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Abstract

Adversarial robustness has received increasing attention along with the study of
adversarial examples. So far, existing works show that robust models not only
obtain robustness against various adversarial attacks but also boost the performance
in some downstream tasks. However, the underlying mechanism of adversarial
robustness is still not clear. In this paper, we interpret adversarial robustness
from the perspective of linear components, and find that there exist some statis-
tical properties for comprehensively robust models. Specifically, robust models
show obvious hierarchical clustering effect on their linearized sub-networks, when
removing or replacing all non-linear components (e.g., batch normalization, max-
imum pooling, or activation layers). Based on these observations, we propose a
novel understanding of adversarial robustness and apply it on more tasks including
domain adaption and robustness boosting. Experimental evaluations demonstrate
the rationality and superiority of our proposed clustering strategy. Our code is
available at https://github.com/bymavis/Adv_Weight_NeurIPS2021.

1 Introduction

Nowadays, deep neural networks (DNNs) have shown a strong learning capacity through a huge
number of parameters and diverse structures [16, 31, 11]. Meanwhile, adversary has raised increasing
security concerns on DNNs due to the observation of adversarial examples (i.e., the examples
mislead a classifier when crafted with human imperceptible but carefully designed perturbations) [13].
Adversarial robustness and defense techniques have thus become crucial for deep learning, yet many
adversarial defense techniques are found with deficiencies such as obfuscated gradient [2]. Up to now,
the widely accepted techniques to improve adversarial robustness are adversarial training variants
[23, 32, 38, 33, 35, 36], by training a DNN after data augmentation with the worst-case adversarial
examples. Recent study has found that not only do robust models show moderate robustness under
vast attacks, but also they can surprisingly boost the downstream tasks (e.g., domain adaption task
with subpopulation shift) [29].

However, the underlying mechanism of adversarial robustness is still not clear. Existing studies have
explored adversary on some specific components of DNNs, such as batch normalization [12], skip
connection [34], or activation layers [14, 4], which yield some enlightening understanding. On the
other hand, despite variation in DNNs’ structure, the components can be roughly divided into linear
and non-linear ones. The non-linear components tend to be instance-wise. For example, adversarial

*Equal contribution.
†Correspondence to: Yisen Wang (yisen.wang@pku.edu.cn) and Shu-Tao Xia (xiast@sz.tsinghua.edu.cn).

35th Conference on Neural Information Processing Systems (NeurIPS 2021) .

https://github.com/bymavis/Adv_Weight_NeurIPS2021


0 1 8 9 2 3 4 5 6 7

CIFAR-10

Non-animal Animal

(a) Class Hierarchy (b) VGG16-STD (c) VGG16-AT (d) VGG16-AT+C
Figure 1: Correlation matrices C of VGG-16 on CIFAR-10: b) ‘STD’ and c) ‘AT’ indicate standard
and adversarial training, d) ‘AT+C’ indicates applying hierarchical clustering in adversarial training.
Robust models tend to show clustering effect aligned with a) the class hierarchy of CIFAR-10, which
is enhanced in d) our clustering adversarially trained model.

and benign examples tend to present different patterns on activation [4]. In contrast, for those linear
components, once the optimization is done and model evaluation mode is activated, they are shared
and fixed independently from inputs. Nowadays, the intrinsic relationship of adversary with linearity
has been studied. Some ascribes the adversary to linear accumulation of perturbations from inputs to
final outputs, dubbed ‘accidental steganography’ [13]. Some show that linear backward propagation
enhances adversarial transferability [34, 14]. Nevertheless, such mentioned linearity analyses are all
on the original non-linear models, which hinders a deeper understanding on linearity directly. Further
essential exploration is encouraged.

