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ABSTRACT

We introduce PocketNet, a novel method for identifying ligand binding sites
(LBS). Unlike current methods, PocketNet is tailored to identify the binding site
specifically associated with the target ligand. With most protein targets having
multiple binding sites, the selection process becomes ambiguous without specific
ligand information. This limitation negatively impacts downstream applications
such as docking and virtual screening. PocketNet addresses this challenge by
combining the ouput of multiple LBS prediction tools and utilizing a deep neu-
ral network that incorporates ligand information to re-rank the sites. Our results
demonstrate that PocketNet outperforms the latest methods for both pocket pre-
diction and blind docking tasks.

1 INTRODUCTION

Protein-ligand binding is essential for life and plays a critical role in many therapeutic interventions.
Understanding how and where a ligand binds to a particular target is central to structure-based drug
design (Pérot et al., 2010), virtual screening (Sunseri & Koes, 2021), and adverse effect prediction
(Xie et al., 2011). Analysis of the Protein Data Bank (Berman et al., 2002) has shown that ligand
binding sites (LBSs) are typically found within the largest and deepest pocket of the protein surface
(Laskowski et al., 1996; Sotriffer & Klebe, 2002). However it is also common for large ligands to
bind to shallow pockets on the solvent exposed surface (Stern & Wiley, 1994; Nisius et al., 2012).

Most proteins also contain multiple binding sites and can bind a diverse set of ligand structures
(Ludlow et al., 2015). These sites can be broadly classified into two categories: orthosteric and
allosteric. An orthosteric binding site is involved in the function of the protein and often binds to
endogenous compounds or larger biomolecular structures. A protein usually has a single orthosteric
binding site, also called the active site. A typical goal of structure-based drug design is to find
an inhibitor which competes against the endogenous substrate for the active site. However, there
is a rising interest in targeting allosteric sites which have often been overlooked in drug discovery
projects of the past (Grover, 2013; Wagner et al., 2016). Allosteric sites are located elsewhere on the
protein but can still be targeted using small molecules to modulate protein function. Moreover, while
existing medications often target a single well-characterized pocket, it is estimated that over 50%
of drugs interact with more than five different targets, leading to possible adverse effects (Wishart
et al., 2008). For these reasons, there is a large interest in the identification and characterization of
all possible ligand binding sites (Kufareva et al., 2012; Desaphy et al., 2015).

To this end, computational methods have been introduced which predict binding sites given a protein
structure (Zhao et al., 2020). While these methods have been used for decades, the problem of
identifying binding sites is still not fully solved. One limitation of these methods is that they only
rely upon the protein structure which can contain multiple pockets, ranging from deep buried sites
to shallow exposed sites. The main determinant in which site a ligand binds to is the ligand structure
itself. Therefore, it makes sense to condition the prediction of binding sites with a ligand structure.
Such a tool would aid in the discovery of both on- and off-target binding of drugs, especially for
pockets which haven’t been previously investigated. With the introduction of AlphaFold 2 and the
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Figure 1: Example of a target with multiple binding sites targeted by different ligands. GPCRs gen-
erally feature an extracellular active site, extrahelical allosteric sites, and an intracellular allosteric
site. Structure of GPCR Dopamine Receptor D1 is shown as gray (PDB ID: 7LJD) and ligands are
shown as various colors (PDB IDs: 5TZY, 7LD3, 4MQT, 5X7D, 6OBA, 6N48, 7VOE).

associated proteome database, there is a plethora of new protein structures and new pockets which
have yet to be explored (Jumper et al., 2021; Tunyasuvunakool et al., 2021).

This study aims to overcome this limitation by introducing PocketNet, a new method for LBS iden-
tification which is guided by a ligand structure in order to isolate a single pocket of interest. This
is accomplished by constructing an ensemble of pocket predictions using existing LBS prediction
tools followed by a re-ranking procedure with a deep neural network. The neural network is pro-
vided both pocket and ligand features and is trained to predict a score which can be used to re-rank
the ensemble. This method surpasses the accuracy of existing LBS prediction tools and has the
novel ability to differentiate pockets based on ligand structure. Furthermore, in order to demonstrate
the applicability of PocketNet for downstream use-cases, we use its predictions for the task of blind
docking where a ligand is docked to a protein without knowledge of the correct binding site. Again
PocketNet shows superior performance to existing blind docking methods.

1.1 RELATED WORK

Pocket prediction tools were introduced as early as 1985 and numerous diverse methods have been
developed since (Zhao et al., 2020). The seminal works mostly used spatial geometry in order to
locate accessible cavities of the protein. For example, in LIGSITE (Hendlich et al., 1997) a 3D grid
is superimposed over the protein and at each point they look for intersections with the protein in 7
different directions (x, y, z axes and diagonals). If both ends intersect, then the point is assumed to
be inside a pocket and its value is increased. Binding site residues are each assigned a score based
on their nearby grid points to get the final pocket prediction. Other geometry-based methods include
Fpocket (Le Guilloux et al., 2009), Patch-Surfer2.0 (Zhu et al., 2015), and CurPocket (Liu et al.,
2020).

