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ABSTRACT

Attention patterns play a crucial role in both training and inference of large lan-
guage models (LLMs). Prior works have identified individual patterns—such as
retrieval heads, sink heads, and diagonal traces—but these observations remain
fragmented and lack a unifying explanation. To bridge this gap, we provide a
unifying framework to explain the existence of diverse attention patterns by an-
alyzing their underlying mathematical formulations with a temporal continuous
perspective. Our work can both deepen the understanding of attention behavior
and guide inference acceleration approaches. Specifically, this framework charac-
terizes attention patterns as either predictable patterns, characterized by clear reg-
ularities, or unpredictable ones that appear random. Our analysis further reveals
that the distinction between them can be explained by variations in query self-
similarity across the temporal dimension. Focusing on the predictable patterns,
we further provide a detailed mathematical analysis of three representative pre-
dictable patterns in terms of the joint effect of queries, keys, and Rotary Positional
Embeddings. To validate the framework, we apply it to KV cache compression
and LLM pruning tasks. In these experiments, a simple metric inspired by our
theory consistently improves performance over baseline methods.

1 INTRODUCTION

Attention patterns matter for both LLM training and inference (Xiao et al., 2023; 2024; Jiang et al.,
2024; Li et al., 2025; Yang et al., 2025). Prior studies have shown that attention heads exhibit struc-
tured and reusable forms, such as streaming heads, retrieval heads, sink heads, and diagonal-like
patterns. Understanding why such patterns emerge is critical for a deeper conceptual understand-
ing of the attention mechanism and can directly inform the design of architectures and inference
strategies that improve efficiency and robustness, for example, cache compression, long-context
streaming, and pruning.

A substantial body of recent research has investigated the architecture of transformer attention mech-
anisms. Prior analyses typically focus on a single phenomenon, for example, the attention sink at the
first token (Gu et al., 2024) or diagonal traces linked to high-frequency components of RoPE (Bar-
bero et al., 2025). Other studies categorize heads by functional roles, such as retrieval and streaming
(Xiao et al., 2023; 2024). Despite these advances, it remains unclear what factors determine which
attention pattern a head will adopt under the same attention formulation. Our goal is to uncover a
unifying underlying mechanism that explains the emergence of these diverse patterns.

To address this gap, we adopt a temporal view of auto-regressive inference and analyze how attention
evolves over time. During inference, a transformer LLM generates each token from the previously
generated sequence, so the hidden states and attention scores across positions can be regarded as
temporal series. We then isolate the source of temporal variation in attention along the time axis.
The attention weight from a current position to a past token is computed as the dot product between
the current query and the corresponding key after being rotated by Rotary Positional Embedding
(RoPE). For each fixed past position, both the key and its RoPE rotation are fixed, whereas the
query varies with the current position. Therefore, the evolution of attention is essentially governed
by the query. In this interaction, a few embedding channels may dominate the inner product, which
determines the shape of the attention pattern. Figure 1 provides an illustration of how changes in
queries and dominant embedding channels reshape the attention pattern.
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Figure 1: This framework explains the formation of sparse attention patterns from a temporal conti-
nuity perspective. We first establish the fundamental Predictable and Unpredictable patterns in Sec.
4. We then detail the conditions that form the Re-access (Sec. 5.1), Sequential (Sec. 5.2), Seasonal
(Sec. 5.4), and Periodical Sequential (Sec. 5.3) patterns in their dedicated sections.

Guided by the analysis, we propose a unified framework that interprets attention patterns through the
temporal behavior of the queries and the response of the RoPE channels. We view the sequence of
query vectors and the associated attention distributions as a time series and characterize them using
the notion of continuity. We mathematically show that temporal continuity of queries—measured
by their self-similarity—is the key factor distinguishing predictable patterns, characterized by clear
regularities, and unpredictable patterns that appear random. Within the predictable regime, we
further provide theoretical conditions for three representative patterns with the joint effect of queries,
keys, and RoPE. Re-access patterns, where an attention head repeatedly focuses on a small set of
tokens, require high query self-similarity and a favorable initial query-key geometry. Sequential
patterns, which appear as diagonals, are driven by high self-similarity in both queries and keys. In
this case, we prove that continuity alone is sufficient to create diagonal-like traces and that special
reliance on high-frequency RoPE components is not necessary, which refines and generalizes the
conclusions of prior empirical work such as (Barbero et al., 2025). Seasonal patterns arise when
input periodicity combines with the periodic nature of dominant embedding channels. Since the
computing attention from queries, keys, and RoPE is a common design in transformer-based models,
our framework both unifies diverse attention patterns and is broadly applicable across LLMs.

To validate our framework, we evaluate it on downstream tasks. Prior works have shown that atten-
tion patterns are closely linked to a model’s representational capacity (Li et al., 2025; Xiao et al.,
2024) and can guide compression. Building on this view, we focus on two complementary compres-
sion settings: KV-cache compression for stored states and LLM pruning for model weights. In both
cases, a simple metric derived from pattern stability and query similarity consistently outperforms
baselines, demonstrating that these principles are practically useful.

In summary, our contributions are as follows: (1) We provide the first systematic analysis of the
shapes of attention patterns from a unifying temporal perspective, analyzing random patterns along-
side three stable types: re-access, sequential, and seasonal. (2) Theoretically, we demonstrate that
stable patterns emerge from the continuity of queries and keys combined with the RoPE mechanism.
(3) We identify periodic sequential diagonals and explain them as a consequence of the RoPE rota-
tion period of the dominant channel. (4) We apply our insights to downstream tasks, including KV
cache compression and LLM pruning, achieving accuracy improvements.

2 RELATED WORK

2.1 ATTENTION PATTERNS

The sparse nature of attention mechanisms in Large Language Models (LLMs) is well-documented,
giving rise to distinct, recurring patterns. Prior work has largely focused on identifying these patterns
and using them for inference optimization. For instance, one widely discussed pattern is the attention
sink, where high attention scores are consistently assigned to the initial tokens (Xiao et al., 2023),
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attracting significant research interest and analysis from various perspectives (Gu et al., 2024; Yu
et al., 2024; Cancedda, 2024). Xiao et al. (2023) also highlighted the importance of attention to
recent tokens, which form a distinct diagonal trace in the attention map. The structured nature of
these patterns has been widely exploited for KV cache compression and inference optimization by
various methods, such as Minference (Jiang et al., 2024), H2O (Zhang et al., 2024), SnapKV (Li
et al., 2024), DuoAttention (Xiao et al., 2024), and KVTuner (Li et al., 2025). Alongside these
structured patterns, other works have identified retrieval heads (Wu et al., 2024; Xiao et al., 2024).
These heads appear to scan the entire context for semantically relevant information, resulting in
seemingly random attention maps that are crucial for long-context reasoning and factuality (Xiao
et al., 2024). However, these observations have remained largely fragmented, lacking a unifying
theory to explain the co-existence and emergence of these diverse patterns.

2.2 THE ROLE OF POSITIONAL ENCODING

A growing body of work has sought a mechanistic explanation for these patterns by examining the
role of Rotary Positional Embeddings (RoPE) (Su et al., 2024). Research has shown a direct link
between RoPE’s frequency components and specific pattern shapes. For instance, high-frequency
components in RoPE have been demonstrated to be responsible for the formation of diagonal or
previous-token patterns (Barbero et al., 2025). Conversely, other studies suggest that low-frequency
components, or specific ”outlier” channels with large magnitudes, may contribute to the emergence
of attention sinks by creating a rotational offset that favors certain positions (Jonasson, 2025). While
these studies provide crucial insights into how positional encoding shapes attention, they often ana-
lyze RoPE’s effects in isolation, without fully modeling its interaction with the dynamic content of
the query and key vectors.

2.3 THE INFLUENCE OF INPUT DYNAMICS

A parallel line of research investigates how the properties of the input tokens themselves influence
attention patterns. AttentionPredictor (Yang et al., 2025) proposed that the temporal continuity
of queries is a key driver for pattern formation, though it did not provide a deep mathematical
analysis or consider the interplay with RoPE. Other works have corroborated the importance of input
features, suggesting that attention sinks may arise from specific query-key angular relationships that
are independent of position (Gu et al., 2024). Similarly, the continuity of queries between layers and
constant massive channels of keys has also been noted (Lee et al., 2024; Liu et al., 2024), hinting
at the inherent temporal consistency within the model. However, this line of inquiry has yet to be
formally connected with the rotational effects of RoPE to provide a complete picture.

In this work, we bridge the gap between these latter two perspectives. We propose a unifying
theoretical framework that explains how input dynamics and positional encoding together influence
attention patterns. Specifically, we demonstrate that variations in query self-similarity over time,
when coupled with the rotational mechanics of RoPE, can mathematically account for the diverse
patterns observed in prior works.

3 BACKGROUND

Attention Mechanism. At the decoding step t, let the query be qt ∈ Rd, the key matrix K =
[k1, . . . , kT ]

⊤ ∈ RT×d with kj ∈ Rd, and the unnormalized logits

at,j = q⊤t Rt−jkj , at ∈ RT , (1)

where Rt−j is the Rotary Positional Embedding (RoPE) operator that rotates vector kj by a relative
phase proportional to (t− j).