In this paper, we thus study adversarial robustness on the statistical regularity of linear components.
We provide a novel insight on adversarial robustness by showing the clustering effect well aligned
with class hierarchy. As shown in Fig. 1(d), given a data set, superclasses are defined by grouping
semantically similar subclasses together to form a hierarchy, e.g., in CIFAR-10, ‘Cat’ and ‘Dog’
represent different subclasses/fine labels, despite both being the same superclasses/coarse labels
‘Animal’. Based on this, we conduct backward propagation on linearized sub-networks of robust and
non-robust DNNs (through adversarial/standard training respectively) to extract the corresponding
implicit linear expression. In this fashion, we could obtain a Dinput⇥Doutput linear matrix W , which
is extracted from inputs to predictive outputs. Dinput represents for the dimension of one input data,
specifically defined as width ⇥ height ⇥ channel. Doutput represents for the dimension of one output
vector, which is also the number of classes. We further study the correlation of vectors in W by matrix
C, whose shape is Doutput ⇥Doutput. The details of W and C are introduced in Sec. 3.2. Then we
find that robust models tend to show hierarchical clustering effect in correlation matrix C, which is
surprisingly consistent with class hierarchy. For example, in Fig. 1 on CIFAR-10, the fine labels
(0,1,8,9) belong to ‘Non-animal’, others belong to ‘Animal’. The matrix C of robust model shows
block clustering: values are close to ‘+1’ in the two superclasses (0,1,8,9) and (2,3,4,5,6,7), and values
are close to ‘-1’ across these two superclasses. Such clustering effect is enhanced by our clustering
regularization penalty in Fig. 1(d). This phenomenon could be semantically explained as subclasses
from the same superclass share more feature similarities. Such hierarchical clustering effect can give
a novel and insightful explanation on the superiority of robust models in some observed downstream
tasks, as they can extract more semantic and representative features. To further confirm our findings,
we enhance the hierarchical clustering effect in both adversarial robustness and downstream tasks,
e.g., domain adaption proposed in [29, 28]. The improvements of experimental results demonstrate
that the superiority of robust models is closely related to their hierarchical classification capability.
Our contributions are summarized as follows:

• To the best of our knowledge, we are the first to systematically analyze the statistical
regularity of adversarially robust models (through adversarial training) compared to non-
robust models (through standard training) on their linearized sub-networks.

• We present an intriguing phenomenon of hierarchical clustering effect in robust models,
and provide a novel yet insightful understanding of adversarial robustness. The clustering
effect aligned with class hierarchy demonstrates more semantic and representative feature
extraction capacity of robust models, which benefits a lot in various tasks.

• Based on the observations, we propose a plugged-in hierarchical clustering training strategy
to generally enhance adversarial robustness and investigate some intriguing adversarial attack
findings. Besides adversarial-related study, we further explore some downstream tasks with
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the understanding of hierarchical clustering, e.g., domain adaption with subpopulation shift.
Experimental results show that the clustering effect and hierarchical classification learned
by robust model benefits the task as well.

2 Related Work

2.1 Adversarial Attack and Defense

Attack Given a clean example x, its true label y, a DNN model F with parameters ✓ and its loss
function L, the goal of adversarial attack is to find an adversarial example x0 that is close to clean
example on pixel level but can fool F to give an incorrect prediction. Fast Gradient Sign Method
(FGSM) [13] adds perturbations on clean example x by one step with step size ✏:

x0 = x+ ✏sign(rxL(F(x, ✓), y)). (1)
Projected Gradient Descent (PGD) [23] adds perturbations on clean example x by K steps with
smaller step size ↵. After every step (k-th) attack, adversarial example is projected into the ✏-ball
B✏(x) around clean example (function ⇧):

xk = ⇧(xk�1 + ↵sign(rxL(F(xk�1, ✓), y))). (2)
There are other attack techniques, such as white-box CW attack [6], black-box attacks [21, 3] and
adaptive AutoAttack [9].

Defense Many adversarial defense techniques have been proposed since then, such as input pre-
processing [19], defensive distillation [24], model compression [10], and adversarial training [23].
Among them, adversarial training variants are assumed to be most effective in comprehensive attack
evaluations. They solve a min-max problem as:

min
✓

max
x02B✏(x)

L(F(x0, ✓), y). (3)

The inner maximum problem often generates adversarial examples by FGSM or PGD, while the
outer minimum problem optimizes the worst-case loss. Some defense technique improves robustness
through class-wise feature clustering [1, 30], which is different from our instance-wise feature
clustering.