In addition to these geometry-based approaches, several works use an energy-based approach such
as QSiteFinder (Laurie & Jackson, 2005), SITEHOUND (Hernandez et al., 2009; Ghersi & Sanchez,
2009), FTSite (Ngan et al., 2012), and SiteComp (Lin et al., 2012). In this method, the system is
parameterized using a molecular force field and probe atoms are used to calculate interaction forces
at each point in a grid. The grid is further processed to remove points which are associated with
energetically unfavorable interactions. The remaining points are then clustered to generate the final
pocket prediction.
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Another class of LBS prediction methods relies on templates from known protein-ligand complexes.
These template-based methods can be further divided into structure-based and sequence-based de-
pending on whether the templates are based on 3D structures or sequence information. ConSurf
(Glaser et al., 2003), FINDSITE (Brylinski & Skolnick, 2008), and S-SITE/TM-SITE (Yang et al.,
2013) are just a few of these template-based methods.

The last class of LBS prediction methods employ machine learning algorithms in a variety of ways.
For example, PRANK (Krivák & Hoksza, 2015a;b) provides physical descriptors to a random forest
model which predicts a score to rank putative pockets. DEEPSite (Jiménez et al., 2017) and DeepC-
SeqSite (Cui et al., 2019) are two methods which utilize deep neural networks for their predictions.
DEEPSite encodes the pocket as 3D atom density grids which it provides as input to a 3D convo-
lutional neural network (CNN) for scoring. DeepCSeqSite uses a different approach by encoding
residue features in sequential order which it provides as input to a 1D CNN.

Molecular docking is a widely-used computational technique to predict the binding pose of a ligand
within a protein pocket. Since many drug discovery projects target well-known pockets, focused
docking can be used to restrict the search to that area. However, there is also blind docking which
predicts poses without knowledge of existing pockets. There are several approaches to perform
blind docking. The simplest is to use a traditional docking program with a search box that encloses
the full protein. Another approach is to predict likely sites using a pocket prediction tool and then
to perform focused docking (Liu et al., 2020). Finally, there have been some recent developments
which aim to solve blind docking using deep learning models. In particular, EquiBind (Stärk et al.,
2022), TANKBind (Lu et al., 2022), and DiffDock (Corso et al., 2022) each employ unique deep
neural network approaches for blind docking.

2 MATERIALS AND METHODS

2.1 POCKET ENSEMBLE

PocketNet leverages existing pocket prediction tools by creating an ensemble of LBS boxes from
multiple programs. Since pocket prediction tools are relatively fast to run (i.e. generally faster than
docking) and are highly diverse in terms of their detection method, they are well-suited for ensem-
bling. Ideally this ensemble covers the full extent of druggable pockets within the protein. Each
box is axis-aligned and defined by its centroid and size along the x, y, and z axes. The predictions
of each program are converted into this standard representation when necessary. This enables the
use of most LBS prediction tools when constructing the ensemble. Additionally, a buffer of 8 Å is
added to the size of each box in order to fully enclose more ligands. In this study, four of these tools
were utilized with further details described below.

SiteMap (Halgren, 2007; 2009) is a commercial software developed by Schrödinger which predicts
binding sites based on physical descriptors and a druggability score. Since SiteMap results are given
as volume points which occupy each predicted pocket, the points were converted to the standard
box format. The geometric center of points defines the box center and the minimum and maximum
coordinates define the extent of the box so that all points are contained inside. SiteMap version
4.9.012 was used with default settings.

P2Rank (Krivák & Hoksza, 2018) is an open-source software which is based on the PRANK al-
gorithm (Krivák & Hoksza, 2015a;b). The algorithm uses physical descriptors which are provided
to a random forest model which is then used to rank potential sites. Like SiteMap, the results are
provided as a set of points so the same procedure was used to convert each pocket. P2Rank version
2.4 was used with default settings.

FPocket (Le Guilloux et al., 2009) is another open-source software which is based on Voronoi
tessellation and simple geometric rules. While generally less accurate than P2Rank, FPocket is
considerably faster and can be run on very large datasets. As with the two previous methods, the
results were converted from points to boxes. FPocket version 4.0 was used with default settings.

