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ABSTRACT

Annotating large-scale LiDAR point clouds for 3D semantic segmentation is
costly and time-consuming, motivating the use of semi-supervised learning
(SemiSL). Standard SemiSL methods typically rely on a single LiDAR representa-
tion in a two-stage framework, where consistency between identical models is en-
forced under input perturbations. However, these approaches treat pseudo-labels
from a single network as fully reliable, which reinforces architectural biases and
propagates errors during distillation, ultimately limiting student performance. Re-
cent dual-representation methods alleviate this issue but still remain constrained
by the limitation of two-stage design. We introduce CoLLiS, a novel framework
that leverages Collaborative Learning for LiDAR Semi-supervised segmentation.
Unlike prior paradigms, CoLLiS trains multiple representations collaboratively in
a single stage by treating them as coequal students. Cross-representation distil-
lation is adaptively balanced by monitoring inter-student disparities to mitigate
confirmation bias and improves robustness. Extensive experiments on three pub-
lic benchmarks show that CoLLiS consistently enhances the performance of all
participating models and achieves superior results compared to state-of-the-art Li-
DAR SemiSL methods. The code will be released upon acceptance.

1 INTRODUCTION

The robustness of LiDAR sensors in environmental perception has propelled their widespread adop-
tion for 3D scene understanding in autonomous driving. The inherent geometric challenges of Li-
DAR data, such as sparsity and viewpoint distortions, have motivated extensive research into diverse
input representations for semantic segmentation. These approaches predominantly leverage range-
view images Cortinhal et al. (2020); Milioto et al. (2019), voxel grids Zhu et al. (2021); Choy et al.
(2019) and polar images Zhang et al. (2020). To combine complementary advantages of different
LiDAR geometry in perception, prior works progressively focus on fusing different LiDAR repre-
sentations Xu et al. (2021); Hou et al. (2022).
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Figure 1: Point cloud P is converted to representations Mi via Transformations Ti. (a) Prior works Kong et al.
(2023b); Chen et al. (2021b); Li et al. (2023) involves two decoupling stages: pseudo-labeling and distillation,
with identical networks employed in both. (b) Recent advances Liu et al. (2025) extend the framework by
incorporating dual LiDAR representations and optimizing networks via cross distillation. (c) In contrast, CoL-
LiS leverages multiple representations within a single-stage framework to streamline the process and employs
adaptive mutual distillation to enhance generalization.
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Figure 2: Confirmation bias: distillation from a single model can over-fit to its own errors. From left to right:
ground-truth labels, predictions at t1, and predictions at t2 (t1 < t2).

Despite these advancements, existing methods primarily rely on fully supervised training, requiring
vast amounts of fine-grained annotated data to achieve baseline accuracy. Annotating large-scale
LiDAR datasets, however, is prohibitively time-consuming and labor-intensive. Limitations have
driven the exploration into semi-supervised learning (SemiSL) for LiDAR semantic segmentation,
where models train on limited labeled data alongside abundant unlabeled samples. Early LiDAR
SemiSL works adopt consistency regularization through input perturbations using two-stage frame-
works Kong et al. (2023b); Li et al. (2023); Unal et al. (2022). Recent works further extend these
strategies to dual representations Liu et al. (2025), which shows significant improvements by training
with dual LiDAR representations. In particular, the success stems from utilizing the complemen-
tary information from different LiDAR representations, thereby improving generalization mainly
by leveraging invariants Rath & Condurache (2020) effectively. For instance, range-based view is
generally dense but contains distorted artifacts due to projection, while voxel-based view is regular
but may struggle to capture discriminative features in sparse regions Xu et al. (2021).

However, existing SemiSL methods remain vulnerable to confirmation bias Arazo et al. (2020),
where erroneous pseudo-labels are reinforced during training, especially under high label scarcity.
This issue is exacerbated in LiDAR segmentation due to the long-tail distribution of objects and the
architectural biases of individual networks. Dual-representation approaches alleviate the problem to
some extent by providing complementary perspectives Coors et al. (2018), but they are still limited
by their two-stage design with unidirectional distillation from a single network. As a result, the
model risks over-fitting to noisy predictions and failing to generalize.

To address this challenge, we propose CoLLiS, a novel collaborative framework for semi-supervised
LiDAR semantic segmentation. Unlike conventional two-stage pipelines that rely on pseudo-labels
from a single model, CoLLiS treats multiple LiDAR representations as coequal student models that
learn collaboratively in a single stage. Through online distillation over multiple representations, our
framework aggregates complementary information, benefits from the inductive bias of individual
models, and reduces dependence on any single network. Thus, it effectively mitigates confirmation
bias. Moreover, the streamlined single-stage design improves efficiency when scaling to multiple
representations.

Our contributions are as follows:

1. We introduce a consensus-driven augmentation mechanism that dynamically adjusts aug-
mentation strength based on peer agreement, thereby enhancing generalization in SemiSL.
(Sec. 3.2.1)

2. We propose an adaptive pseudo-labeling and distillation strategy that balances online
knowledge transfer across multiple models by accounting for inter-student disparities
(Sec. 3.2.2).

3. Beyond evaluating the collaborative learning framework, we conduct a post-training en-
semble analysis, an aspect largely unexplored in LiDAR SemiSL, and demonstrate its util-
ity for further improving performance (Sec. 3.2.4).

2 RELATED WORKS

LiDAR segmentation and SemiSL LiDAR semantic segmentation methods differ by input repre-
sentation: some process raw point clouds Wu et al. (2024); Puy et al. (2023), while others impose
structure through range/polar projections Zhao et al. (2021b); Zhang et al. (2020) or voxel grids Zhu
et al. (2021); Choy et al. (2019). Multi-view fusion leverages complementary cues Hou et al. (2022);
Xu et al. (2021), but all require costly large-scale annotations. Semi-supervised learning (SemiSL)
reduces this burden by exploiting unlabeled data. Recent works adopt contrastive learning Li et al.
(2023); Li & Dong (2024) or consistency with LiDAR-specific perturbations Kong et al. (2023b).
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Figure 3: Overview of CoLLiS. 1⃝ The labeled dataset Dl is repeated to match the size of the unlabeled dataset
Du. A batch from each is sampled and optionally mixed using a random mixing strategy with non-fixed
probability. 2⃝ The sampled point clouds are transformed into multiple LiDAR representations. 3⃝ Each model
is trained with a composite loss consisting of a labeled loss (Ll), a regularization term (Lreg), and an unlabeled
loss (Lu). Pseudo-labels are generated online using confidence-based modeling.