2.2 Linearity Exploration in Adversary

Beside attack or defense techniques, the cause and understanding of adversary are studied. The lin-
earity is one essential perspective with no doubt. Previous studies attribute the existing of adversarial
examples to the linearity of DNNs [13] and observe the adversarial transferability enhancement on
more linear models [34, 14]. Some works study linearity from another perspective by focusing on the
properties of weight layers, e.g., their norms, variances and orthogonality. Lp norm regularization
works by pulling examples far away from the decision boundary, which comes as the side-effect
of adversarial robustness [37, 18]. Spectral norm [7, 26] is useful in adversarial defense, which is
defined as �i =

kwixk2

kxk2
and is used to constrain the Lipschiz constant of a DNN F on x (assuming

Lipschiz continuous) kF(x+ �)� F(x)k2  �kxk2 
Q

�ikxk2. The weight scale shifting issue
is also discussed in adversary [22], that is, scale of weights can be shifted between layers without
changing the input-output function specified by the network, which could affect the capacity to
regularize models. Then one weight scale shift invariant regularization is proposed and improves
adversarial robustness. Moreover, the orthogonality could help improve generalization and adversarial
robustness [5, 7] by inducing uncorrelated features. However, these experiments are all conducted
on the original non-linear models instead of the linear components directly, which hinders a deeper
understanding on linearity.

3 Observations on Linear Components

The robust models perform completely differently from non-robust ones especially under compre-
hensive adversarial attacks. However, the statistical regularity on linear components of these robust
models is yet under little exploration. Different from related works, we explore linear components
directly. To be specific, we extract a weight matrix expression of linearized sub-networks, estimating
the linear propagation from inputs to outputs.
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3.1 Extracting a Linear Weight Matrix

Given a DNN F composed of L linear layers and non-linear components, the output y = F(x) could
be expressed as

y = gL(wL ⇥ gL�1(wL�1 ⇥ . . . g1(w1 ⇥ x+ b1) · · ·+ bL�1) + bL), (4)

where gi is a series of non-linear components (e.g., activation function ReLUs), wi and bi are the
expressions of linear ones. Then a corresponding linear sub-network of this original one could be
extracted with the same weights and architectures, yet it removes activation function (e.g., ReLU
layers) and batch normalization layers, and further replaces maximum pooling layers with average
pooling layers. This output of linear network ylinear = Flinear(x) is expressed as

ylinear = wL ⇥ (wL�1 ⇥ ...(w1 ⇥ x+ b1)...+ bL�1) + bL. (5)

Thus in Flinear, each input x is multiplied by an instance-agnostic total weight

W = wL ⇥ wL�1 ⇥ ...w1 +
X

i,j

bi...⇥ wj .... (6)

However, such total weight expression W in DNNs is difficult to compute directly, because the
multiplication of convolution layers is infeasible. Instead, we propose to compute W by applying
backward propagation on the linear sub-network. To be specific, given a random input x and
a pre-trained DNN F , W is computed as the gradient propagated on linear sub-network Flinear

following Algorithm 1. For a non-linear model, as the activation part is example-wise, it is difficult
to analyse the original network with non-linear components. In contrast, the linear component is
generally applied on all examples and example-agnostic. So we extract a linear expression from the
original non-linear model to approximate and analyse the model performance. Intuitively, although
the linearized network has limited capacity, we think that the class-wise directions (the extracted
linearized weight vectors) should still represent some class-wise directions, which holds a connection
with the feature space of the non-linear models.

