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ABSTRACT

Recent works have proven tokenisation to be NP-complete. However, their
proofs’ constructions rely on tokenisation being applied to inputs with alphabets
of unbounded cardinality, which does not accurately reflect the real world. Indeed,
since practical applications of tokenisers involve fixed-size alphabets (e.g., Unicode
or bytes), the implications of such a statement may be challenged. In this work,
we examine the computational complexity of tokenisation over bounded alphabets,
considering two variants of this problem: bottom-up tokenisation and direct to-
kenisation, where we must, respectively, select a sequence of merge operations (in
bottom-up tokenisation) or a vocabulary (in direct tokenisation) whose application
compresses a dataset to at most δ symbols. When alphabets are bounded to have
only 2 characters, we do not only prove that bottom-up and direct tokenisation are
NP-complete, but also that there is no polynomial-time approximation scheme for
either of these problems (unless P = NP). Furthermore, even when alphabets are
bounded to contain a single character, we can still prove the NP-completeness of
direct tokenisation. Although the single-character case is not practical on its own,
proving hardness results for an n-ary alphabet allows us to prove the same results
for alphabets of any larger size. We thus conclude that direct tokenisation over any
alphabet is NP-complete, and that both bottom-up and direct tokenisation do not
admit polynomial-time approximation schemes for any alphabet of size 2 or larger.

1 INTRODUCTION

Tokenisation is the first step in most natural language processing pipelines. Given a character
string c, a tokeniser maps it to a sequence of subwords s. Language models then operate on these
subword sequences rather than the raw characters. Despite its central role, however, we still lack
a comprehensive understanding of tokenisation; e.g., which properties of the produced subwords s
actually help downstream modelling? A common property to aim for is compression (Sennrich et al.,
2016; Uzan et al., 2024; Zouhar et al., 2023b), as using shorter subword-strings to encode a dataset
allows for more efficient training and inference—more data can be passed through the model with the
same number of flops. While not a silver bullet (Schmidt et al., 2024; Ali et al., 2024), compression
has been shown to correlate with downstream model performance (Gallé, 2019; Rust et al., 2021;
Zouhar et al., 2023a; Goldman et al., 2024) and will be our work’s focus.

A practical concern follows immediately: once an objective (e.g., compression) is fixed, can an
optimal tokeniser be found efficiently? Popular algorithms such as BPE and UnigramLM are greedy
or heuristic and need not return an optimal tokeniser for their stated criteria. Further, recent work
has sharpened this picture, proving the NP-completeness of finding an optimal tokeniser under a
compression-style objective (Kozma and Voderholzer, 2024; Whittington et al., 2025; Lim et al., 2025).
These papers, however, show this for the tokenisation of strings over unboundedly large alphabets.
Conversely, in practice the strings we care about are typically composed of Unicode characters or
bytes, thus using bounded alphabets. Whether it is possible to efficiently find optimal tokenisers over
Unicode-strings (which have an alphabet size of roughly 150,000), byte-strings (with an alphabet
size of 256), or bit-strings (with an alphabet size of 2) are open questions of practical relevance.

In this paper, we first define the n-ary tokenisation problem: the problem of finding an optimal
tokeniser on strings constrained to alphabets of size n. We examine this problem under two variants:
direct and bottom-up tokenisation, where—given a dataset over an n-ary alphabet and a vocabulary
size K—we must find the vocabulary (in direct tokenisation) or sequence of merges (in bottom-up
tokenisation) which when applied to the dataset maximally compresses it. We prove that (i) both
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direct and bottom-up binary tokenisation do not admit a polynomial-time approximation scheme
(ptas;1 unless P = NP),2 and (ii) that for the direct case, even unary tokenisation is NP-complete.
Notably, unary and binary are the easiest of the n-ary tokenisation problems, and thus these hardness
results also trivially extend to tokenisation problems with larger alphabets.

Our results thus indicate that the computational hardness of tokenisation is not an artifact of large
alphabets or elaborate merge operations: it already appears under direct tokenisation over unary alpha-
bets. This helps explain why practical algorithms (e.g., BPE) rely on approximations, and suggests that
future work should focus on provably good approximate methods or on relaxations for this problem.

2 TOKENISATION

We follow Whittington et al.’s 2025 notation and colour-coding

• Blue for raw data (i.e., characters c ∈ Σ∗);
• Magenta for tokeniser-specific data (i.e., subwords s∈S∗ and merges m∈M∗);
• Orange for functions (e.g., tok).

Let c ∈ Σ∗ be a character-string, composed of characters c from an alphabet Σ; for notational
convenience, we may write one such string as c = c1c2 . . . c|c|. Character-strings compose the raw
text data found, say, on the web, which make up the datasets on which language models are trained.
We denote one such dataset by D = {cm}Mm=1. Before feeding data to our models, however, we
typically convert them to strings of subwords, which is the job of a tokeniser.

Formally, a tokeniser can be defined as a tuple ⟨S, detok, tok⟩, composed of a vocabulary, a decoding
and an encoding function. A vocabulary is a finite set of subwords, each of which is a non-empty
span of characters; we thus write S ⊂ Σ+. A subword-string is then a sequence s ∈ S∗ and
represents a character-string via the concatenation of its subwords’ characters: we say that a pair of
character- and subword-strings are equivalent if

c
◦
= s ⇐⇒ c = concat(s), concat(s) = s1 ◦ s2 ◦ · · · ◦ s|s| (1)

where we write s = ⟨s1, s2, · · · , s|s|⟩ and each st ∈ S is a subword. Notably, Σ⊆S is typically
enforced to guarantee that every c∈Σ∗ can be represented by at least one subword-string s ∈ S∗,
and we say that a vocabulary’s size is |S| = |Σ|+K. Second in this tuple, a decoding function is
defined as detok : S∗ → Σ∗, and given a subword-string it outputs the character-string it represents.
This function thus is simply defined as detok(s) def

= concat(s).

Finally, an encoding function tok : Σ∗ → S∗ maps character- to subword-strings while ensuring
the equivalence c

◦
= s for s= tok(c). Several encoding functions may respect this constraint, as

many subword-strings may be equivalent to a character-string. For instance, given S={a, aa, aaa},
the string c= aaa could be tokenised as s = ⟨aaa⟩ or as s = ⟨a, aa⟩. We focus on two encoding
functions in this paper, which we follow Whittington et al. (2025) in labelling as direct and bottom-up.
The direct encoding function (tok	) only requires a vocabulary, which it applies optimally to encode
a character-string. In turn, the bottom-up encoding function (tok↑) takes a merge sequence m =
⟨m1, . . . ,mK⟩ as input, which it applies in order to a character-string; each of these merges is com-
posed of a pair of subwords, mk = (s

[1]
k , s

[2]
k ), and we write mergem : S∗ → S∗ to represent a func-

tion which, given a subword-string, processes it left-to-right and replaces any consecutive occurrence
of the pair s[1]k , s

[2]
k with a new token s[new]

k = s
[1]
k ◦ s[2]k . We formalise these encoding functions as

tok	[S](c)
def
= argmin

s∈S∗
|s|, tok↑[m](c)

def
=

( ⊙
m∈m

mergem

)
(c) (2)

s.t. c
◦
=s

where
⊙

represents function composition. A tokeniser is thus fully determined by a vocabulary
or merge-sequence; for the direct case we have tokdef

=tok	[S] while for bottom-up tok
def
=tok↑[m].

Importantly, as shown by Schmidt et al. (2024), the direct encoding function (tok	[S]) can be
efficiently computed in O(|c|2) time.

1We use the lower-case ptas acronym to denote the corresponding class of polynomial-time approximation
algorithms, and the upper-case PTAS to refer to the complexity class of problems for which a ptas exists.

2More specifically, we present a constant lower bound on the approximation ratio achievable by any
polynomial-time algorithm on this problem.
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2.1 OBJECTIVE FUNCTIONS AND THEIR OPTIMISATION

As described above, a direct tokeniser is fully determined by a vocabulary, while a bottom-up
tokeniser is identified by a merge-sequence. How to select a specific tokeniser, though? This
is typically done via defining an objective function G which, given an encoding function (tok)
and a dataset (D), returns a value representing the cost of that particular choice. Choosing a
tokeniser then “simply” requires optimising this objective: e.g., for direct tokenisation we must find
Sopt = argminS⊂Σ+ G(tok	[S],D) under the constraint that |S| = |Σ|+K.

Several objective functions exist. UnigramLM (Kudo, 2018), for instance, selects a vocabulary
which optimises a dataset’s unigram negative log-probability. Other work has proposed alternative
measures, such as the frequency of the 5-th % least frequent token (Gowda and May, 2020), or the
tokeniser’s Rényi efficiency (Zouhar et al., 2023a). As mentioned above, we focus on compression
in this paper. We do so following a battery of previous work which formally analyses tokenisers
(Zouhar et al., 2023b; Kozma and Voderholzer, 2024; Whittington et al., 2025; Lim et al., 2025).
Prior work has shown that a tokeniser’s compression correlates with the downstream performance
of language models trained on its output subword-strings (Gallé, 2019; Zouhar et al., 2023a). We
note, however, that other recent work has criticised compression as the sole objective for tokenisation,
showing that these two properties (compression and downstream performance) may have a more
complex relationship than originally suspected (Ali et al., 2024; Schmidt et al., 2024).

There are two natural ways to define a compression objective: compressed length, which measures
the number of remaining symbols after a string is tokenised, and compression reduction, which
measures how many symbols are reduced in the string by a tokeniser. These are formalised as:

Gℓ(tok,D)
def
=
∑

c∈D
|tok(c)|︸ ︷︷ ︸

compressed length, size of remaining string

, Gr(tok,D)
def
=
∑

c∈D

(
|tok(c)| − |c|

)
︸ ︷︷ ︸

compression reduction, number of reduced symbols

(3)

While equivalent in how they rank tokenisers, this choice can make a big difference when evaluating
the quality of an approximation. When using minimisation objectives, such as Gℓ, the approximation
ratio of an algorithm upper-bounds the ratio between the objective value achieved by the algorithm’s
solution and an optimal solution, being thus at least 1 by definition. A similar definition applies
when using maximisation objectives, such as Gr, but the approximation ratio is inversed. We say
we have a δ-approximation algorithm if, for every possible input, this ratio is bound from above
by δ. If a dataset has 1,000 characters and would have 100 symbols if optimally compressed, a
suboptimal tokeniser which instead reduces it to at most 200 symbols would have an approximation
ratio of 2 under Gℓ but of 1.125 under Gr. Notably, prior work has analysed both these measures. We
argue here that compressed length is a more natural objective, as it directly relates to the throughput
achieved by a language model processing that text, being thus connected to the model’s training and
inference costs. A 2-approximation for Gℓ implies that a language model using that tokeniser may be
2-times slower (and more costly) than optimal when processing the same text.3

After deciding on an objective function, such as Gℓ above, we must select a vocabulary (S ⊂ Σ+)
or merge-sequence (m ∈ M∗) which optimises it. Unfortunately, both these optimisation problems
have infinite search spaces (respectively, P(Σ+) and M∗, where P denotes the powerset operation),
which begs the question: is there an efficient way to find these optima? Recent work has shown
that, in general, this is not possible, proving compression-based tokenisation to be NP-complete;
namely, Kozma and Voderholzer (2024) showed this for bottom-up tokenisation, Whittington et al.
(2025) for direct and bottom-up tokenisation, and Lim et al. (2025) for direct tokenisation with
candidate tokens. This means that, unless P = NP , there exists no polynomial-time algorithm to
find compression-optimal tokenisers. Beyond that, using the Gr objective function, Kozma and
Voderholzer (2024) showed that bottom-up tokenisation is not only NP-complete, but that it is not in
the polynomial-time approximation scheme (PTAS) complexity class (unless P = NP ). The PTAS
class is characterised by problems for which a ptas exists: for every constant ε > 0, there exists a
polynomial-time algorithm (whose run-time may depend on ε), which solves it with an approximation
ratio upper-bounded by 1+ε. Not being in PTAS thus implies that there is no polynomial-time
algorithm which can approximate the optimal solution with approximation ratios arbitrarily close to
1. Notably, all of these complexity proofs rely on tokenisation problems over alphabets of unbounded
size. Whether these results hold once alphabet sizes are bounded is thus left open.

3Assuming that language models cannot achieve sub-linear computational complexity on their input’s length.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 TOKENISATION OVER BOUNDED ALPHABETS

We now move to the analysis of tokenisation over bounded alphabets. Let an n-ary alphabet be an al-
phabet with size |Σ| = n. We define the tokenisation problem over such bounded alphabets as follows.

Definition 1. Let K be a vocabulary size and D be a dataset composed of character-strings from
an alphabet of size |Σ| = n. For a given δ, the n-ary tokenisation decision problem requires
deciding whether there exists a vocabulary Sopt ⊆ Σ+ (for direct tokenisation) or a merge-sequence
mopt ∈ M∗ (for bottom-up tokenisation) which compresses D to at most δ symbols. The n-ary
tokenisation optimisation problem is to find what the maximal such compression of D is. Formally:

δ ≥ min
tok∈T

∑
c∈D

|tok(c)| , s.t. |tok| = K︸ ︷︷ ︸
n-ary tokenisation decision problem

, δopt = min
tok∈T

∑
c∈D

|tok(c)| , s.t. |tok| = K︸ ︷︷ ︸
n-ary tokenisation optimisation problem

(4)

where T def
= {tok	[S] | S ⊂Σ+} for direct tokenisation and T def

= {tok↑[m] | m∈M∗} for bottom-up.

We will more specifically call these the direct n-ary tokenisation problem and the bottom-up n-ary
tokenisation problem when dealing with, respectively, direct and bottom-up tokenisers, writing
Tokn	 (D,K, δ) and Tokn↑ (D,K, δ) for the functions which return the solution to their decision prob-
lems. Notably, the n-ary tokenisation problems form a clear hierarchy from easiest (n = 1) to hardest
(n→ ∞), with unary tokenisation being the easiest such problem. In the next sections, we first prove
that both direct and bottom-up binary tokenisation are hard to approximate, i.e., that both these prob-
lems are not in PTAS (in §4). We then prove that direct binary tokenisation is NP-complete (in §5).