The attention distribution is then
At = softmax(at). (2)

Since the softmax function is monotonic with respect to the logits, it preserves their relative order
across positions. Therefore, for clarity, we focus our discussion on the logits at , and the resulting
conclusions directly extend to the final attention distribution At.

3
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RoPE. RoPE encodes relative position information by applying channel-wise 2D rotations to pairs
of embedding dimensions. For feature pair (m,m+ d//2) at position m, the rotation is

Rn,m =

(
cos(nθm) − sin(nθm)
sin(nθm) cos(nθm)

)
, (3)

where θm = c−2m/d is the frequency of the m-th channel, d is the hidden dimension, and c is a
hyperparameter. While the original RoPE paper (Su et al., 2024) proposed pairing adjacent dimen-
sions, this half-split pairing scheme is adopted by large-scale models like Llama and Qwen2 for
greater computational efficiency.

Thus, for a query qt and key ki, the RoPE-augmented attention score on channel m is

a
(m)
t,i = q

(m)⊤
t Rt−i,m k

(m)
i , (4)

where q(m)
t = (qt,2m, qt,2m+1)

⊤.

Decomposition View of Attention. Using the RoPE formulation, the attention logits at,i be-
tween qt and ki can be decomposed channel-wise. Let qt =

⊕M
m=1 q

(m)
t and ki =

⊕M
m=1 k

(m)
i ,

where each pair q(m)
t , k

(m)
i ∈ R2 corresponds to a frequency channel with angular frequency

θm = c−2m/d. Then

at,i =

M∑
m=1

∥q(m)
t ∥ ∥k(m)

i ∥ cos
(
ϕ
(m)
t,i + (i− t)θm

)
, (5)

where ϕ(m)
t,i denotes the angle between q(m)

t and k(m)
i . This decomposition highlights how each

frequency channel contributes additively to the overall attention score, and how temporal shifts
(i− t) are modulated by channel-dependent phases θm.

RoPE Key Property. RoPE satisfies a relative-position identity:

R⊤
mRn = Rm−n, (6)

which ensures that attention depends only on the relative distance (t− i), not absolute positions.

Attention Patterns. It is well-established that the attention mechanism is sparse and shows var-
ious patterns. In this work, we focus on these sparse attention patterns, especially in Llama-3.1-
8B (Dubey et al., 2024) and Qwen-2.5-7B (Yang et al., 2024) with GSM8K (Cobbe et al., 2021) and
AIGC (SoftAge-AI, 2024) datasets.

4 WHY PREDICTABLE AND UNPREDICTABLE ATTENTION PATTERNS EXIST

Previous works mainly analyze and utilize attention patterns, including retrieval/streaming heads or
A-shape/vertical-slash/block-sparse patterns, from the functionality or geometric morphology view.
In contrast, we provide a new and unifying time-series analysis perspective to theoretically un-
derstand the existence of diverse attention patterns, utilizing the underlying attention mechanisms.
We classify attention patterns into two temporal categories: predictable and unpredictable. Pre-
dictable patterns exhibit temporal continuity across decoding steps or the temporal dimension, where
the indices of high attention evolve smoothly over time. Unpredictable patterns, in contrast, display
irregular jumps with little temporal consistency. This distinction matters because temporal stability
enables inference optimization: stable patterns can be anticipated and efficiently compressed in the
KV cache, while unpredictable ones resist such treatment.

Empirically, retrieval attention heads exemplify the unpredictable case. Their attention often jumps
across the entire context in a seemingly random fashion (Wu et al., 2024; Xiao et al., 2024; Li
et al., 2025), which is crucial for retrieving semantically relevant information but undermines pre-
dictability. Predictable patterns, by contrast, correspond to heads that consistently attend to locally
structured or repeatedly accessed tokens, reflecting stable model behaviors that are exploitable for
compression and acceleration.
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Figure 2: Attention patterns at high and low Query similarity on the Llama and Qwen models. Stable
patterns emerge under high similarity, whereas low similarity results in random patterns. There are
random bright dots of critical keys in the second and fourth figures.

We argue that the key differentiator behind these two regimes is query self-similarity. When suc-
cessive queries remain close in representation space, attention indices change smoothly, producing
predictable attention maps. When queries drift strongly, the inequalities that define structured pat-
terns are violated, and even with RoPE’s relative rotations, attention jumps unpredictably. To cap-
ture this distinction, we introduce a quantitative measure of query continuity, termed q-similarity.
In Appendix F.3, we further study the distribution of q-similarity across layers, heads, models, and
datasets, and show that high-continuity heads are common but not universal. High q-similarity cor-
relates with stable, predictable heads, while low q-similarity leads to retrieval-like, unpredictable
behavior. Figure 2 shows the attention patterns of the two models with high and low q-similarity
scores. It can be seen that patterns with high q-similarity are more stable, while patterns with low
q-similarity are more random.
Proposition 4.1. Let qt, qt+1 ∈ Rd be consecutive queries, K = [k1, . . . , kT ]

⊤ the key matrix, and
define the logits

at,j = q⊤t Rt−jkj , at+1,j = q⊤t+1Rt+1−jkj .

If qt+1 − qt has a large norm and is not orthogonal to all rotated keys {Rt+1−jkj}, then the differ-
ence between the logit vectors at and at+1 is necessarily large. In particular, there exist constants
c1, c2 > 0 such that

∥at+1 − at∥∞ ≥ c1∥qt+1 − qt∥ − c2.

Proposition 4.1 demonstrates that while low q-similarity leads to more random patterns, high q-
similarity is a necessary condition for predictable ones. In summary, q-similarity provides a quan-
titative indicator of whether an attention head behaves in a predictable or unpredictable manner. In
the following sections, our theoretical analysis focuses on the predictable heads.

5 PREDICTABLE ATTENTION PATTERNS

In this section, we provide a temporal perspective analysis on predictable attention patterns, which
rely on the temporal continuity of queries. The re-access pattern occurs when queries are highly
self-similar, with low-frequency RoPE components helping to maintain alignment with fixed keys.
We also discuss how our analysis relates to the conditions described in prior work (Gu et al., 2024).
Sequential patterns arise from the combination of high query and key similarity and the relative-
position property of RoPE. In some cases, periodic sequential patterns appear. We provide a clear
calculation for the spacing between adjacent periods and verify it experimentally by varying the
location of the dominant RoPE channel and the RoPE base parameter. Finally, we analyze a seasonal
pattern with periodical queries and keys.

These predictable patterns are useful to LLM inference acceleration. Methods that exploit such
temporal regularities (e.g., Minference (Jiang et al., 2024), H2O (Zhang et al., 2024), SnapKV (Li
et al., 2024)) can compress the KV cache with little loss in LLM performance, which empirically
supports the claim that temporal stability is a important signal for effective KV compression (Jiang
et al., 2024; Zhang et al., 2024; Li et al., 2024).

5.1 RE-ACCESS PATTERN

The re-access pattern describes repeated attention to a small set of key tokens, appearing as vertical
lines in the attention map and often referred to as attention sink (Xiao et al., 2023). Prior work has

5
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attributed this phenomenon to query continuity (Yang et al., 2025) or to the small angle between the
first key and all queries (Gu et al., 2024), while others observed its correlation with low-frequency
RoPE rotations (Jonasson, 2025). However, these explanations are partial.

We propose that the stability of reaccess pattern relies on two factors: (1) high self-similarity of
consecutive queries, which prevents attention scores from drifting, and (2) the low-frequency com-
ponents of RoPE, which preserve alignment between queries and fixed keys even as time t increases.
Theorem 5.1 (Vertical Stability of Attention). Suppose the channel-wise decomposition (Back-
ground, Eq. 5) holds for the attention logits at,i. Assume that the queries evolve continuously in
the sense that ∥qt+1 − qt∥ ≤ ε, while all keys ki remain fixed between steps t and t + 1. Further
assume the existence of a dominant low-frequency channel m⋆ whose weight wm⋆ dominates the
other channels, and whose RoPE frequency θm⋆ is small. Then the per-key differences at+1,i − at,i
are uniformly small, and the attention logits are vertically stable.

When queries vary little over time or decoding steps, the only source of temporal change in equa-
tion 5 is the RoPE-induced phase (i− t)θm. If a dominant channel with small θm controls the sum,
then shifting t 7→ t + 1 changes the cosine term only marginally, hence at+1,i ≈ at,i. This yields
vertically aligned attention weights.

Connection to Attention Sink in the First Token. A well-known empirical phenomenon is the
attention sink, which typically appears at the first token position. Prior work Gu et al. (2024) ob-
served that queries and keys at the initial position tend to have a very small angle, and attributed
this alignment as the cause of the sink. Our analysis provides a complementary explanation: from
the decomposition in Equation 5, when the angle ϕ(m)

t,i between q(m)
t and k(m)

i is small, the cosine

term cos(ϕ
(m)
t,i + (i − t)θm) is close to 1. Consequently, the logit contribution from that channel

approaches its maximum possible value ∥q(m)
t ∥∥k(m)

i ∥, making the overall attention score at,i large.
This alignment effect explains why high attention scores often emerge at positions where q and k
are nearly aligned, particularly at the first token.