Algorithm 1 Extracting the Linear Weight Matrix W

Input: A random input x, a pre-trained DNN model F with Doutput classes
Output: Weight matrix W

Get the corresponding linear sub-network Flinear from F
Conduct forward propagation as: ylinear = Flinear(x)
for i in range(Doutput) do

ylinear[i].backward()
W [:, i] = x.grad

end for

return W

3.2 Observation on Weight Clustering Effect

As indicated, though instance-wise performance varies on one specific DNN with non-linear com-
ponents, it shares the same linear sub-network (i.e. parameters and linear structures) and thus the
same implicit weight matrix W . As the implicit matrix W could estimate linear output scores ylinear
of any input x when forward propagating on the linear sub-network, it hints some class-wise linear
amplifications. After extracting W with shape Dinput ⇥Doutput, we further explore the correlation
across classes by normalizing weight vectors in W (to avoid the class-wise scale variance) and
computing a correlation matrix C following

Ci,j =
WT

i

kWT
i k2

⇥ Wj

kWjk2
. (7)

In such fashion, the matrix C, whose shape is Doutput ⇥Doutput, has all elements in [-1, 1]. C(i, j)
represents for cosine value of two weight vectors corresponding to class i and j on linear sub-networks,
which also represents for the correlation of class-wise weight vectors. If the element C(i, j) is close
to 1, it means that i-th and j-th class-wise weight vectors are strongly positive correlated in the linear
weight space, which also demonstrates that class i and j are more likely to be positively related with
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(a) STL-AT (b) CIFAR10-AT (c) CIFAR20-AT (d) ImageNet10-AT

(e) STL-STD (f) CIFAR10-STD (g) CIFAR20-STD (h) ImageNet10-STD
Figure 2: Correlation weight matrix C of ResNet-18 on different data sets. ‘AT’ indicates adversarial
training. ‘STD’ indicates standard training. Robust models tend to show weight clustering effect
aligned with class hierarchy.

each other. In contrast, for the element C(i, j) close to -1, it means that i-th and j-th class-wise
weight vectors are strongly negative correlated in the linear weight space, which also demonstrates
that class i and j are more likely to be negatively related with each other.
Datasets and Setups Beside Fig. 1, we show more clustering effect across data sets using STL-10
[8] and two reconstructed data sets CIFAR-20 and ImageNet-10, composed of 20/10 subclasses from
4/2 superclasses in CIFAR-100 and TinyImageNet [27]. The details of constructed data sets are in
Appendix A. For robust models, we adversarially train ResNet-18 [15] using PGD-10 (✏ = 8/255
and step size 2/255) with random start. The non-robust models are standard trained. Both models are
trained for 200 epochs using SGD with momentum 0.9, weight decay 2e-4, and initial learning rate
0.1 which is divided by 10 at the 75-th and 90-th epoch.
Result Analysis We plot the correlation matrix C in Fig. 2. Similar to Fig. 1 on CIFAR-10, the
similar block clustering effect is observed on robust models and aligns well with class hierarchy. To
be specific, in Fig. 2(a) and 2(e) on STL-10, fine labels (0,2,8,9) belong to ‘Non-animal’, others
belong to ‘Animal’, and the matrix C of robust model shows block clustering: values close to ‘+1’ in
the two superclasses (0,2,8,9) and (1,3,4,5,6,7), values close to ‘-1’ across these two superclasses.
Such phenomena hint at the fundamental connection of adversarial robustness with weight clustering
effect. That is, subclasses in the same superclass are positively related to each other, which is in
contrast with those in different superclasses. This hierarchical classification property is more semantic
with data sets, demonstrating that robust model has a better representative feature extraction capacity
and thus outperforms standard model in various tasks.

Discussion In order to analyse the connection of weight clustering effect on linearized models
with their original models, we specifically take the linear model as an example whose linearized
model is itself. We additionally train two linear models with initial learning rate 0.01 and 100
epochs by standard training or PGD-10 adversarial training. The detailed architecture of the model
is shown in Appendix F. The final accuracies are listed in Table 1. Though the model capacity
restricts their accuracies, the robust model still shows a clustering effect. Fig. 3 indicates that
the clustering effect of linear weight matrix generally holds even on a simplified linear model.

(a) CIFAR10-AT (b) CIFAR10-STD
Figure 3: Correlation weight matrix C of linear models
on CIFAR-10. ‘AT’ model shows a clustering effect.

Table 1: Accuracy (%) on CIFAR-10 of
two linear models. ‘AT’/‘STD’ indicate
adversarial/standard training. The model
capacity restricts their accuracies.