IT2 Liu et al. (2025) improves performance by enforcing cross-representation consistency between
dual views, highlighting the benefit of complementary information. Yet most methods rely on two-
stage pipelines, limited to one or two representations, and still suffer from confirmation bias due
to distillation from a single model. We address this with a one-stage collaborative framework that
integrates multiple representations for more scalable and robust LiDAR SemiSL.

Collaborative learning (CoL) eliminates the need for explicit pseudo-labeling by enabling peer net-
works to learn from each other. DML Zhang et al. (2018) pioneered reciprocal supervision between
two networks, while KDCL Guo et al. (2020) and ONE Zhu et al. (2018) introduced ensemble-
based pseudo-teachers. More recent studies Liu et al. (2022); Zhu et al. (2023) extend this idea
to heterogeneous architectures, such as CNNs and Vision Transformers Dosovitskiy et al. (2021),
demonstrating enhanced generalization through collaboration among heterogeneous models. De-
spite these successes, CoL remains underexplored in semi-supervised settings and largely absent in
the LiDAR domain, where sparse geometry and noisy pseudo-labels pose unique challenges.

3 CoLLiS

3.1 PRELIMINARIES

We consider a LiDAR point cloud with N points P = pi | pi = (x, y, z, I)i, where (x, y, z) are
coordinates and I is intensity. Training data consists of a labeled set Dl = (Pl

j ,Y
l
j) with one-

hot labels Yl
j ∈ RN×K for K classes, and an unlabeled set Du = Pu

j , with |Dl| ≤ |Du|. To
impose geometric priors, P is typically transformed into structured forms such as range images
R ∈ RU×V×Cr via spherical projection Milioto et al. (2019) or voxel grids V ∈ RH×W×L×Cv

via discretization Zhu et al. (2021). Since these representations differ in structure, we use the point
cloud as an intermediary to define cross-representation mappings, i.e., range-to-voxel and voxel-to-
range transformations can be expressed as Tr→v = T−1

p→r ◦Tp→v and Tv→r = T−1
p→v ◦Tp→r. These

mappings are essential for enabling effective distillation across different representations.

3.2 FRAMEWORK DETAILS

3.2.1 CONSENSUS-DRIVEN AUGMENTATION

In semi-supervised learning, limited annotations restrict generalization and undermine pseudo-label
quality. Single-stage paradigms apply input augmentations only once per iteration, and requires
both diverse training data to improve generalization and reliable pseudo-labels to guide distillation.
When augmentation intensity is fixed, they become prone to under- or over-fitting Aliferis & Simon
(2024).

A naive solution is to adjust the probability using curriculum learning (CL) Bengio et al. (2009),
where augmentation strength gradually increases with training progression. However, CL requires
sensitive hyperparameter tuning and enforces a rigid schedule, which is suboptimal. To address this,
we propose a consensus-driven augmentation (CDA) mechanism that automatically adjusts the mix-
ing probability (qm) based on inter-student consistency. Our focus is on controlling augmentation
intensity dynamically rather than designing new mixing methods. We detail this mechanism below.

3
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We first compute a fraction an of predictions that are consistent across students over a step size N :

an =

∑i̸=j
i,j∈{1,2,3} I(Ŷn,si = Ŷn,sj )∑

I(Ŷn)
, (1)

where I(·) is the indicator function. The ratio acts as a measure of data complexity: when students
agree, the sample is likely easy to learn and can benefit from stronger augmentations to increase
diversity. Conversely, when students disagree, the sample is inherently harder, so weaker augmen-
tations are applied to avoid introducing additional noise. Next we transform these ratios based on
whether the point clouds have been mixed:

g(x) =

{
a− 1, if mixed.
a, otherwise.

(2)

Finally, the mixing probability is updated iteratively based on the past probability:

qm,t = qm,t−1 ∗ (1 +
N∑

n=1

g(an)), (3)

In practice, we observe that CDA consistently outperforms CL in both accuracy and robustness
(see Sec. 4.3 for supporting experiments). To further enhance scene diversity, we integrate multiple
mixing strategies from prior works: LaserMix Kong et al. (2023b), PolarMix Xiao et al. (2022),
and Sub-cloud Shuffling Yang & Condurache (2025), with one strategy randomly selected at each
iteration during training (see Appendix B.5 for further details).

3.2.2 ON-THE-FLY PSEUDO-LABELING

In CoLLiS, each student treats all other participants as potential sources of pseudo-labels but incorpo-
rates their knowledge selectively. This selection is guided by two factors: Absolute Reliability (AR)
and Relative Reliability (RR). AR quantifies a model’s intrinsic confidence as training progresses,
while RR calibrates reliability by comparing peers. Together, these metrics enhance training robust-
ness by down-weighting unreliable information and balancing knowledge transfer among students
of varying strengths.

Motivated by empirical findings that pseudo-label reliability improves as training proceeds Wang
et al. (2022), we model AR (denoted as β) as a linear function of the training epoch and use it to
compute the weight of the unlabeled loss (λu):

β(e) =
e

Emax
, λu = λ0(1− β) + β, (4)

where e is the current epoch, Emax is the total number of training epochs, and λ0 is the initial loss
weight.

To establish the relative reliability (RR), we quantify pairwise prediction confidence, denoted as γ.
Given predictions Ps1 and Ps2 from two students, we first unify their output dimensions by mapping
all representations back to the original point cloud format. We then perform point-wise comparisons
and count the number of instances where one branch’s confidence exceeds the other’s. Formally, the
relative reliability of student s1 with respect to student s2 is defined as:

γs1→s2 =
Ns1→s2

Ns2→s1

, where Nsi→sj =
∑

I(c(Psi) > c(Psj )) (5)

c(·) is the confidence of prediction and Nsi→sj is the count of points for which confidence of student
i exceeds that of student j. I(·) denotes the indicator function. We adopt confidence counts as they
better capture discriminative differences between models. In contrast, measures like average con-
fidence tend to over-smooth variations and fails to reflect relative reliability. Intuitively, a model is
considered more reliable if it produces higher-confidence predictions more frequently across points.