CurPocket (Liu et al., 2020) is the newest of these programs and also utilizes its LBS predictions
for docking in CB-Dock. CurPocket is also fast to run on large datasets since it is based on simple
geometric rules which uses the curvature of the protein surface to detect pockets. The results are
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Figure 2: Overview of PocketNet blind docking workflow. Starting with a protein structure input,
different pocket prediction tools are used to generate an ensemble of potential pockets. Geometric
and chemical descriptors are then extracted from each predicted pocket and the ligand input. Then
the PocketNet model scores each ligand-pocket pair to produce the reranked ensemble. The top
pockets can then be used for focused docking with Smina.

provided in the desired format so no conversion was necessary. CurPocket version 1.5 was used
with default settings.

While these pocket prediction tools often rely upon similar underlying descriptors, they each per-
form the best on different targets. Constructing an ensemble with all four programs achieves better
coverage than an ensemble of any three (see Supporting Information Table 1).

2.2 POCKETNET

Once an ensemble of pockets has been constructed, a scoring function must be used to rerank the
ensemble. To this end we introduce PocketNet, a deep neural network which reranks the pocket
ensemble conditioned by a ligand structure (see Figure 2). The architecture of PocketNet is a hybrid
graph neural network (GNN) which incorporates both graph and tabular features.

2.2.1 FEATURIZATION

Predicted pockets are encoded into a graph by extracting the residues inside the box and treating
each residue as a node in the graph. Each node of the pocket graph contains features describing
the residue type and chemical environment. It is possible to use all atoms within the predicted box,
but we opted to use this residue-level coarse-grained approach for simplicity and reduce sensitivity
towards small-scale conformational variations of the residues’ side chains. The graph is locally
connected with edges bridging nodes within 8Å of each other and uses the distance as an edge
feature. Ligands are also encoded into a graph but include all heavy atoms and edges are assigned
based on covalent bonds.

In addition to these graph features, several handcrafted tabular features are also used by the model.
For the pocket, this includes geometrical features (e.g. box length-width-height ratio, volume, pro-
tein surface area), chemical descriptors (e.g. atom density), measurements of a pockets agreement
with the rest of the ensemble (e.g. overlap with other boxes), and the original rank given by the
pocket prediction tool. The ligand was featurized using mostly chemical descriptors (e.g. weight,
rotatable bonds, H-bond acceptors/donors, polar surface area, etc.). A complete description of the
graph and tabular features used for both pocket and ligand can be found in Supporting Information
Table 2. Samples are provided to the model in the form of ligand-pocket pairs, with associated target
variables discussed in Section 2.4.

2.2.2 MODEL

The PocketNet model takes the two graphs (pocket and ligand) and tabular features as input and
output a single target variable. To accomplish this, we adopt a simple hybrid architecture which
combines two graph neural networks and a series of feed-forward layers to produce the final predic-
tion (see Supporting Information Figure 5).

The GNN layers are based on the graph attentional layer introduced by Veličković et al. (2017).
Given a graph G = (X , E) with node features X = {x1,x2, . . . ,xN} ,xi ∈ Rf and edge features
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E = {e1,1, e1,2, . . . , eN,N} , ei,j ∈ Rd a GNN layer can be defined by an equation which updates
X in successive layers. In the case of PocketNet, we are given two graphs Gp and Gl for the pocket
and ligand respectively. The size of the feature space f in the input layer is equal to the number of
input features for each graph. Using the parameters from our best model, f is then set to 256 for
three hidden layers and 512 for the output layer. The edge features E are not changed by the GNN
layer and thus the edge feature space d does not change from the input size.

The GNN layer update can be formalized by Equation 1 where Θ is a shared linear transformation
applied to each node xi, and αi,j is the attention coefficient between node i and node j. The
attention coefficient αi,j can be calculated according to Equation 2 where Θe is another shared
linear transformation acting on each edge ei,j , a are the learnable attention parameters, ·T is the
transposition operation, || is the concatenation operation, and LeakyReLU is a non-linear activation
function which scales down negative values. Through each GNN layer, the nodes gather more
information about the collective graph features which can be used to predict the target variable.

x′
i = αi,iΘxi +

∑
j∈N

αi,jΘxj (1)

αi,j =
exp

(
LeakyReLU

(
a⊤ [Θxi ∥Θxj∥Θeei,j ]

))∑
k∈N exp (LeakyReLU (a⊤ [Θxi ∥Θxk∥Θeei,k]))

(2)

Since these graph layers only learn 3D information through the edge distances, they have the prop-
erty of being invariant to any rotation or translation of the pocket or ligand coordinates. This is
desirable since these structures have no inherent orientation and the scoring of a ligand-pocket pair
should not change depending on its orientation. For this reason, most recent studies applying GNNs
to molecular structures require that the network is invariant (or equivariant) to these transformations
(Jing et al., 2021; Satorras et al., 2021; Batzner et al., 2022).