Linear Model
(CIFAR-10) AT STD
Clean ACC 29.21% 39.53%

PGD-20 ACC 20.80% 4.36%
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4 Explorations with Clustering Effect

A simple and direct idea is to apply the linear weight clustering effect as a penalty. However, the time
cost and computational cost are too expensive. Based on our understanding that robust models learn
better class hierarchy of one data set and thus better semantic features, we further add the penalty in
feature space by evaluating a class-wise feature distance matrix D of original non-linear DNNs on
CIFAR-10. Given data pairs (xi, yi), their features zi, we compute the class-wise feature centers Zj

for class j following
Zj = mean zi · 1(yi = j) (8)

F (a, b) represents the distance of class-wise feature centers Za and Zb, which is normalized with
the largest class-wise distances for a better visualization.

F (a, b) =
kZa �Zbk2

max
c,c 6=a

kZa �Zck2
. (9)

Result Analysis We adopt the same basic setting as Sec. 3.2, and find a similar clustering effect on
CIFAR-10 in Fig. 4. The models are the same with those in Fig. 2. Robust models consistently show
the better clustering effect compared with non-robust models. That is, the centers of subclasses in the
same superclass lie closer to each other in feature space. The feature clustering effect also aligns well
with class hierarchy. Such effect further confirms our understanding that robust models could extract
more semantic and hierarchical features even in their original non-linear feature space.
Further Clustering Enhancement Given any unknown data set, we first extract its class hierarchy
from a pre-trained robust model, e.g., trained by adversarial training. To be specific, we compute
matrices W and C following Sec. 3.2. We then formulate C to an approximate matrix Cop with all
items set to ‘-1’ or ‘+1’, i.e., in Cop, subclasses in the same superclass block have values ‘+1’, else
have values ‘-1’. With the extracted class hierarchy, a regularization loss is designed to minimize
outputs within the same superclass. Take the data set CIFAR-10 for example, subclasses are divided
into (0,1,8,9) and (2,3,4,5,6,7) in Cop. The regularization loss is defined in Eq. 10. The hierarchical
instance-wise clustering training strategy is proposed following Algorithm 2.

F0 = ExF(x)i · 1(i = 0, 1, 8, 9)

F1 = ExF(x)j · 1(j = 2, 3, 4, 5, 6, 7)

Lreg(x) =
X

i=0,1,8,9

kF(x)i � F0k2 +
X

j=2,3,4,5,6,7

kF(x)j � F1k2.
(10)

Algorithm 2 Enhancing the Hierarchical Clustering Effect
Input: A random input x, a pre-trained robust DNN model F (e.g., on CIFAR-10)
Output: Robustness Enhanced Model F

Compute the weight correlation matrix C following Algorithm 1 and Eq. 7
Compute an approximate matrix Cop with all items ‘+1/-1’ based on C and extract class hierarchy
Compute regularization loss Lreg(x) with feature clusters following Eq. 10
Retrain F from scratch using the original robust loss L(x, y) (e.g., adversarial training loss) added
with Lreg

return F

4.1 Domain Adaption Case

Recent study shows that robust models tend to perform better in downstream tasks, especially domain
adaption with subpopulation shift [29]. However, further analyses are insufficient. We study from two
perspectives, 1) verifying how robust models outperform in domain adaption with different settings
and 2) exploring a further improvement by enhancing the clustering effect. Specifically, we randomly
divide a hierarchical data set into source data and target data according to their subclasses. That is,
source and target data share the same superclass yet different subclasses, dubbed subpopulation shift.
In the training phase, we use fine labels of source data and map fine labels to coarse ones. In such
a fashion, the model returns fine and coarse labels. Only coarse label is evaluated in the test phase
as the target test data has different fine labels from source data. Both coarse and fine accuracies are
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(a) STL-AT (b) CIFAR10-AT (c) CIFAR20-AT (d) ImageNet10-AT

(e) STL-STD (f) CIFAR10-STD (g) CIFAR20-STD (h) ImageNet10-STD
Figure 4: Feature distance matrix F of ResNet-18 on different data sets. ‘AT’ indicates adversarial
training. ‘STD’ indicates standard training. Robust models tend to show feature clustering effect
aligned with class hierarchy, which is similar to C.

evaluated on source domain. We enhance the feature clustering effect by a penalty loss defined in Eq.
10. To better utilize hierarchical features extracted by pre-trained models, we also finetune parameters
on target data to achieve a further improvement. Different models, different constructed data sets and
different adversarial training settings (i.e. adversarial robustness levels) are evaluated and analyzed.