Fact 1. If n-ary tokenisation is NP-hard, all n′-ary tokenisation problems for n′ > n are NP-hard.
Proof. Let n, n′ ∈ N with n′ ≥ n. Any instance of the n-ary tokenisation problem is a valid instance
of the n′-ary problem with the same solutions, allowing for a trivial reduction between them. Thus,
any proof of hardness for the n-ary tokenisation problem immediately applies to n′-ary problems.

A Note on Optimisation vs. Decision Problems. Typically, NP-hardness is defined as a property
of decision problems, while hardness of approximation (and consequently, being contained or not
in PTAS) is a notion regarding optimisation problems. There is, however, a notion of equivalence
between these classes of problems: if a polynomial-time algorithm exists to solve a decision problem
(i.e., if this problem is not NP-hard), it can usually be leveraged to also find an efficient algorithm
for its associated optimisation problem, and vice-versa. Similarly, if no polynomial-time algorithm
can solve an optimisation problem with an approximation ratio arbitrarily close to 1 (i.e., if the
problem is not in PTAS), this implies that there must be some constant ε such that it is NP-hard
to distinguish between instances that admit a solution of quality x and those that admit a solution
of quality (1 + ε)x. We will use this latter property here to show hardness of approximation,
relying on gap-preserving reductions.4 To this end, it will be useful to also define gap versions of
the problems we discuss. Formally, we will denote such gap versions similarly to their decision
versions (e.g., Tokn	 (D,K, δ) above), but while providing two decision boundaries instead (e.g.,
Tokn	 (D,K, (δ−, δ+))). In minimisation gap problems, the task is then to decide whether their
optimal value is at most δ+ or at least δ− (with the opposite being true for maximisation problems);
if a value falls between these, any answer is acceptable. For the n-ary tokenisation problems, for
instance, we would require an algorithm which computes:

Tokn(D,K, (δ−, δ+)) =

 T if δ+ ≥mintok∈T
∑

c∈D |tok(c)| , s.t. |tok| = K
F elif δ− ≤mintok∈T

∑
c∈D |tok(c)| , s.t. |tok| = K

? else
(5)

4 BINARY TOKENISATION IS HARD TO DECIDE AND APPROXIMATE

In this section, we will prove NP-hardness of the two binary tokenisation decision problems above,
and of their corresponding gap problems (for specific gaps). To this end, we will use a reduction from
the 3-occurrence maximum 2-satisfiability problem (3-OCC-MAX2SAT), which we define in §4.1.
We then move on to proving results showing hardness of approximation for the direct and bottom-up
binary tokenisation problems (in §4.2 and §4.3, respectively).

4We note that hardness of approximation is not formally the same as proving APX-hardness (as was done in
Kozma and Voderholzer, 2024). However, it allows for the same conclusion: a PTAS for the binary (and larger)
tokenisation problems cannot exist, unless P = NP. Additionally, our gap-preserving reductions allow us to find
explicit constants to which the problems cannot be approximated in polynomial time, again unless P = NP.
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4.1 3-OCCURRENCE MAXIMUM 2-SATISFIABILITY

LetX be a Boolean variable which is assigned a value x ∈ {F, T}, and X = {Xj}Jj=1 be a set of such
variables, with joint assignment x = {xj}Jj=1. Further, let C = {(L1

i ∨ L2
i )}Ii=1 be a set of clauses,5

where each literalL is either a variableXj or its negation ¬Xj . We define 3-OCC-MAX2SAT as follows.

Definition 2. Let X = {Xj}Jj=1 be a set of Boolean variables and C = {(L1
i ∨ L2

i )}Ii=1 be a set
of clauses. Further, let each variable Xj occur in exactly three clauses. Given a target γ ∈ N, the
3-OCC-MAX2SAT decision problem requires deciding whether there exists an assignment x ∈ {F, T}J
such that at least γ clauses are satisfied. The 3-OCC-MAX2SAT optimisation problem requires finding
the maximum number of satisfiable clauses. Formally:

γ ≤ max
x ∈{F,T}J

∑I

i=1
1x {L1

i ∨ L2
i }︸ ︷︷ ︸

3-OCC-MAX2SAT decision problem

γopt = max
x ∈{F,T}J

∑I

i=1
1x {L1

i ∨ L2
i }︸ ︷︷ ︸

3-OCC-MAX2SAT optimisation problem

, (6)

We will write 3OM2S(X , C, γ) to denote a function which, given a certain instance of the
3-OCC-MAX2SAT decision problem, returns its solution. The 3-OCC-MAX2SAT problem was proven
to be hard to approximate by Berman and Karpinski (1999). As not belonging to PTAS implies
NP-hardness, this problem is also NP-hard.

4.2 DIRECT BINARY TOKENISATION IS HARD TO DECIDE AND APPROXIMATE

In this section, we prove that the direct binary tokenisation problem is both hard to decide and to
approximate beyond a certain constant r > 1. First, we will prove that the decision version is NP-hard
(in §4.2.1). Second, we will then use this initial result to prove that a gap version of the problem is
similarly NP-hard (in §4.2.2). This will complete our proof that this problem’s optimisation version
is hard to approximate, as being contained in PTAS would allow us to solve the gap problem.

4.2.1 THE DIRECT BINARY TOKENISATION DECISION PROBLEM IS NP-HARD

We now prove NP-completeness of direct binary tokenisation, which requires two things: inclusion
in NP and being NP-hard. Inclusion in NP follows from the general (unbounded) case, which was
previously proven by Whittington et al. (2025). Proving NP-hardness requires a polynomial-time
reduction from another NP-hard problem to this problem, which we will design in what follows.

Reduction 1. Consider an instance of the 3-OCC-MAX2SAT decision problem and a binary alphabet
Σ = {0, 1}. Now, for each variable Xj , let xT

j = 02j−1 and xF
j = 02j , i.e., character-strings formed

of 0 repeated 2j − 1 or 2j times. Then we build subdatasets:

D1 ={1xT
j , x

T
j1, 1x

F
j , x

F
j1 | 1 ≤ j ≤ J} × f, D2 ={1xT

j1, 1x
F
j1 | 1 ≤ j ≤ J} × f ′ (7a)

D3 ={1xT
j1x

F
j1 | 1 ≤ j ≤ J} × f ′′, D4 ={1L1

i 1L
2
i 1 | 1 ≤ i ≤ I} × 1 (7b)

where ×f denotes that a set of strings should be repeated f times in the corresponding dataset. These
multiplicities are f ′′ def

= 7, f ′ def
= 2(f ′′+3)+1 = 21, f def

= 2(f ′+f ′′+3)+1 = 63. A full dataset is then
formed by joining these subdatasets: D = D1∪D2∪D3∪D4. Finally, we set the number of allowed
tokens K = 5J and the target compression δ = 4fJ + 3f ′J + 2f ′′J + 3I − γ = 329J + 3I − γ.6

We will write R1(X , C, γ) to represent the D-2-TOK instance which is output by this reduction,
represented by the tuple (D,K, δ). Notably, this reduction runs in polynomial time. By proving
its correctness, thus, we can show that direct binary tokenisation is an NP-hard problem. For this
reduction to be correct, a 3-OCC-MAX2SAT instance must be satisfiable if and only if its reduced
tokenisation instance is as well, i.e.,: 3OM2S(X , C, γ) ⇐⇒ Tok2	(R1(X , C, γ)). We now set out
to prove both directions of this iff clause.

Theorem 1. The direct binary tokenisation decision problem is NP-complete.
Proof sketch. This proof is done in two steps.

5In some formalisations, 3-OCC-MAX2SAT allows clauses of size one. We work here, more specifically, with
the 3-occurrence maximum exact-2-satisfiability variant of this problem, thus not allowing single literal clauses.

6This reduction is inspired by Whittington et al.’s 2025 reduction, which we update to (i) rely on binary, as
opposed to unbounded, alphabets; (ii) use constant-sized f ’s, which allow us to prove approximation hardness.
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Forward step. (3OM2S(X , C, γ) =⇒ Tok2	(R1(X , C, γ))) See a formal proof in Lemma 1 in
App. A. Assuming an instance of 3-OCC-MAX2SAT is satisfied by assignment x ⋆ = {x⋆j}Jj=1, we
build a direct tokeniser with tokens 1xT

j , x
T
j1, 1x

F
j , x

F
j1, and with token 1xT

j1 if x⋆j = T else 1xF
j1.

This tokeniser compresses D1 to 252J , D2 to 63J , D3 to 14J , and D4 to 3I − γ⋆ tokens, where
γ⋆ is the number of clauses satisfied by x ⋆. Adding these compressed lengths together, we find that
they satisfy the direct tokenisation problem, as γ⋆ ≥ γ by assumption.

Backward step. (Tok2	(R1(X , C, γ)) =⇒ 3OM2S(X , C, γ)) See full proof in Lemma 2 in App. B.
We first show that an optimal tokeniser for the D-2-TOK instance is always sat-compliant: it contains
all tokens of the form 1xT

j ,x
T
j1, 1x

F
j ,x

F
j1, and either 1xT

j1 or 1xF
j1 for each j ∈ {1, . . . , J}. We do

this by showing that D1 guarantees that any optimal solution includes tokens 1xT
j ,x

T
j1, 1x

F
j ,x

F
j1;

D2 guarantees that any optimal solutions further only include tokens of the form 1xT
j1, 1x

F
j1; and

D3 guarantees that either token 1xT
j1 or 1xF

j1 exist for each j ∈ {1, . . . , J}. Then, we show that if
such a sat-compliant tokeniser reaches the desired compression, it must correspond to an assignment
x ⋆ which satisfies the desired number of clauses.

4.2.2 THE DIRECT BINARY TOKENISATION GAP PROBLEM IS NP-HARD

We now prove that not only the decision version of the direct binary tokenisation problem is NP-hard,
but so is its gap version. Proving NP-hardness of a gap problem is an indirect way of proving that its
optimisation version is hard to approximate: if an efficient algorithm can approximate the optimisation
problem arbitrarily well (which is thus contained in PTAS), it could be used to solve the gap problem.

Theorem 2. The direct binary tokenisation gap problem is NP-hard. Thus, the direct binary
tokenisation optimisation problem is not in PTAS, unless P = NP.
Proof sketch. See a formal proof in Lemma 3 in App. C. As shown by Berman and Karpinski (1998;
1999), the 3-OCC-MAX2SAT gap problem is NP-hard to approximate for problems with I = 2016n
clauses, γ− = (2011 + ε)n lower boundary, and γ+ = (2012 − ε)n upper boundary. We can use
Lemmas 1 and 2 to prove a reduction from this gap problem to D-2-TOK’s gap problem. Notably, our
reduction equates δ = 329J +3I − γ, for both γ− and γ+. Analysing the gap of the resulting tokeni-
sation problem, we find that this problem is thus NP-hard for an approximation ratio δ−

δ+ of at least
1.000002. This implies that no polynomial-time algorithm can approximate the direct binary tokenisa-
tion optimisation problem with an approximation ratio better than this constant, unless P = NP.

While the constant above (i.e., 1.000002) is remarkably small, we note that our proof makes no attempt
to optimise this bound. Our lemma’s main takeaway is that it is not possible to compute D-2-TOK with
approximation ratios arbitrarily close to 1 in polynomial time. Other larger bounds likely exist and,
in fact, it might even be possible that there is no constant-factor approximation for D-2-TOK at all.

4.3 BOTTOM-UP BINARY TOKENISATION IS HARD TO DECIDE AND APPROXIMATE

This section addresses the computational hardness of finding an optimal merge sequence in bottom-up
binary tokenisation. We establish that the problem is NP-hard (in §4.3.1). Furthermore, we prove that
the problem is also hard to approximate; specifically, we show there is no ptas for it, unless P = NP
(in §4.3.2). As for the direct case, our argument proceeds by first proving the hardness of the decision
problem, and then leveraging this result to demonstrate the hardness of a corresponding gap problem.

4.3.1 THE BOTTOM-UP BINARY TOKENISATION PROBLEM IS NP-COMPLETE

As before, we use a reduction from 3-OCC-MAX2SAT to prove this problem’s NP-hardness.

Reduction 2. Consider an instance of the 3-OCC-MAX2SAT decision problem and a binary alphabet
Σ = {0, 1}. Again, for each variable Xj , let xT

j = 02j−1 and xF
j = 02j . Then we build subdatasets:

D1={11,xT
j ,x

F
j , 1x

T
j ,x

T
j1, 1x

F
j ,x

F
j1,x

T
j11, 11x

F
j} × f D2={1xT

j1, 1x
F
j1, 1x

T
j11, 11x

F
j1} × f ′ (8a)

D3={1xT
j1x

F
j1, 11x

F
j1x

T
j11} × f ′′ D4={1xF

j1x
T
j11, 11x

F
j1x

T
j1} × f ′′′ (8b)

D5=


1xT

j1x
F
j′1 if L1

i = Xj and L2
i = ¬Xj′

1xT
j′1x

F
j1 if L1

i = ¬Xj and L2
i = Xj′

11xF
j1x

F
j′1 if L1

i = ¬Xj and L2
i = ¬Xj′

1xT
j1x

T
j′11 if L1

i = Xj and L2
i = Xj′

× 1 (8c)
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These subdataset multiplicities are f ′′′ def
= 4, f ′′ def

= 2(2f ′′′+3)+1 = 23, f ′ def
= 2(2f ′′+2f ′′′+3)+

1 = 115, f def
= 2(2f ′ + 2f ′′ + 2f ′′′ + 3) + 1 = 575. We set the vocabulary size to K = 10J and the

target compressed length to δ = (8J+1)f+6Jf ′+4Jf ′′+4Jf ′′′+3I−γ = 5398J+575+3I−γ.

We write R2(X , C, γ) to represent (D,K, δ), the B-2-TOK instance constructed by this reduction. As
before, this is a polynomial-timed reduction. We now prove the equivalence 3OM2S(X , C, γ) ⇐⇒
Tok2↑(R2(X , C, γ)) which shows the reduction’s correctness and that that B-2-TOK is NP-hard.

Theorem 3. The bottom-up binary tokenisation decision problem is NP-complete.

Proof sketch. This proof is done in two steps.