Following the pocket and ligand GNN layers, we are provided with the node embeddings X ′
p and X ′

l .
In order to obtain fixed-size embeddings which represent the full pocket or ligand, each set of node
embeddings is pooled by summation to form a single feature vector x̂ ∈ Rf (here f = 512). These
two feature vectors are concatenated together with the tabular features, denoted xtab, to form the
complete ligand-pocket pair embedding. To compute the prediction ŷ we introduce a feed-forward
network ψ which takes the pair embedding and produces a scalar output:

ŷ = σ (ψ ([x̂p || x̂l || xtab])) (3)

The network is coupled with an activation function σ which is selected based on the target vari-
able. Since there are multiple ways to evaluate how well a proposed pocket fits the native pose, we
explored three different target variables during training: success, IoU, and centroid distance (see
Section 2.4). As a result of our experiments, centroid distance was found to be the best target vari-
able. Thus, σ was set to be the ReLU activation function to ensure the prediction is non-negative.
The model was trained using an appropriate loss function for the given target: binary cross-entropy
(BCE) for success and mean squared error (MSE) for IoU and distance. Additional training details
can be found in the Supporting Information Section 4.4.

Once the model has been trained, it can be used for inference to score ligand-pocket pairs which
can be used to re-rank the ensemble for each target. When the model is trained by distance, then
the ensemble is ranked in ascending order such that the closest predicted pockets are ranked on top.
Finally, these top-ranked pockets can be used for downstream tasks such as focused docking.

2.3 DOCKING

Once the pocket ensemble is re-ranked using PocketNet, a traditional docking program can be used
for focused docking of the top-ranked pockets. To this end, we used Smina (Koes et al., 2013), a fork
of AutoDock Vina with an improved scoring function. It has been widely used in docking studies
(Xu et al., 2020; Gorgulla et al., 2020) and as a baseline for evaluating docking programs (Corso
et al., 2022; Masters et al., 2022). Smina uses a Monte Carlo search algorithm and empirical scoring
function which incorporates both force-field and knowledge-based terms. All default parameters
were used except for the number of modes which was set to be 10. This same docking procedure
was used for various other baselines described further in Section 2.6.
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2.4 METRICS

To evaluate the pocket prediction task we have the known ligand pose and our ranked ensemble
of predicted boxes. From this we define three metrics: success, intersection over union (IoU), and
centroid distance. Success is a binary metric which indicates if the box (including added buffer)
fully encloses the native ligand pose. IoU is a continuous metric between 0 and 1 which indicates
the overlap between the predicted box and the bounding box of the ligand. It is defined as the
intersection volume of the two boxes divided by their union volume which is trivial to calculate
using the axis-aligned box definition. A value of 0 indicates there is no overlap between the two
boxes while a value of 1 indicates perfect overlap. It may be a better metric than success for pocket
prediction since it penalizes boxes that are unnecessarily large. Centroid distance is the final metric
for pocket prediction. It is calculated as the Euclidean distance between the centroid of the predicted
box and the bounding box of the ligand. When presented in the results, these metrics are shown as
averages over the test set unless otherwise noted.

To evaluate the blind docking task, the top-ranked ligand pose with the lowest predicted energy is
always used to compare against the native pose. As with pocket prediction, there are numerous
metrics which can be used to assess docking performance. The predominant metric for pose quality,
called root-mean-square deviation (RMSD), quantifies how close a predicted pose is to the native
pose. However, some care should be taken with its calculation; many ligands have structural sym-
metry which should be taken into account during the calculation to prevent artificially higher RMSD
values. To this end, sPyRMSD (Meli & Biggin, 2020) was used for symmetry-aware RMSD calcu-
lations. Docking success is another binary metric which simply indicates whether the RMSD falls
below a certain threshold value, typically 2.0 - 5.0Å. Additional details on the metrics used can be
found in Section 4.5 of the Supporting Information.

2.5 DATASET

This study utilizes the PDBbind dataset (Liu et al., 2017), a collection of nearly 20k protein-ligand
complexes which has been widely used for training and benchmarking new methods. The dataset
also contains experimentally measured binding affinity data for each complex, although affinity
prediction was not assessed within this study. Several different dataset splitting strategies have been
used in the context of machine learning with molecules, however there is still no consensus on the
best method (Wu et al., 2018; Volkov et al., 2022). This study utilizes a time-based split which
trains on older complexes (deposited from 1982 - 2018) and tests on new data (2019). This split
is consistent with previous works on blind docking and allows for straightforward comparison of
results with the baseline methods (Stärk et al., 2022; Lu et al., 2022; Corso et al., 2022).

