three main limitations. Firstly, for the representation alignment pipeline, although we make signifi-
cant efforts to augment the text data and add a variational sampling mechanism, we have a relatively
limited set of wearable sensing-based healthcare objectives during pretraining. Drawing insights
from the natural language processing domain (Devlin et al., 2019), we encourage future studies to
increase the diversity of tasks for pretraining to achieve a more promising performance. Secondly,
regarding zero-shot inference, the current pipeline design of NORMWEAR is more aligned with a
classification scenario, also as suggested in Wu et al. (2023) and Zhang et al. (2024b). The most
straightforward approach for regression would be to discretize the target label into bins. However,
this approach does not fully address the challenge of adapting to regression tasks. Therefore, we rec-
ommend exploring alternative modeling strategies for performing zero-shot learning on continuous
scales. Finally, human sensing includes signals from a wide range of frequency bands. For example,
audio data, as one of the popular modalities in contactless sensing, has a much higher and wider
range of frequencies of interest. In contrast, lower-frequency data are more common in clinical re-
search. For instance, most wearable devices record only minute-to-minute data such as heart rate,
estimated calories consumed, and noise level around. Medical-related bio-markers are day-to-day
data such as measurements of glucose level, blood pressure, and estimated body fat. In the current
design, NORMWEAR does not incorporate such a wide variety of frequency ranges; however, there
is great potential to verify and improve its ability when extending to other type of signals with a
wider range of frequency bands of interest, which is a future research scope.

In conclusion, NORMWEAR is a practical tool that could serve as a starting point for researchers and
clinicians when tackling a problem with wearable sensing based signal data. Our proposed model
could extract informative embedding representations from raw signal series, which can be leveraged
for further machine learning modeling, clustering, embedding vector-based information retrieval,
and deployment of real-time health states monitoring with minimal tuning. We’ve justified the uti-
lizability and generalization of NORMWEAR through an extensive evaluation of various ubiquitous
health applications. Along with the interpretability analysis, our work could provide a transparent
understanding of the model’s inner feature extraction and importance assignment processing. As for
future works, it is important to leverage our proposed model on more large scale clinical applications
and explore the applicability of embedding vectors as state representations for intervention model-
ing problems that comprise the decision-making process. We also suggest extending the proposed
model on contactless sensing signals, as mentioned previously, such as audio and thermal imaging,
which could provide more thorough health-related information.
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during pretraining and evaluations were made publicly available by the original authors, and all these
works were cited properly.

REPRODUCIBILITY STATEMENT

The full code base is submitted in supplementary material referred to as normwear codebase.zip,
comprising all the scripts for exploratory data analysis and preprocessing, model construction, pre-
training, downstream evaluation, result analysis, and all the visualizations that are described in this
paper. The GitHub repository containing all the documentation will be published simultaneously
with the paper.
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APPENDIX

A RELATED WORK

Self-supervised learning paradigm, coupled with large and diverse datasets, has gained popularity
recently due to its adaptability to various downstream tasks (Bommasani et al., 2022). This ap-
proach has attracted significant interest in the wearable sensor domain, particularly for applications
in physiological signal analysis. Recent studies have utilized self-supervised learning in wearable
devices for tasks such as activity recognition (Spathis et al., 2021; Yuan et al., 2023; Zhang et al.,
2023b). Additionally, it has been applied to physiological signals such as PPG, ECG, and EEG,
spanning various healthcare monitoring tasks (Abbaspourazad et al., 2023; Pillai et al., 2024; Zhang
et al., 2019; Mehari & Strodthoff, 2022; Mohsenvand et al., 2020). However, these studies often
rely on a predefined set of devices, which limits the models’ adaptability when clinical application
settings change. For instance, when new devices or modalities are introduced, these models, which
have not been exposed to such data during training, often require fine-tuning to remain functional.
Furthermore, many of these models are not publicly accessible due to the sensitivity of healthcare
data, which hinders progress in this area. These challenges underscore the need for an open, pre-
trained model that can accommodate various device configurations and adapt to evolving clinical
requirements.