4.1.1 Different Models

Datasets and Setups The data set CIFAR-100 is composed of 20 superclasses, and each superclass
is composed of 5 subclasses. Based on that, we construct our own data sets by randomly sampling
from CIFAR-100, e.g., our default CIFAR-20 is composed of 20 subclasses from 4 superclasses.
The details of all constructed data sets are shown in Appendix A. We adversarially train ResNet-18,
DenseNet-121 [17], and AlexNet [20] with PGD. If not specifically mentioned, PGD-5 is adopted (5
steps, step size 1/255, ✏=2/255). The robust/non-robust ResNet-18 and DenseNet-121 are trained
with SGD [25] and a initial learning rate 0.1. The robust/non-robust AlexNet are trained with SGD
and a initial learning rate 0.01. The learning rates decay with a factor of 0.1 at the 75 and 90 epoch.
Other hyper-parameters are the same with Sec. 3.2. Moreover, we finetune the pre-trained models on
target data for 20 epochs with a learning rate 0.01.
Results Analysis We evaluate the models on our default CIFAR-20. As shown in Table 2, when
comparing the coarse accuracies on target and source data, robust models tend to decline less than
non-robust ones. Take pre-trained ResNet-18 for example, the coarse accuracy on robust model
directly declines by 5.44% (from 87.94% to 82.50%) but declines by 10.18% (from 90.93% to
80.75%) on non-robust model. When considering finetuned models, the superiority of robust models
outstands. For example, the coarse accuracy on finetuned robust ResNet-18 increases by 6.46% (from
87.94% to 94.40%) while increases by 3.32% (from 90.93% to 94.25%) on finetuned non-robust
ResNet-18. When applying the clustering penalty defined in Eq. 10, coarse accuracy is improved by
2.25% on robust ResNet-18 (from 82.50% to 84.75%) even without finetuning. Experimental results
demonstrate that features extracted by robust models have a non-trivial impact on domain adaptation.
Such superiority keeps consistent when finetuning with the feature centers of target training data.
Thus our understanding is confirmed that a better hierarchical classification learned by robust models
benefits a lot in downstream domain adaption task.

4.1.2 Different Data Sets

Datasets and Setups For CIFAR-100, we randomly select 4 to 6 superclasses, select 4 subclasses
from each superclass for training and apply the left one for test. We also select 5 superclasses, select
3 subclasses from each superclass for training and apply the left 2 subclasses for test. When selecting
4 superclasses and 4 subclasses, we typically design two extreme data set construction methods, i.e.
the most different and similar data set. The ‘different’ 4 superclasses are selected as index 1, 2, 5,
14 (fish, flowers, household electrical devices, people). The ‘similar’ 4 superclasses are selected as
index 8, 11, 12, 16, which are all animals. The reconstructed data set ImageNet-20 is composed of
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Table 2: Accuracy (%) on CIFAR-20 across various models. ‘Coarse’ and ‘Fine’ indicate the ground-
truth labels are coarse or fine respectively. ‘FT’ indicates the pre-trained models are finetuned on
target data. ‘R’ indicates robust models (adversarial training). ‘NR’ indicates non-robust models
(standard training). ‘+C’ indicates robust models with an enhanced clustering effect defined in Eq.
10.