Next, the threshold value δ and the pseudo-labels are obtained by Eq. 6 and Eq. 7:

δ(t)s1→s2 = min(δ0, δ0 ∗ ((1− β) ∗ 1

γs1→s2

) (6)

Ŷs1→s2 = {argmax(Ps1)|c(Ps1) > δ(t)s1→s2}, (7)

4
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where δ0 is the predefined maximum and Ŷsi→sj are pseudo-labels from student i to j. Specifically,
high absolute and relative reliability will result in the lower threshold value, leading to more toler-
ant pseudo-labeling and increase in distillation power. All filtered pseudo-labels are subsequently
mapped back to model-specific representations to preserve geometric consistency.

3.2.3 LOSS FUNCTION

The overall loss function combines following three components:

Labeled loss The labeled loss is computed using the ground-truth annotations:

Ll = L(Ps, Y ), (8)

where Ps denotes the prediction of student s and Y is the ground-truth label. Following prior
work Liu et al. (2025); Kong et al. (2023b), the loss function L is defined as the sum of cross-
entropy loss and Lovász loss Berman et al. (2018).

Unlabeled loss In collaborative training, confirmation bias can be amplified when multiple rep-
resentations produce inconsistent pseudo-labels, as naive distillation may over-rely on unreliable
predictions. To mitigate this, we assign adaptive weights that regulate the relative influence of each
student during distillation. The weights are derived from confidence counts (Sec. 3.2.2), which mea-
sure how often one student is more confident than another. For knowledge transfer from students s1
and s2 to a third student s3, the weights are:

ωs1→s3 =
Ns1→s2

Ns2→s1 +Ns1→s2

, ωs2→s3 = 1− ωs1→s3 . (9)

These weights help to softly resolve conflicts in predictions while preventing over-reliance on a
single knowledge source.

Finally, the unlabeled loss for each student (student 1 as an example) is computed as:

Lu,s1 = λu ·
∑
si ̸=s1

ωsi→s1 · L(Ps1 , Ŷsi→s1) (10)

where L is the same loss function as in Ll.

Regularization loss Because CoLLiS relies on prediction confidence for pseudo-labeling and distil-
lation, we further regularize against overconfidence using Zou et al. (2019):

Lreg = −λreg

K∑
k=1

1

K
logP (k), (11)

where K is the number of classes, P (k) the softmax probability, and λreg = 0.1. This KL diver-
gence to a uniform distribution smooths predictions and prevents overconfidence.

3.2.4 POST-TRAINING ENSEMBLE

In collaborative learning frameworks such as CoLLiS, post-training ensemble provides a simple
yet effective way to consolidate knowledge from multiple student models. Since the ensemble is
applied to well-trained models, we adopt a straightforward strategy that selects the prediction from
the student with the highest confidence:

s∗ = argmax
s∈1,...,S

, c(Ps), Pensemble = Ps∗ . (12)

4 EXPERIMENTS & DISCUSSION

4.1 EXPERIMENTAL SETUP

We evaluate CoLLiS on three LiDAR segmentation benchmarks: nuScenes Fong et al. (2022), Se-
manticKITTI Behley et al. (2019) and ScribbleKITTI Unal et al. (2022). For all three datasets, we
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follow the settings of previous works Kong et al. (2023b); Liu et al. (2025): uniformly sampling 1%,
10%, 20% and 50% labeled data for training and the rest of dataset as unlabeled set. In the default
setting of CoLLiS, we employ FRNet Xu et al. (2023) to process frustum-range-view representation,
PolarNet Zhang et al. (2020) for bird’s-eye-view images, and Cylinder3D Zhu et al. (2021) for voxel
representation. More details are given in Appendix B.2 and B.1.

4.2 COMPARATIVE STUDY

Table 1: Comparison with the state-of-the-art LiDAR SemiSL methods. All representations are evaluated with
standalone architectures during inference. The best and second best result for each setting of label proportion
is highlighted in bold and underline. ⋆: reproduced results using the released codebase.

Repr. Method nuScenes SemanticKITTI ScribbleKITTI
1% 10% 20% 50% 1% 10% 20% 50% 1% 10% 20% 50%

sup. only 51.9 68.1 70.9 74.6 44.9 60.4 61.8 63.1 42.4 53.5 55.1 57.0
PolarMix Xiao et al. (2022) 55.6 69.6 71.0 73.8 50.1 60.9 62.0 63.8 43.2 55.0 56.1 57.3

LaserMix Kong et al. (2023b) 58.7 71.5 72.3 75.0 52.9 62.9 63.2 65.0 45.8 56.8 57.7 59.0
FrustumMix Xu et al. (2023) 61.2 72.2 74.6 75.4 55.8 64.8 65.2 65.4 46.6 57.0 59.5 61.2F

-R
an

ge

CoLLiS (Ours) 63.2 74.2 74.8 75.8 56.0 64.3 64.9 66.2 47.6 59.9 60.1 60.7
sup. only ⋆46.5 58.5 63.9 68.4 ⋆41.6 ⋆50.2 ⋆51.8 ⋆53.0 ⋆36.2 ⋆46.5 ⋆48.1 ⋆49.6

LaserMix Kong et al. (2023b) ⋆53.6 ⋆64.5 ⋆66.5 ⋆69.3 - - - - - - - -
IT2-Range Liu et al. (2025) ⋆52.9 64.8 67.9 70.6 - - - - - - - -
IT2-Voxel Liu et al. (2025) ⋆54.4 66.3 69.1 71.6 - - - - - - - -Po

la
r

CoLLiS (Ours) 57.9 68.4 68.6 70.8 46.8 53.3 54.0 55.5 42.0 51.1 51.4 51.7
sup. only 50.9 65.9 66.6 71.2 45.4 56.1 57.8 58.7 39.2 48.0 52.1 53.8

CBST Zou et al. (2018) 53.0 66.5 69.6 71.6 48.8 58.3 59.4 59.7 41.5 50.6 53.3 54.5
CPS Chen et al. (2021b) 52.9 66.3 70.0 72.5 46.7 58.7 59.6 60.5 41.4 51.8 53.9 54.8

LaserMix Kong et al. (2023b) 55.3 69.9 71.8 73.2 50.6 60.0 61.9 62.3 44.2 53.7 55.1 56.8
IT2 Liu et al. (2025) 57.5 72.0 73.6 74.1 52.0 61.4 62.1 62.5 47.9 56.7 57.5 58.3

Vo
xe

l

CoLLiS (Ours) 61.1 72.9 73.4 74.5 53.2 63.1 63.6 64.0 47.6 58.6 58.8 59.0

Improvements over baseline We evaluate CoLLiS against existing LiDAR SemiSL approaches
across diverse input representations, datasets, and label proportions (Tab. 1). Compared with
single-representation methods such as LaserMix Kong et al. (2023b) and FrustumMix Xu et al.
(2023), CoLLiS consistently achieves higher performance across most settings. The advantages
are most evident in annotation-scarce scenarios, where confirmation bias is particularly severe:
CoLLiS delivers strong gains at 1% and 10% label ratios on nuScenes Fong et al. (2022) and Se-
manticKITTI Behley et al. (2019), while also achieving consistent improvements on the sparsely
annotated ScribbleKITTI Unal et al. (2022). These results demonstrate that collaborative learn-
ing across multiple representations effectively mitigates confirmation bias and achieves substantial
advances in LiDAR SemiSL.