2.6 BASELINES

Several baselines were established for the pocket prediction and blind docking tasks to compare
against PocketNet. For both tasks, the four pocket prediction tools used in the ensembling process
(SiteMap, P2Rank, FPocket, and CurPocket) were used as baselines. In order to compare these
tools in terms of downstream docking performance, poses were generated by Smina as described in
Section 2.3. These baselines maintain the original ranking of boxes given by each tool. Furthermore,
we employ three additional benchmarks for the blind docking task: Blind, EquiBind, and DiffDock.

Blind is a baseline where the full protein structure is used for docking with Smina. The search box
is set to enclose the entire protein plus the additional 8Å buffer. All other settings are kept consistent
with the other Smina docking baselines.

EquiBind (Stärk et al., 2022) is one of the first deep learning models to directly predict the pose of
protein-ligand complexes. The model aims to predict the pose directly in one-shot, bypassing the
need for a search algorithm entirely. Pre-trained weights with recommended hyperparameters were
used for inference.

DiffDock (Corso et al., 2022) is another recent deep learning model which relies upon a diffusion
model which gradually moves the pose from a random starting point. While inference is significantly
longer than EquiBind, DiffDock showed state-of-the-art performance on this test set. Pre-trained
weights with recommended hyperparameters were used for inference and 40 poses were generated
for each system, with the top-scoring pose being used for evaluation.
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Figure 3: Pocket prediction task results including PocketNet and all pocket prediction baselines.
Tools were evaluated by the three pocket predictions metrics introduced earlier (success, IoU, and
cetroid distance) averaged over the test set. Due to the poor performance of existing pocket predic-
tion tools for peptide binding sites, results are shown including and excluding these systems.

3 RESULTS AND DISCUSSION

3.1 POCKET PREDICTION

Figure 3 shows the results for the pocket prediction task. PocketNet exceeds performance of all
baseline tools, especially for the top-ranked pocket. In terms of the rate of success, PocketNet shows
a 10-46% improvement over baseline methods. PocketNet also shows significant improvement in
terms of average IoU and average centroid distance. However, the ranking is still not ideal since
performance increases when more pockets are considered. Still, most of this gain in performance
is seen within the top-3 pockets, with success nearing 93% (ideal ranking is 96%). Figure 3 also
shows the results for the test set without peptides which nears 99% success within the top-3 pockets
(ideal ranking is 100%). This gap in performance is due to the poor performance of existing pocket
prediction tools for peptidic ligands. Typically these ligands bind to several shallow pockets on the
surface which aren’t scored highly or are subdivided into several different pockets.
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3.2 BLIND DOCKING

Figure 4 shows the results for the blind docking task. As described in Section 2.6, we have seven
total baselines to compare against our model. While EquiBind is able to reliably predict poses with
RMSD < 20Å, the method does not achieve high success with RMSD < 2Å. It can also be seen
that the strategy of blind docking to the full protein structure performs worse than using any one
of the pocket prediction tools. These tools perform similarly to each other and their success is
correlated with the pocket prediction metrics. For example, P2Rank exceeds the other tools in terms
of centroid distance and performs similarly well at docking while FPocket performs the worse at
pocket prediction and docking. The issue with all of these methods is that they often rank distant
pockets highly and thus obtain very large RMSD values. The authors in Corso et al. (2022) provided
a similar baseline strategy to the P2Rank baseline presented here. However, in their approach the
box definition is set to be cubic and is not influenced by the length-width-height ratio of the binding
site. Through our experiments, we found this negatively impacts docking performance and that
using a box with different side lengths is superior. DiffDock itself was found to be the next best
method for blind docking and produced very similar results to PocketNet. Nevertheless, PocketNet
exceeded all baseline methods and achieved a new state-of-the-art performance for this test set.

3.3 DIFFERENTIAL POCKET PREDICTION

A unique advantage of PocketNet is its ability to differentiate pockets based on a ligand structure.
To assess this capability, proteins which contain multiple binding sites with distinct ligands were
selected for further analysis. The same pocket features were provided to PocketNet while swapping
out the features for each active ligand. Visualizations of the pocket prediction and docking results
for both systems can be seen in Supporting Information Figure 8. While PocketNet is able to predict
the correct pocket in each case, the subsequent docking with Smina sometimes underperforms. This
result highlights the limitation of traditional docking algorithms.

Androgen Receptor (AR) is a nuclear receptor which controls gene expression and is implicated
in a number of diseases. AR contains a primary active site and several allosteric sites (Baek et al.,
2006). The primary site binds testosterone and similar ligands with a steroid structure while the
allosteric pockets bind various scaffolds. Therefore, two PDBs (2YLQ and 2PIX) were selected
which contain ligands bound to both the active site and the allosteric Binding Function 3 (Bf3)
site. When PocketNet is conditioned on the 2YLQ protein structure with testosterone, the primary
active site is correctly ranked at the top. On the other hand, when the same protein structure is
conditioned with the allosteric inhibitor (YLQ; Compound 2 from Lack et al. (2011)), the allosteric
site is correctly ranked at the top. A similar result was seen when using PocketNet to predict the sites
of dihydrotestosterone (DHT) and another Bf3 inhibitor, flufenamic acid (FLF) (Estébanez-Perpiñá
et al., 2007). Top-1 RMSD values of 0.3, 0.4, 3.1, and 5.2Å were obtained for TES, DHT, YLQ, and
FLF respectively.