5.2 SEQUENTIAL PATTERN

Sequential patterns exhibit a shifting focus across tokens, typically progressing step by step along
the sequence. The diagonal slash often observed near the main diagonal is commonly attributed to
positional heads, which attend to tokens at fixed relative offsets. We argue that the sequential pattern
arises from the combined effect of both high q-similarity and k-similarity and the relative-position
property of RoPE.
Theorem 5.2 (Sequential Patterns under High Self-similarity). Under the RoPE relative-position
encoding, suppose queries and keys both exhibit high self-similarity, in the sense that

∥qt+1 − qt∥ ≤ ε, ∥ki+1 − ki∥ ≤ ε

for sufficiently small ε > 0. Then the attention logits satisfy
|at+1,i+1 − at,i| ≤ Cε,

for some constant C > 0. Consequently, the attention logits exhibit approximate shift-invariance
along the (+1,+1) diagonal, giving rise to sequential patterns in the attention map.

RoPE encodes relative positions through rotations. When queries and keys vary little across steps,
this rotation structure preserves their interactions under a simultaneous shift. As a result, attention
scores propagate along the (+1,+1) diagonal, producing sequential (slash-like) patterns.

Empirical Results. High self-similarity in both query and key representations is a sufficient con-
dition for the emergence of Sequential patterns. Figure 3 illustrates the patterns of heads with high
query similarity and high key similarity, all of which clearly exhibit diagonal structures.

5.3 PERIODICITY OF SEQUENTIAL PATTERNS

Empirically, we sometimes observe multiple parallel diagonal lines in attention maps, with a roughly
constant spacing between adjacent lines (periodic sequential pattern). We attribute this periodicity
to the rotation angle of the dominant RoPE channel.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0
20

40
60

80
100

Token 0
20

40
60

80
100

120

Dim

60

40

20

0

20

40

Va
lu

e

Qwen-2.5 Query Similarity 0.99

0
20

40
60

80
100

Token 0
20

40
60

80
100

120

Dim

40

30

20

10

0

10

Va
lu

e

Qwen-2.5 Key Similarity 0.96

0
20

40
60

80
100

Token 0
20

40
60

80
100

120

Dim

40

30

20

10

0

10

Va
lu

e

Qwen-2.5 Key Similarity 0.96

Key Token Index

Qu
er

y 
To

ke
n 

In
de

x

Llama-3.1
 Q & K Self-Similarity 0.74

Key Token Index

Qu
er

y 
To

ke
n 

In
de

x

Qwen-2.5
 Q & K Self-Similarity 0.91

Figure 3: High self-similarity in Query (Q) and Key (K) matrices results in sequential attention
patterns. An example from a Qwen-2.5 head (left) with high Q and K self-similarity (0.99 and
0.96) produces a strong diagonal pattern in the attention map (far right). This phenomenon is also
observed in Llama-3.1 (center right).

Theorem 5.3 (Periodic Sequential Pattern from a Dominant RoPE Channel). If a sequential pattern
arises and the corresponding key exhibits a massive channel at index m⋆, then the spacing between
adjacent diagonals is determined by the rotation frequency of that channel:

T =
2π

θm⋆

= 2π c 2m
⋆/d. (7)

Intuition. When the massive channel is located at index m⋆, the attention score is dominated by
that component:

at,j ≈ ∥q(m
⋆)

t ∥ ∥k(m
⋆)

j ∥ cos
(
ϕ
(m⋆)
t,j + (j − t)θm⋆

)
.

This term is a cosine function of the relative offset (j−t) with angular frequency θm⋆ . Consequently,
the diagonal lines in the attention map exhibit a regular repetition with period T = 2π/θm⋆ , as
given in equation 7. Since θm⋆ = c−2m⋆/d, higher channel indices m⋆ correspond to lower angular
frequencies and therefore to greater spacing between adjacent diagonals.

We validate the theoretical mechanism with controlled manipulations on learned key vectors. Our
analysis separates two axes of intervention: (i) relocating the massive channel across different in-
dices, and (ii) varying the RoPE base hyperparameter c.

Relocating the massive channel. We first analyze a key vector kj whose attention map exhibits a
single diagonal, as shown in Figure 4 (b). We identify its massive channel at index m⋆ = 124 as
shown in Figure 4 (a). Given the Qwen2.5 RoPE hyperparameters (base c = 1, 000, 000, dimension
d = 128), this high-index channel corresponds to an extremely low angular frequency. Its theoretical
period is T = 2πc2m

⋆/d ≈ 2.4 × 106, a value so large that no repetition can be observed within a
practical context window.

To demonstrate the relationship between channel frequency and periodicity, we experimentally relo-
cate this massive channel to different target indices m, recomputing the RoPE-augmented attention
for each case. The resulting attention maps with m = 2 and m = 3, visualized in Figure 4 (c) and
(d), show that periodic diagonals emerge as the massive channel is moved to lower-index, higher-
frequency positions. Specifically, as the channel index m decreases, the angular frequency θm
increases, shortening the period T and making the diagonals denser. This confirms our first finding:
observable periodic diagonals require the key’s massive channel to reside in a high-frequency
(low-index) position.

Furthermore, we observe that even for high-frequency channels, the diagonal patterns fade over long
distances. This occurs because the self-similarity between queries and keys naturally diminishes as
their relative distance increases, which disrupts the continuity required to sustain the pattern.

Varying the RoPE base c. Independent of the channel index, the choice of RoPE base also controls
the periodicity. To isolate this effect, we keep the same dominant channel m⋆ = 5 and repeat the
above procedure for different values of the base (e.g., c = 1, 000, 000 and 100,000 in Figure 4 (d)
and (e)). Since the channel frequency is given by θm = c−2m/d, decreasing c directly increases θm
and hence reduces the diagonal period T = 2π/θm.
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Figure 4: An illustration of how RoPE configuration affects attention patterns. (a) and (b) show a
sequential pattern with a dominant channel at m = 124. In (c) and (d), we manually change the
dominant channel to higher frequencies (m = 2 and m = 5), which causes periodic diagonals to
emerge. In (e), we change the RoPE base from c = 1, 000, 000 to c = 100, 000 with m = 5.

5.4 SEASONAL PATTERN

Seasonal patterns arise when attention maps repeat with a fixed periodicity. This periodicity can
manifest along either the temporal axis or the spatial axis. Due to the periodicity of the hidden states,
the periodicity of queries and keys is often aligned, so temporal and spatial repetitions typically
occur simultaneously and share the same period. We argue that the underlying cause of the seasonal
pattern is that queries and keys exhibit periodicity, which is preserved and sometimes amplified by
RoPE through its relative-position encoding. Although the query condition does not exhibit temporal
continuity, the pattern remains predictable over time and is therefore a predictable pattern.
Theorem 5.4 (Seasonal Attention Pattern from Periodic Keys and Dominant RoPE Channel). Sup-
pose the query and key vectors are approximately periodic with interval L, in the sense that

∥qt+L − qt∥ ≤ εq, ∥ki+L − ki∥ ≤ εk

for sufficiently small εq, εk > 0, and that this interval is in near resonance with the dominant RoPE
frequency, i.e., ∣∣Lθm⋆ − 2kπ

∣∣ ≤ δ

for some positive integer k and sufficiently small δ > 0. Then the attention logits satisfy

|at+L,i − at,i| ≤ C1(εq + εk) + C2δ, |at,i+L − at,i| ≤ C3(εq + εk) + C4δ

for some constants C1, C2, C3, C4 > 0, and therefore exhibit a seasonal pattern with period L along
both query and key dimensions.

The seasonal pattern arises from two combined effects. First, the approximate periodicity of the
input queries and keys induces a corresponding periodicity in the attention map. This type of pe-
riodicity is common in structured data, such as looking at corresponding elements in consecutive
lines of code or data records. Second, when the interval L is in resonance with the dominant RoPE
frequency, the relative-position rotations align with the input periodicity, reinforcing the repetition
and producing a stronger, more regular seasonal pattern. This dual condition—periodic keys am-
plified by RoPE resonance—explains the emergence of clean, regularly spaced diagonal slashes in
the attention pattern. The observed interval L is therefore determined primarily by the period of the
input data itself.

6 DOWNSTREAM TASK
6.1 KV CACHE COMPRESSION

To demonstrate the practical value of our findings, we apply query similarity to the KV cache com-
pression task, which aims to reduce the memory footprint of key-value caches during large language
model inference while maintaining model accuracy. Based on our observations, a lower query sim-
ilarity indicates a higher likelihood of the emergence of retrieval patterns. Since retrieval patterns
attend to scattered and unpredictable key positions, they generally require a larger cache budget to
preserve critical information (Xiao et al., 2024; Li et al., 2025). Therefore, we leverage query sim-
ilarity as a proxy signal to dynamically guide the per-layer cache budget allocation under limited
memory resources, thereby improving inference efficiency while maintaining model accuracy. We
provide the experiment details in Appendix G.1
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Table 1: The evaluation results on the LongBench dataset across 512, 1024, and 2048 KV cache
budgets. Ours denotes CAKE enhanced with the proposed q-similarity scores.