Forward step (3OM2S(X , C, γ) =⇒ Tok2↑(R1(X , C, γ))). See full proof in Lemma 5 in App. D.
Assume the 3-OCC-MAX2SAT instance admits an assignment x ⋆ = {x⋆j}Jj=1 satisfying at least γ
clauses. We construct a merge sequence m = m1◦m2◦m3◦m4◦m5◦m6, where m1,m2,m4,m6

are structural merges that appear in every valid tokeniser solution and ensure that all variable
and literal gadgets are properly compressed; m3,m5 are assignment-dependent merges, chosen
according to x: for each variable x⋆j , we merge ⟨1,xT

j11⟩, ⟨1xT
j , 1⟩ if x⋆j = T, and ⟨11xF

j , 1⟩, ⟨1,xF
j1⟩

otherwise. Applying m to the string sets D1,D2,D3,D4 gives the fixed compressed length 5398J +
575. For the strings D5, the construction ensures that each clause compresses to 2 tokens if at least
one of its two literals is true under x ⋆, and remains at 3 tokens otherwise. Since x ⋆ satisfies at least γ
clauses, we obtain at most 3I − γ symbols. Compression thus satisfies the budget δ.

Backward step (Tok2↑(R2(X , C, γ)) =⇒ 3OM2S(X , C, γ)). See full proof in Lemma 6 in
App. E. We consider sat-compliant direct tokenisers, which must contain all tokens of the form
11, 11,xT

j ,x
F
j , 1x

T
j ,x

T
j1, 1x

F
j ,x

F
j1,x

T
j11, 11x

F
j ; and contain either 1xT

j1, 1x
T
j11 or 1xF

j1, 11x
F
j1 for

each j ∈ {1, . . . , J}. These conditions are enforced by datasets D1 to D4. As before, if such a
tokeniser achieves the desired compression, it must correspond to an assignment x ⋆ which satisfies
the desired number of clauses. To finish, we show that a sat-compliant direct tokeniser always
corresponds to a bottom-up tokeniser with the same compression quality.

4.3.2 THE BOTTOM-UP BINARY TOKENISATION GAP PROBLEM IS NP-HARD

As in §4.2.2, we perform a reduction from a gap variant to show hardness of approximation.

Theorem 4. The bottom-up binary tokenisation gap problem is NP-hard. Thus, the bottom-up binary
tokenisation optimisation problem is not in PTAS, unless P = NP.

Proof sketch. See proof in Lemma 7 in App. F. A similar proof to Theorem 2 applies here, except with
different values. We find that no polynomial-time algorithm can solve the bottom-up binary tokeni-
sation optimisation problem with an approximation ratio better than 1.0000001, unless P = NP.

5 UNARY TOKENISATION IS HARD TO DECIDE

We now move on to the unary tokenisation case. Here, we work with alphabets composed of a single
symbol, i.e.: Σ = {a}. As Σ∗ = {aℓ | ℓ ∈ N}, it follows that unary character-strings c ∈ Σ∗ may
only differ from one another in their length. There exists thus an isomorphism (given by the function
| · | and its inverse) between these character-strings and their string-lengths, ℓ ∈ N. A natural notation
for such problems is then to work directly with string-lengths. In this section, we will thus represent
a character-string c ∈ Σ∗ by its length ℓ ∈ N; a dataset D = {cm}Mm=1 by the lengths of its strings
DN = {ℓm}Mm=1, where cm = aℓm ; and a vocabulary S ⊂ Σ+ by a set of string-lengths SN ⊂ N+.
A subword-string is then a sequence of such string-lengths, sN ∈ L∗, and we have:

detok(sN)
def
= sum(sN) tok	[SN](ℓ)

def
= argmin

sN∈SN∗
|sN|, s.t., ℓ = sum(sN) (9)

where we overload the functions detok and tok	 to handle this unary-strings representation. Note
that all these definitions are equivalent (up to an isomorphism) to the definitions in §3.

When posing either the optimisation or decision version of the unary tokenisation problems, we could
thus work with either representation of our data (as strings or string-lengths) and the solutions must

7
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be the same. However, the complexity of an algorithm is typically measured as a function of the
length of its input. If this input is a unary string, the input will be as long as this string’s length.
If this input is a number, however, this input’s length behaves logarithmically on the value of the
number itself (as this number would typically be encoded in a compact binary representation). When
dealing with problems such as unary tokenisation, this introduces an important subtlety: the problem’s
complexity status may change depending on how we represent it (with strings or string-lengths).
If such a problem is NP-hard when either representation is given, it is called strongly NP-hard.
If this problem is NP-hard only in its string-length representation, but not when represented using
unary strings, it is weakly NP-hard.7 Importantly, Fact 1 applies only to strongly NP-hard unary
problems; as the trivial identity we use in its proof would not be valid for unary problems with
string-length representations. For unary tokenisation, the unary representation (where strings are
explicitly represented) is more natural, and we are thus interested in strong NP-hardness.

5.1 DIRECT UNARY TOKENISATION IS STRONGLY NP-COMPLETE

In this section, we prove that the direct unary tokenisation problem is strongly NP-complete. In
App. G, we prove that the problem is in NP. To prove NP-hardness of direct unary tokeniza-
tion, we then design a polynomial-time reduction from the well-known vertex cover problem
(vertex-cover).8 Let (V, E) represent a finite, simple, undirected graph with V = {v1, . . . , vJ} and
E ⊆ {(v, v′) | v, v′ ∈ V, v ̸= v′}. A set C ⊆ V is a vertex cover if for every edge (v, v′) ∈ E we
have that either v or v′ is in C. Given a budget ψ ∈ N, the vertex cover problem requires deciding
whether a graph has a vertex cover with at most ψ vertices.

Definition 3. Given a graph (V, E) and a budget ψ ∈ N, the vertex cover decision problem asks
whether there exists a vertex cover C ⊆ V with |C| ≤ ψ in this graph.

For convenience, we will write VC(V, E , ψ) for a function which returns T if its input is a satisfiable
instance of the vertex-cover decision problem, and F otherwise. We now provide a polynomial-time
reduction from vertex-cover to D-1-TOK, which will prove D-1-TOK’s NP-hardness.

Reduction 3. Consider an instance (V, E , ψ) of vertex-cover and let N def
= (J + I + 1)3, where

J = |V| and I = |E|. Now, let enc
(
vj
)
= j + j2N + j3N2 and B = N4. We construct three

subdatasets from this graph as:

D1 = {ℓj | vj ∈ V} ∪ {B}, where ℓj = enc
(
vj
)

vertex strings (10a)

D2 = {ℓ′j | vj ∈ V}, where ℓ′j = enc
(
vj
)
+B cover strings (10b)

D3 = {ℓ′′j,j′ | (vj , vj′ ∈ E)}, where ℓ′′j,j′ = enc
(
vj
)
+ enc

(
vj′
)
+B edge strings (10c)

Finally, we merge these subdatasets to form a dataset D = D1 ∪ D2 ∪ D3, and set K = J + 1 + ψ
and δ = 3J + 2I + 1− ψ.

As before, we complete our NP-hardness proof by showing this to be a valid reduction, i.e., that:
VC(V, E , ψ) ⇐⇒ Tok1	(R3(V, E , ψ)). Notably, our reduction outputs (in polynomial time) an
instance of the direct unary tokenisation problem in string-length form. As such, by proving the
correctness of this reduction, we prove the strong NP-hardness of D-1-TOK.

Theorem 5. The direct unary tokenisation decision problem is strongly NP-complete.

Proof sketch. This proof is done in two steps.

Forward step (VC(V, E , ψ) =⇒ Tok1	(R3(V, E , ψ))). See full proof in Lemma 9 in App. H.
Suppose that the given instance of vertex-cover is true, i.e., that VC(V, E , ψ) = T. Now, let
C⋆ ⊆ V be a vertex cover which satisfies this instance. Then we can build a tokeniser with vocabulary:
SN = {ℓj | vj ∈ V} ∪ {B} ∪ {ℓ′j | vj ∈ C⋆}. This tokeniser will encode: all strings in D1 as a
single symbol; ψ strings in D2 with a single symbol and others with 2; and all strings in D3 with
two symbols (as, per our assumption, all edges have at least one vertex in C⋆). This means the total
amount of tokens used is: (J + 1) + (2J − ψ) + 2I = δ. Therefore, Tok1	(D,K, δ) = T.

7Note that the opposite case—where a problem is NP-hard only when representing the data as strings, but
not strings-lengths—is not possible, as strings have a larger size than their lengths.

8The NP-hardness of vertex-cover was proven by Karp (1972) in his groundbreaking paper introducing
the very concept of NP-hardness, and can be found in the textbook by Garey and Johnson (1979).
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Backward step (Tok1	(R3(V, E , ψ)) =⇒ VC(V, E , ψ)). See full proof in Lemma 10 in App. I.
We prove this lemma in 4 steps. First, we show that all string-lengths in DN are unique. Second,
we show that an optimal tokeniser’s vocabulary must contain only full strings in DN. Third, we
show that an optimal tokeniser’s vocabulary must include all strings in D1. Fourth, we show that
if a compression of δ is achieved, than this vertex-cover instance must be true. Notably, three
of these steps rely on the fact that we can use N as a numerical base to prove the uniqueness of
both: (i) individual string-lengths, as well as (ii) their pair-wise summed values.

Interestingly, the direct unary tokenisation problem is tightly related to the field of choosing denomi-
nations for a coin system. In fact, the application of the function tok	[SN](ℓ) is equivalent to the
change-making problem; a problem shown to be (weakly) NP-hard by Lueker (1975). (Note that
this problem is only weakly NP-hard, as we can solve it in polynomial time when the input is given
in strings-form.) The direct unary tokenisation problem can thus be equivalently seen as a general
optimal denomination problem, where—given a set of common currency transactions—one must
select optimal coin denominations for a currency; see Shallit (2003) for a discussion of this problem.

Corollary 1. The general optimal denomination decision problem is strongly NP-complete.

5.2 A VARIANT OF BOTTOM-UP UNARY TOKENISATION IS (AT LEAST) WEAKLY NP-HARD

While direct tokenisation over a unary alphabet is strongly NP-complete, our current picture of the
complexity of its bottom-up counterpart is more nuanced. In bottom-up tokenisation, one must find a
merge sequence m which is then applied (by tok↑[m](c)) exhaustively and in sequence, replacing
all occurrences of each pair one at a time. A variant of this problem—termed optimal pair encoding
(OPE) tokenisation—relaxes this requirement, using the merge sequence for a different purpose:
to define a merge-extracted vocabulary Sm = Σ ∪ {s1 ◦ s2 | m ∈ m,m = (s1, s2)}. The final
tokenization is then produced by optimally applying this vocabulary, which can be done using the
direct encoding function (tok	[Sm](c)). This approach thus ensures that a merge is used only if it
contributes to the most efficient segmentation overall. Notably, this variation was used by Schmidt
et al. (2024) and formally analysed by Kozma and Voderholzer (2024). Now, let the OPE unary
tokenisation problem be defined similarly to the other n-ary tokenisation problems (in Definition 1),
but while constraining the search space to the set of OPE tokenisers: Tope

def
={tok	[Sm] | m ∈ M∗}.

Having defined the decision problem, we now establish its computational hardness.

Theorem 6. The unary optimal-pair-encoding decision problem is weakly NP-complete.

Proof sketch. The full proof can be found in App. K. Inclusion in NP follows from Kozma and
Voderholzer (2024). The proof of NP-hardness is achieved via a polynomial-time reduction from the
addition chain sequence decision problem (see App. J for a formal definition), which is known to be
NP-complete when its input numbers are encoded in binary (Downey et al., 1981). The reduction
reveals a natural connection between the two problems: finding the shortest addition chain for a set
of numbers is equivalent to a special case of unary OPE where every string in the dataset must be
compressed into a single token.

6 CONCLUSION AND LIMITATIONS

We provided several hardness results on bottom-up and direct tokenisation with bounded alphabets,
thus answering open questions posed by both Kozma and Voderholzer (2024) and Whittington et al.
(2025). A number of open questions remain, however, in particular with respect to approximability.
For instance, while we showed that the direct binary optimisation problem cannot be approximated
arbitrarily well (unless P = NP)—and while it seems likely that the lower bound provided in the
proof of Lemma 3 can be significantly lifted—it is unclear whether any constant approximation ratio
can even be obtained. With respect to decision problems, while we showed strong NP-hardness
of direct unary tokenisation, we were so far only able prove: (i) weak NP-hardness of OPE unary
tokenisation, and (ii) no hardness result for (standard) bottom-up unary tokenisation. Finally, the
results of our work are limited in that we consider (i) compression as objective, and (ii) bottom-up
and direct tokenization only; the hardness of both other objectives and variants remains open. Overall,
however, our results show that tokenisation remains a hard problem, even when restricted to small
(even binary) alphabets. Future work should thus explore provably good approximation algorithms.
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A PROOF OF LEMMA 1

Lemma 1. If a 3-OCC-MAX2SAT instance is satisfiable, then the D-2-TOK instance output by Reduc-
tion 1 is also satisfiable. Formally: 3OM2S(X , C, γ) =⇒ Tok2	(R1(X , C, γ)).