On the other hand, general time series models (Ansari et al., 2024; Woo et al., 2024; Zhang et al.,
2022) have shown significant advancements but are predominantly trained and evaluated in domains
such as transportation, energy consumption, and finance, with limited exploration in physiologi-
cal signals. While physiological signals are inherently multivariate time series, these models have
not been trained on such data, leaving their transferability to the physiological sensor domain un-
certain. Ignoring the correlations between different sensors may result in suboptimal performance
when applied to this domain. Motivated by these limitations, this work focuses on developing a
foundation model for sensory time series data capable of accommodating arbitrary combinations of
device modalities as multivariate series, while investigating strategies to effectively leverage sensor
correlations.

B IMPLEMENTATION DETAIL

Data Preprocess. For the data preparation, we set the uniform sampling rate and interval length to
65 HZ and 6 seconds respectively. In our case, 65 Hz covers most of the frequency bands of interest
such as heart activity, physical motions, and neuron activity up to the beginning of Gamma power
(above 30 Hz). And a great amount of samples are less than 6 seconds such as (Reyes-Ortiz et al.,
2012; Liang et al., 2018; Bousseljot et al., 2009). We conduct basic pre-processing for each signal
with identical setting: (1) de-trended by subtract the result of a linear least-squares fit to series data
from the raw time series, and (2) Gaussian smoothed with standard deviation of 1.3 (0.02 seconds),
ensuring a highly consistent dataset for training.

Since the Transformer’s computational requirements scale quadratically with input length, to release
the full potential of our self-supervised algorithm, we segment our multivariate time series into
intervals with a uniform length and pad shorter samples with zeros. This approach not only enables
parallel processing of samples in large minibatches but also addresses variation in the length of
individual samples.

For the downstream task, we split the data into train and test sets for linear probing evaluation with
portion of 80% and 20% correspondingly. The split is stratified on the anonymized subject ID if this
information is provided by the dataset.

Data Augmentation. Since there are very few publicly available datasets containing multiple de-
vices or modalities, we aim to expand our curated training set to fully leverage the potential of
self-supervised learning. Inspired by data augmentation techniques in computer vision and natural
language processing (Zhang et al., 2017; Carmona et al., 2021), we adopt a heuristic approach to
augment the dataset. Specifically, we augment each sub-dataset by a factor of 10. For each dataset,
we sample two time series, randomly extract a segment from one, and substitute it with a trans-
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formed counterpart, as outlined in the pseudocode in Algorithm 1. As a result, our training set is
expanded to 2,586,404 segments, corresponding to 4,310 hours of data.

Algorithm 1 Time Series Mixup Augmentation
Input: Time series dataset X , number of augmentations n
Output: Augmented Dataset X̃

1: for i = 1 to n do
2: Sample two time series x(1),x(2) ∼ X
3: Sample a chunk size λ ∼ U(0, l)
4: Sample start indices s1, s2 ∼ U(0, l − λ)
5: Swap chunk from x(2) into x(1):

x
(1)
s1:s1+λ ← x

(2)
s2:s2+λ

6: Append x(1) into X̃
7: end for
8: return X̃

Pretraining Framework. Normwear is derived from the Masked Autoencoder (MAE) (He et al.,
2021). The detailed hyper-parameter choice is descibe in 6. We use a Conv2D layer with a kernel
size of (9, 5) and a stride of (9, 5), ensuring no overlapping patches. This layer takes input with 3
channels and projects it to 768 channels, matching the hidden size of our encoders. In Normwear,
we apply structured masking independently to each variate along both the frequency and time axes,
with respective masking ratios of 0.6 and 0.5. This results in an expected overall masking ratio of
0.8 for each variate. Only the unmasked tokens are passed to the encoder, reducing computational
complexity. To enhance representation learning, we introduce six additional transformer blocks as
fusion layers, interleaved with the original 12 encoder blocks, creating a total of 18 blocks. Each
transformer block has a hidden dimension of 768 and uses LayerNorm as in the original MAE. The
latent embeddings obtained from the encoder are projected from 768 to 512 dimensions. Learnable
masked tokens are reinserted at their original positions, and positional embeddings are added to
guide the decoder in reconstructing the input series. The lightweight decoder consists of two trans-
former blocks with a hidden dimension of 512, followed by two Conv1D layers. The first Conv1D
layer maps from the flattened multivariate signal embedding to an intermediate dimension, and the
second Conv1D layer maps from this intermediate dimension back to the original multivariate signal
space. A GELU activation function is used between these layers, with BatchNorm applied to the in-
put. The decoder reconstructs the original input series, and the model is trained using Mean Squared
Error (MSE) loss on all data points. Our models are pre-trained for 45,000 steps with a batch size of
256, using the AdamW optimizer with a learning rate of 10−4. We did not perform on-the-fly data
augmentation, as suggested in the MAE framework, due to the high masking ratio. (An end-to-end
example of the input and output of this pretraining pipeline is illustrated in Fig. 7)