Single-DocumentQA Multi-DocumentQA Summary Few-shot Learning Synthetic Code

Budget Method NrtvQA

Qasper

M
F-en

HotpotQA

2W
ikiM

QA

M
usique

GovReport

QM
Sum

M
ultiNews

TREC

TriviaQA

SAM
Sum

PCount
PRe

Lcc
RB-P

Average↑

Llama-3.1-8B
Full Full 31.06 45.43 53.78 55.04 47.14 31.29 34.87 25.33 27.49 72.50 91.25 43.81 6.00 99.50 63.36 56.65 49.06

StreamingLLM 25.64 27.48 33.30 47.36 40.06 24.80 23.16 20.80 22.85 57.50 87.60 42.08 6.50 97.00 60.51 51.28 41.75
H2O 27.76 29.01 44.75 52.78 44.31 29.22 24.71 23.11 24.56 54.50 91.38 42.10 6.36 99.00 62.30 54.33 44.39

SnapKV 30.76 42.03 52.13 54.15 46.14 30.51 24.98 24.24 24.65 64.00 92.05 42.04 6.08 99.50 62.62 54.90 46.92
PyramidKV 30.47 42.15 52.17 54.67 45.25 30.60 25.00 24.33 24.51 62.50 91.24 41.67 5.95 99.50 61.58 53.89 46.59

CAKE 31.82 42.99 51.65 54.37 46.89 30.73 26.36 24.94 25.27 63.50 91.54 42.52 6.33 99.50 62.30 54.30 47.19

512

Ours 29.47 42.66 51.63 54.53 46.64 30.81 25.48 24.57 24.71 62.50 92.35 42.42 6.25 99.50 64.56 57.35 47.21
StreamingLLM 26.64 30.77 35.59 47.31 42.03 24.17 25.81 21.31 25.66 63.50 88.84 42.76 6.50 88.00 61.31 53.47 42.73

H2O 29.57 36.15 45.94 54.43 44.81 29.04 27.64 23.31 26.47 62.00 91.43 43.14 6.36 99.00 62.24 55.74 46.11
SnapKV 30.95 44.74 52.58 55.09 46.83 30.37 27.87 24.57 25.99 68.50 92.03 42.60 6.50 99.50 63.00 56.50 47.95

PyramidKV 30.54 43.64 52.73 55.29 46.29 31.28 27.53 24.50 26.00 68.00 92.09 41.75 6.05 99.50 62.35 55.44 47.69
CAKE 30.88 44.95 52.38 55.49 46.99 30.82 28.68 24.91 26.39 69.00 91.94 42.60 6.00 99.50 62.65 56.89 48.13

1024

Ours 30.77 44.94 52.14 55.43 46.99 31.16 28.72 24.90 26.65 69.50 91.95 42.38 6.00 99.50 64.99 58.84 48.43
StreamingLLM 27.40 36.91 37.85 49.23 44.66 24.31 28.57 21.67 27.12 67.50 90.98 42.49 6.12 87.00 63.06 55.32 44.39

H2O 29.65 39.53 48.64 54.23 46.50 29.28 29.97 23.68 27.21 68.50 91.48 43.06 6.11 99.50 63.06 56.91 47.30
SnapKV 30.99 45.06 53.15 55.25 46.56 30.78 30.24 24.63 27.32 70.50 91.48 42.37 6.00 99.50 63.28 56.86 48.32

PyramidKV 31.13 45.06 53.80 55.78 46.59 30.89 30.25 24.82 27.35 71.00 91.65 42.62 6.00 99.50 63.27 56.44 48.51
CAKE 30.79 45.83 53.57 55.50 46.60 30.47 31.12 24.67 27.16 70.50 91.48 43.48 6.00 99.50 63.23 56.64 48.43

2048

Ours 30.70 45.69 53.06 55.49 46.68 30.94 30.54 24.65 27.12 71.00 91.65 43.00 6.00 99.50 64.93 58.80 48.73
Qwen2.5-7B

Full Full 29.05 43.34 52.52 57.59 47.05 30.24 31.78 23.64 23.96 72.50 89.47 45.61 8.50 100.00 59.61 67.12 48.87

StreamingLLM 19.82 25.40 35.57 43.24 39.18 18.59 25.45 19.07 22.33 58.50 71.13 32.29 8.00 23.00 46.18 49.01 33.55
H2O 26.83 34.17 41.43 50.80 41.83 22.82 25.57 21.35 22.03 60.50 84.67 45.86 8.00 95.50 59.11 64.66 44.07

SnapKV 28.94 40.70 50.40 55.80 44.21 27.83 24.42 22.74 21.07 66.50 86.56 44.14 8.00 99.50 59.17 64.22 45.51
PyramidKV 27.33 38.04 50.38 55.73 44.28 27.12 22.24 21.86 19.54 66.00 86.36 43.69 8.00 99.00 57.59 62.09 45.58

CAKE 28.97 39.46 50.40 54.80 44.70 28.02 23.90 22.35 20.74 55.00 86.91 44.92 8.00 99.50 57.06 64.26 45.56

512

Ours 28.97 39.40 50.46 55.48 44.47 28.02 23.99 22.87 20.72 55.00 87.02 44.66 8.00 100.00 59.04 64.39 45.78
StreamingLLM 22.72 29.42 31.47 43.57 38.18 17.99 24.33 19.47 22.46 61.00 87.53 43.79 8.50 34.00 55.17 58.43 37.38

H2O 26.45 34.94 40.49 48.63 42.02 22.27 25.67 20.90 22.41 59.00 87.83 45.07 8.50 98.48 59.77 63.88 44.14
SnapKV 29.24 41.61 50.93 57.60 45.50 29.39 25.63 23.06 22.26 65.50 88.92 44.65 8.50 100.00 58.16 65.30 47.27

PyramidKV 29.34 38.60 50.17 55.67 45.12 27.82 23.26 22.16 20.55 62.50 86.85 43.26 8.50 100.00 57.76 61.99 45.85
CAKE 29.47 42.71 52.12 56.11 46.41 29.13 26.86 23.12 22.72 67.50 89.23 45.46 8.50 100.00 59.11 64.79 47.70

1024

Ours 29.64 43.59 51.53 56.90 45.86 29.43 26.64 22.57 23.00 65.50 89.48 45.24 8.00 100.00 60.04 66.06 47.72
StreamingLLM 23.18 36.93 45.64 45.30 40.10 19.74 28.49 20.57 23.50 68.00 74.41 33.06 8.00 18.00 54.50 53.73 37.07

H2O 28.55 40.20 47.45 53.49 44.44 27.00 28.93 22.66 23.79 63.50 88.50 46.08 8.00 100.00 61.06 67.50 46.95
SnapKV 29.11 41.53 52.05 57.17 46.26 30.69 29.49 23.23 23.64 71.50 89.17 45.49 8.00 100.00 60.92 67.94 48.12

PyramidKV 28.39 43.36 51.83 56.75 45.60 30.50 26.90 23.03 23.38 71.00 88.22 45.01 8.00 100.00 61.36 67.37 48.17
CAKE 29.08 43.35 51.92 57.20 45.77 30.26 29.35 23.46 23.59 69.00 89.37 45.37 8.00 100.00 59.35 67.88 48.31

2048

Ours 29.18 44.03 52.24 57.36 45.77 30.19 29.14 23.31 23.62 69.00 89.47 44.99 8.00 100.00 60.95 68.06 48.46

Results. As shown in Table 1, our approach consistently outperforms CAKE and the other four
baselines across three different budget settings. These results confirm that query similarity effec-
tively reflects the likelihood of the emergence of retrieval patterns, and by allocating more cache
budget to layers exhibiting higher query similarity, we are able to preserve critical information more
effectively, thereby enabling efficient KV cache compression.

6.2 LLM PRUNING

To reduce the parameter size of LLMs and accelerate inference, structured pruning, which removes
entire components such as layers, has emerged as a promising approach. Our specific goal is to
design more effective proxy metrics to guide whole-layer pruning, so as to achieve higher accuracy
under the same compression ratio. Based on our previous analysis, higher query similarity indi-
cates more stable and predictable patterns. Such stability implies that the layer extracts less novel
information, making it more dispensable. Consequently, layers with higher query similarity can be
pruned with less impact on model performance, while low-similarity layers—which are more likely
to host retrieval-like and task-critical behaviors—are preserved. We provide the experiment details
in Appendix G.2

Results. As shown in Table 2, our method consistently outperforms ShortGPT across different prun-
ing ratios and models, validating the effectiveness of combining Block Influence with q-similarity
as a proxy signal for structured layer pruning. These evaluation results on LLM pruning validate our
hypothesis regarding the connection between query similarity and stable, predictable patterns. Lay-
ers with higher query similarity exhibit greater redundancy due to their stability, and can therefore
be pruned with minimal impact on overall model performance.

7 CONCLUSION

In this work, we introduced a unifying framework to systematically analyze the diverse attention
patterns within large language models. We demonstrated that the distinction between predictable
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Table 2: Comparison of our proposed method with ShortGPT under the some pruning ratios.

