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ABSTRACT

In Personalized Federated Learning (PFL), existing methods often overlook the
intricate interconnections between clients and their local datasets, limiting effec-
tive information sharing. In this work, we introduce ”FEDPNP”, a novel approach
that leverages the inherent graph-based relationships among clients. Clients con-
nected by a graph tend to exhibit similar model responses to similar input data,
leading to a graph-based optimization problem linked to inverse problems like
compressed sensing. To tackle this optimization problem, we employ a Half-
Quadratic-Splitting technique (HQS) to effectively decompose it into two sub-
problems. The first subproblem, acting as a data fidelity term, ensures local
models perform well on their respective datasets, while the second, serving as
a sparsity-inducing term, promotes the smoothness of local model weights on the
graph. Notably, we introduce a structural proximal term, a generalization for
FedProx, in the first subproblem and demonstrate that any graph denoiser with a
controllable noise parameter can be integrated as the second subproblem, offering
flexibility without explicit derivation. We evaluate FEDPNP on computer vision
datasets (CIFAR-10, MNIST) and a human activity recognition dataset (HAR-
BOX) to test its performance in real-world PFL scenarios. Empirical results con-
firm that FEDPNP outperforms state-of-the-art algorithms. This novel bridge be-
tween PFL and inverse problems opens up the potential for cross-pollination of
solutions, yielding superior algorithms for PFL tasks.

1 INTRODUCTION

Distributed machine learning has received significant attention and extensive research in recent years
(Liu et al., 2022a; Wen et al., 2023). The concept of collaborative learning has become increasingly
appealing due to the proliferation of high-performance machinery and advanced computing infras-
tructure in the digital era (Liu et al., 2022c; Huang et al., 2022b). This growth is fueled by remark-
able advancements in personal electronic and hand-held devices, including smartphones, wearable
devices, home assistants, and autonomous vehicles (Jones et al., 2020). These interconnected de-
vices are equipped with sensors to collect vast amounts of data and employ various technical means
to enable automatic, intelligent computing.

One widely adopted approach in distributed machine learning is Federated Learning (FL), intro-
duced by McMahan et al. (McMahan et al., 2017). FL has garnered substantial interest and applica-
tion across various domains, including smart cities (Pandya et al., 2023), computer vision (Chen &
Chao, 2021; Oh et al., 2021; Liu et al., 2022b; Xiong et al., 2023), healthcare (Antunes et al., 2022),
and finance (Wu et al., 2022). Its ability to leverage distributed data without centralization makes
FL an attractive solution for addressing challenges related to privacy, security, and scalability in ma-
chine learning. FL collaboratively trains local models owned by different participants, preserving
privacy and reducing communication (McMahan et al., 2017). Conventional FL aims to minimize
collective loss through global model training, but non-i.i.d. statistical diversity among clients can
impede its suitability (Gao et al., 2022). Conversely, training without FL results in a loss of local
model generalization due to inadequate data (T Dinh et al., 2020). To address this challenge, var-
ious techniques have emerged to strike a balance between globalization and model personalization
within the realm of Personalized Federated Learning (PFL) (T Dinh et al., 2020; Ozkara et al., 2022;
Setayesh et al., 2022; Ma et al., 2022b). The primary objective of PFL is to train local models that
excel on local datasets while maintaining adequate generalization. This is typically achieved through

1



Under review as a conference paper at ICLR 2024

methods such as fine-tuning the global model (Zhang et al., 2022), introducing a regularization term
to the objective function (regularized PFL) (T Dinh et al., 2020), clustering participants (clustered
PFL) (Zhang et al., 2020), decoupling parameters to tailor customized models for participants, uti-
lizing knowledge distillation (architecture-based PFL) (Wang et al., 2020; Ma et al., 2022a; Huang
et al., 2022a), and employing Meta-learning PFL (Yang et al., 2023).

Our framework focuses on regularized PFL. Existing methods like FedProx (Li et al., 2020a) fall
short of capturing fine-grained participant relationships , e.g., relationships between participants
i and j and the connection strength. The sole structured regularization method (Chen et al., 2022)
applies constraints to neighboring participants based on the graph but overlooks indirect connections
and the complete graph. Additionally, cluster-based PFL, despite creating group-wise graphs, lacks
insight into the structured interactions among individual participants, primarily capturing coarse
relationships (Ouyang et al., 2022).