Qualitative results We qualitatively compare our approach with the dual-representation baseline
(IT2) in Fig. 4. Notably, our method demonstrates superior segmentation accuracy.

(a) Ground-truth (b) IT2 Liu et al. (2025) (c) CoLLiS
Figure 4: We qualitatively evaluate Cylinder3D Zhu et al. (2021) on SemanticKITTI. Predictions are obtained
from models trained under 10% label protocol. Ground-truth labels are color-coded based on class categories.
Incorrect predictions are shown in red, while correct predictions are shown in gray.
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4.3 ABLATION STUDY

Component designs Tab. 2 presents the ablation of CoLLiS on FRNet Xu et al. (2023) and Cylin-
der3D Zhu et al. (2021) under 1% and 20% label protocols. With 1% labels, both models gain
substantially (FRNet: +4.7%, Cylinder3D: +3.3%), but benefits diminish at 20%. Incorporating
two adaptive reliability factors improves robustness across two label ratios significantly, while con-
fidence regularization Zou et al. (2019) and mixing-based augmentation add further gains (up to
+3.0%). Scaling collaboration to three representations with polar images Zhang et al. (2020) yields
additional improvements. Overall, adaptive parameterization, dynamic augmentation, and multi-
representation collaboration are the pivotal components for performance gain.
Table 2: Full ablation study on the nuScenes Fong et al. (2022) dataset. Starting from the results of supervised
training, we regard the collaborative learning with naive online mutual distillation as the baseline. AR and RR
denote absolute and relative reliability for pseudo-labeling. CDA representes consensus-driven augmentation.

Co. AR RR Lreg CDA +Polar FRNet Cylinder3D
1% 20% 1% 20%

sup. only 51.9 70.9 50.9 66.6
✓ 56.6 71.0 54.2 66.2
✓ ✓ 57.5 71.6 55.5 67.4
✓ ✓ ✓ 58.8 72.3 56.5 69.0
✓ ✓ ✓ ✓ 59.5 72.8 57.3 70.4
✓ ✓ ✓ ✓ ✓ 62.5 74.4 59.2 73.1
✓ ✓ ✓ ✓ ✓ ✓ 63.2 74.8 61.1 73.4

Dynamic augmentation As shown in Fig. 5 (left), both CL and fixed qm are highly sensitive
to hyper-parameter initialization, requiring careful tuning to avoid performance degradation. In
contrast, CDA maintains stable performance across diverse initialization settings, demonstrating
parameter-agnostic adaptation. Its robustness arises from dynamically adjusting mixing intensity
based on inter-student consensus, which enables reliable and adaptive training.

We further examine the effect of step size in CDA (Fig. 5, right). A step size of 50 yields the best
performance, indicating that frequent adjustments of augmentation intensity help prevent overfitting
to a fixed perturbation level and thus improve generalization. However, excessively small step sizes
risk biased updates due to insufficient samples. Setting the step size to 50 balances training stability
with the flexibility of dynamic augmentation.

Figure 5: Ablation study on initialization of mixing probability qm (left) and step size of CDA (right) with
nuScenes (20% labels).

Post-training ensemble During inference, all collaborative models can optionally be ensembled to
refine predictions. As shown in Tab. 3, our confidence-based approach consistently outperforms
naive linear combination across all scenarios. The substantial performance discrepancies among
different LiDAR representations and architectures suggest that selecting the most reliable prediction
often yields superior results.
Table 3: Evaluation of post-training ensemble approaches. As reference, we provide the results of best per-
formed model from CoLLiS evaluated without ensemble in the first row.

Method nuScenes SemanticKITTI ScribbleKITTI
1% 20% 50% 1% 20% 50% 1% 20% 50%

w/o ensemble 63.2 74.2 75.8 56.0 64.3 66.2 47.6 59.9 60.7
Ours 64.5 (+1.3) 75.5 (+1.3) 76.2(+0.4) 57.6 (+1.6) 66.4 (+2.1) 66.8 (+0.6) 49.0(+1.4) 60.7(+0.8) 61.8 (+1.1)

Linear 62.3 (-0.9) 74.4 (+0.2) 73.2 (-2.6) 56.6 (+0.6) 62.8 (-1.5) 64.8 (-1.4) 46.6 (-1.0) 58.8 (-1.1) 57.2 (-3.5)

Beyond its simplicity, the ensemble offers further practical benefits. Ensemble predictions can be
treated as high-quality pseudo-labels for offline distillation. To verify this, we conducted an ex-
periment where a fourth lightweight network (FIDNet Zhao et al. (2021b)) was distilled from the
ensemble outputs of three collaboratively trained models. This two-stage extension is particularly

7
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useful when deploying small models for real-time applications, where standalone performance may
fall short or direct collaboration with other representations is hindered by large performance gaps.
As demonstrated in Tab. 4, this extension provides an effective solution without modifying the train-
ing framework, underscoring the broader utility of our method beyond direct ensemble use.

Table 4: Results of CoLLiS with the two-stage extension. (+∆) indicates the improvement gained by extending
CoLLiS with offline distillation.

Repr. Method
nuScenes SemanticKITTI

1% 10% 1% 10%
sup. only 38.3 57.5 36.2 52.2

CPS Chen et al. (2021a) 40.7 60.8 36.5 52.3
LaserMix Kong et al. (2023b) 49.5 68.2 43.4 58.8

IT2 Kong et al. (2023b) 56.5 71.3 51.9 60.3
CoLLiS 57.8 70.8 50.3 61.0

R
an

ge

CoLLiS + offline distillation 60.1 (+2.3) 73.5 (+2.7) 53.5 (+3.2) 63.9 (+2.9)

4.4 DISCUSSION

In this section, we analyze CoLLiS from several perspectives to provide deeper insights.