Model Method Pruned Piqa Hellaswag Winogrande Arc Easy Average (%)↑

Llama-2-7B

ShortGPT 31% 63.33 45.94 61.40 47.26 54.48
∼ with q-similarity (ours) 31% 63.87 50.83 63.54 45.03 55.82

ShortGPT 34% 60.83 42.11 60.38 44.15 51.87
∼ with q-similarity (ours) 34% 60.45 48.53 62.43 42.55 53.49

Llama-3.1-8B

ShortGPT 28% 66.65 42.41 58.72 46.25 53.51
∼ with q-similarity (ours) 28% 64.69 55.09 63.77 52.90 59.11

ShortGPT 31% 64.96 37.69 58.41 42.76 50.96
∼ with q-similarity (ours) 31% 65.51 42.22 62.51 46.59 54.21

Qwen-2.5-7B

ShortGPT 39% 63.17 41.83 50.59 44.32 49.98
∼ with q-similarity (ours) 39% 62.89 41.80 51.93 45.03 50.42

ShortGPT 43% 60.83 36.13 47.43 39.77 46.04
∼ with q-similarity (ours) 43% 60.88 39.87 49.72 43.94 48.60

and unpredictable patterns can be explained by the temporal self-similarity of queries. Our theoret-
ical analysis further elucidated that stable, predictable patterns arise from the combined effects of
query-key continuity and Rotary Positional Embeddings (RoPE), providing a clear explanation for
phenomena like periodic sequential diagonals. The practical value of this framework is confirmed
by applying its insights to downstream tasks. A simple metric inspired by our theory successfully
improved performance in both KV cache compression and LLM pruning, validating our approach.
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available and widely adopted in the community, and we have verified that their licenses permit
research use. In accordance with the ICLR Code of Ethics, we ensure that our work adheres to
principles of fairness, transparency, and responsible AI research. We also disclose that LLMs were
used for text polishing, while all conceptual contributions and validation remain the responsibility
of the authors in Appendix I.

REPRODUCIBILITY STATEMENT

We will provide open access to all source code, configuration files, and preprocessing scripts, to-
gether with detailed instructions to reproduce the main experimental results. All datasets employed
are publicly available, and we specify the exact versions and preprocessing steps. Collectively, these
resources and specifications enable reliable and faithful reproduction of our results.

REFERENCES

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench: A bilingual,
multitask benchmark for long context understanding. In Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 3119–3137,
Bangkok, Thailand, August 2024. Association for Computational Linguistics.

Federico Barbero, Alex Vitvitskyi, Christos Perivolaropoulos, Razvan Pascanu, and Petar
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A PROOF OF UNPREDICTABLE PATTERN

Proposition 4.1. Let qt, qt+1 ∈ Rd be consecutive queries, K = [k1, . . . , kT ]
⊤ the key matrix, and

define the logits
at,j = q⊤t Rt−jkj , at+1,j = q⊤t+1Rt+1−jkj .

If qt+1 − qt has a large norm and is not orthogonal to all rotated keys {Rt+1−jkj}, then the differ-
ence between the logit vectors at and at+1 is necessarily large. In particular, there exist constants
c1, c2 > 0 such that

∥at+1 − at∥∞ ≥ c1∥qt+1 − qt∥ − c2.

Proof. Let ∆q := qt+1 − qt. For each position j, the change in the logit is

∆aj = at+1,j − at,j = (∆q)⊤Rt+1−jkj + q⊤t
(
Rt+1−j −Rt−j

)
kj .

Denote the first term by T1,j and the second by T2,j .

Step 1: Bounding the RoPE difference term. Since Rm is an orthogonal rotation, its operator
norm is 1, so by the triangle inequality, ∥Rt+1−j −Rt−j∥op ≤ ∥Rt+1−j∥op + ∥−Rt−j∥op ≤ 2. If
we assume the keys are bounded such that ∥kj∥ ≤ BK for all j, then

|T2,j | ≤ ∥qt∥ ∥Rt+1−j −Rt−j∥op ∥kj∥ ≤ 2∥qt∥BK .

Step 2: Lower bounding the query difference term. The first term can be written as

|T1,j | = ∥∆q∥ ·
∣∣⟨ ∆q

∥∆q∥ , Rt+1−jkj⟩
∣∣.

The condition that ∆q is not orthogonal to all rotated keys implies that the inner product is not
always zero. We formalize this by assuming there exists an index j∗ and a constant α > 0 such that
the normalized vectors have a significant projection:∣∣⟨ ∆q

∥∆q∥ , Rt+1−j∗kj∗/∥kj∗∥⟩
∣∣ ≥ α.

This condition essentially states that the direction of the query change aligns with at least one rotated
key. Under this condition, and assuming a minimum key norm ∥kj∗∥ ≥ Bk,min, we get

|T1,j∗ | ≥ αBk,min∥∆q∥.

Step 3: Combining both terms. Using the bounds for the two terms at index j∗, the reverse triangle
inequality gives

|∆aj∗ | ≥ |T1,j∗ | − |T2,j∗ | ≥ αBk,min∥∆q∥ − 2∥qt∥BK .

Since the infinity norm of a vector is the maximum of the absolute values of its components, we
have

∥at+1 − at∥∞ = max
j

|∆aj | ≥ |∆aj∗ | ≥ αBk,min∥∆q∥ − 2∥qt∥BK .

This establishes the proposition with constants c1 = αBk,min and c2 = 2∥qt∥BK . This completes
the proof.

B PROOF OF RE-ACCESS PATTERN

Theorem 5.1(Vertical Stability of Attention): Suppose the channel-wise decomposition (Eq. equa-
tion 5) holds for the attention logits at,i. Assume that the queries evolve continuously in the sense
that ∥qt+1−qt∥ ≤ ε, while all keys ki remain fixed between steps t and t+1. Further assume the ex-
istence of a dominant low-frequency channel m⋆ whose weight wm⋆ dominates the other channels,
and whose RoPE frequency θm⋆ is small. Then the per-key differences at+1,i − at,i are uniformly
small, and the attention logits are vertically stable.

Proof. We derive an explicit uniform bound for the per-key logit difference and show how it depends
on the query increment and channel parameters.
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Using the channel decomposition from Eq. equation 5, write for each channel m

wm := ∥q(m)
t ∥ ∥k(m)

i ∥, w′
m := ∥q(m)

t+1∥ ∥k
(m)
i ∥,

and
ψm := ϕ

(m)
t,i + (i− t)θm, ψ′

m := ϕ
(m)
t+1,i + (i− (t+ 1))θm.

Define the logit difference
∆t,i := at+1,i − at,i.

Direct subtraction yields the exact identity

∆t,i =

M∑
m=1

(w′
m − wm) cosψ′

m +

M∑
m=1

wm

(
cosψ′

m − cosψm

)
. (8)

We bound the two sums on the right-hand side separately. Let

ε := ∥qt+1 − qt∥.

First sum. By the triangle inequality and the definition of wm,∣∣∣ M∑
m=1

(w′
m − wm) cosψ′

m

∣∣∣ ≤ M∑
m=1

|w′
m − wm| =

M∑
m=1

∥k(m)
i ∥

∣∣∥q(m)
t+1∥ − ∥q(m)

t ∥
∣∣.

Since the Euclidean norm is 1-Lipschitz,∣∣∥q(m)
t+1∥ − ∥q(m)

t ∥
∣∣ ≤ ∥q(m)

t+1 − q
(m)
t ∥ ≤ ∥qt+1 − qt∥ = ε.

Hence ∣∣∣ M∑
m=1

(w′
m − wm) cosψ′

m

∣∣∣ ≤ ε

M∑
m=1

∥k(m)
i ∥. (9)

Second sum. Use the inequality | cosu− cos v| ≤ |u− v|, so∣∣ cosψ′
m − cosψm

∣∣ ≤ |ψ′
m − ψm| =

∣∣ϕ(m)
t+1,i − ϕ

(m)
t,i − θm

∣∣ ≤ |ϕ(m)
t+1,i − ϕ

(m)
t,i |+ |θm|.

To control the angular difference, let rm := min{∥q(m)
t ∥, ∥q(m)

t+1∥} and assume rm > 0, and denote
ε(m) := ∥q(m)

t+1 − q
(m)
t ∥. In the 2D RoPE subspace, write q(m)

t = rtut and q(m)
t+1 = rt+1ut+1 with

∥ut∥ = ∥ut+1∥ = 1 and let ∆ϕ(m) := ϕ
(m)
t+1,i−ϕ

(m)
t,i be the angle between q(m)

t and q(m)
t+1 . Projecting

both vectors onto the circle of radius rm can only decrease their Euclidean distance while preserving
the angle, so by elementary planar geometry we have

2rm sin

(
|∆ϕ(m)|

2

)
≤ ε(m).

Therefore

|ϕ(m)
t+1,i − ϕ

(m)
t,i | = |∆ϕ(m)| ≤ 2 arcsin

(
ε(m)

2rm

)
≤ π

2

ε(m)

rm
≤ π

2

ε

rm
,

where we used ε(m) ≤ ∥qt+1 − qt∥ = ε in the last inequality.