Proof. Assume this (X , C, γ) instance of the 3-OCC-MAX2SAT problem is satisfiable, i.e., that
3OM2S(X , C, γ) is true. We must prove that, in this case, Tok2	(R1(X , C, γ)) is also true. Now, let
x ⋆ = {x⋆j}Jj=1 be any satisfying solution to the (X , C, γ) instance. We will denote the number of
clauses satisfied by x ⋆ by γ⋆, noting that γ⋆ ≥ γ by assumption. We can construct a tokeniser from
this solution as follows:

S = Σ
⋃{

1xT
j , x

T
j1, 1x

F
j , x

F
j1
}J

j=1

⋃ {
1xT

j1 if x⋆j = T else 1xF
j1
}J

j=1
(11)

Note that—as required by our reduction—this tokeniser has vocabulary size |S| = |Σ|+K, since
K = 5J tokens were added. Under this tokeniser, we have:

tok	[S](D1) =
{
⟨1xT

j⟩, ⟨xT
j1⟩, ⟨1xF

j⟩, ⟨xF
j1⟩ (length 1) | 1 ≤ j ≤ J

}
× f (12a)

tok	[S](D2) =

{
⟨1xT

j1⟩, ⟨1xF
j , 1⟩ (length 3) if x⋆j = T

⟨1xT
j , 1⟩, ⟨1xF

j1⟩ (length 3) else
| 1 ≤ j ≤ J

}
× f ′ (12b)

tok	[S](D3) =

{
⟨1xT

j1, x
F
j1⟩ (length 2) if x⋆j = T

⟨1xT
j , 1x

F
j1⟩ (length 2) else

| 1 ≤ j ≤ J

}
× f ′′ (12c)

tok	[S](D4) =

{ ⟨1L1
i 1, L

2
i 1⟩ (length 2) if L1

i = T
⟨1L1

i , 1L
2
i 1⟩ (length 2) elif L2

i = T
⟨1L1

i , 1, L
2
i 1⟩ (length 3) else

| 1 ≤ i ≤ I

}
× 1 (12d)

where we override function tok	[S] to apply elementwise to a full dataset of character-strings, instead
of to a unique c. Consequently, we get the compressed lengths:

Gℓ(tok	[S],D1) = 4 J f = 252 J f, Gℓ(tok	[S],D2) = 3J f ′ = 63 J, (13a)

Gℓ(tok	[S],D3) = 2 J f ′′ = 14 J, Gℓ(tok	[S],D4) = 3 I − γ⋆ (13b)

We have that each character-string in dataset D4 is compressed to 2 symbols if either L1
i or L2

i are
true, and else is kept at 3 symbols; the γ⋆ satisfied clauses in x ⋆ will thus be compressed to 2 symbols
and the unsatisfied clauses to 3. Summing these values together, we get the compressed length of the
entire dataset under this tokeniser: Gℓ(tok	[S],D) = 329I + 3 I − γ⋆. Finally:

γ⋆ ≥ γ =⇒ 329I + 3 I − γ⋆ ≤ 329I + 3 I − γ (14)

This completes this proof.

B PROOF OF LEMMA 2

Before starting our lemma’s proof, we give a few definitions which will be useful throughout it. First,
we define a sat-compliant tokeniser to be any tokeniser which: (i) contains all tokens of the form
1xT

j ,x
T
j1, 1x

F
j ,x

F
j1; and (ii) contains either 1xT

j1 or 1xF
j1 for each j ∈ {0, . . . , J}. Otherwise, we

call the tokeniser sat-noncompliant. Given the vocabulary of a sat-compliant tokeniser, we can
easily build an assignment to a 3-OCC-MAX2SAT instance with the following function:

g(S) = {x⋆j}Jj=1, where

{
x⋆j = T if 1xT

j1 ∈ S
x⋆j = F elif 1xF

j1 ∈ S (15)

Further, we will define as a 101-string any character-string of the form 10+1, and as a 10101-string
any character-string of the form 10+10+1. (The 0+ notation stands for a sequence of one or more
0 characters.) Considering the datasets output by Reduction 1, we know that there are no 101-strings
in dataset D1. Further, we know that each unique 101-string appears in datasets D2 and D3 exactly
f ′ and f ′′ times, respectively, and exactly 3 times in D4. (This is due to us working with the
three-occurrences variant of MAX2SAT and to the fact that xT

j = 02j−1 and xF
j = 02j .) We now prove

our lemma.

12
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Lemma 2. If the D-2-TOK instance output by Reduction 1 is satisfiable, then the 3-OCC-MAX2SAT
instance which generated it is as well. Formally: Tok2	(R1(X , C, γ)) =⇒ 3OM2S(X , C, γ).

Proof. Assume this (D,K, δ) instance of D-2-TOK—where (D,K, δ) = R1(X , C, γ)—is satisfiable,
i.e., that Tok2	(R1(X , C, γ)) evaluates to true. We must prove that, in this case, 3OM2S(X , C, γ)
also evaluates to true. Now, let Sopt be the optimal solution to the (D,K, δ) instance. We know, by
definition, that:

Tok2	(R1(X , C, γ)) ⇐⇒
(
Gℓ(tok	[Sopt],D) ≤ δ

)
(16)

We can thus prove this lemma by showing the following implication:(
Gℓ(tok	[Sopt],D) ≤ δ

)
=⇒ 3OM2S(X , C, γ) (17)

We will now prove this lemma in four steps:

1 we prove that Sopt must include all tokens of the form 1xT
j ,x

T
j1, 1x

F
j ,x

F
j1;

2 we prove that Sopt must, in addition to the tokens above, only include tokens of the form
1xT

j1, 1x
F
j1;

3 we prove that Sopt may only include, for each j, either token 1xT
j1 or 1xF

j1;

4 finally, we prove that, if
(
Gℓ(tok	[Sopt],D) ≤ δ

)
, we can build a variable assignment

which satisfies this (X , C, γ) 3-OCC-MAX2SAT instance.

Note that, together, steps one to three show that Sopt must be the vocabulary of a sat-compliant
tokeniser; in step four, we will then rely on the function g (defined above) to convert this vocabulary
into a satisfying assignment x = g(Sopt) to 3-OCC-MAX2SAT.

LemmaProofStep 1. (Step 1 ). An optimal tokeniser must include all tokens of the form
1xT

j ,x
T
j1, 1x

F
j ,x

F
j1, i.e.,: {

1xT
j ,x

T
j1, 1x

F
j ,x

F
j1
}J

j=1
⊆ Sopt (18)

Proof. We prove this step by contradiction. Assume there exists an optimal tokeniser with vocabulary
S✗ which does not include t > 0 of the tokens above. Now, choose an arbitrary set of t tokens in this
vocabulary which are not of the form above, and replace them with the missing tokens in this set. We
denote this new tokeniser’s vocabulary S✓. Note that the strings in D1 with these missing tokens
were represented with at least 2 symbols under S✗, but with a single token under S✓, i.e.,:

Gℓ(tok	[S✗],D1) ≥ (4J + t)f, Gℓ(tok	[S✓],D1) = 4Jf (19)

Further, note that under S✓, we have that strings in dataset D2 are compressed to at most two symbols,
while strings in D3 and D4 are compressed to at most three symbols:

∀c ∈ D2 : Gℓ(tok	[S✓], c) ≤ 2, ∀c ∈ D3 ∪ D4 : Gℓ(tok	[S✓], c) ≤ 3 (20)

To improve on this compressed length, S✗ must, thus, compress strings in D2 to a single symbol,
or strings in D3 and D4 to one or two symbols. Notably, this can only be done if the noncompliant
tokens in S✗ contain 101-strings. This is because, to compress a string in D2 to a single symbol,
the full character-string must become a token, and D2 only includes 101-strings. Further, under S✓,
strings in D3 and D4 are already compressed to at least ⟨1xT

j , 1,x
T
j1⟩. To further compress them,

tokeniser S✗ must include tokens which cross the “middle” of this character-string, which would
make this tokens at least have a 101 prefix or suffix. We consider the best case scenario, which is if
they are exactly 101-strings, as any longer string will be at most as frequent as it.

As discussed above, however, each 101-string appears at most: f ′ times in D2, f ′′ times in D3, 3
times in D4. This gives us a best case scenario—in which all the strings in which a new token appears
are compressed to a single symbol—where:

Gℓ(tok	[S✓],D2 ∪ D3 ∪ D4)−Gℓ(tok	[S✗],D2 ∪ D3 ∪ D4) ≤ t(f ′ + 2(f ′′ + 3)) (21)
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As the difference in Eq. (19) is of at least tf tokens, we put these together:

Gℓ(tok	[S✓],D)−Gℓ(tok	[S✗],D) ≤ t(f ′ + 2(f ′′ + 3))− tf (22)

As f > f ′ + 2(f ′′ + 3), this difference is smaller than zero, implying that S✓ improves on S✗. This
shows a contradiction, which completes our proof.

LemmaProofStep 2. (Step 2 ). An optimal tokeniser must include all tokens of the form
1xT

j ,x
T
j1, 1x

F
j ,x

F
j1, and further only tokens of the form 1xT

j1, 1x
F
j1, i.e.,:{

1xT
j ,x

T
j1, 1x

F
j ,x

F
j1
}J

j=1
⊆ Sopt and Sopt ⊂

{
1xT

j ,x
T
j1, 1x

F
j ,x

F
j1, 1x

T
j1, 1x

F
j1
}J

j=1
(23)

Proof. As before, we prove this step by contradiction. Given step 1 above, we know an optimal
tokeniser includes all tokens 1xT

j ,x
T
j1, 1x

F
j ,x

F
j1. Now, assume there exists an optimal tokeniser with

vocabulary S✗ with t > 0 tokens which are not of the form 1xT
j ,x

T
j1, 1x

F
j ,x

F
j1 or 1xT

j1, 1x
F
j1; we will

call these tokens non-compliant here. Choose an arbitrary set of t unused compliant tokens—i.e., with
form 1xT

j1, 1x
F
j1—to replace the non-compliant tokens with, forming a new tokeniser’s vocabulary

S✓. Both these vocabularies compress strings in D1 equally:

Gℓ(tok	[S✗],D1) = 4Jf, Gℓ(tok	[S✓],D1) = 4Jf (24)

For strings in D2: if the entire string is in the vocabulary, it is encoded as a single token; else, it is
represented with two symbols. Under S✓, there are J tokens covering strings in D2. Under S✗, there
are only (J − t) tokens covering strings in D2. This implies:

Gℓ(tok	[S✗],D2) = (3J + t)f ′, Gℓ(tok	[S✓],D2) = 3Jf ′ (25)

Finally, for strings in D3 and D4, a similar argument to the previous step applies: (i) only tokens
containing 101-strings can compress these datasets; (ii) each 101-string appears at most f ′′ + 3 times
in them; (iii) each 101-string will lead to at most two symbols being saved. As S✗ differs from S✓ in
t tokens, we get that it will improve on it by at most:

Gℓ(tok	[S✓],D3 ∪ D4)−Gℓ(tok	[S✗],D3 ∪ D4) ≤ 2t(f ′′ + 3) (26)

Summing together the compression on all datasets, we get their difference is bounded by:

Gℓ(tok	[S✓],D)−Gℓ(tok	[S✗],D) ≤ 2t(f ′′ + 3)− tf ′ (27)

As f ′ > 2(f ′′ + 3), this difference is smaller than zero, implying that S✓ improves on S✗. This
shows a contradiction, which completes our proof.

LemmaProofStep 3. (Step 3 ). An optimal tokeniser must be sat-compliant: it must contain all
tokens of the form 1xT

j ,x
T
j1, 1x

F
j ,x

F
j1 and it must contain either 1xT

j1 or 1xF
j1 for each 1 ≤ j ≤ J .

Proof. As before, we prove this step by contradiction. Given step 1 above, we know an optimal
tokeniser includes all tokens 1xT

j ,x
T
j1, 1x

F
j ,x

F
j1. Further, given step 2 above, we know its other

tokens all have form 1xT
j1, 1x

F
j1. Now, assume there exists an optimal tokeniser with vocabulary S✗

which includes both 1xT
j1 and 1xF

j1 for t > 0 variables, and thus neither of those two for t > 0 other
variables. Then, define S✓ as a vocabulary where the 1xF

j1 token of all t doubly assigned variables
are replaced with the 1xT

j1 token of all non-assigned variables. Note that S✓ is sat-compliant. These
two tokenisers achieve the same compression on D1 and D2:

Gℓ(tok	[S✗],D1 ∪ D2) = 4Jf + 3Jf ′, Gℓ(tok	[S✓],D1 ∪ D2) = 4Jf + 3Jf ′ (28)

The tokeniser with vocabulary S✓ will then compress each string in D3 to 2 symbols, while S✗ will
only compress the t strings 1xT

j1x
F
j1 with unassigned variables to 3 symbols. This will lead to a total

compression of:

Gℓ(tok	[S✗],D3) = (2J + t)f ′′, Gℓ(tok	[S✓],D3) = 2Jf ′′ (29)

Finally, the t doubly assigned tokens of the form 1xF
j1 (which S✓ does not contain) appear at most

three times in D4 and will lead to at most one symbol being saved, leading to a bound:

Gℓ(tok	[S✗],D4)−Gℓ(tok	[S✓],D4) ≤ 3t (30)
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Putting these compressed lengths together, we get:

Gℓ(tok	[S✗],D)−Gℓ(tok	[S✓],D) ≤ 3t− tf ′′ (31)

As f ′′ > 3, this difference is smaller than zero, implying that S✓ improves on S✗. This shows a
contradiction, which completes our proof.

LemmaProofStep 4. (Step 4 ). If an optimal tokeniser achieves a compressed length of at least
329J + 3I − γ, the original 3-OCC-MAX2SAT instance is satisfiable, i.e.,:(

Gℓ(tok	[Sopt],D) ≤ 329J + 3I − γ
)

=⇒ 3OM2S(X , C, γ) (32)

Proof. Given steps 1 to 3 , we know that an optimal tokeniser will be sat-compliant. We will
now denote this optimal tokeniser’s vocabulary as Sopt and use Eq. (15) to extract a 3-OCC-MAX2SAT
assignment x ⋆ = g(Sopt) which corresponds to this tokeniser’s vocabulary. From the previous proof
steps we see that any sat-compliant tokeniser achieves the following compressed length in D1, D2,
and D3:

Gℓ(tok	[Sopt],D1 ∪ D2 ∪ D3) = 4Jf + 3Jf ′ + 2Jf ′′ = 329J (33)

Now, note that a character-string 1L1
i 1L

2
i 1 in D4 will be: compressed to two symbols if at least one

of the tokens 1L1
i 1 or 1L2

i 1 exists, or compressed to three symbols if neither exists. Equivalently, a
clause L1

i ∨ L2
i in 3-OCC-MAX2SAT is: satisfied, if either L1

i or L2
i evaluates to true; not satisfied, if

both evaluate to false. Given our construction of function g above, one of 3-OCC-MAX2SAT’s clauses
will be satisfied if and only if its corresponding string in D4 is compressed to two symbols. We can
thus state that:(

Gℓ(tok	[Sopt],D4) = 3I − γ⋆
)

⇐⇒

(
I∑

i=1

1x ⋆{L1
i ∨ L2

i } = γ⋆

)
(34)

Given the construction of δ as 329J + 3I − γ, we conclude that a sat-compliant tokeniser which
compresses the full dataset to at least that size can be mapped to a 3-OCC-MAX2SAT assignment which
satisfies at least γ clauses. This concludes the proof.

C PROOF OF LEMMA 3

Lemma 3. The direct binary tokenisation gap problem is NP-hard.