MSiTF. For pretraining the representation alignment module, we have the training hyper-parameters
in Table 7.

Sentence template example for signal-sext alignment.
• Emotion Task:

– ’The emotion detected is {}.’,
– ’This subject is feeling {}.’,
– ’The emotional state is {}.’,
– ’The identified emotion is {}.’

• Activity Task:
– ’This subject is currently {}.’,
– ’The subject is engaged in {}.’,
– ’Current activity is {}.’,
– ’Subjectś activity is {}.’

where {} is the placeholder for the corresponding label of each sample in pretraining datasets.
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Figure 7: Visualization of original time series, CWT transformation image, masked image with
structured masking, and reconstructed time series.

Statistical Feature list:

Features in time domain: mean, std, max, min, skew, kurtosis, 25% quantile, median, 75% quantile.

Features in frequency domain: centroid, spread, mean frequency, peak frequency, 25% quantile
frequency, median frequency, 75% quantile frequency.

Radar Plot or Performance Trend. To enhance the visual contrast between model performances
across tasks, we applied the Softmax function to the raw performance scores. This transformation
rescales the scores to a range between 0 and 1, accentuating relative differences between models.
While the Softmax transformation emphasizes the relative improvement of our model over others,
we note that the absolute scores may differ from those originally reported.

C COMPLEXITY ANALYSIS OF DIFFERENT APPROACHES FOR
CROSS-CHANNEL FUSION

When conducting multi-channel modeling, for example, when the input comprises an arbitrary num-
ber of signals, a fusion operation needs to be conducted across all channels in order to let the model
extract correlation information. Because we will deploy the model on an edge device like Jetson
Nano, other than empirical evidence of the performance, we also have to consider the computation
complexity of different approaches. A brief visualization of the runtime complexity of different ap-
proaches is presented in figure 8. The detailed derivation is presented in the following subsections.
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Table 6: NormWear Pretraining Hyper-parameters.
Hyper-parameter Value

# cross-patches Transformer Encoder 12
# cross-channels Transformer Encoder 6
# Transformer Decoder 2
# Attention Heads 12
Encoder Latent Size 768
Decoder Latent Size 512
Feedforward Latent Size 3072
Normalization LayerNorm
Patch size (time axis) 9
Patch size (scale axis) 5
Optimizer AdamW
Loss Scalar NativeScaler
Base Learning Rate (blr) 1e-3
Epochs 140
Batch size 192

Table 7: MSiFT Hyper-parameter
Hyper-parameter Value

Learning rate (lr) 1e-3
Epochs 40
Batch size 32
L2 regularization 5e-6
lr decay rate 0.997
λ 0.5
τ 0.5

C.1 ALL-ATTENTION

For the approach of conducting self-attention by concatenating all the patches, we arrive the Big-O
complexity expression as follows:

• We denote C as the number of input channels, d as the embedding size, L as the number of
patches convolved from the time series in each channel (proportional to sequence length),
and x ∈ RC×L×d as the input data before feeding into the fusion block. We have a total of
L · C patches.