Therefore ∣∣wm

(
cosψ′

m − cosψm

)∣∣ ≤ wm

(π
2

ε

rm
+ |θm|

)
.

Summing over m yields∣∣∣ M∑
m=1

wm

(
cosψ′

m − cosψm

)∣∣∣ ≤ π

2
ε

M∑
m=1

wm

rm
+

M∑
m=1

wm|θm|. (10)
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Combine bounds. Inserting equation 9 and equation 10 into equation 8 gives the explicit uniform
bound

|∆t,i| ≤ ε

M∑
m=1

∥k(m)
i ∥ +

π

2
ε

M∑
m=1

wm

rm
+

M∑
m=1

wm|θm|. (11)

Define

δ := ε

M∑
m=1

∥k(m)
i ∥ +

π

2
ε

M∑
m=1

wm

rm
+

M∑
m=1

wm|θm|.

Thus |∆t,i| ≤ δ for every token index i.

Conclusion and asymptotics. Under the theorem hypotheses the keys are bounded and there ex-
ists a dominant channel m⋆ with wm⋆ much larger than the remaining {wm}m̸=m⋆ , while rm⋆ is
bounded away from zero and |θm⋆ | is small. In that regime the two terms proportional to ε in δ
vanish as ε→ 0, and the last term is small because the dominant channel’s frequency |θm⋆ | is small
and the remaining channels carry only a small total weight. Consequently δ can be made arbitrarily
small by taking ε → 0, |θm⋆ | → 0, and by increasing the dominance of wm⋆ over other channel
weights. Therefore the per-key differences ∆t,i = at+1,i − at,i are uniformly small, which proves
vertical stability.

C PROOF OF SEQUENTIAL PATTERN

Theorem 5.2(Sequential Patterns under High Self-similarity): Under the RoPE relative-position
encoding, suppose queries and keys both exhibit high self-similarity, in the sense that

∥qt+1 − qt∥ ≤ ε, ∥ki+1 − ki∥ ≤ ε

for sufficiently small ε > 0. Then the attention logits satisfy

|at+1,i+1 − at,i| ≤ Cε,

for some constant C > 0. Consequently, the attention logits exhibit approximate shift-invariance
along the (+1,+1) diagonal, giving rise to sequential patterns in the attention map.

Proof. Recall the attention logit
at,i := q⊤t Rt−iki,

where R∆ is the RoPE rotation for relative offset ∆. By the RoPE identity we have R(t+1)−(i+1) =
Rt−i, hence

at+1,i+1 = q⊤t+1Rt−iki+1.

Therefore the difference can be written as

at+1,i+1 − at,i = (qt+1 − qt)
⊤Rt−iki+1 + q⊤t Rt−i(ki+1 − ki).

Taking absolute values and applying the Cauchy–Schwarz inequality gives∣∣at+1,i+1 − at,i
∣∣ ≤ ∥qt+1 − qt∥ ∥Rt−iki+1∥ + ∥qt∥ ∥Rt−i(ki+1 − ki)∥
= ∥qt+1 − qt∥ ∥ki+1∥ + ∥qt∥ ∥ki+1 − ki∥,

where the last equality uses that each R∆ is orthogonal (rotation), hence ∥R∆v∥ = ∥v∥.

Now impose the high self-similarity hypothesis in the rigorous form

∥qt+1 − qt∥ ≤ ε, ∥ki+1 − ki∥ ≤ ε

for some ε > 0. Further assume the query/key vectors are uniformly norm-bounded, i.e. there exist
constants Q,K > 0 with ∥qt∥ ≤ Q and ∥ki∥ ≤ K for all relevant t, i. Then∣∣at+1,i+1 − at,i

∣∣ ≤ ε ∥ki+1∥+ ∥qt∥ ε ≤ ε(K +Q).

Setting C := K +Q yields the claimed bound∣∣at+1,i+1 − at,i
∣∣ ≤ C ε.

Thus, under the stated assumptions, the attention logits are approximately shift-invariant along the
(+1,+1) diagonal (with error at most Cε), which produces the sequential diagonal structure in the
logit map.
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D PROOF OF PERIODIC SEQUENTIAL PATTERN

Theorem 5.3 (Periodic Sequential Pattern from a Dominant RoPE Channel): If a sequential pattern
arises and the corresponding key exhibits a massive channel at index m⋆, then the spacing between
adjacent diagonals is determined by the rotation frequency of that channel:

T =
2π

θm⋆

= 2π c 2m
⋆/d. (12)

Proof. From the decomposition view of attention, the attention logits can be written as a sum over
channels:

at,i =

M∑
m=1

∥q(m)
t ∥ ∥k(m)

i ∥ cos
(
ϕ
(m)
t,i + (i− t)θm

)
.

By assumption, channelm⋆ is massive, meaning its contribution to at,i dominates all other channels:

∥q(m
⋆)

t ∥ ∥k(m
⋆)

i ∥ ≫ ∥q(m)
t ∥ ∥k(m)

i ∥ for all m ̸= m⋆.

Hence, the logits are approximately

at,i ≈ ∥q(m
⋆)

t ∥ ∥k(m
⋆)

i ∥ cos
(
ϕ
(m⋆)
t,i + (i− t)θm⋆

)
.

Consider positions i and i+T . Assuming that the magnitudes ∥k(m
⋆)

i ∥ and angles ϕ(m
⋆)

t,i vary slowly
across consecutive tokens forming the sequential pattern, the attention pattern repeats whenever

(i− t)θm⋆ ≡ (i+ T − t)θm⋆ (mod 2π),

which yields

T =
2π

θm⋆

.

By the definition of RoPE, θm = c−2m/d, and substituting m = m⋆ gives

T =
2π

θm⋆

= 2π c2m
⋆/d.

Therefore, the interval between adjacent diagonals in the attention map is exactly determined by the
rotation frequency of the dominant channel, as claimed.

E PROOF OF SEASONAL PATTERN

Theorem 5.4 (Seasonal Attention Pattern from Periodic Keys and Dominant RoPE Channel): Sup-
pose the query and key vectors are approximately periodic with interval L, in the sense that

∥qt+L − qt∥ ≤ εq, ∥ki+L − ki∥ ≤ εk

for sufficiently small εq, εk > 0, and that this interval is in near resonance with the dominant RoPE
frequency, i.e., ∣∣Lθm⋆ − 2kπ

∣∣ ≤ δ

for some positive integer k and sufficiently small δ > 0. Then the attention logits satisfy

|at+L,i − at,i| ≤ C1(εq + εk) + C2δ, |at,i+L − at,i| ≤ C3(εq + εk) + C4δ

for some constants C1, C2, C3, C4 > 0, and therefore exhibit a seasonal pattern with period L along
both query and key dimensions.
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Proof. We again use the channel-wise RoPE decomposition. For each channel m, let R(m)
t and

R
(m)
i denote the 2×2 rotation matrices induced by RoPE at positions t and i with angular frequency

θm. We define the post-RoPE query and key components as

q̃
(m)
t := R

(m)
t q

(m)
t , k̃

(m)
i := R

(m)
i k

(m)
i .

By construction, RoPE is an orthogonal transformation, so ∥q̃(m)
t ∥ = ∥q(m)

t ∥ and ∥k̃(m)
i ∥ = ∥k(m)

i ∥.
The logit contributed by channel m can be written as a dot product

a
(m)
t,i = ⟨q̃(m)

t , k̃
(m)
i ⟩, at,i =

M∑
m=1

a
(m)
t,i .

We first bound the variation of the dominant channel m⋆ along the query dimension. For arbitrary
vectors u, u′, v, v′ we use the standard dot-product inequality∣∣u⊤v − u′⊤v′

∣∣ ≤ ∥v∥ ∥u− u′∥+ ∥u′∥ ∥v − v′∥. (⋆)

Applying (⋆) with u = q̃
(m⋆)
t+L , u′ = q̃

(m⋆)
t and v = v′ = k̃

(m⋆)
i gives

|a(m
⋆)

t+L,i − a
(m⋆)
t,i | =

∣∣⟨q̃(m⋆)
t+L , k̃

(m⋆)
i ⟩ − ⟨q̃(m

⋆)
t , k̃

(m⋆)
i ⟩

∣∣
≤ ∥k̃(m

⋆)
i ∥ ∥q̃(m

⋆)
t+L − q̃

(m⋆)
t ∥. (13)

It remains to control ∥q̃(m
⋆)

t+L − q̃
(m⋆)
t ∥. Using the definition of q̃(m

⋆)
t we have

q̃
(m⋆)
t+L − q̃

(m⋆)
t = R

(m⋆)
t+L q

(m⋆)
t+L −R

(m⋆)
t q

(m⋆)
t

= R
(m⋆)
t+L

(
q
(m⋆)
t+L − q

(m⋆)
t

)
+
(
R

(m⋆)
t+L −R

(m⋆)
t

)
q
(m⋆)
t . (14)

Taking norms and using orthogonality of R(m⋆)
t+L yields

∥q̃(m
⋆)

t+L − q̃
(m⋆)
t ∥ ≤ ∥q(m

⋆)
t+L − q

(m⋆)
t ∥+

∥∥(R(m⋆)
t+L −R

(m⋆)
t

)
q
(m⋆)
t

∥∥. (15)
The first term is controlled by the assumed L-periodicity of the queries:

∥q(m
⋆)

t+L − q
(m⋆)
t ∥ ≤ εq.