Mitigating confirmation bias with CoLLiS Because overall performance (mIoU) does not fully
capture how well our method mitigates confirmation bias, we further examine specific long-tail
classes, which contain substantially fewer annotations, making them especially vulnerable to over-
confidence toward non-long-tail categories. We focus on two classes: bicycle and construction vehi-
cle from nuScenes dataset, which exhibit the weakest supervised performance at the 1% label ratio.
As shown in Fig. 6, our method consistently improves segmentation performance on these long-
tail classes over other state-of-the-art approaches. These improvements highlight its effectiveness
in alleviating confirmation bias under low-resource settings. Moreover, through distillation across
multiple LiDAR representations, our method substantially enhances the supervised performance of
each collaborative model on these classes (blue-shaded area in Fig. 6(a)).

Nevertheless, the bicycle class remains particularly challenging. Since all models perform poorly
even under full supervision, we hypothesize that the issue arises primarily from severe class im-
balance, as the class constitutes only 0.01% of the total annotations. To further investigate, we
experimented with class rebalancing strategies such as long-tail class pasting Xiao et al. (2022). On
their own, these techniques improve performance but remain clearly inferior to collaboration. How-
ever, when combined with CoLLiS, they provide complementary benefits, indicating that the two
approaches tackle different aspects of the problem. This synergy makes their integration a promis-
ing direction for future work.

(a) Bicycle (0.01% annotations) (b) Construction vehicle (0.13% annotations)
Figure 6: IoU of long-tail classes in the nuScenes Fong et al. (2022) dataset under varying label ratios. Pasting
denotes long-tail class pasting Xiao et al. (2022).

Efficiency of CoLLiS in training As CoLLiS employs three distinct backbones for collaborative
learning, it is essential to evaluate its efficiency. Tab. 5 reports the training time and memory con-
sumption. Despite leveraging multiple representations, our method requires substantially less mem-
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ory than IT2 Liu et al. (2025) and achieves a training speed that is about 40% faster. Even when
compared with LaserMix Kong et al. (2023b), a single-representation approach, CoLLiS exhibits
comparable memory usage. These results highlight the efficiency advantage of our streamlined
single-stage design when scaling to multiple LiDAR representations.

Table 5: Training efficiency. The backend of LaserMix is Cylinder3D Zhu et al. (2021). The latency is
measured by a single Tesla V100 GPU. Measurement of CoLLiS is the sum of all collaborative models.

Method Latency Memory
LaserMix Kong et al. (2023b) - 10.2G

IT2 Liu et al. (2025) 1080ms 13.11G
CoLLiS 654ms 11.06G

Impact of representation choice and number of participants Tab. 6 reports experiments on dif-
ferent representation choices for collaborative training. First, while adding more representations
generally improves performance, it also increases training cost; thus, using three representations
offers a balanced trade-off. Second, replacing the frustum-range with the range-view representation
leads to a performance drop. This is due to the inherent limitations of spherical projection: multiple
3D points may collapse onto the same pixel, retaining only the nearest point and discarding oth-
ers Kong et al. (2023a). Such spatial information loss degrades pseudo-label quality and propagates
errors during cross-model distillation. These findings highlight the importance of preserving 3D
structural fidelity when selecting LiDAR representations for collaboration, and we regard this as a
limitation to address in future work.
Table 6: Ablation study on LiDAR representations and the number of participants in collaborative learning.
CoLLiS-multi denotes the default setup with three participants, while CoLLiS-dual uses only two representa-
tions. Experiments are conducted on the nuScenes Fong et al. (2022) dataset with 10% labeled data.

Method Frustum-Range Range PolarNet Zhang et al. (2020) Cylinder3D Zhu et al. (2021)
CoLLiS-multi ✓ 68.4 72.9
CoLLiS-multi ✓ 67.1 71.7
CoLLiS-dual ✓ - 72.3
CoLLiS-dual ✓ - 71.2

Generalization of CoLLiS across settings Following prior work Li et al. (2023); Li & Dong (2024),
we reproduced our method under a significant data split where frame overlap is minimized (Tab. 7).
In this setting, CoLLiS consistently outperforms competing methods. We also evaluated CoLLiS
under a fully supervised setting (Tab. 6). Even with full label availability, all three collaborative
models achieve clear improvements over their standalone baselines.

Table 7: Evaluation results on significant data splits using
standalone architectures.

Method
nuScenes SemanticKITTI

1% 10% 1% 10%
GPC Jiang et al. (2021) - - 54.1 62.0
Lim3D Li et al. (2023) - - 58.4 62.2

DDSemi Li & Dong (2024) 58.1 70.2 59.3 65.1
CoLLiS (Voxel) 62.3 74.1 58.8 65.5

CoLLiS (F-Range) 64.6 74.9 60.5 66.1

Table 8: Supervised training results on
nuScenes dataset. We do not apply test time
augmentation or ensembling during infer-
ence.

Method FRNet PolarNet Cylinder3D
sup. only 77.7 70.4 72.1
CoLLiS 78.4 (+0.7) 73.2 (+2.8) 75.3 (+3.2)

5 CONCLUSION

In this work, we presented CoLLiS, a collaborative learning framework for semi-supervised LiDAR
semantic segmentation. CoLLiS trains multiple networks on different LiDAR representations as co-
equal students within a single stage. The framework not only scales multi-representation learning
efficiently but also addresses confirmation bias through balanced knowledge transfer and improves
generalization via adaptive data augmentation. We further show that ensembling student outputs
provides additional gains. Extensive experiments on three public benchmarks show consistent im-
provements over state-of-the-art methods. While effective, CoLLiS still faces challenges with ex-
tremely rare long-tail classes and performance degradation shared across all collaborative models.
Future work will explore integrating class rebalancing to better handle underrepresented categories
to further enhance generalization in collaborative training.

9
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used a large language model (OpenAI’s ChatGPT) solely as a writing assistant to polish the
text, check grammar, and provide minor stylistic suggestions (e.g., color choices and fontsize in
Fig. 6, Fig. 4 and Fig. 8) for better readability. The model was not involved in research ideation,
methodology design, or experimental analysis. All technical content and experimental results are
entirely the work of the authors.