Proof. For this proof, we rely on a result by Berman and Karpinski (1998; 1999) that, for specific
instances of 3-OCC-MAX2SAT with I = 2016n clauses, it is NP-hard to distinguish whether at least
(2012 − ε)n or at most (2011 + ε)n of those are satisfiable, for any ε > 0. We will denote this
3-OCC-MAX2SAT gap problem as 3OM2S(X , C, (γ−, γ+)), with γ− = (2011 + ε)n and γ+ =
(2012 − ε)n. We can now prove the NP-hardness of the direct binary tokenisation gap problem
by reducing 3-OCC-MAX2SAT’s gap problem to it. To this end, we rely on a reduction identical to
R1(X , C, γ), but where we define:

δ− = 329J + 3I − γ− δ+ = 329J + 3I − γ+ (35)

= 329J + 3I − 2011 + ε

2016
I = 329J + 3I − 2012− ε

2016
I

Lemmas 1 and 2 trivially show the validity of this reduction:

3OM2S(X , C, (γ−, γ+)) ⇐⇒ Tok2	(D,K, (δ−, δ+)) (36)

which holds since 3OM2S(X , C, γ+) ⇐⇒ Tok2	(D,K, δ+) and the same for γ− and δ−. It is
therefore NP-hard to distinguish whether a dataset can be compressed to at most 329J+3I− 2012−ε

2016 I

symbols, or if at least 329J+3I− 2011+ε
2016 I symbols remain (with an allowed vocabulary sizeK = 5J).

Because each variable occurs exactly three times in 3-OCC-MAX2SAT, we have that 3
2J = I . We now

compute the maximum achievable compression ratio:

δ−

δ+
=

329J + 3I − 2011+ε
2016 I

329J + 3I − 2012−ε
2016 I

(37a)
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=
667− 6033+3ε

2016

667− 6036−ε
2016

(37b)

=
1338639− 3ε

1338636 + 3ε
(37c)

=
446213− ε

446212 + ε
(37d)

Thus, direct binary tokenisation cannot be approximated in polynomial time with an approximation
ratio better than 446213

446212 > 1.000002 unless P = NP.

D PROOF OF LEMMA 5

We first need another lemma in preparation for the actual proof. Note that in a merge sequence,
simply merging ⃝2J−1

j=1 [⟨0j , 0⟩] does not compress all targets in {0j | 1 ≤ j ≤ 2J} to one symbol,
because the first merge creates lots of 00 tokens. Thus, we need to describe a more unwieldy merge
sequence to achieve this with the same number of merges.
Lemma 4. Given n targets {0, . . . , 0J} OMS/OPE would require exactly J − 1 merges in order for
all of them to be merged into a single token.

Proof. We establish the result in two steps: first a lower bound, then a matching constructive upper
bound.

LemmaProofStep 1. (Step 1 ). Each merge can reduce at most one multi-token target to a single
token.

Proof. The target set contains J distinct values, one of which is the base symbol 0. Whenever a
target becomes a single token through a merge, that merge must combine exactly two tokens whose
sum equals that specific target. Because all targets are distinct, this sum cannot simultaneously equal
any other target. Hence, a single merge can complete at most one target.

From Step 1 , it follows that at least J − 1 merges are required to reduce all targets to single tokens.

LemmaProofStep 2. (Step 2 ). There exists an explicit merge sequence that reduces all targets to
single tokens in exactly J − 1 merges.

For the matching upper bound, consider the following explicit merge sequence on the input
{0, . . . , 0J}. Let k be such that 2k ≤ J < 2k+1.

1. Binary stage. First perform k merges to construct single tokens for each power of two up
to 2k

2. Extension stage. At each next step, apply the rightmost merge on the smallest non-fully
merged value.9

After these initial k merges, every target can be expressed in binary as a sum of powers of two, i.e., as
a sequence of tokens representing distinct powers of two. Moreover, each of these k merges produces
exactly one additional single-token target.

LemmaProofStep 3. (Step 3 ). In the merge sequence from Step 2 , the smallest unmerged target
always consists of exactly two tokens.

Proof. Assume for contradiction that at some point the smallest unmerged target r consists of more
than two tokens.

After the binary stage (Step 2 .1), every target can be expressed in a canonical way: each target is
written as a sum of tokens, where every token is either (1) a power of two (created in the binary stage),

9As we will see in the proof, the smallest non-fully merged value always consists of only two symbols, such
that the “rightmost” tiebreaker is not necessary.
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or (2) a single leftover “tail” that is smaller than the power of two immediately before it. This gives a
unique decomposition for every target: no target can be represented by two different sequences of
such tokens.

Write the last two tokens of r as 2cm−1 and cm with cm < 2cm−1 . Consider the smaller target

r′ = 2cm−1 + cm. (38)

Because r′ < r and the merge sequence always collapses the smallest unmerged target first, the
pair ⟨2cm−1 , cm⟩ must already have been merged into a single token when r′ was processed. By
uniqueness of decomposition, this merge must occur in exactly the same way inside r.

Hence r cannot still contain the two separate tokens 2cm−1 and cm, contradicting the assumption that
r has more than two tokens.

Therefore, the smallest unmerged target must always consist of exactly two tokens.

Step 1 shows that no fewer than J − 1 merges are required. Step 2 constructs an explicit merge
sequence, and Step 3 ensures that in this sequence each merge produces exactly one additional
single-token target. Together, these steps establish that OMS/OPE requires precisely J − 1 merges.

With this, we can now prove the lemma.
Lemma 5. If a 3-OCC-MAX2SAT instance is satisfiable, then the B-2-TOK instance output by Reduc-
tion 2 is also satisfiable. Formally: 3OM2S(X , C, γ) =⇒ Tok2↑(R1(X , C, γ)).

Proof. Assume this (X , C, γ) instance of the 3-OCC-MAX2SAT problem is satisfiable, i.e., that
3OM2S(X , C, γ) is true. We must prove that in this case, Tok2↑(R1(X , C, γ)) is also true. We
define the following list of merges which, as shown in Lemma 4, compress every target of type xT

j ,x
F
j

to a single token

m1 = ⟨1, 1⟩ ◦ ⃝⌊log(2J−1)⌋
j=1 [⟨02

i

, 02
i

⟩] ◦⃝⌊log(2J−1)⌋
j=1 ⃝2j−1

j′=1 [⟨02
j

, 0j
′
⟩] (39a)

Note that the merge ⟨1, 1⟩ := ⊗ is independent of the merges on 0 and could thus be placed at any
point in the sequence.

We also define the following lists of merges, which will be included in any satisfying solution to the
tokenisation problem

m2 = ⃝J
j=1[⟨11,xF

j⟩, ⟨xT
j , 11⟩] (40)

m4 = ⃝J
j=1[⟨xF

j , 1⟩, ⟨1,xT
j⟩] (41)

m6 = ⃝J
j=1[⟨1,xF

j⟩, ⟨xT
j , 1⟩] (42)

Now, let x ⋆ = {x⋆j}Jj=1 be any satisfying solution to this (X , C, γ) instance of the 3-OCC-MAX2SAT
problem. We define the following instance-specific merges

m3 =
J

⃝
j=1

[
⟨1,xT

j11⟩ if x⋆j = T

⟨11xF
j , 1⟩ else

]
, m5 =

J

⃝
j=1

[
⟨1xT

j , 1⟩ if x⋆j = T

⟨1,xF
j1⟩ else

]
(43)

In words, we create merges ⟨1,xT
j11⟩ and ⟨1xT

j , 1⟩ if x⋆j is true, or ⟨11xF
j , 1⟩ and ⟨1,xF

j1⟩ if x⋆j is
false. We then create a merge sequence by concatenating these lists in order:

m = m1 ◦m2 ◦m3 ◦m4 ◦m5 ◦m6 (44)

This gives us a total of |m| = K = 10J merges. Now we just need to count the symbols output by
this solution to see if the bound is satisfied.

By applying the merges m, each string in D1 will be compressed into a single subword, obtaining∑
c∈(

⋃f
_=1 D1)

|tok↑[m](c)| = 108fJ (45)
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Table 1: Performance of merges on strings in D5, adapted from Whittington et al. (2025). The dot
symbol · denotes the string not changing under the given merge.

Assignment Condition c tok↑[m1](c) tok↑[m1 ◦m2](c) tok↑[m1 ◦m2 ◦m3](c) tok↑[m1 ◦ · · · ◦m4](c) tok↑[m1 ◦ · · · ◦m5](c) |tok↑[m](c)|

L1
i = Xj and L2

i = ¬Xj′

x⋆j = T ∧ x⋆j′ = T
⟨1, 0, . . . , 0︸ ︷︷ ︸

2j−1

, 1, 0, . . . , 0︸ ︷︷ ︸
2j′

, 1⟩
⟨1,xT

j , 1,x
F
j′ , 1⟩

· ·
⟨1xT

j , 1,x
F
j′1⟩

⟨1xT
j1,x

F
j′1⟩ 2

x⋆j = F ∧ x⋆j′ = T · · ⟨1xT
j , 1,x

F
j′1⟩ 3

x⋆j = T ∧ x⋆j′ = F · · ⟨1xT
j1,x

F
j′1⟩ 2

x⋆j = F ∧ x⋆j′ = F · · ⟨1xT
j , 1x

F
j′1⟩ 2

L1
i = ¬Xj and L2

i = Xj′

x⋆j = T ∧ x⋆j′ = T
⟨1, 0, . . . , 0︸ ︷︷ ︸

2j′−1

, 1, 0, . . . , 0︸ ︷︷ ︸
2j

, 1⟩
⟨1,xT

j′ , 1,x
F
j , 1⟩

· ·
⟨1xT

j′ , 1,x
F
j1⟩

⟨1xT
j′1,x

F
j1⟩ 2

x⋆j = F ∧ x⋆j′ = T · · ⟨1xT
j′1,x

F
j1⟩ 2

x⋆j = T ∧ x⋆j′ = F · · ⟨1xT
j′ , 1,x

F
j1⟩ 3

x⋆j = F ∧ x⋆j′ = F · · ⟨1xT
j′ , 1x

F
j1⟩ 2

L1
i = ¬Xj and L2

i = ¬Xj′

x⋆j = T ∧ x⋆j′ = T
⟨1, 0, . . . , 0︸ ︷︷ ︸

2j

, 1, 0, . . . , 0︸ ︷︷ ︸
2j′

, 1⟩
⟨11,xF

j , 1,x
F
j′ , 1⟩

· ⟨11xF
j , 1,x

F
j′1⟩

⟨11xF
j , 1,x

F
j′1⟩

· 3
x⋆j = F ∧ x⋆j′ = T ⟨11xF

j1,x
F
j′ , 1⟩ ⟨11xF

j1,x
F
j′1⟩ · 2

x⋆j = T ∧ x⋆j′ = F · ⟨11xF
j , 1,x

F
j′1⟩ ⟨11xF

j , 1x
F
j′1⟩ 2

x⋆j = F ∧ x⋆j′ = F ⟨11xF
j1,x

F
j′ , 1⟩ ⟨11xF

j1,x
F
j′1⟩ · 2

L1
i = Xj and L2

i = Xj′

x⋆j = T ∧ x⋆j′ = T
⟨1, 0, . . . , 0︸ ︷︷ ︸

2j−1

, 1, 0, . . . , 0︸ ︷︷ ︸
2j′−1

, 1⟩
⟨1,xT

j , 1,x
T
j′ , 11⟩

⟨1,xT
j , 1x

T
j′11⟩ ⟨1xT

j , 1x
T
j′11⟩ ⟨1xT

j , 1x
T
j′11⟩

· 2
x⋆j = F ∧ x⋆j′ = T 2
x⋆j = T ∧ x⋆j′ = F · ⟨1xT

j , 1,x
T
j′11⟩

2
x⋆j = F ∧ x⋆j′ = F · 3

For each pair of strings 1xT
j1 and 1xF

j1 in D2, one is compressed into a single subword while the other
is only compressed to two subwords—the one with xT

j is compressed to a single symbol if x⋆j = T

and the one with xF
j otherwise. The same is true for each pair of strings 1xT

j11 and 11xF
j1, also in D2.

We thus have that, for each variable Xj , the strings in D2 will occupy a total of (1 + 2 + 1 + 2)J
characters, and: ∑

c∈(
⋃f

_=1 D2)

|tok↑[m](c)| = 6f ′J (46)

Similarly, each string in D3 and D4 will be compressed into only 2 symbols after this tokeniser is
applied to it. We thus have:∑

c∈(
⋃f′′

_=1 D3)

|tok↑[m](c)| = 4f ′′J,
∑

c∈(
⋃f′′′

_=1 D4)

|tok↑[m](c)| = 4f ′′′J (47)

Finally, we have the strings in D5. These strings are constructed such that they will be compressed
into 2 symbols if either L1

i or L2
i evaluates to T, and kept with 3 symbols otherwise; see Tab. 1 for a

detailed simulation of why this is the case.

We thus have:

∑
c∈D5

|tok↑[m](c)| =
I∑

i=1


3− 11



L1
i = Xj and ⟨1,xT

j11⟩, ⟨1xT
j , 1⟩ ∈ m

or
L1
i = ¬Xj and ⟨11xF

j , 1⟩, ⟨1,xF
j1⟩ ∈ m

or
L2
i = Xj′ and ⟨1,xT

j′11⟩, ⟨1xT
j′ , 1⟩ ∈ m

or
L2
i = ¬Xj′ and ⟨11xF

j′ , 1⟩, ⟨1,xF
j′1⟩ ∈ m




(48a)

= 3I −
I∑

i=1

1x ⋆{L1
i ∨ L2

i } (48b)

≤ 3I − γ (48c)

where, by construction, we have a merge in our sequence (e.g., ⟨1,xT
j11⟩ or ⟨11xF

j , 1⟩) if and only if
its value is in a satisfying assignment (e.g., x⋆j = T or x⋆j = F respectively). Summing together the
lengths in Eqs. (45) to (48), we get that:∑

c∈D
|tok↑[m](c)| ≤ δ = (108f + 6f ′ + 4f ′′ + 4f ′′′) J + 3 I − γ (49)

which concludes the proof.