For the second term, we use the near-resonance condition. By definition of RoPE, R(m⋆)
t+L =

R
(m⋆)
t R

(m⋆)
L , where R(m⋆)

L is a rotation by angle Lθm⋆ in the channel-m⋆ plane. The hypothe-
sis |Lθm⋆ − 2kπ| ≤ δ means that R(m⋆)

L is in fact a rotation by angle of magnitude at most δ around
the identity. For a planar rotation by angle γ we have ∥R(γ)− I∥ = 2| sin(γ/2)| ≤ |γ|, so∥∥(R(m⋆)

t+L −R
(m⋆)
t

)
q
(m⋆)
t

∥∥ =
∥∥R(m⋆)

t

(
R

(m⋆)
L − I

)
q
(m⋆)
t

∥∥
≤ ∥R(m⋆)

L − I∥ ∥q(m
⋆)

t ∥ ≤ δ ∥q(m
⋆)

t ∥. (16)
Combining equation 15 and equation 16 gives

∥q̃(m
⋆)

t+L − q̃
(m⋆)
t ∥ ≤ εq + δ ∥q(m

⋆)
t ∥.

Substituting this into equation 13 and recalling ∥k̃(m
⋆)

i ∥ = ∥k(m
⋆)

i ∥ yields

|a(m
⋆)

t+L,i − a
(m⋆)
t,i | ≤ ∥k(m

⋆)
i ∥εq + ∥k(m

⋆)
i ∥∥q(m

⋆)
t ∥δ =: C

(⋆)
1 εq + C

(⋆)
2 δ.

An entirely symmetric argument, exchanging the roles of t and i and using the L-periodicity of the
keys ∥k(m

⋆)
i+L − k

(m⋆)
i ∥ ≤ εk, shows that

|a(m
⋆)

t,i+L − a
(m⋆)
t,i | ≤ C

(⋆)
3 εk + C

(⋆)
4 δ

for some constants C(⋆)
3 , C

(⋆)
4 > 0 depending only on the norms of q(m

⋆)
t and k(m

⋆)
i .

Finally, recall that channelm⋆ is assumed to be massive: its contribution ∥q(m
⋆)

t ∥∥k(m
⋆)

i ∥ dominates
the contributions of all other channels. The residual variation coming from non-dominant channels
{m ̸= m⋆} is therefore uniformly bounded and can be absorbed into the constants C1, . . . , C4.
Renaming the constants and noting that εq + εk ≥ εq and εq + εk ≥ εk, we obtain the bounds stated
in Theorem 5.4:

|at+L,i − at,i| ≤ C1(εq + εk) + C2δ, |at,i+L − at,i| ≤ C3(εq + εk) + C4δ.

This shows that the dominant component of the attention logits approximately repeats every L steps
along both query and key dimensions, giving rise to a seasonal pattern with period L. □
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F EMPIRICAL SUPPORT

F.1 EMPIRICAL VALIDATION OF THE DOMINANT-CHANNEL ASSUMPTION OF RE-ACCESS
PATTERN

(a)
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RoPE channel index m
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Figure 5: Empirical validation of the dominant-channel assumption for a re-access head. (a) is an
attention heatmap with re-access pattern. (b) plots the RoPE-channel weights of attention at the sink
position (dark vertical stripe), showing that a single low-frequency channel m∗ accounts for most of
the total weight.

Theorem 5.1 assumes that the attention logits of re-access heads are dominated by a single low-
frequency channel. To directly examine this assumption, we perform a simple spectrum analysis on
a head whose attention map exhibits a clear re-access pattern in Figure 5(a).

For this head, we focus on the key position corresponding to the re-access stripe (the attention
“sink”). We decompose the query and key vectors intoM = D/2 RoPE channels, where each chan-
nel m groups the two feature dimensions that share the same RoPE frequency. For every channel
m, we aggregate its contribution over the decoding steps and then normalize the resulting values so
that they sum to 1. This gives a one-dimensional spectrum {pm}M−1

m=0 .

Figure 5(b) plots the weight of each attention channel. The horizontal axis is the RoPE channel
index m (0 ≤ m < M ), and the vertical axis is the normalized channel weight pm, i.e., the rel-
ative contribution of each channel to the attention logits at the sink position. We observe a highly
concentrated pattern: a single channel m∗ carries about pm∗ ≈ 51% of the total mass, while the re-
maining channels form a long tail with much smaller weights. The dominant channel m∗ lies in the
low-frequency half of the RoPE spectrum, consistent with the “dominant low-frequency channel”
assumption used in Theorem 5.1.

Together, these observations provide direct empirical evidence that, for the re-access heads we anal-
yse, the attention logits are indeed governed by a single low-frequency channel.

F.2 DISENTANGLING QUERY DYNAMICS AND ROPE IN SEQUENTIAL PATTERN.

To empirically separate the roles of input dynamics and RoPE, we conduct a controlled ablation on
a single attention head that exhibits a clear sequential pattern. For this head, the average cosine sim-
ilarity between consecutive queries is approximately 0.99, and the full model (with RoPE enabled)
produces an almost perfectly smooth diagonal attention pattern.

We construct three variants using the same head and the same input sequence (Figure 6):

1. High q-similarity with RoPE (full model). In the original model, both the queries and
keys have high temporal self-similarity, and RoPE is applied as usual. The resulting at-
tention map shows a clean, nearly translation-invariant diagonal stripe: as t increases, the
high-attention region shifts along the (+1,+1) direction with very little distortion. This
behavior is consistent with our theoretical analysis, which predicts that when both qt and
ki vary smoothly in time, RoPE induces approximate shift-invariance along the main diag-
onal.
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Figure 6: Ablation of query dynamics and RoPE on a head with a strong sequential pattern. Left:
original head with high q-similarity and RoPE enabled. Middle: high q-similarity without RoPE,
which retains a rough, broken diagonal with additional vertical streaks. Right: RoPE with perturbed
q, where the diagonal tendency is overlaid with scattered, unpredictable activation spikes.

2. High q-similarity without RoPE. In the second variant, we disable RoPE for this head by
replacing the rotation matrices with identity, while keeping the original queries and keys
unchanged. The attention map still exhibits a diagonal bias, reflecting the strong local
similarity in the queries and keys. However, the diagonal becomes noticeably rough: it
is broken into segments and is superposed with vertical streaks. This indicates that high
q-similarity alone is sufficient to encourage local, near-diagonal attention, but it does not
guarantee the smooth, globally shift-invariant diagonal pattern observed in the full model.

3. Perturbed q-dynamics with RoPE. In the third variant, we keep RoPE enabled but mildly
perturb the temporal dynamics of the queries by randomly resampling their time indices
within the same sequence. This reduces the average cosine similarity between consecutive
queries from 0.99 to 0.97, while leaving the keys and RoPE parameters unchanged. The
resulting attention map still contains a visible diagonal tendency, but it is now overlaid with
many scattered, seemingly random activation spots. In other words, the attention pattern
becomes a mixture of a predictable diagonal component and unpredictable spikes.

Across these three conditions, we observe that: (i) high q-similarity without RoPE yields a coarse,
locally diagonal pattern, (ii) RoPE with perturbed q-dynamics produces partially diagonal but no-
ticeably more unpredictable attention, and (iii) only when smooth q-dynamics and RoPE are both
present do we obtain the clean, stable sequential pattern seen in the full model. This ablation sup-
ports our view that sequential attention patterns arise from the joint effect of smooth input dynamics
and RoPE, and that these two factors play complementary roles: input dynamics control whether the
pattern is predictable or unpredictable, while RoPE shapes the predictable component into a regular,
shift-invariant diagonal structure.

F.3 Q-SIMILARITY DISTRIBUTION

To better understand the behavior of q-similarity, we compute per-head q-similarity scores across
all layers for two models (Llama-3.1 and Qwen-2.5) on two representative datasets (GSM8K and
AIGC). As shown in Figure 7, we have following observations:

Overall high q-similarity supporting temporal continuity. Across all heads and layers, the aver-
age q-similarity is high for both models (around 0.80 for Llama-3.1 and 0.86 for Qwen-2.5). This
empirically supports our working assumption that queries tend to evolve in a temporally continuous
manner in a large portion of the network.

Model-specific but layer-structured distributions. Each model exhibits its own characteristic
distribution of q-similarity values, indicating that the q-similarity distribution reflects model-specific
properties and thus naturally calls for per-model calibration. At the same time, within a given model
we observe a clear and consistent structure: heads in the same layer have very similar q-similarity
scores (forming tight clusters), whereas the average q-similarity differs significantly across layers.
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Qwen-2.5 on AIGC (with row/col mean)

Figure 7: Head-wise q-similarity heatmaps for Llama-3.1 and Qwen-2.5 on GSM8K and AIGC. For
readability, we show only the two decimal digits of each q-similarity value (e.g., “83” denotes a
q-similarity of 0.83).
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This justifies our design choice of operating at the layer level (e.g., using layer-wise averages) when
building downstream metrics and policies.