B ADDITIONAL DETAILS

B.1 DATASET

nuScenes Fong et al. (2022) contains 1,000 driving scenes captured by a 32-beam LiDAR, annotated
with 16 semantic classes after merging similar and infrequent classes. SemanticKITTI Behley et al.
(2019) consists of 22 sequences captured with a 64-beam LiDAR and includes 19 semantic classes,
with sequences 00–07/09–10 (19,130 scans) for training and 08 (4,071 scans) for validation. Scrib-
bleKITTI Unal et al. (2022) shares the same point cloud data of SemanticKITTI but replaces full
annotations with sparse scribbles (8.06% labeled points for training).

B.2 IMPLEMENTATION

The initial confidence threshold (δ0) is set to 0.95 for nuScenes Fong et al. (2022) and 0.9 for other
two datasets. The initial weights of unlabeled loss (λ0) are predefined based on scarcity level for
nuScenes and SemanticKITTI Behley et al. (2019): (1, 0.5, 0.5, 0.3) for labeled proportions of (1%,
10%, 20%, 50%), while for ScribbleKITTI Unal et al. (2022), the weight is fixed at 1 due to its
inherently sparse annotations.

In the multi-representation setting, We deploy FRNet Xu et al. (2023), Cylinder3D Zhu et al. (2021)
and PolarNet Zhang et al. (2020). For FRNet, the 2D representation shape is set to 64 × 512
for SemanticKITTI Behley et al. (2019) and ScribbleKITTI Unal et al. (2022), and 32 × 480 for
nuScenes Fong et al. (2022). For PolarNet and Cylinder3D, the grid size is reduced to 240×180×20,
following the settings in prior works Kong et al. (2023b); Liu et al. (2025) for fair comparison.

In the dual-representation setting, we follow the same configuration of IT2 Liu et al. (2025), where
a range-view network FIDNet Zhao et al. (2021b) and Cylinder3D Zhu et al. (2021) are incorporated
in the framework.

B.3 TRAINING DETAILS

We use a batch size of 14 for both labeled and unlabled data (effective batch size is then 28 after
mixing) for nuScenes Fong et al. (2022) dataset. The learning rate is set to 6e−3, and the maximum
number of epochs is set to 100. For SemanticKITTI Behley et al. (2019) and ScribbleKITTI Unal
et al. (2022), the batch size is reduced to 8 and learning rate is 8e−3. The maximum number of
epochs is 95. For all experiments in the work, we use the AdamW Loshchilov & Hutter (2017)
optimizer with a weight decay of 0.0001 and a OneCycleLR scheduler Smith & Topin (2019), and
employ a single NVIDIA H200 GPU for training.

B.4 EVALUATION METRICS

The performance is measured with average Intersection-over-Union (mIoU).

B.5 MIXING STRATEGIES

To enhance LiDAR point cloud augmentation, we integrate three geometrically complementary mix-
ing strategies, each tailored to exploit distinct spatial properties of LiDAR data. In Fig. 7, we visual-
ize the point clouds mixed by different strategies. Notably, the visualization shows that mixed point
clouds have distinct difference in geometry. Below, we provide technical details of every mixing
strategy:
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(a) LaserMix (b) PolarMix (c) Sub-cloud Shuffling
Figure 7: Examples of different mixing strategies using two LiDAR point clouds (distinguished by green and
red). Mixed point clouds are visualized in bird’s-eye view (top) and range view (bottom).

1. LaserMix Kong et al. (2023b) partitions two scenes along elevation angle (vertical sweep
axis) and interleaves their sectors while keeping the ring-like geometry of the scene. The
mixing generally follows the inherent scan pattern of LiDAR sensor.

2. PolarMix Xiao et al. (2022) operates in the polar coordinate space, splitting point clouds
radially and horizontally into different several regions. Mixed scenes retain intact local
object geometry by constraining swaps to entire polar regions.

3. Sub-cloud Shuffling Yang & Condurache (2025) downsamples two point clouds into two
sub-clouds, respectively, then randomly interleaves them. this preserves local coherence
and scene integrity while fusing semantic contexts from both scenes

Overall, these three mixing strategies augment point clouds from different geometric perspectives.
By combining them, we harness complementary spatial transformations that capture both local and
global structures, enhancing the diversity of geometric patterns. This synergy increases the general-
ization capability of data augmentation within our framework, leading to more robust and adaptable
semi-supervised LiDAR semantic segmentation.

C ADDITIONAL EXPERIMENTS

C.1 HETEROGENEOUS CoLLiS

Besides development in using different representations for LiDAR semantic segmentation. parallel
advancements have occurred in architectural design. Driven by the success of Transformers Vaswani
(2017) in vision tasks Dosovitskiy et al. (2021); Zhao et al. (2021a), recent works increasingly
replace conventional CNNs with Transformer-based backbones for LiDAR segmentation Ando et al.
(2023); Kong et al. (2023a); Lai et al. (2023); Wu et al. (2024), leveraging their ability to model
long-range dependencies in sparse 3D data.

To additionally evaluate the impact of architectural diversity independently of representational dif-
ferences, we further test CoLLiS in a setting where the same LiDAR representation is processed
by two networks with heterogeneous architectures. In this scenario, we integrate two range-view
methods, FIDNet Zhao et al. (2021b) and RangeViT Ando et al. (2023). The shape of range-view
image is set to 32× 1920 for nuScenes and 64× 2048 for ScribbleKITTI.

Tab. 9 demonstrates that CoLLiS achieves significant improvements in semi-supervised scenarios
even with a single representation by integrating heterogeneous architectures (e.g., CNNs and ViTs).
For instance, with 1% labeled data on ScribbleKITTI Unal et al. (2022), combined networks outper-
forms LaserMix Kong et al. (2023b) by +2.5% mIoU while trained on the same range-view inputs.
In other settings, collaboration of heterogeneous networks exhibits the competitive performance as
well. This underscores that architectural diversity drives robust representation learning in label-
scarce regimes.
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Table 9: Evaluation of FIDNet Zhao et al. (2021b) with heterogeneous CoLLiS. The performance is compared
with other single-representation approaches. *: We re-implement the IT2 Liu et al. (2025) framework with
heterogeneous architectures for fair comparison. The best results are highlighted in bold.