E PROOF OF LEMMA 6

We again start with some useful definitions and redefine compliant tokenisers.
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We define a sat-compliant (direct) tokeniser to be any tokeniser which: (i) contains all tokens
of the form 11, 11,xT

j ,x
F
j , 1x

T
j ,x

T
j1, 1x

F
j ,x

F
j1,x

T
j11, 11x

F
j ; and (ii) contains either 1xT

j1, 1x
T
j11 or

1xF
j1, 11x

F
j1 for each j ∈ {1, . . . , J}. Otherwise, we call the tokeniser sat-noncompliant. Note that

even though this section is about bottom-up tokenisers, this definition is still about direct tokenisers,
meaning it contains tokens instead of merges.

We adapt the definition of 101-strings to include also all character-strings of the form 110+1 and
10+11. Considering the datasets output by Reduction 1, we know that there are no 101-strings in
dataset D1. Further, we know that each unique 101-string appears in datasets D2, D3 and D4 exactly
2f ′, 2f ′′ and 2f ′′′ times, respectively, and exactly 3 times in D5 (this is due to us working with the
three occurrences variant of MAX2SAT and to the fact that xT

j = 02j−1 and xF
j = 02j). We now prove

our lemma.
Lemma 6. If the B-2-TOK instance output by Reduction 2 is satisfiable, the 3-OCC-MAX2SAT instance
which generated it is as well. Formally: Tok2↑(R2(X , C, γ)) =⇒ 3OM2S(X , C, γ).

Proof. Assume this (D,K, δ) instance of B-2-TOK—where (D,K, δ) = R2(X , C, γ)—is satisfiable,
i.e., that Tok2↑(R2(X , C, γ)) evaluates to true. We must prove that, in this case, 3OM2S(X , C, γ) also
evaluates to true. Now, let mopt be the optimal solution to this (D,K, δ) instance of the tokenisation
problem. We know, by definition, that:

Tok2↑(R2(X , C, γ)) ⇐⇒
(
Gℓ(tok↑[mopt],D) ≤ δ

)
(50)

We can thus prove this lemma by showing the following implication:(
Gℓ(tok↑[mopt],D) ≤ δ

)
=⇒ 3OM2S(X , C, γ) (51)

When comparing two bottom-up tokenisers, things quickly get messy because one has to not only
consider the merges, but also their order. For this reason, we show that direct sat-compliant tokenisers
can be transformed into bottom-up tokenisers without loss of compression quality. Thus, for the
sat-compliant tokeniser, we can consider the direct tokeniser instead. The key idea for this to work
is that all target strings are hit via a sequence of merges such that each intermediate merge also hits a
target (which has high multiplicity), such that this target must also be included as a token by a direct
tokeniser. We also compare to non-compliant direct tokenisers, which are by definition as least as
strong as bottom-up tokenisers, thus we can make upper bounds on their performance.

We will now prove this lemma in six steps:

1 we prove that Sopt must include all tokens of the form
11,xT

j ,x
F
j , 1x

T
j ,x

T
j1, 1x

F
j ,x

F
j1,x

T
j11, 11x

F
j ;

2 we prove that Sopt must, in addition to the tokens above, only include tokens of the form
1xT

j1, 1x
F
j1, 1x

T
j11, 11x

F
j1;

3 we prove that Sopt may only include, for each j, either token 1xT
j1 or 1xF

j1, and either token
11xT

j1, 11x
T
j1 or 1xF

j11,;

4 we prove that Sopt may only include, for each j, either tokens 1xT
j1 or 1xF

j1, 1x
F
j11

5 we prove that for any sat-compliant Sopt, there exists a merge sequence mopt with the
same performance;

6 finally, we prove that if
(
Gℓ(tok↑[mopt],D) ≤ δ

)
, we can build a variable assignment

which satisfies this (X , C, γ) 3-OCC-MAX2SAT instance.

Note that, together, steps one to four show that Sopt must be the vocabulary of a sat-compliant
tokeniser; in step five, we show that we can convert any sat-compliant Sopt to a merge sequence
mopt without losing compression; and in step six, we will then rely on function g (defined above) to
convert this merge sequence into a satisfying assignment x = g(Sopt) to 3-OCC-MAX2SAT.
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LemmaProofStep 1. (Step 1 ). An optimal (direct) tokeniser must include all tokens of the form
11,xT

j ,x
F
j , 1x

T
j ,x

T
j1, 1x

F
j ,x

F
j1,x

T
j11, 11x

F
j , 1x

T
j1, 1x

F
j1, 1x

T
j11, 11x

F
j1, i.e..:{

11,xT
j ,x

F
j , 1x

T
j ,x

T
j1, 1x

F
j ,x

F
j1,x

T
j11, 11x

F
j , 1x

T
j1, 1x

F
j1, 1x

T
j11, 11x

F
j1
}J

j=1
⊆ Sopt (52)

Proof. We prove this step by contradiction. Assume there exists an optimal tokeniser with vocabulary
S✗ which does not include t > 0 of the tokens above. Now, remove t arbitrarily chosen tokens in this
vocabulary which are not of the form above, and replace them with the missing tokens in this set. We
denote this new tokeniser’s vocabulary S✓. Note that the strings in D1 with these missing tokens
were represented with at least 2 symbols under S✗, but with a single token under S✓, i.e.,:

Gℓ(tok	[S✗],D1) ≥ (8J + 1 + t)f, Gℓ(tok	[S✓],D1) = (8J + 1)f (53)

Further, note that under S✓, we have that strings in dataset D2 are compressed to at most two symbols,
while strings in D3, D4 and D5 are compressed to at most three symbols:

∀c ∈ D2 : Gℓ(tok	[S✓], c) ≤ 2, ∀c ∈ D3 ∪ D4 ∪ D5 : Gℓ(tok	[S✓], c) ≤ 3 (54)

To improve on this compressed length, S✗ must, thus, compress strings in D2 to a single symbol, or
strings in D3, D4 and D5 to one or two symbols. As before , this can only be done if the noncompliant
tokens in S✗ contain 101-strings. 10 As discussed above, however, each 101-string appears, as a
prefix or suffix, at most: 2f ′ times in D2, 2f ′′ times in D3, 2f ′′′ times in D4, 3 times in D5. This
gives us a best case scenario—in which all the strings in which a new token appears are compressed
to a single symbol—where:

Gℓ(tok	[S✓],D2 ∪ D3 ∪ D4 ∪ D5)−Gℓ(tok	[S✗],D2 ∪ D3 ∪ D4 ∪ D5) (55a)

≤ t(2f ′ + 2(2f ′′ + 2f ′′′ + 3))

As the difference in Eq. (53) is of at least tf tokens, we put these together:

Gℓ(tok	[S✓],D)−Gℓ(tok	[S✗],D) ≤ t(2f ′ + 2(2f ′′ + 2f ′′′ + 3))− tf (56)

As f > 2(2f ′ + 2f ′′ + 2f ′′′ + 3), this difference is smaller than zero, implying that S✓ improves on
S✗. This shows a contradiction, which completes our proof.

LemmaProofStep 2. (Step 2 ). An optimal tokeniser must include all tokens of
the form 11,xT

j ,x
F
j , 1x

T
j ,x

T
j1, 1x

F
j ,x

F
j1,x

T
j11, 11x

F
j , and further only tokens of the form

1xT
j1, 1x

F
j1, 1x

T
j11, 11x

F
j1, i.e.,:{

11,xT
j ,x

F
j , 1x

T
j ,x

T
j1, 1x

F
j ,x

F
j1,x

T
j11, 11x

F
j

}J

j=1
⊆ Sopt and (57a)

Sopt ⊂
{
11,xT

j ,x
F
j , 1x

T
j ,x

T
j1, 1x

F
j ,x

F
j1,x

T
j11, 11x

F
j , 1x

T
j1, 1x

F
j1, 1x

T
j11, 11x

F
j1
}J

j=1
(57b)

Proof. As before, we prove this step by contradiction. Given step 1 above, we know an opti-
mal tokeniser includes all tokens 11,xT

j ,x
F
j , 1x

T
j ,x

T
j1, 1x

F
j ,x

F
j1,x

T
j11, 11x

F
j . Now, assume there

exists an optimal tokeniser with vocabulary S✗ with t > 0 tokens which are not of the form
11,xT

j ,x
F
j , 1x

T
j ,x

T
j1, 1x

F
j ,x

F
j1,x

T
j11, 11x

F
j or 1xT

j1, 1x
F
j1, 1x

T
j11, 11x

F
j1; we will call these tokens

non-compliant here. Choose an arbitrary set of t unused compliant tokens—i.e., with form
1xT

j1, 1x
F
j1, 1x

T
j11, 11x

F
j1—to replace the non-compliant tokens with, forming a new tokeniser’s

vocabulary S✓. Both these vocabularies compress strings in D1 equally:

Gℓ(tok	[S✗],D1) = (8J + 1)f, Gℓ(tok	[S✓],D1) = (8J + 1)f (58)

For strings in D2: if the entire string is in the vocabulary, it is encoded as a single token; else, it is
represented with two symbols. Under S✓, there are 2J tokens covering strings in D2. Under S✗,
there are only (2J − t) tokens covering strings in D2. This implies:

Gℓ(tok	[S✗],D2) = (6J + t)f ′, Gℓ(tok	[S✓],D2) = 6Jf ′ (59)

10This follows the same argument as in the proof of Lemma 2. Note that the extension of 101-strings to
include strings of the form 110+1 and 10+11 does not break the argument, as the substring has to appear as a
prefix or suffix to yield a saving. Thus, even though the strings of form 10+1 are included in the new strings, we
do not have to count those occurrences.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

For strings in D3, D4 and D5, a similar argument to the previous step applies: (i) only tokens
containing 101-strings can compress these datasets; (ii) each 101-string appears, as a prefix or suffix,
at most 2f ′′ + 2f ′′′ + 3 times in them; (iii) each 101-string will lead to at most two symbols being
saved. As S✗ differs from S✓ in t tokens, we get that it will improve on it by at most:

Gℓ(tok	[S✓],D3 ∪ D4 ∪ D5)−Gℓ(tok	[S✗],D3 ∪ D4 ∪ D5) ≤ 2t(2f ′′ + 2f ′′′ + 3) (60)

Summing together the compression on all datasets, we get their difference is bounded by:

Gℓ(tok	[S✓],D)−Gℓ(tok	[S✗],D) ≤ 2t(2f ′′ + 2f ′′′ + 3)− tf ′ (61)

As f ′ > 2(2f ′′ + 2f ′′′ + 3), this difference is smaller than zero, implying that S✓ improves on S✗.
This shows a contradiction, which completes our proof.

LemmaProofStep 3. (Step 3 ). An optimal tokeniser must contain all tokens of
the form 11,xT

j ,x
F
j , 1x

T
j ,x

T
j1, 1x

F
j ,x

F
j1,x

T
j11, 11x

F
j and further only tokens of the form

1xT
j1, 1x

F
j1, 1x

T
j11, 11x

F
j1, and for each 1 ≤ j ≤ J , it must contain exactly one of 1xT

j1, 1x
F
j1,

and exactly one of 1xT
j11, 11x

F
j1.

Proof. As before, we prove this step by contradiction. Given step 1 above, we know an optimal
tokeniser includes all tokens 11,xT

j ,x
F
j , 1x

T
j ,x

T
j1, 1x

F
j ,x

F
j1,x

T
j11, 11x

F
j . Further, given step 2 above,

we know its other tokens all have form 1xT
j1, 1x

F
j1, 1x

T
j11, 11x

F
j1. Now, assume there exists an opti-

mal tokeniser with vocabulary S✗ which includes both tokens in a pair 1xT
j1, 1x

F
j1 or 11xT

j1, 1x
F
j11

for t > 0 such pairs, and thus neither of those two for t > 0 other such pairs. Then, define S✓ as a
vocabulary where the 1xF

j1 respectively 1xF
j11 token of all t doubly assigned pairs are replaced with

the 1xT
j1 respectively 11xT

j1 token of all uncovered pairs.

These two tokenisers achieve the same compression on D1 and D2:

Gℓ(tok	[S✗],D1 ∪ D2) = (8J + 1)f + 6Jf ′, Gℓ(tok	[S✓],D1 ∪ D2) = (8J + 1)f + 6Jf ′

(62)

The tokeniser with vocabulary S✓ will then compress each string in D3 to 2 symbols, while S✗ will
only compress the t strings of the form 1xT

j1x
F
j1 or 11xF

j1x
T
j11 for which the pair is uncovered, to 3

symbols. This will lead to a total compression of:

Gℓ(tok	[S✗],D3) = (4J + t)f ′′, Gℓ(tok	[S✓],D3) = 4Jf ′′ (63)

Finally, the t doubly assigned tokens of the form 1xF
j1 (which S✓ does not contain) appear at most

three times in D5 and will lead to at most one symbol being saved, leading to a bound:

Gℓ(tok	[S✗],D5)−Gℓ(tok	[S✓],D5) ≤ 3t (64)

Putting these compressed lengths together, we get:

Gℓ(tok	[S✗],D)−Gℓ(tok	[S✓],D) ≤ 3t− tf ′′ (65)

As f ′′ > f ′′′ + 3, this difference is smaller than zero, implying that S✓ improves on S✗. This shows
a contradiction, which completes our proof. For strings in D4 and D5, a similar argument to the
previous step applies: (i) only tokens containing 101-strings can compress these datasets; (ii) each
101-string appears, as a prefix or suffix, at most 2f ′′′ +3 times in them; (iii) each 101-string will lead
to at most two symbols being saved. As S✗ differs from S✓ in t tokens, we get that it will improve
on it by at most:

Gℓ(tok	[S✓],D4 ∪ D5)−Gℓ(tok	[S✗],D4 ∪ D5) ≤ 2t(2f ′′′ + 3) (66)

Summing together the compression on all datasets, we get their difference is bounded by:

Gℓ(tok	[S✓],D)−Gℓ(tok	[S✗],D) ≤ 2t(2f ′′′ + 3)− tf ′ (67)

As f ′′ > 2(2f ′′′ + 3), this difference is smaller than zero, implying that S✓ improves on S✗. This
shows a contradiction, which completes our proof.