Tyrosine-protein Kinase ABL1 (ABL) is an enzyme involved in cell differentiation, prolifera-
tion, and DNA repair. For these reasons, mutations in ABL are associated with cancers, especially
Chronic Myelogenous Leukemia (CML). Therefore, numerous inhibitors have been designed to tar-
get ABL and downregulate its uncontrolled proliferative effect. The first successful inhibitor to
target ABL, Imatinib, binds to and blocks the active ATP binding site. However, resistance to Ima-
tinib has become a growing problem in the treatment of CML (Juan & Ong, 2012). Therefore,
there has been an increased interest in targeting allosteric sites of ABL, such as the myristate pocket
(Zhang et al., 2010; Jahnke et al., 2010; Yang et al., 2011). Here, we examined four PDBs (3K5V,
3PYY, 3MSS, and 3MS9) which contain both Imatinib (STI) and different allosteric inhibitors (STJ,
3YY, MS7, MS9) targeting the myristate pocket. In all four cases, PocketNet is able to differentiate
between Imatinib and the allosteric inhibitors and predict correct pockets for each. Top-1 RMSD
values of 11.9-12.1Å were obtained for Imatinib and 1.0-5.8Å for allosteric inhibitors.

3.4 LIMITATIONS

Here we will discuss some of the limitations of the PocketNet method and some opportunities for
future development. The axis-aligned box definition utilized in this study is not ideal for fitting
ligand binding sites which have no inherent orientation. Due to this definition, LBS predictions
depend on the input orientation of the protein and IoU values are never optimal. Additionally,
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Figure 4: Blind docking task results including PocketNet and all blind docking baselines. Tools
were evaluated by the docking metrics introduced earlier (RMSD and success) averaged over the
test set.
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since IoU is highly correlated with success of docking, we can assume this limitation also hinders
downstream use of LBS predictions. This limitation is not simple to overcome because most LBS
prediction and docking programs use this axis-aligned box definition.

Another limitation is our ensemble of pocket predictors. Still, success is limited to 96% due to poor
performance of pocket prediction tools for peptidic ligands. No suitable tool could be found for this
task. However, if a new tool emerges which performs accurately for these large ligands, it should be
trivial to include the tool in the ensemble.

The final limitation we will discuss is the large gap between pocket prediction and docking accuracy.
While PocketNet is successful over 86% of the time, the subsequent docking fails in more than half
of these cases. Furthermore, in the differential pocket prediction analysis, PocketNet was able to
predict the correct site in each examined structure but docking only succeeded in a third of cases.
This high rate of failure can be attributed to issues with both the sampling and scoring of poses by
Smina. Hence, by addressing the issues associated with focused docking we can narrow this gap and
also improve blind docking results. Although there have been several recent developments which
apply deep learning to molecular docking, each of these approaches aim to solve blind docking
directly. Therefore, future research should investigate the application of these methods to focused
docking and how to best incorporate the pocket prediction and docking tasks.
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Gaston-Mathé, and Didier Rognan. On the frustration to predict binding affinities from protein–
ligand structures with deep neural networks. Journal of Medicinal Chemistry, 2022.

Jeffrey R Wagner, Christopher T Lee, Jacob D Durrant, Robert D Malmstrom, Victoria A Feher,
and Rommie E Amaro. Emerging computational methods for the rational discovery of allosteric
drugs. Chemical reviews, 116(11):6370–6390, 2016.

13



Published as a conference paper at ICLR 2023

David S Wishart, Craig Knox, An Chi Guo, Dean Cheng, Savita Shrivastava, Dan Tzur, Bijaya
Gautam, and Murtaza Hassanali. Drugbank: a knowledgebase for drugs, drug actions and drug
targets. Nucleic acids research, 36(suppl 1):D901–D906, 2008.

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learn-
ing. Chemical science, 9(2):513–530, 2018.

Lei Xie, Li Xie, and Philip E Bourne. Structure-based systems biology for analyzing off-target
binding. Current opinion in structural biology, 21(2):189–199, 2011.

Zhijian Xu, Cheng Peng, Yulong Shi, Zhengdan Zhu, Kaijie Mu, Xiaoyu Wang, and Weiliang Zhu.
Nelfinavir was predicted to be a potential inhibitor of 2019-ncov main protease by an integrative
approach combining homology modelling, molecular docking and binding free energy calcula-
tion. BioRxiv, pp. 2020–01, 2020.