• When calculating the attention scores, dot products are computed for each pair of the
patches, which results in the following calculation process:

for i in [1, 2, ..., C] do
for j in [1, 2, ..., L] do

2) N = exp(attn(xi,j)), =⇒ O(L · C)
for k in [1, 2, ..., C] do

for l in [1, 2, ..., L] do
1) Calculate dot product: attn(xi,j , xk,l) = xT

i,jxk,l, =⇒ O(2d)

2) Softmax over all-attention scores, exp(attn(xi,j ,xk,l))
N , =⇒ O(1)

3) Weighted Average: xi,j + attn(xi,j , xk,l) · xk,l, =⇒ O(2d)
end for

end for
end for

end for
where ”1), 2), 3)” represents the operations conducted at the first, second, and third rounds
of entering the entire nested loops. The complexity for the first round of operation results
in a complexity of:

C∑
i=1

L∑
j=1

C∑
k=1

L∑
l=1

2d =

C∑
i=1

L∑
j=1

C∑
k=1

L · 2d =

C∑
i=1

L∑
j=1

C · L · 2d = O(d · (L · C)2) (3)

where in the case of multi-head attention, the dot product still has the complexity of O(2d),
and because the number of heads is a constant, the final complexity is equivalent to the
result in equation 3.

• Similarly, the softmax operation will result in a complexity of O((L · C)2), and the final
weighted average operation will also have a complexity of O(d · (L ·C)2), which results in
total complexity of

O(d · (L · C)2) +O((L · C)2) +O(d · (L · C)2) = O(d · (L · C)2) (4)
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C.2 CROSS-ATTENTION

For the pairwise cross-attention approach following guidance of Chen et al. (2021), we have the
operation defined as

for i in [1, 2, ..., C − 1] do
for j in [1, 2, ..., C] do

2) N = exp(attn(xi,1)), =⇒ O(L)
for k in [2, 3, ..., L] do

1) Calculate attn(xi,1, xj,k), =⇒ O(2d)

2) Softmax over all-attention scores, exp(attn(xi,1,xj,k))
N , =⇒ O(1)

3) Weighted average: xi,1 + xj,k, =⇒ O(2d)
end for

end for
end for

with the same notion in the previous subsection. The total complexity is

O(C2 · L · 2d) +O(C2 · L) +O(C2 · L · 2d) = O(d · L · C2) (5)

C.3 [CLS]-ATTENTION

This is the approach that we adopted for the final version of our proposed foundation model. Only
the embedding corresponding to the [CLS] token of each channel is involved during the self-attention
operation. Therefore, the complexity is

O(d · C2) (6)

C.4 MEAN-POOL ATTENTION

For fusion with mean-pool attention, we first calculate the mean representation for each channel,
resulting in a complexity of O(C ·L · d). And self-attention with Tese mean representations has the
same complexity as [CLS]-attention, which is O(d · C2). Thus, the total complexity is

O(C · L · d) +O(d · C2) = O(d · (L · C + C2)) (7)
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Figure 8: Visualization of runtime complexity when scaling up the number of channels or the se-
quence length.
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D ABLATION STUDY

Due to computational constraints, we will conduct the ablation study on our smaller dataset (37k
samples) to train and evaluate the model, establishing a proof of concept and demonstrating the
effectiveness of our approach in a controlled setting.

Fusion Schemes. Table 8 shows the performance of different fusion schemes, including (1) no
fusion, (2) cross-attention fusion, (3) [CLS]-attention fusion, and (4) mean-pooling fusion. We
excluded all-attention fusion in our ablation study because it is computationally prohibitible. Among
all the compared strategies, the [CLS] token fusion generally achieves the best accuracy with a minor
increase in parameters.