Source Domain Target Domain
Coarse Fine Coarse Coarse-FT

AlexNet NR 85.50 65.37 71.75 86.70
R 84.75 64.50 72.75 87.50

R+C 90.68 65.56 75.25 89.25

ResNet-18 NR 90.93 70.62 80.75 94.25
R 87.94 68.75 82.50 94.40

R+C 88.25 69.62 84.75 94.75

DenseNet-121 NR 92.31 73.56 77.25 95.50
R 90.18 72.87 81.00 95.75

R+C 91.37 73.87 85.25 96.50

(a) Different Data Sets (b) Different CIFAR-4*4
Figure 5: Comparisons of target accuracy across different data sets. Different colors indicate different
data set construction methods. Different shapes indicate different training methods, i.e. adversarial or
standard training. Circle indicates non-robust model (NR), square and start indicate robust model
without/with an enhanced clustering effect (R/R+C) respectively. Pentagon, diamond and triangle
indicate finetuning NR/R/R+C models respectively. The legend in format A ⇤ B: A indicates the
number of selected superclasses, B indicates the number of selected subclasses from each superclass
for training. The points located in left and upper represent for better performances as they have lower
source accuracies yet higher target accuracies.

20 subclasses from 4 superclasses in TinyImageNet. The details of datasets are in Appendix A. We
conduct experiments on ResNet-18 in this section.
Results Analysis As shown in Fig. 5, we find that experimental results on different data sets
show different yet consistent performances: robust models show great superiority on those more
hierarchical data sets, which can be boosted with an enhanced clustering effect. In Fig. 5(a), our
constructed data sets from CIFAR-100 and TinyImageNet show superiority with robustness and an
enhanced clustering. Moreover, a better class hierarchy of data set enhances domain adaption tasks.
For example, orange points (i.e. the ‘different’ data set) in both two subfigures in Fig. 5(b) tend to
present lower source accuracies yet higher target accuracies, especially compared with lightseagreen
points (i.e. the ‘random’ data set). For ‘similar’ data sets, because the class hierarchy is not obvious,
target accuracy drops a lot. However, the royalblue start point (i.e. ‘R+C’ version model trained on
‘similar’ data set) still achieves the highest target accuracies among three models trained on ‘similar’
data set. We show the specific numerical results in Appendix C.

4.1.3 Different Robustness Settings

Datasets and Setups We evaluate ResNet-18 with different robustness settings (i.e. different PGDs
in adversarial training) on random CIFAR-4?4 defined in Appendix A. The PGD details are given in
Appendix B.
Results Analysis As shown in Fig. 6, we could observe a trade-off between adversarial robustness
and accuracies on target data. For example, in the polylines of both two subfigures, purple points show
higher accuracies on target data than brown ones. However, brown points are of better robustness as
their accuracies on source data are much lower. Royalblue points show the relatively bad performance
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on target data yet the best performance on source data. The phenomena demonstrate a trade-off
between robustness and domain adaption performances. The better performance on target domain
could only be achieved with both robustness and moderate accuracies on source data. Furthermore,
robust model with an enhanced clustering effect has significantly results than the original robust
model. We show the specific numerical results in Appendix C. In addition, the time costs results with
different robustness settings are shown in Appendix D.

Figure 6: Comparisons of target accuracy across different adversarial robustness levels (i.e. different
adversarial training settings). Different colors indicate different PGD attack settings in adversarial
training. Circle and square indicate robust model without/with an enhanced clustering effect (R/R+C).
Pentagon and diamond indicate finetuning R/R+C model respectively. The points located in left
and upper represent for better performances as they have lower source accuracies yet higher target
accuracies.

4.2 Adversarial Case

We further conduct extensive experiments to explore such an intriguing clustering effect along with
other adversarial phenomena. The experiments are designed from two perspectives, 1) adversarial
robustness enhancement and 2) attack confusion matrix study. The results show that adversarial
robustness could be improved by enhancing the hierarchical clustering effect, and attack success rates
are highly related to class hierarchy as well.