Jianyi Yang, Ambrish Roy, and Yang Zhang. Protein–ligand binding site recognition using comple-
mentary binding-specific substructure comparison and sequence profile alignment. Bioinformat-
ics, 29(20):2588–2595, 2013.

Jingsong Yang, Nino Campobasso, Mangatt P Biju, Kelly Fisher, Xiao-Qing Pan, Josh Cottom,
Sarah Galbraith, Thau Ho, Hong Zhang, Xuan Hong, et al. Discovery and characterization of
a cell-permeable, small-molecule c-abl kinase activator that binds to the myristoyl binding site.
Chemistry & biology, 18(2):177–186, 2011.

Jianming Zhang, Francisco J Adrián, Wolfgang Jahnke, Sandra W Cowan-Jacob, Allen G Li, Rox-
ana E Iacob, Taebo Sim, John Powers, Christine Dierks, Fangxian Sun, et al. Targeting bcr–abl
by combining allosteric with atp-binding-site inhibitors. Nature, 463(7280):501–506, 2010.

Jingtian Zhao, Yang Cao, and Le Zhang. Exploring the computational methods for protein-ligand
binding site prediction. Computational and structural biotechnology journal, 18:417–426, 2020.

Xiaolei Zhu, Yi Xiong, and Daisuke Kihara. Large-scale binding ligand prediction by improved
patch-based method patch-surfer2. 0. Bioinformatics, 31(5):707–713, 2015.

14



Published as a conference paper at ICLR 2023

4 SUPPORTING INFORMATION

4.1 POCKET ENSEMBLE ANALYSIS

Test Set
Ensemble Success Rate Average IoU Average Dis. (nm)

SM 86.2% 0.43 0.59
P2R 93.4% 0.41 0.43
FP 79.6% 0.42 0.66
CP 90.6% 0.49 0.53

SM + P2R 94.5% 0.50 0.36
SM + FP 93.1% 0.50 0.39
SM + CP 92.3% 0.52 0.38
P2R + FP 95.6% 0.47 0.37
P2R + CP 95.3% 0.52 0.35
FP + CP 93.9% 0.52 0.40

SM + P2R + FP 95.6% 0.52 0.33
SM + P2R + CP 95.6% 0.55 0.31
SM + FP + CP 93.9% 0.54 0.33
P2R + FP + CP 96.1% 0.54 0.32

SM + P2R + FP + CP 96.1% 0.56 0.29

Test Set w/o Peptides
Ensemble Success Rate Average IoU Average Dis. (nm)

SM 93.1% 0.44 0.49
P2R 99.0% 0.40 0.36
FP 85.6% 0.43 0.60
CP 98.0% 0.50 0.51

SM + P2R 99.7% 0.49 0.29
SM + FP 99.3% 0.51 0.32
SM + CP 98.7% 0.54 0.35
P2R + FP 100% 0.47 0.31
P2R + CP 100% 0.53 0.31
FP + CP 99.3% 0.54 0.37

SM + P2R + FP 100% 0.52 0.26
SM + P2R + CP 100% 0.55 0.27
SM + FP + CP 99.3% 0.56 0.29
P2R + FP + CP 100% 0.55 0.27

SM + P2R + FP + CP 100% 0.56 0.25

Table 1: Ensemble analysis with top-10 results from SiteMap (SM), P2Rank (P2R), FPocket (FP),
CurPocket (CP). All metrics are calculated by using the best matching box regardless of rank. Suc-
cess rate is the percent of cases where the box fully encloses the native pose, average IoU is the
mean intersection over union (IoU), and average distance is the mean distance between the box and
ligand centroids. Best results in each tier is bolded.
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4.2 MODEL

Figure 5: PocketNet model overview. Protein and ligand graphs are prepared prior to training and
encode information about the atoms in each system. Ligand edges are maintained between cova-
lently bonded atoms and the pocket graph is locally connected with a cutoff of 8Å. In addition to
the graph structures, several tabular features which describe the entire system are also provided as
input to the network (2). The network architecture is composed of two graph neural networks which
process the ligand and pocket graphs independently before joining the embeddings with the tabular
features and feeding them through a feed-forward network. In order to learn a fixed-sized embed-
ding for systems of variable size, a pooling operation reduces the nodes features of the graph into
one fixed-size embedding. Generated embeddings are concatenated with tabular features and fed to
the feed-forward network. This network gradually shrinks the dimensions of the embedding until
reaching a scalar value prediction
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4.3 FEATURIZATION DETAILS