LemmaProofStep 4. (Step 4 ). An optimal tokeniser must be sat-compliant: it must contain
all tokens of the form 11,xT

j ,x
F
j , 1x

T
j ,x

T
j1, 1x

F
j ,x

F
j1,x

T
j11, 11x

F
j and further only tokens of the

form 1xT
j1, 1x

F
j1, 1x

T
j11, 11x

F
j1, and for each 1 ≤ j ≤ J , it must include either 1xT

j1, 1x
T
j11 or

1xF
j1, 11x

F
j1.
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Proof. As before, we prove this step by contradiction. Given step 1 above, we know an optimal
tokeniser includes all tokens 11,xT

j ,x
F
j , 1x

T
j ,x

T
j1, 1x

F
j ,x

F
j1,x

T
j11, 11x

F
j . Further, given step 2 above,

we know its other tokens all have form 1xT
j1, 1x

F
j1, 1x

T
j11, 11x

F
j1. Finally, given step 3 above, we

know it contains exactly one token for each pair 1xT
j1, 1x

F
j1 and 11xT

j1, 1x
F
j11.

Now, assume there exists an optimal tokeniser with vocabulary S✗ which includes both tokens in a
pair 1xF

j1, 1x
T
j1 or 1xT

j1, 1x
F
j11 for t > 0 such pairs, and thus neither of those two for t > 0 other

such pairs. Then, define S✓ as a vocabulary where the 1xF
j1 respectively 1xF

j11 token of all t doubly
assigned pairs are replaced with the 11xT

j1 respectively 1xT
j1 token of all uncovered pairs. These two

tokenisers achieve the same compression on D1, D2 and D3:

Gℓ(tok	[S✗],D1 ∪ D2) = (8J + 1)f + 6Jf ′ + 4Jf ′′ (68)

Gℓ(tok	[S✓],D1 ∪ D2) = (8J + 1)f + 6Jf ′ + 4Jf ′′ (69)

The tokeniser with vocabulary S✓ will then compress each string in D4 to 2 symbols, while S✗ will
only compress the t strings of the form 1xT

j1x
F
j11 or 11xF

j1x
T
j1 for which the pair is uncovered, to 3

symbols. This will lead to a total compression of:

Gℓ(tok	[S✗],D4) = (4J + t)f ′′′, Gℓ(tok	[S✓],D4) = 4Jf ′′′ (70)

Finally, the t doubly assigned tokens of the form 1xF
j1 or 11xF

j1 (which S✓ does not contain) appear,
as a prefix or suffix, at most three times in D5 and will lead to at most one symbol being saved,
leading to a bound:

Gℓ(tok	[S✗],D5)−Gℓ(tok	[S✓],D5) ≤ 3t (71)

Putting these compressed lengths together, we get:

Gℓ(tok	[S✗],D)−Gℓ(tok	[S✓],D) ≤ 3t− tf ′′′ (72)

As f ′′′ > 3, this difference is smaller than zero, implying that S✓ improves on S✗. This shows a
contradiction, which completes our proof.

LemmaProofStep 5. (Step 5 ). Any sat-compliant direct tokeniser can be transformed into a
bottom-up tokeniser without changing its performance. As any optimal direct tokeniser is sat-
compliant, this implies:

Tok2↑(R2(X , C, γ)) ⇐⇒ Tok2	(R2(X , C, γ)) (73)

Proof. As every bottom-up tokeniser can be interpreted as a direct tokeniser with the same vocabulary
size and a possibly suboptimal application of its tokens, it holds that:

Tok2↑(R2(X , C, γ)) =⇒ Tok2	(R2(X , C, γ)) (74)

This is to say, direct tokenisers always compress as least as good as bottom-up tokenisers, when
allowed the same vocabulary size.

Given a sat-compliant direct tokeniser, we first describe how to transform it into a bottom-up
tokeniser. We always include merges:

m1 = ⟨1, 1⟩ ◦ ⃝⌊log(2J−1)⌋
j=1 [⟨02

i

, 02
i

⟩] ◦⃝⌊log(2J−1)⌋
j=1 ⃝2j−1

j′=1 [⟨02
j

, 0j
′
⟩] (75a)

m2 = ⃝J
j=1[⟨11,xF

j⟩, ⟨xT
j , 11⟩] (75b)

m4 = ⃝J
j=1[⟨xF

j , 1⟩, ⟨1,xT
j⟩] (75c)

m6 = ⃝J
j=1[⟨1,xF

j⟩, ⟨xT
j , 1⟩] (75d)

and additionally, depending on which tokens are included in the direct tokeniser’s vocabulary S:

m3 =
J

⃝
j=1

[
⟨11,xT

j11⟩ if 11xT
j11 ∈ S

⟨11xF
j , 1⟩ else

]
, (76a)

m5 =
J

⃝
j=1

[
⟨1xT

j , 1⟩ if 1xT
j1 ∈ S

⟨1,xF
j1⟩ else

]
(76b)
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Note that because the tokeniser is sat-compliant, we have

11xT
j11 ∈ S ⇐⇒ 1xT

j1 ∈ S (77)

It is easy to verify that the resulting bottom-up tokeniser has the same performance on datasets D1

to D4. For D5, Tab. 1 shows that each string which could be reduced to two symbols by the direct
tokeniser is also reduced to two symbols by the bottom-up tokeniser.

Thus, we actually get:

Tok2↑(R2(X , C, γ)) ⇐⇒ Tok2	(R2(X , C, γ)) (78)

LemmaProofStep 6. (Step 6 ). If an optimal (direct) tokeniser achieves a compressed length of at
least 5398J + 575 + 3I − γ, the original 3-OCC-MAX2SAT instance is satisfiable, i.e.,:(

Gℓ(tok	[Sopt],D) ≤ 5398J + 575 + 3I − γ
)

=⇒ 3OM2S(X , C, γ) (79)

Proof. Given steps 1 to 4 , we know that an optimal tokeniser will be sat-compliant. We will
now denote this optimal tokeniser’s vocabulary as Sopt and use Eq. (15) to extract a 3-OCC-MAX2SAT
assignment x ⋆ = g(Sopt) which corresponds to this tokeniser’s vocabulary. From the previous proof
steps we see that any sat-compliant tokeniser achieves the following compressed length in D1, D2,
D3, and D4:

Gℓ(tok	[Sopt],D1 ∪ D2 ∪ D3 ∪ D4) = (8J + 1)f + 6Jf ′ + 4Jf ′′ + 4Jf ′′′ (80a)
= (8 · 575 + 6 · 115 + 4 · 23 + 4 · 4)J + 575 (80b)

= 5398J + 575 (80c)

Now, note that any target string in D5 will be: compressed to two symbols if at least one of the
tokens 1L1

i 1 (respectively 11L1
i 1, if L1

i is a negated literal) or 1L2
i 11 (respectively 1L2

i 1, if L2
i is a

negated literal) exist, or compressed to three symbols if neither exists. Equivalently, a clause L1
i ∨L2

i
in 3-OCC-MAX2SAT is: satisfied, if either L1

i or L2
i evaluates to true; not satisfied, if both evaluate to

false. Given our construction of function g above, one of 3-OCC-MAX2SAT’s clauses will be satisfied
if and only if its corresponding string in D4 is compressed to two symbols. We can thus state that:(

Gℓ(tok	[Sopt],D5) = 3I − γ⋆
)

⇐⇒

(
I∑

i=1

1x ⋆{L1
i ∨ L2

i } = γ⋆

)
(81)

Given the construction of δ as 5398J + 575 + 3I − γ, we conclude that a sat-compliant tokeniser
which compresses the full dataset to at least that size can be mapped to a 3-OCC-MAX2SAT assignment
which satisfies at least γ clauses. This concludes the proof.

Steps 5 and 6 show

Tok2↑(R2(X , C, γ)) ⇐⇒ Tok2	(R2(X , C, γ)) (82)

Tok2	(R2(X , C, γ)) =⇒ 3OM2S(X , C, γ) (83)

which allows us to conclude

Tok2↑(R2(X , C, γ)) =⇒ 3OM2S(X , C, γ). (84)

F PROOF OF LEMMA 7

Lemma 7. The direct binary tokenisation gap problem is NP-hard.
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Proof. For this proof, we again rely on a result by Berman and Karpinski (1998; 1999) that, for
specific instances of 3-OCC-MAX2SAT with I = 2016n clauses, it is NP-hard to distinguish whether
at least (2012 − ε)n or at most (2011 + ε)n of those are satisfiable, for any ε > 0. We will
denote this 3-OCC-MAX2SAT gap problem as 3OM2S(X , C, (γ−, γ+)), with γ− = (2011 + ε)n and
γ+ = (2012− ε)n. We can now prove the NP-hardness of the bottom-up binary tokenisation gap
problem by reducing 3-OCC-MAX2SAT’s gap problem to it. To this end, we rely on a reduction identical
to R2(X , C, γ), but where we define:

δ− = 5398J + 575 + 3I − γ− δ+ = 5398J + 575 + 3I − γ+ (85)

= 5398J + 575 + 3I − 2011 + ε

2016
I = 5398J + 575 + 3I − 2012− ε

2016
I

Lemmas 5 and 6 trivially show the validity of this reduction:

3OM2S(X , C, (γ−, γ+)) ⇐⇒ Tok2↑(D,K, (δ−, δ+)) (86)

which holds since 3OM2S(X , C, γ+) ⇐⇒ Tok2↑(D,K, δ+) and the same for γ− and δ−. It is
therefore NP-hard to distinguish whether a dataset can be compressed to at most 5398J + 575 +
3I − 2012−ε

2016 I symbols, or if at least 5398J + 575 + 3I − 2011+ε
2016 I symbols remain (with an allowed

vocabulary size K = 10J). Because each variable occurs exactly three times in 3-OCC-MAX2SAT, we
have that 3

2J = I . We now compute the maximum achievable compression ratio:

δ−

δ+
=

5398J + 575 + 3I − 2011+ε
2016 I

5398J + 575 + 3I − 2012−ε
2016 I

(87a)

=
10805− 6033+3ε′

2016

10805− 6036−ε′

2016

(87b)

=
21776847− 3ε′

21776844 + 3ε′
(87c)

=
7258949− ε′

7258948 + ε′
(87d)

Thus, bottom-up binary tokenisation cannot be approximated in polynomial time with an approxima-
tion ratio better than 7258949

7258948 > 1.0000001 unless P = NP.

G PROOF THAT DIRECT UNARY TOKENISATION IS IN NP

A decision problem is in the nondeterministic polynomial time class (NP) if it can be verified in
polynomial time in the presence of a certificate: a string designed to verify that the current instance is
a “yes”-instance, typically encoding an optimal solution to its search problem. In the case of D-1-TOK,
this certificate could be a set of string-lengths composing the tokeniser’s vocabulary SN, as well as a
set Z = {zm}Mm=1, where each zm ∈ N|SN| shows how many tokens of each length should be used
to tokenise each string in the dataset DN. Verifying this certificate then simply requires computing
the sum of tokens used for each target.
Lemma 8. The direct unary tokenisation decision problem is in NP.

Proof. When inputs are represented as strings, this lemma follows trivially from the unbounded-
alphabet case discussed in Whittington et al. (2025). We now prove this also holds when inputs
are represented as string-lengths. If |DN| ≤ K, each ℓ ∈ DN can be included as a token, and
thus all entries in our dataset can be compressed into single token; we consequently verify the
problem’s satisfiability by checking if δ ≥ |DN|. Assuming K < |DN|—and therefore that K’s
value is polynomial in the input—we have that the certificate also has polynomial length, and that, in
particular, the size of Z is bounded by |DN|K log ℓmax, where ℓmax is the maximum string-length
in DN. Thus all that is left is to compute and check if

∑
z∈Z sum(z) ≤ δ.

H PROOF OF LEMMA 9

Lemma 9. If a vertex-cover instance is satisfiable, then the D-1-TOK instance output by Reduc-
tion 3 is also satisfiable. Formally: VC(V, E , ψ) =⇒ Tok1	(R3(V, E , ψ)).
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Proof. Suppose the given instance of vertex-cover has a solution. Then there exists a vertex cover
C⋆ ⊆ V which uses ψ vertices. Then, we can choose as tokens:

SN = {ℓj | vj ∈ V} ∪ {B} ∪ {ℓ′j | vj ∈ C⋆} (88)

We have that every vertex string in D1 will be covered by a single token (either ℓj or B).

All cover strings in D2 which encode a vertex that belongs to the C⋆ will also be covered by a
single token (ℓ′j). The remaining cover strings in D2 will be covered by 2 tokens, as for every target
ℓ′j = enc

(
vj
)
+N3 there exist the tokens ℓj = enc

(
vj
)

and B = N3.

As C⋆ is a vertex cover, we have that for every edge (vj , vj′) ∈ E at least one of the vertices belongs
to C⋆. It follows that for every edge string in D3, ℓ′′j = enc

(
vj
)
+ enc

(
vj′
)
+N3 at least one of the

tokens ℓ′j = enc
(
vj
)
+B or ℓ′j′ = enc

(
vj′
)
+B belongs to SN. Thus, all edge strings are covered

by two tokens.

We can now count the number of tokens in each dataset: D1 would have at most J + 1 symbols; D2

would have at most 2J −ψ symbols; and D3 would have at most 2I symbols. This gives us a total of
at most 3J + 2I + 1− k = δ symbols, which satisfies this tokenisation instance. Thus, we have that
Tok1	(D,K, δ) = T.

I PROOF OF LEMMA 10

Lemma 10. If the D-1-TOK instance output by Reduction 3 is satisfiable, then the vertex-cover
instance which generated it is as well. Formally: Tok1	(R3(V, E , ψ)) =⇒ VC(V, E , ψ).

Proof. Assume this (DN,K, δ) instance of D-1-TOK—where (DN,K, δ) = R3(V, E , ψ)—is satisfi-
able, i.e., that Tok1	(R3(V, E , ψ)) evaluates to true. We must prove that, in this case, VC(V, E , ψ)
also evaluates to true. Now, let SN be the optimal solution to this (DN,K, δ) instance of the tokenisa-
tion problem. By construction, we have that K = J + 1 + ψ and δ = 3J + 2I + 1− ψ. We now
prove this lemma in four steps:

1 We prove all strings in DN are unique;

2 We prove that an optimal tokeniser must only include full character-strings in its vocabulary;

3 We prove that an optimal tokeniser will include all strings in D1 in its vocabulary;

4 We prove that if an optimal tokeniser achieves δ compression, than the instance of the
vertex-cover which was reduced to it is true.

LemmaProofStep 1. (Step 1 ). All strings in DN are unique.