Method
nuScenes Fong et al. (2022) ScribbleKITTI Unal et al. (2022)
1% 10% 20% 1% 10% 20%

sup. only 38.3 57.5 62.7 33.1 47.7 49.9
CPS Chen et al. (2021b) 40.7 60.8 64.9 33.7 50.0 52.8

LaserMix Kong et al. (2023b) 49.5 68.2 70.6 38.3 54.4 55.6
*IT2-Hete Liu et al. (2025) 50.1 68.3 69.9 39.5 53.4 57.8

CoLLiS-Hete 50.3 67.7 69.6 40.8 55.1 56.2

C.2 DYNAMIC AUGMENTATION

Tab. 10 compares adaptation strategies for mixing probability. Curriculum Learning (CL) outper-
forms fixed qm under moderate label scarcity (20%) but loses effectiveness under extreme scarcity
(1%). In contrast, our consensus-driven augmentation (CDA) consistently achieves the best results
across both label regimes and networks. For mixing strategies, combining LaserMix (LM), PolarMix
(PM), and Sub-cloud Shuffling (SS) yields the strongest performance, as each exploits complemen-
tary geometric cues: vertical beams, radial sectors, and global scene integrity.

Table 10: Ablation study on dynamic augmentation with nuScenes Fong et al. (2022) dataset. Const. de-
notes that a constant value is assigned to qm (0.25 for 1% and 0.15 for 20%). For curriculum learning (CL),
(qm,min, qm,max) is set to (0.2, 0.3) for 1% and (0.15, 0.25) for 20%, respectively. The step size (N ) for CDA
is fixed at 50 for both settings. {LM, PM, SS} are three different mixing strategies.

Const. CL CDA LM PM SS FRNet Cylinder3D
1% 20% 1% 20%

✓ ✓ ✓ ✓ 61.1 72.4 58.0 70.6
✓ ✓ ✓ ✓ 60.9 73.1 58.2 72.3

✓ ✓ ✓ ✓ 62.5 74.4 59.2 73.1
✓ ✓ 60.4 73.2 58.2 72.1
✓ ✓ ✓ 61.8 74.4 59.0 72.9

C.3 WEIGHT OF UNLABELED LOSS

We further examine the effect of initial unlabeled loss weights in Tab. 11. An improper choice
consistently degrades segmentation performance across all student models. Setting the weight too
high causes overfitting to incorrect pseudo-labels early in training, while setting it too low prevents
sufficient knowledge transfer, leading to overfitting on the limited labeled data. This underscores the
importance of careful tuning to balance knowledge transfer and stability in CoLLiS. We also evaluate
adaptive distillation weights in Tab. 12. The results show clear performance gains, confirming that
softly resolving label conflicts is crucial for robust collaborative training.

Table 11: Ablation study on the initial weight of unlabeled loss (λ0). Results are reported on nuScenes Fong
et al. (2022) dataset with 10% labels.

λ0 FRNet Xu et al. (2023) PolarNet Zhang et al. (2020) Cylinder3D Zhu et al. (2021)
0.2 73.5 66.9 72.1
0.5 74.2 68.4 72.9
0.8 73.1 67.4 72.3

Additionally, we investigated in the impact of adaptive distillation weights in Tab. 12. The results
indicate that they significantly improve the performance, thereby proving that softly resolving label
conflicts is important in collaborative training.

D ADDITIONAL RESULTS

D.1 DETAILED RESULTS

We provide the detailed results of class-wise IoU in Tab. 13, Tab. 14 and Tab. 15.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 12: Ablation study on the adaptive distillation weights (ωsi→sj ). We evaluated Cylinder3D Zhu et al.
(2021) on nuScenes Fong et al. (2022) dataset with 1% and 10% labels.

ωsi→sj 1% 10%
Fixed = 1 59.0 71.2
Adaptive 61.1 72.9

Table 13: The class-wise IoU results in nuScenes Fong et al. (2022) dataset among different partition protocol.
The mIoU results are highlighted in red. 100% label proportion denotes the fully supervised training results.

Repr. prop. mIoU barr bicy bus car const moto ped cone trail truck driv othe walk terr manm veg

1% 63.2 66.5 3.1 78.4 86.9 14.6 66.3 72.3 50.2 35.8 60.0 95.3 65.1 69.5 73.9 86.2 86.2
10% 74.2 76.9 0.8 92.6 85.7 54.2 84.7 73.1 66.2 68.7 84.0 96.7 75.9 75.9 77.0 88.1 86.7
20% 74.8 77.9 0.7 93.4 91.7 55.2 85.4 76.2 67.1 67.6 83.6 96.7 74.5 75.5 76.6 88.3 86.6
50% 75.8 77.6 35.1 92.7 91.1 50.4 82.5 73.3 66.1 65.2 82.2 96.5 73.1 74.5 76.3 88.8 87.4F

-R
an

ge

100% 78.4 78.3 45.2 92.6 91.7 58.1 84.4 77.9 67.8 71.1 83.5 96.7 77.3 76.1 77.1 89.0 87.5

1% 57.9 59.5 2.1 78.4 83.8 7.8 61.4 51.7 41.0 31.7 58.8 93.1 60.3 63.8 69.2 82.7 81.8
10% 68.4 71.4 11.3 90.0 87.6 39.1 69.7 58.5 51.3 63.6 77.9 94.9 69.1 70.4 71.8 85.2 82.9
20% 68.6 72.8 1.6 90.9 88.2 43.0 73.1 57.8 50.4 64.6 78.6 94.9 70.6 70.9 72.1 85.4 82.8
50% 70.8 72.3 15.9 92.1 88.4 47.5 75.4 58.4 52.4 67.6 79.6 95.0 73.1 71.7 72.3 85.3 85.2

Po
la

r

100% 73.2 75.4 22.0 93.3 89.7 51.5 76.3 60.2 62.2 68.3 79.2 95.7 73.8 73.5 75.4 88.4 86.7

1% 61.1 64.2 3.9 77.2 85.4 18.8 63.0 63.7 47.4 33.8 58.5 94.0 61.3 65.2 71.0 85.3 85.0
10% 72.9 73.9 27.7 91.4 89.9 46.4 78.6 68.3 60.3 63.1 80.4 95.4 69.8 71.4 73.6 87.9 86.3
20% 73.4 74.5 35.4 92.7 90.6 45.8 80.5 69.0 60.2 67.5 81.6 95.6 72.1 72.9 75.0 87.9 86.1
50% 74.5 75.8 30.1 93.0 90.8 51.0 80.1 71.7 62.1 69.7 83.4 95.8 74.7 73.8 75.3 87.9 86.3

Vo
xe

l

100% 75.3 75.7 35.1 92.7 90.7 49.7 81.5 70.7 62.2 69.4 83.0 95.6 74.4 73.0 75.1 88.4 86.7

Table 14: The class-wise IoU results in SemanticKITTI Behley et al. (2019) dataset on different label propor-
tions. The mIoU results are highlighted in red.