Stable across datasets for the same model, enabling lightweight calibration. For a fixed model,
the q-similarity distribution is highly consistent across datasets. For Llama-3.1, the average q-
similarity on GSM8K and AIGC differs by only about 0.01. For Qwen-2.5, the absolute mean
difference between the two datasets is about 0.07, but the overall shape and ranking of layers/heads
are very similar. In particular, the relative ordering of heads is largely preserved, so percentile-based
selection strategies (e.g., “top x% most continuous heads”) are unaffected. This indicates that q-
similarity has good stability and generalization across datasets, and that only a small amount of data
is needed to calibrate q-similarity for a given model, without requiring separate tuning for each task.

G EXPERIMENT DETAILS

G.1 DETIALS FOR KV CACHE COMPRESSION

Implementation details. Following CAKE (Qin et al., 2025), we introduce an adjusted per-layer
performance score that incorporates query similarity:

P ′
l = Pl + α(1− Sl), (17)

where Pl denotes the original layer preference score based on entropy and variance of attention
patterns (as defined in Equation (6) of CAKE), Sl is the cosine similarity among queries within a
recent window, and α is a hyperparameter controlling the contribution of query similarity. Formally,

Sl = sim(Q[−Sw:]), (18)

The intuition is that lower query similarity indicates a more random and dispersed attention pattern,
which generally requires allocating a larger budget. By adjusting Pl with (1−Sl), we bias the score
toward layers exhibiting retrieval-like behaviors.

Finally, following the allocation rule in CAKE, we normalize the adjusted scores to distribute the
total budget across layers:

Bl =
P ′
l∑L−1

k=0 P
′
k

·Btotal. (19)

LLMs, benchmark and baselines. We evaluate our method on Llama-3.1-8B (Dubey et al., 2024)
and Qwen2.5-7B (Yang et al., 2024), using the LongBench (Bai et al., 2024) benchmark, which
covers 16 long-context understanding tasks.

G.1.1 BASELINES OF KV CACHE COMPRESSION

Baselines include StreamingLLM (Xiao et al., 2023), H2O (Zhang et al., 2024), SnapKV (Li et al.,
2024), PyramidKV (Cai et al., 2025), and CAKE (Qin et al., 2025). We provide detailed de-
scriptions of these baselines in Appendix G.1.1. In the KV cache compression task, we eval-
uate our method against five representative baselines. Based on whether the budget allocation
across layers is uniform, these baselines can be categorized into Uniform Allocation, represented
by StreamingLLM (Xiao et al., 2023), H2O (Zhang et al., 2024), and SnapKV (Li et al., 2024), and
Non-Uniform Allocation, represented by PyramidKV (Cai et al., 2025) and CAKE (Qin et al., 2025).

• StreamingLLM: retains the first and most recent tokens.

• H2O: prioritizes tokens with high cumulative attention.

• SnapKV: leverages an observation window at the end of the input to cluster and preserve
important KV positions for each head.

• PyramidKV: allocates larger budgets to lower layers and smaller ones to higher layers with
SnapKV’s eviction indicator.

• CAKE: introduces a preference-prioritized adaptive allocation strategy, dynamically adjust-
ing budgets across layers.
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G.2 DETIALS FOR LLM PRUNING

Implementation details. Building on the Block Influence (BI) metric proposed by ShortGPT (Men
et al., 2025), we design an adjusted proxy score:

BI ′ = BI + β(1− q), (20)
where β is a hyperparameter and 1− q is an importance score derived from query similarity q.

Following ShortGPT’s pruning pipeline, we use the PG19 dataset (Rae et al., 2019) as a calibration
set. First, we collect hidden states and queries from each layer while running inference on the
calibration data. Next, we compute the proxy scores for all layers based on the adjusted BI score.
Finally, we sort the layers in the ascending order of scores and remove those with the lowest scores.
The number of pruned layers can be adjusted to balance efficiency gains and accuracy preservation.

LLMs, benchmark, and baselines. We evaluate our method on Llama-2-7B (Touvron et al., 2023),
Llama-3.1-8B (Dubey et al., 2024) and Qwen-2.5-7B (Yang et al., 2024). Using the procedure
described above, we first evaluate how redundant each layer is and decide which layers are to
be pruned. Then we perform zero-shot task classification on common sense reasoning datasets:
PIQA (Bisk et al., 2019), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2019) and
ARC-easy (Clark et al., 2018) at different pruning ratios. In all our experiments, we compare our
method with ShortGPT as a baseline. We list the removed layers in Table 3 of Appendix G.2.1.

G.2.1 LIST OF REMOVED LAYERS

In the LLM Pruning downstream task, we evaluated our pruning method on different LLMs and
pruning ratios. we list the removed layers in Table 3.

Table 3: Removed layers for different benchmark models, using PG19 as calibration dataset.

Model Method Pruning Ratio Removed Layers

Llama-2-7B

ShortGPT 31% 21, 22, 23, 24, 25, 26, 27, 28, 29, 30
Ours 31% 19, 21, 22, 23, 24, 25, 26, 27, 28, 29

ShortGPT 34% 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30
Ours 34% 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29

Llama-3.1-8B

ShortGPT 28% 20, 22, 23, 24, 25, 26, 27, 28, 29
Ours 28% 21, 22, 23, 24, 25, 26, 27, 28, 29

ShortGPT 31% 20, 21, 22, 23, 24, 25, 26, 27, 28, 29
Ours 31% 19, 21, 22, 23, 24, 25, 26, 27, 28, 29

Qwen-2.5-7B

ShortGPT 39% 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 20
Ours 39% 4, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20

ShortGPT 43% 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23
Ours 43% 4, 5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20

H COMPARISON WITH DUOATTENTION

In this section, we provide a detailed comparison between our proposed method and DuoAtten-
tion (Xiao et al., 2024), a recent baseline that explicitly distinguishes retrieval heads and streaming
heads for KV cache compression.

H.1 BASELINES AND METHODOLOGY ADAPTATION

DuoAttention is an optimization-based method that explicitly identifies retrieval heads via training.
It assigns a learnable scalar, which we denote as αduo, to each attention head to represent its retrieval
importance.

To conduct a direct comparison between our q-similarity metric and DuoAttention’s learned im-
portance for the layer-wise budget allocation task, we adapted their scoring mechanism into our
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framework. Specifically, we calculate the importance score for each layer l by averaging the αduo
values across all heads in that layer. We then compute the allocated budget Bl for layer l using a
formulation analogous to Eq. 19:

Bl =
ᾱ
(l)
duo∑L−1

k=0 ᾱ
(k)
duo

·Btotal, (21)

where ᾱ(l)
duo is the average score of layer l. This setup allows us to fairly evaluate the effectiveness of

the two metrics in identifying layers that require higher KV cache budgets.

H.2 POTENTIAL FOR HIGHER COMPRESSION RATIO

It is crucial to highlight the fundamental difference in how the two methods categorize attention
patterns and the resulting impact on the compression scope. DuoAttention operates on a binary
premise where it differentiates Streaming Heads that necessitate only sink and recent tokens from
Retrieval Heads requiring full history retention. Consequently, its compression efforts primarily
focus on heads exhibiting streaming behavior.

In contrast, our method provides a more detailed categorization. Our q-similarity metric distin-
guishes complex Retrieval patterns from a variety of regular attention patterns, including Re-access,
Sequential, and Seasonal patterns. Crucially, our framework identifies these regular patterns as com-
pressible. This effectively expands the scope of compressible heads beyond just streaming heads.
By compressing these additional heads that might otherwise be preserved, our method could achieve
a higher compression ratio while maintaining model performance.

H.3 EXPERIMENTAL SETUP

We conducted experiments to compare the performance of our method against DuoAttention under
strict KV cache budget constraints. We evaluated both methods at budget levels of 512 and 1024
tokens.

H.4 RESULTS AND ANALYSIS

The quantitative results are presented in Table 4. Our method demonstrates consistent superiority
or comparable performance to DuoAttention across different budgets. As shown in Table 4, our
method achieves higher average accuracy at both budget levels (64.52% vs. 64.46% at budget 512,
and 64.80% vs. 64.68% at budget 1024). Notably, on challenging multi-hop reasoning tasks such as
HotpotQA, our method significantly outperforms DuoAttention (e.g., 55.45% vs. 54.58% at budget
1024), indicating that our temporal pattern-based approach is more robust in preserving critical
information for complex reasoning.

Table 4: Performance comparison with DuoAttention.

Budget Method MF-en HotpotQA QMSum TriviaQA Pre Lcc Avg.
- Full 53.78 55.04 25.33 91.25 99.50 63.36 64.71

512 DuoAttention 51.70 54.15 24.50 92.35 99.50 64.55 64.46
Ours 51.63 54.53 24.57 92.35 99.50 64.56 64.52

1024 DuoAttention 52.72 54.58 24.62 91.89 99.50 64.78 64.68
Ours 52.63 55.45 24.59 92.04 99.50 64.58 64.80

I THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were employed solely for the purpose of enhancing the linguistic
clarity and stylistic refinement of this manuscript.
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