4.2.1 Adversarial Robustness Enhancement

Datasets and Setups We adversarially train a robust ResNet-18 on CIFAR-10. The basic training
setting is the same with Sec. 3.2. The PGD-20 attack is applied with ✏ = 8/255 and step size 0.003.
Results Analysis Although the main exploration of clustering effect is studied not only in robustness
improvement, we conduct comprehensive robustness evaluations following the state-of-the-art attack
strategy with an adaptive AutoAttack [9]. We find that the clustering enhancement actually boosts
adversarial robustness in Table 3 for both best and last checkpoints. For black-box attacks, the
surrogate model is a standard trained VGG-16. NAttack is conducted on 1,000 random test data
and with a maximum query 20,000. Note that, the improvement against AutoAttack is 1.31%,
which shows that the clustering alignment with coarse labels learned by robust models could indeed
boost adversarial robustness. An interesting phenomenon is that when enhancing clustering effect,
both natural and robust accuracies are improved because the clustering effect improves feature
representation. The natural accuracy by standard training improves as well (from 92.75% to 93.54%)
with a clustering effect. Therefore, the trade-off between adversarial robustness and natural accuracy
still exists. In addition, we count the training time of two models (AT and AT+C). The AT model
costs 191.20s per epoch, while the AT+C model costs 193.66s, using one GPU 1080X with batch size
128 of ResNet-18 on CIFAR-10. The time cost slightly increases with the clustering regularization,
which is negligible. More results are shown in Appendix E.

Table 3: Robustness (accuracy (%) on various attacks) on CIFAR-10, based on the best/last checkpoint
of ResNet-18. ‘AT’ indicates adversarial training. ‘+C’ indicates applying our hierarchical instance-
wise clustering training strategy. The best results are boldfaced.

Defense White-box Black-box Adaptive
Natural FGSM PGD-20 CW1 PGD-20 CW1 NAttack AutoAttack

AT Best 84.20 63.32 50.12 50.97 81.80 84.80 48.21 46.58
Last 84.27 60.46 46.50 48.97 79.13 79.87 45.05 41.90

AT+C
Best 85.43 64.11 52.54 52.72 82.27 85.22 50.51 47.21

Last 85.53 62.11 47.78 49.95 80.21 78.98 47.51 43.21
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(a) UNTARGET-AT (b) UNTARGET-STD (c) TARGET-AT (d) TARGET-STD
Figure 7: Attack confusion matrix M under different settings. ‘AT’/‘STD’ indicate adversar-
ial/standard training. Robust models tend to show clustering effect aligned with class hierarchy.

4.2.2 Attack Confusion Matrix

To further analyze how class hierarchy matters in adversary, we evaluate the attack confusion matrix
M of adversarial examples in Fig. 7, whose shape is Doutput ⇥Doutput. M(i, j) is defined as attack
success rate (ASR) of adversarial examples being attacked from the ground-truth label i to the target
label j.
Datasets and Setups We train robust and non-robust ResNet-18 on CIFAR-10. The basic setting is
the same with Sec. 3.2. The PGD-20 attack is applied with ✏ = 8/255 and step size 0.003. For the
target attack, target labels are set as the other 9 classes except for the ground-truth one.
Results Analysis Experimental results show that the attack confusion matrix M performs in another
blocking pattern especially on robust models, which is well-aligned with class hierarchy as well as
the weight correlation matrix C and the feature distance matrix F . That is, the difficulty in attacking
robust models shows distinguishing performance for subclasses in or out of the same superclass. For
example, against untarget PGD-20 attack in Fig. 7(a), the ASRs on adversarially trained ResNet-18
show that classes in (2,3,4,5,6,7) are easier to be attacked from one to other. However, the ASRs
could decline to almost zero from one superclass (0,1,8,9) to the other (2,3,4,5,6,7). Different
superclasses are harder to attack especially on robust models, demonstrating that the hierarchical
classification capacity is enhanced by adversarial robustness. Such phenomenon is also consistent
with our hierarchical clustering observations on robust models.

5 Conclusions

In this paper, we provide a novel view of linear model exploration by extracting an implicit linear
matrix expression. Then we surprisingly find an intriguing clustering effect on adversarially robust
models, which is well-aligned with class hierarchy. Based on such observations, we first give
an insightful explanation and understanding of robust models, which have a better capacity in
extracting more representative features and semantic information. Extensive experiments show that
enhancing the hierarchical clustering effect not only improves model robustness, but also benefits
other downstream domain adaption task. Overall, our observations and findings motivate a deeper
understanding on adversarial robustness.
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