Repr. prop. mIoU car bicy moto truck o.veh ped b.cyc m.cyc road park walk o.gro build fence veg trunk terr pole sign

1% 56.0 91.7 16.8 48.0 66.0 50.7 61.8 68.2 0.0 90.7 50.9 73.6 0.9 85.2 42.7 86.9 44.9 73.4 60.2 41.9
10% 64.3 95.7 19.1 70.1 87.3 58.8 73.1 84.8 0.0 96.0 60.5 84.0 2.3 89.6 66.2 86.5 65.8 71.9 62.4 47.4
20% 64.9 95.5 36.3 59.5 91.7 58.9 71.4 84.0 0.0 95.8 58.7 84.2 6.7 90.9 68.8 86.5 65.5 72.0 63.3 42.7F

-R
an

ge

50% 66.2 95.2 47.9 71.8 92.0 51.4 73.5 81.2 0.0 96.0 61.1 83.9 12.9 89.9 63.9 87.3 65.8 73.5 63.0 47.5

1% 46.8 91.2 15.5 21.1 24.6 0.3 36.0 62.4 0.0 90.8 35.7 75.5 1.1 80.3 53.2 79.8 56.7 70.8 62.1 32.2
10% 53.3 90.5 20.7 41.8 78.8 28.2 31.1 77.1 2.2 90.9 51.2 75.1 0.3 87.0 40.3 83.3 53.5 67.9 55.8 36.7
20% 54.0 91.6 23.7 45.7 75.3 29.9 35.7 75.3 0.0 91.0 52.9 74.9 0.2 88.1 43.5 84.0 52.4 70.7 54.4 36.3Po

la
r

50% 55.5 94.1 25.7 47.3 77.0 28.8 39.4 77.0 0.0 90.7 52.2 74.5 0.5 87.5 51.9 85.7 51.4 67.1 65.2 37.9

1% 53.2 91.2 21.9 43.4 66.1 29.5 32.6 74.1 0.6 90.9 49.9 74.8 0.0 87.7 47.6 84.2 51.3 70.8 53.3 40.8
10% 63.1 94.0 38.2 59.3 82.4 52.0 72.2 81.0 0.9 92.5 51.8 78.4 7.8 91.1 61.8 86.6 67.8 71.4 63.4 45.8
20% 63.6 93.4 46.1 68.0 87.8 35.7 72.8 87.0 9.2 92.6 45.8 78.2 3.3 90.4 58.7 87.1 65.5 72.8 63.6 49.6Vo

xe
l

50% 64.0 94.2 50.3 67.7 89.8 43.2 71.2 88.1 4.2 92.9 49.0 78.5 0.4 90.6 60.0 86.5 67.1 71.0 63.6 48.1

Table 15: The class-wise IoU results in ScribbleKITTI Unal et al. (2022) dataset among different partition
protocol. The mIoU results are highlighted in red.

Repr. prop. mIoU car bicy moto truck o.veh ped b.cyc m.cyc road park walk o.gro build fence veg trunk terr pole sign

1% 47.6 90.3 30.8 27.4 27.5 4.4 37.1 66.3 0.0 83.7 36.3 71.9 3.3 87.0 39.9 80.3 58.3 66.1 56.1 38.2
10% 59.9 94.4 28.6 61.9 83.6 42.7 64.4 80.4 0.0 87.1 46.7 75.0 0.6 89.8 54.4 84.7 65.7 68.9 63.5 46.8
20% 60.1 94.6 30.6 60.9 92.2 46.4 64.2 83.2 0.0 86.3 46.1 74.1 0.5 88.7 49.9 83.5 64.4 65.9 63.4 47.9F

-R
an

ge

50% 60.7 95.1 31.1 58.6 88.4 50.6 63.3 85.4 0.0 86.6 43.1 74.3 0.7 89.6 52.3 84.9 66.2 69.7 63.8 48.7

1% 42.0 89.2 23.2 18.0 18.9 3.1 20.9 61.6 0.3 82.0 23.5 66.8 0.7 86.9 27.4 77.9 49.5 61.6 52.4 33.4
10% 51.1 91.1 16.1 49.1 52.6 34.0 34.2 81.1 0.0 84.7 40.9 69.4 0.1 87.4 33.9 81.8 55.6 68.1 55.5 36.3
20% 51.4 91.1 15.5 48.7 57.8 34.2 33.5 81.0 0.0 84.7 40.8 69.4 0.1 87.5 33.9 81.7 55.4 68.0 55.4 35.8Po

la
r

50% 51.7 91.3 18.2 47.4 72.5 32.0 36.3 73.8 0.4 83.7 42.4 68.5 0.1 86.4 36.4 81.7 54.3 65.8 55.4 35.1

1% 47.6 90.4 30.8 12.2 20.9 2.2 41.1 71.1 0.2 82.2 25.4 68.4 0.7 88.2 31.9 80.6 63.2 65.3 61.5 39.7
10% 58.6 93.3 29.6 56.1 68.3 40.2 61.6 83.5 8.9 85.9 39.8 72.4 1.1 89.4 46.2 86.0 66.6 71.9 64.4 49.2
20% 58.8 93.3 31.3 59.8 79.4 38.7 64.4 82.3 0.0 85.0 35.4 72.1 3.6 89.2 43.8 85.3 68.1 71.0 64.0 49.5Vo

xe
l

50% 59.0 93.5 29.9 60.3 84.4 41.3 64.5 84.7 6.3 84.3 36.0 71.2 0.7 89.1 42.2 84.4 67.3 68.7 63.0 49.7

D.2 QUALITATIVE RESULTS

We provide additional qualitative results in Fig. 8.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

(a) Ground-truth (b) Voxel (IT2) (c) Voxel(Ours) (d) F-Range(Ours) (e) Polar(Ours) (f) Fusion(Ours)
Figure 8: Qualitative results on SemanticKITTI Behley et al. (2019). All models are trained under the 10%
label protocol. We use Hard Confidence Voting (HCV) to fuse students’ outputs. Ground-truth labels are color-
coded based on class categories. Incorrect predictions are shown in red, while correct predictions are shown in
gray.
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