Table 8: Performance Comparison of Various Fusion Schemes
Dataset/Task No-Fusion All-Attention Cross-Attention Fusion [CLS] Token Fusion Mean Pooling Fusion

Emotion Classification 80.345 ± 0.022 N/A 76.231±1.069 80.373±0.049 79.010±0.030
Valence-Arousal Prediction 59.224 ± 0.732 N/A 60.271±0.522 62.386±0.175 60.930±0.240
Driver Fatigue Detection 68.086 ±0.040 N/A 69.241±0.167 71.009±0.080 70.230±0.350
Human Activity Recognition 95.320 ± 0.058 N/A 94.723±0.085 96.155±0.022 95.650±0.060
Blood Pressure Estimation 92.560±0.127 N/A 89.464±0.805 91.967±0.673 91.780±1.580
Hemoglobin Estimation 86.690±0.043 N/A 85.585±0.266 86.476±0.021 86.740 ± 0.010
Fetal Heart Rate Estimation 95.249±0.016 N/A 92.592±0.079 95.345±0.596 94.150±0.010
Heartbeat abnormal Detection 99.669±0.002 N/A 99.451±0.088 99.611±0.009 99.800 ± 0.010
Hypertension Risk Evaluation 64.460±1.071 N/A 63.065±0.751 66.896±0.276 67.520 ± 0.470
Diabetes Risk Evaluation 56.035±0.629 N/A 60.724±2.589 72.216±0.694 68.760±0.570
Brain Stroke Risk Evaluation 55.209±0.958 N/A 72.323±2.982 64.387±0.922 48.890±2.870
Brain Disease Risk Evaluation 64.969±1.964 N/A 55.532±1.568 55.897±1.057 63.510±6.060
Average Score 76.484 N/A 76.600 78.345 77.25

Masking Strategies in Pre-training. We ablated our masking strategy introduced in Section 2.3.
Using a consistent mask ratio of 0.8 in all strategies, we found that applying masking along the
scale and time axes produced the best performance (details in Table 9). Input Representations.

Table 9: Performance Comparison of Various Masking Strategies

Dataset/Task Unstructured
(P = 0.8)

Structured
(Pt = 0.8, Pf = 0.0)

Structured
(Pt = 0.0, Pf = 0.8)

Structured
(Pt = 0.6, Pf = 0.5)

Emotion Classification 73.57 71.71 72.44 80.37
Valence-Arousal Prediction 59.44 61.77 61.32 62.39
Driver Fatigue Detection 64.90 74.38 75.54 71.01
Human Activity Recognition 95.40 95.45 95.40 96.20
Blood Pressure Estimation 91.78 88.58 91.99 91.97
Hemoglobin Estimation 88.56 88.97 88.78 86.48
Fetal Heart Rate Estimation 95.26 93.56 95.58 95.35
Heartbeat abnormal Detection 97.78 99.17 99.14 99.61
Hypertension Risk Evaluation 62.42 64.83 64.35 66.90
Diabetes Risk Evaluation 56.27 66.85 43.96 72.22
Brain Stroke Risk Evaluation 64.89 54.83 46.60 64.39
Brain Disease Risk Evaluation 45.18 61.74 51.80 55.90
Average Score 74.87 77.07 74.08 78.27

Table10 compares the performance of two input representations: (1) CWT scalogram and (2) raw
time series. The CWT scalogram converts the time series into a time-frequency representation,
while the raw time series retains the original sensor data. Among the two representations, the model
trained on CWT scalograms demonstrates better performance, suggesting that the time-frequency
features enhance model accuracy.

From Table 12, we observe that demographic information and represenations extracted from wear-
able signals have their own strength on different tasks, and most of the time, when we concatenate
them together, the overall performance will be better. The performance drop in some cases after
concatenation, which indicate that there might be some confounding relationship between these two
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Table 10: Performance Comparison Between CWT Scalogram and Raw Time Series as Inputs.
Dataset/Task Raw Series Input CWT Scalogram Input
Emotion Classification 73.60 80.37
Valence-Arousal Prediction 61.04 62.39
Driver Fatigue Detection 76.25 71.01
Human Activity Recognition 96.25 96.20
Blood Pressure Estimation 89.76 91.97
Hemoglobin Estimation 86.29 86.48
Fetal Heart Rate Estimation 95.88 95.35
Heartbeat Abnormal Detection 99.29 99.61
Hypertension Risk Evaluation 63.65 66.9
Diabetes Risk Evaluation 57.54 72.22
Brain Stroke Risk Evaluation 54.27 64.39
Brain Disease Risk Evaluation 51.13 55.90
Average Score 76.25 78.27