Proof. Now we note that, also by construction, all strings in DN are unique. These strings all have
lengths:

ℓj = enc
(
vj
)
, B = N4, ℓ′j = enc

(
vj
)
+B, ℓ′′j,j′ = enc

(
vj
)
+ enc

(
vj′
)
+B (89)

for 1 ≤ j, j′ ≤ J and with enc
(
vj
)
= j + j2N + j3N2. Notably, our reduction defines N ≫ J

and it will be useful to think about these lengths in base N . Let a number (a, b, c, d, e)N denote
aN4 + bN3 + cN2 + dN1 + e. We can write in this base:

(a, b, c, d,N − 1)N + (a, 0, 0, 0, 1)N = (2a, b, c, d+ 1, 0)N (90)

We can similarly write in this base:

B = (1, 0, 0, 0, 0)N , ℓ′j = (1, 0, j3, j2, j)N , (91a)

ℓ′′j,j′ = (1, 0, j3+j′3, j2+j′2, j+j′)N , ℓ′j + ℓ′j′ = (2, 0, j3+j′3, j2+j′2, j+j′)N (91b)

As is usual, two numbers are the same only if each “digit” in this base system is the same. Given this
structure, it should be clear that ℓj and B are all unique string-lengths. Further, the string-lengths
ℓ′j are all different from one another. It is left to show that: (i) all string-lengths ℓ′j are different
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from all ℓ′′j,j′ ; and (ii) that string-lengths ℓ′′j,j′ are different among themselves. Point (i) is proven
by Lemma 11, which shows that there is no set of numbers j, j′, j′′ ∈ N for which j = j′ + j′′ and
j2 = j′2 + j′′2. Point (ii) is proven by Lemma 12, which shows that there is no set of numbers
j, j′, j′′, j′′′ ∈ N for which j + j′ = j′′ + j′′′ and j2 + j′2 = j′′2 + j′′′2.

LemmaProofStep 2. (Step 2 ). An optimal tokeniser must only include full character-strings in DN
and compress all other strings to two symbols.

Proof. Note that, since all strings in DN are unique, the best compression one could (hypothetically)
achieve would result from compressing: K strings to a single symbol, |DN| −K to two symbols. As
|DN| = 2J + I + 1 strings, this (hypothetical) optimal compression would lead to:

Gℓ(Sopt,DN) = K + 2(|DN| −K) (92a)
= J + 1 + ψ + 2(2J + I + 1− J − 1− ψ) (92b)
= 3J + 2I + 1 + ψ − ψ) = δ (92c)

As by assumption Tok1	(R3(V, E , ψ)) evaluates to true, our tokeniser must achieve this compression,
and must thus only include K full strings in DN. Further, it must compress all other strings to at most
two symbols.

LemmaProofStep 3. (Step 3 ). An optimal tokeniser selects every vertex string in D1 as a token.

Proof. Suppose that some type vertex string ℓj in D1 is not chosen as a token. Then ℓj must be the
sum of two tokens. No tokens of cover or vertex strings (in datasets D2 and D3) can be used, since
such tokens contain a summand B, which is significantly larger than ℓj . Hence, both summands
would have to also be vertex strings. Without loss of generality, they would have values:

ℓj = (1, 0, j3, j2, j)N , ℓj′ = (1, 0, j′3, j′2, j′)N , ℓj′′ = (1, 0, j′′3, j′′2, j′′)N (93)

Again, by Lemma 11, it is impossible for ℓj = ℓj′ + ℓj′′ . This concludes the proof that all character-
strings in D1 must be included in the vocabulary SN. Further, every cover and edge string is larger
than B, while all vertex strings are significantly smaller than it; B thus cannot be written as two other
tokens and must thus also be part of SN.

LemmaProofStep 4. (Step 4 ). If an optimal tokeniser achieves compression δ, the original
vertex-cover instance is satisfiable.

Proof. After showing all strings in D1 are tokens, we have ψ remaining tokens to pick. Without
loss of generality, let 0 ≤ s ≤ ψ of these remaining tokens be edge strings (from D3) and the
remaining ψ − s be cover strings ((from D2). Select any of the selected edge tokens ℓ′′j1,j2 =

(1, 0, j31+j
3
2 , j

2
1+j

2
2 , j1+j2)N . For this token to be used to compressed another string, we must have

that there exists a token ℓ?? which:

ℓj3 − ℓ′′j1,j2 = ℓ?? = (−1, 0, j33−j31−j32 , j23−j21−j22 , j3−j1−j2)N (94a)

ℓ′j3 − ℓ′′j1,j2 = ℓ?? = (0, 0, j33−j31−j32 , j23−j21−j22 , j3−j1−j2)N (94b)

ℓ′′j3,j4 − ℓ′′j1,j2 = ℓ?? = (0, 0, j33+j
3
4−j31−j32 , j23+j24−j21−j22 , j3+j4−j1−j2)N (94c)

The third case can clearly not be satisfied, as there are no negative string-lengths in our dataset. The
two first ones would need to be satisfied by a vertex string ℓj , as these are the only strings smaller than
B. However, no number with form ℓj = (0, 0, j3, j2, j)N can satisfy these equalities per Lemmas 13
and 14 (respectively, for Eqs. (94b) and (94c)). In other words, this shows that edge strings cannot
contribute to any other target value. We are thus left with ψ− s tokens formed of cover strings. These
tokens must be used, in conjunction with vertex strings, to compress all the remaining edge strings to
two tokens. Note that only composing a cover and a vertex string can compress a edge string to two
symbols:

ℓj1 + ℓj2 = (0, 0, j31+j
3
2 , j

2
1+j

2
2 , j1+j2)N (95)

ℓ′j1 + ℓ′j2 = (2, 0, j31+j
3
2 , j

2
1+j

2
2 , j1+j2)N (96)

ℓ′j1 + ℓj2 = (1, 0, j31+j
3
2 , j

2
1+j

2
2 , j1+j2)N (97)
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This means that, for each edge string ℓ′′j,j′ not in our tokeniser, we must have a token (either ℓ′j or ℓ′j′ )
which “covers” it to obtain our target compression. Consider thus, the subgraph V, E ′, where

E ′ = E \ {(vj , vj′) ∈ E | ℓ′′j,j′ /∈ SN} (98)
We have a ψ − s vertex cover for this subgraph composed of vertices {vj ∈ V | ℓ′j ∈ SN}. Now, if
we expand this set of ψ − s vertices by picking one arbitrary vertex for each edge string ℓ′′j,j′ in our
vocabulary, we get a cover C = {vj ∈ V | ℓ′j ∈ SN} ∪ {vj | ℓ′′j,j′ ∈ SN} of size at most ψ for the
original graph. Thus, it follows VC(V, E , ψ) = T.

We have seen than an optimal tokeniser has to admit a certain form, and that from this form we can
deduce a valid vertex cover. This concludes the proof.

We now show the technical lemmas used in the previous proof.
Lemma 11. For any r ∈ N, there do not exist non-zero i, j ∈ N such that

i+ j = r, i2 + j2 = r2

Proof. From (i+ j)2 = i2 + 2ij + j2 and the hypotheses i+ j = r and i2 + j2 = r2,
r2 = i2 + j2 + 2ij = r2 + 2ij ⇒ ij = 0, (99)

contradicting i, j > 0.

Lemma 12. There do not exist two distinct pairs {i, j} ≠ {a, b} of positive integers such that
i+ j = a+ b, i2 + j2 = a2 + b2 (100)

Proof. From i+ j = a+ b there is an integer s with
a = i− s, b = j + s. (101)

Then
a2 + b2 − (i2 + j2) = (i− s)2 + (j + s)2 − i2 − j2 = 2s2 + 2s(j − i). (102)

By the second hypothesis a2 + b2 = i2 + j2, so 2s2 + 2s(j − i) = 0, i.e.
s
(
s+ j − i

)
= 0. (103)

Hence either s = 0 or s = i−j. If s = 0, then a = i and b = j. If s = i−j, then a = i−(i−j) = j
and b = j + (i− j) = i. In both cases {a, b} = {i, j}, contradicting distinctness.

Lemma 13. For any r ∈ N, there do not exist non-zero i, j, k ∈ N such that
i+ j + k = r, i2 + j2 + k2 = r2, i3 + j3 + k3 = r3. (104)

Proof. Using (i+ j + k)2 = i2 + j2 + k2 + 2(ij + ik + jk) and the first two hypotheses,
r2 = r2 + 2(ij + ik + jk) ⇒ ij + ik + jk = 0. (105)

With i, j, k > 0, each product ij, ik, jk is positive, which shows a contradiction. Hence, no solution
exists.

Lemma 14. Let r, p ∈ N. There do not exist non-zero i, j, k ∈ N such that
i+ j + k = r + p, i2 + j2 + k2 = r2 + p2, i3 + j3 + k3 = r3 + p3. (106)

Proof. Let p1 = i+j+k, p2 = i2+j2+k2, p3 = i3+j3+k3, and e1 = i+j+k, e2 = ij+ik+jk,
e3 = ijk. From the first two equations,

e1 = r + p, e2 =
p21 − p2

2
=

(r + p)2 − (r2 + p2)

2
= rp. (107)

Newton’s identity for three variables gives
p3 = e1p2 − e2p1 + 3e3. (108)

Substituting p1 = r + p, p2 = r2 + p2, e2 = rp yields
p3 = (r + p)(r2 + p2)− rp(r + p) + 3e3 = (r + p)

(
r2 + p2 − rp

)
+ 3e3 = r3 + p3 + 3e3.

By the third equality p3 = r3+p3, hence 3e3 = 0 and so e3 = ijk = 0, contradicting i, j, k > 0.
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J DEFINITION OF THE ADDITION CHAIN PROBLEM

An addition chain is a sequence of integers that provides an efficient way to “build” a target set of
numbers starting from 1.
Definition 4. Let T = {t1, t2, . . . , tJ} be a finite set of positive integers. An addition chain for T is
a sequence of integers S = ⟨s0, s1, . . . , sL⟩ with the following properties:

1. The sequence starts with s0 = 1.

2. Every subsequent element si is the sum of two preceding elements:

si = sj + sk, for some k ≤ j < i.

3. The sequence contains all targets: for every tℓ ∈ T , there is some sk ∈ S such that tℓ = sk.

The length of the chain is L.

Definition 5. Given a set of positive integers T , the addition chain optimisation problem is to find
an addition chain for T whose length r is minimised.

Definition 6. Given a set of positive integers T and a limit L, the addition chain decision problem
(add-chain) is to find an addition chain for T such that its length r is at most L.

We denote by AddChain(T, L) the corresponding decision predicate, which returns T if such a chain
exists, and F otherwise.

K PROOF OF THEOREM 6

Theorem 6. The unary optimal-pair-encoding decision problem is weakly NP-complete.

Proof. We write OPE-1-TOK(D,K, δ) for a function which returns T if its input is achievable
under a OPE-1-TOK decision problem, and F otherwise. To prove weak NP-completeness, we must
show the problem is in NP and that it is weakly NP-hard. Inclusion in NP is established by (Kozma
and Voderholzer, 2024). We prove weak NP-hardness via a reduction from the add-chain decision
problem. First, we define this reduction.

Reduction 4. Given an instance of add-chain consisting of a target set T = {t1, . . . , tJ} and a
length limit L, we construct an instance of the OPE-1-TOK problem with the following parameters.
The dataset D is the set of unary strings corresponding to the targets: D = {at1 , at2 , . . . , atJ}. The
merge budget is set to the addition chain length limit: K = L. The token count threshold is set to the
number of targets δ = J .

Note that setting the threshold δ equal to the number of strings in the dataset implies that a valid
solution must represent every string as a single token. The proof proceeds in two parts, showing both
directions of the equivalence

AddChain(T, L) ⇐⇒ OPE-1-TOK(D,K, δ) (109)

We first show that a solution to the add-chain problem implies a solution to the OPE-1-TOK problem

AddChain(T, L) =⇒ OPE-1-TOK(D,K, δ) (110)

Assume there exists a valid addition chain S = ⟨s0, s1, . . . , sL⟩ of length r ≤ L for the target set
T . By definition, for each element si ∈ S (where i ≥ 1), there exist indices j, k < i such that
si = sj + sk.

We construct a merge sequence m = ⟨m1, . . . ,mL⟩ of length r where each merge is defined as
mi = ⟨asj , ask⟩, corresponding to the predecessors of si in the addition chain.

The length of this merge sequence m is L, satisfying the merge budget K = L. By the iterative
definition of the merge-extracted vocabulary, the resulting vocabulary Sm will contain a token asi
for every element si in the addition chain S.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Since the addition chain S contains all targets tℓ ∈ T , the vocabulary Sm is guaranteed to contain a
single token for each target string atℓ ∈ D. Consequently, the direct encoding function tok	[Sm]
can represent each string c ∈ D with exactly one token. The total token count is therefore:∑

c∈D
|tok	[Sm](c)| =

∑
c∈D

1 = |D| (111)

By the construction in our reduction, |D| = δ. The condition is met, thus proving the implication.

Next, we show that a solution to the OPE-1-TOK problem implies a solution to the add-chain problem

OPE-1-TOK(D,K, δ) =⇒ AddChain(T, L) (112)

Assume there exists a merge sequence m of length K = L that satisfies the OPE-1-TOK decision
problem. The condition is: ∑

c∈D
|tok	[Sm](c)| ≤ δ (113)

Since the tokenization of any string must contain at least one token, the sum is lower-bounded by |D|.
By the reduction’s construction, we set δ = |D|. Therefore, the inequality must hold with equality,
which is only possible if every string is tokenized into exactly one token:

|tok	[Sm](c)| = 1 for all c ∈ D. (114)

This implies that for every target tℓ ∈ T , the corresponding string atℓ must exist as a single token in
the merge-extracted vocabulary Sm.

The construction of Sm itself certifies an addition chain for the lengths of its tokens. Let Li be the set
of lengths of the tokens in the vocabulary after i merges. Then L0 = {1}, and Li = Li−1∪{ℓj + ℓk |
mi = ⟨aℓj , aℓk⟩}. The set of all token lengths in Sm is LK . Since this set contains all targets tℓ ∈ T
and was constructed from K = L merges (additions), it demonstrates the existence of an addition
chain for T of length at most L. This proves the implication.
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