Data Structure Descriptor Encoding

Pocket Graph Nodes

Residue Type One-Hot
Secondary Structure One-Hot

Total SASA Z-Score
P2Rank Score Z-Score

Pocket Graph Edges Distance None

Ligand Graph Nodes

Atom Type One-Hot
Hybridization Type One-Hot

Chirality Type One-Hot
Number of Bonds One-Hot

Number of Hydrogens One-Hot
Number of Rings One-Hot

Ring Sizes One-Hot
Formal Charge One-Hot
Partial Charge None
Aromatic Flag None

Ligand Graph Edges
Bond Type One-Hot
Distance None

Pocket Tabular

Source Program One-Hot
Source Rank Log

Ensemble IoU Sum Z-Score
Ensemble IoU Mean Z-Score

P2Rank Score Z-Score
Sorted Side Lengths Z-Score
Side Length Ratios Z-Score

3D Box Volume Z-Score
Atom Count / Volume Z-Score

Residue Count / Volume Z-Score
Protein Chain Count None

Fraction of Residues Inside Box None
Fraction of SiteMap Points Inside Box None
Fraction of P2Rank Points Inside Box None
Fraction of FPocket Points Inside Box None

Ligand Tabular

Molecular Weight Z-Score
Number of Rotatable Bonds Z-Score
Number of H-Bond Donors Z-Score

Number of H-Bond Acceptors Z-Score
Number of Total Rings Z-Score

Number of Aliphatic Rings Z-Score
Number of Aromatic Rings Z-Score
Number of Saturated Rings Z-Score
Number of Amide Bonds Z-Score

Solvent Accessible Surface Area Z-Score
Total Polar Surface Area Z-Score

Crippen logP Z-Score

Table 2: Graph and tabular feature details. One-Hot indicates a categorical feature encoding where
a vector contains one non-zero element indicating the category. After the first neural network layer,
this sparse encoding is transformed into a dense feature vector. Z-score indicates that a scalar feature
has been normalized using the mean and standard deviation across the entire dataset. Log indicates
that a scalar feature has been log-transformed in order to attenuate larger values. Some scalar fea-
tures were left unnormalized.
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4.4 TRAINING DETAILS

The model was trained using an appropriate loss function for each target variable (e.g. MSE for IoU
and distance, BCE for success). Hyperparameter optimization using the validation set alone was
performed to find the optimal set of hyperparameters (see Table 3 below for further details). The
best model was trained for 100 epochs using the Adam optimizer with a learning rate of 0.0001.
Training samples were shuffled and provided to the network as batches of 256.

Parameter Search Space Best Value

Training
Target Variable [Success, IoU, Distance] Distance
Learning rate Log Uniform (10−1 − 10−5) 10−4

Pocket GNN

Hidden layers [1, 3, 5] 3
Hidden dim. [64, 128, 256, 512] 256
Output dim. [64, 128, 256, 512] 512
Dropout Uniform (0.0 - 0.25) 0.0

Ligand GNN

Hidden layers [1, 3, 5] 3
Hidden dim. [64, 128, 256, 512] 256
Output dim. [64, 128, 256, 512] 512
Dropout Uniform (0.0 - 0.25) 0.0

Feed-Forward NN
Hidden layers [1, 3, 5] 3
Hidden dim. [64, 128, 256, 512] 256
Dropout Uniform (0.0 - 0.25) 0.1

Table 3: Search space and results for hyperparameter optimization (HPO). For faster training, the
validation set alone was used for HPO. While the target variable used for training was itself a hyper-
parameter, the HPO aimed to optimize the success for the top-1 predicted pocket. By this evaluation,
training by success had about the same performance as training by distance, the latter was found to
be superior in terms of the IoU and distance metrics. Therefore, the best model was trained by
centroid distance.
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4.5 METRICS

Intersection

Union
3D IoU =

Figure 6: Depiction of 3D Intersection over Union (IoU) calculation. Using the axis-aligned box
definition, the calculation of intersection and union of the boxes becomes trivial.

Figure 7: Correlation between the three pocket prediction metrics (success, IoU, and centroid dis-
tance) and top-1 docking RMSD (Å). Success guarantees the native pose is contained within the
search box, but the docking algorithm can still find to sample or accurately score this pose. IoU has
a negative correlation with RMSD (R=-0.73). Boxes with IoU = 0 (no overlap with native pose),
the RMSD is at least 20Å. Boxes with IoU > 0.5 (high overlap with native pose), the RMSD is at
most 20Å. The metric, centroid distance, has the highest correlation with RMSD (R=0.89). This
coincides with findings from the hyperparameter optimization which found centroid distance to be
the best target variable.
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4.6 ADDITIONAL RESULTS

Figure 8: Visualized results from the differential pocket prediction analysis for Androgen Receptor
and Tyrosine-protein Kinase ABL1. Predicted pocket box and docked pose shown in magenta.
Native pose and its bounding box is shown in green.
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