Table 11: Performance on various downstream wearable-signal-based health related applications
under linear probing evaluation using 5 fold cross validation stratified by subject ID (if provided by
the data source). In this table, The classification tasks are solved by Newton’s method with conjugate
gradient, and the AUC ROC are reported. The regression (noninvasive BP estimate) tasks are solved
by Cholesky’s method with closed form solution for ridge regression, and the relative accuracy (1
minus relative error) are reported. All the scores are the higher the better.

Downstream Tasks Statistical Chronos CLAP TF-C
NormWear-L
(Ours)

WESAD 79.992 +- 0.707 83.332 +- 0.841 87.824 +- 0.463 82.701 +- 0.536 89.585 +- 0.683
UCI-HAR 95.602 +- 0.148 91.956 +- 0.256 96.864 +- 0.175 97.382 +- 0.138 98.179 +- 0.06
DriverFatigue 69.614 +- 1.138 72.48 +- 2.848 66.251 +- 0.471 65.026 +- 1.198 68.971 +- 1.32
GAMEEMO 64.281 +- 1.292 56.694 +- 0.878 64.119 +- 0.543 62.925 +- 0.999 67.863 +- 0.72
Noninvasive 92.83 +- 0.386 92.223 +- 0.356 92.612 +- 0.272 88.707 +- 0.622 93.381 +- 0.516
Avg. 80.464 +- 0.734 79.337 +- 1.036 81.534 +- 0.385 79.348 +- 0.699 83.596 +- 0.660

Table 12: Checking the reliance on demographic information.

Downstream Tasks
Simple Baseline
Mode and Mean

Demographic NormWear-Medium
Demographic +
NormWear-Medium

NormWear-Large
Demographic +
NormWear-Large

WESAD 50.000 49.907 74.227 69.06 76.06 68.755
Noninvasive 92.988 92.954 91.427 90.84 92.42 92.528
PPG-Hgb 94.816 95.634 94.911 95.835 94.632 96.384
Fetal-fPCG 99.033 99.039 98.997 99.001 99.072 99.097
Vital Signs Avg. 95.612 95.876 95.112 95.225 95.375 96.003
PPG-BP (HTN) 50.000 59.899 62.746 64.482 62.341 61.291
PPG-BP (DM) 50.000 47.297 62.613 47.86 55.893 60.135
PPG-BP (CVA) 50.000 81.875 67.639 83.681 70.625 77.847
PPG-BP (CVD) 50.000 71.011 51.504 70.37 51.773 67.466
Risk Evaluation Avg. 50.000 65.021 61.126 66.598 60.158 66.685
Micro Avg. 67.105 74.702 75.508 77.641 75.352 77.938
Macro Avg. 65.204 70.268 76.821 76.961 77.198 77.148

representations, hence further indicated that the information lies in demographic and the wearable
represenation from NormWear are focused on different aspects. Same observation are observed with
arbitrary model checkpoints during pretraining (denoted as Medium and Large marker representing
different stage of training when we do the study on increasing the pretrain size.)
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E DEPLOYMENT OF NORMWEAR: TESTING ON THE EDGE

As shown in the table 13, the GPU setup on an NVIDIA RTX 3090 significantly outperforms other
configurations in inference speed, achieving an inference time of only 0.18 seconds while main-
taining low RAM usage (8.04 MB) and moderate VRAM requirements (732.82 MB). In contrast,
the CPU setup on MacOS M1 requires 4.21 seconds, reflecting a considerably slower performance
despite similar RAM usage (9.12 MB) and no VRAM consumption. On edge devices, such as the
Jetson Nano 4GB, the CPU-based setup exhibits the slowest inference time of 40.69 seconds, while
the GPU variant improves this to 34.87 seconds with a VRAM requirement of 504.46 MB. Storage
requirements remain constant across all configurations at 1.63 GB.

Table 13: Computation resources consumed across various devices, on 6 channels data for 6 sec-
onds.

Dataset/Task Infer time RAM VRAM Storage
CPU (MacOS, M1) 4.21 s 9.12 MB - 1.63 GB
GPU
- Debian GNU/Linux
- NVIDIA-RTX-3090

0.18 s 8.04 MB 732.82 MB 1.63 GB

Edge (Jetson Nano 4GB, CPU) 40.69 s 9.12 MB - 1.63 GB
Edge (Jetson Nano 4GB, GPU) 34.87 s 8.17 MB 504.46 MB 1.63 GB

F [RE-POSITIONED] FEATURE VISUALIZATION

F.1 THE MODEL IS AGNOSTIC TO THE INPUT SIGNALS

This section investigates whether, without requiring the signal modality type information as input,
NORMWEAR can effectively distinguish between different signal sources. We randomly sampled
500 samples for each sensor type and fed them into our pretrained model. We use t-SNE (Van der
Maaten & Hinton, 2008), with PCA (Jolliffe & Cadima, 2016) initialization to visualize the learned
representations corresponding to the [CLS] special token at the last layer. The PCA preserves the
global structure, while t-SNE emphasizes local relationships in the data. From Figure 9(a), we
observe that representations from sensors located at the same body position are clustered closely
together, while representations from different body locations are clearly separated. This suggests
that our model is signal-agnostic, as it can recognize the signal type differences, map their represen-
tations appropriately in the embedding space, and guide feature extraction within each Transformer
block.

F.2 WAVEFORM VISUALIZATION

Figure 9 (b) under “Feature Associations” shows the features extracted by our model. Each patch
corresponds to a representation with a vector size of R768. When ordered by time sequence, these
representations form 768 waveforms per layer, representing the model’s extracted features. The
figure displays 64 randomly sampled waveforms from a selected layer. The features highlighted
in purple and gray indicate the top 10 patterns positively and negatively associated with the target
task (diabetes classification, in this example), with associations determined by linear regression
parameters during linear probing. Additionally, our relevance-based fusion mechanism identifies the
contribution of each time step during inference, highlighted by red dots in the “Time Step Relevance”
section of Figure 9 (b).

Such a visualization pipeline can assist researchers and clinicians by offering insights into how the
model reaches its final predictions. Given the millions of parameters and hundreds of waveform
features per layer, visualizing these features individually is inefficient for understanding the overall
behavior of the proposed foundation model. As a result, we use several techniques in nonlinear
dynamic analysis (Thompson et al., 1990) to quantify the overall patterns of these extracted features,
which are discussed in detail in section 3.5.
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Figure 9: Feature visualization.

F.3 T-SNE PLOT AMONG CLASSES

In this section, we present T-SNE plots of NormWear’s embeddings across different classes to pro-
vide insights into their structure and assess their suitability for sample similarity-based information
retrieval. It is important to note that these plots are exploratory in nature and do not serve as a claim
of the embeddings’ superiority. As shown in Figures 10, 11, 12, clear class separations can be ob-
served in certain scenarios. For example, EEG samples from seizure subjects and normal subjects
are distinctly separated, and physical activity types are well-clustered. For ECG data, abnormal
heartbeats tend to form cohesive clusters. However, it is essential to recognize that these T-SNE
plots reduce the latent representations into a 2D space, which may not fully capture the inherent
properties of the embeddings in their original high-dimensional form.

Normal State
Experiencing Seizure

Figure 10: Visualization of embedding on EEG signals.
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Figure 11: Visualization of embedding on signals from IMU sensors.

Normal heart beat
Abnormal heart beat

Figure 12: Visualization of embedding of ECG.
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G RECONSTRUCTION EXAMPLE

Figure 13: Uncurated random samples on Phyatt scalogram, using a NORMWEAR trained in our
training set. The masking ratio is 80%.
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Figure 14: Uncurated random samples on WESAD scalogram, using a NORMWEAR trained in
our training set. The masking ratio is 80%. Note that the IMU data are not in the training set and, in
general, NORMWEAR is able to reconstruct this with high accuracy.
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