To address the limitations of regularized and cluster-based PFL approaches, we introduce a partici-
pant relationship-based graph construction. This relationship can encompass various factors such as
dataset similarity, hardware connections, or social interactions among participants. We contend that
participants linked by this graph should exhibit similar behavior in their local models, reflecting the
underlying structure. We focus on creating such a relationship based on dataset similarity. There-
fore, participants sharing a dataset similarity connection imply similar data distributions, resulting
in analogous responses to comparable input samples in their local models. This observation leads
us to conjecture that the model weights of graph-connected participants exhibit sparsity in some
domain—a notion equivalent to the “smoothness of the graph” imposed by a graph denoiser or the
idea that the “graph signal” (i.e., model weights) should exhibit smoothness across the graph. In this
scenario, the local loss function corresponds to data fidelity, while graph smoothness represents the
sparsity of the graph signal, i.e., local model weights. This insight reveals an unexplored connection
between our approach and well-established concepts in inverse problems, as seen in Compressed
Sensing (CS) (Donoho, 2006) and imaging domains (Song et al., 2022). In inverse problems, the
primary objective is to recover an unknown signal, image, or multi-dimensional volume from obser-
vations that have undergone an ill-posed forward process, i.e., forward model. Consequently, arriv-
ing at a unique reconstruction is often unattainable. To better approximate the unknown data, prior
knowledge in the form of a sparsity-inducing term is added to the optimization problem, typically
manifesting as smoothness on the signal (Ongie et al., 2020). For instance, medical MRI images
often exhibit smoothness properties in domains like the discrete Fourier transform, as highlighted
by Zhong et al. (Zhong et al., 2022) .

In this work, we propose to address graph-structured PFL as an inverse problem. We argue that
PFL can be likened to solving a general inverse problem where the goal is to recover model weights
that adhere to both the forward model (local loss function) and exhibit sparsity in a specific domain
(graph smoothness). Moreover, the proposed approach generalizes both the renowned FedAvg and
FedProx algorithms. Consequently, this paper aims to answer a pivotal question: Can enhancing
model personalization be achieved through structured collaborative optimization, leveraging solu-
tions from well-established inverse problems?

The contribution of our work is as follows:

[C1] Graph-Structured Federated PnP. We propose a novel approach called Graph-structured
Federated Plug & Play (FEDPNP) to solve the PFL and data heterogeneity problems. The proposed
FEDPNP introduces a structured proximal term serving as regularization, addressing statistical het-
erogeneity in the FL framework based on participants’ graph-based interconnections. Our algorithm
further generalizes both renowned FedAvg (McMahan et al., 2017) and FedProx (Li et al., 2020a).

[C2] A New Perspective. We provide a fresh perspective on PFL algorithms, examining local and
global updates structurally within the context of inverse problem solutions. FEDPNP is a culmination
of the PnP Half-Quadratic-Splitting (HQS) algorithm, comprising two separate sub-problems where
a graph denoiser can be readily Plugged in as the second optimization solution. To the best of our
knowledge, this is the first work connecting PFL and inverse problems. Such a link paves the way for
the mutual exchange of solutions, possibly leading to the development of superior PFL algorithms.

[C3] Experimental Evaluation. We have conducted experiments on computer vision datasets like
MNIST and CIFAR-10, along with a real-world human activity recognition dataset, HARBOX, that
captures the data heterogeneity in practical cases, making it suitable for evaluating PFL performance.
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2 METHODOLOGY

In this section, we formalize the environment specification and the problem description, with a
specific focus on an FL solution involving multiple participants collaboratively training ML models.

2.1 ENVIRONMENT DESCRIPTION

In an FL system with K participants or clients, each possesses a local dataset denoted as Dk, which
is drawn from distinct distributions Pk and is typically non-identically and independently distributed
(non-IID). To capture the interconnections among participants, we define a graph G with an adja-
cency matrix A, reflecting the topological relationships within the FL system. This adjacency matrix
A represents the connections among participants and is constructed based on the similarity of Dk.
More details on graph construction can be found in the supplementary section A.5.

2.2 PROPOSED FRAMEWORK

Generally speaking, the FL attempts to optimize global model weights in each communication
round. Let ωk ∈ RB be the model weight vector for the kth client, where B is the number of
parameters for the ML model. The general objective of the FL is

min
ω1:K

F (f1(ω1), ..., fK(ωK)) , (1)

where F (·) is the aggregator function for the local loss functions fk(ωk), k = 1, ...,K. In Con-
ventional FL (McMahan et al., 2017), the aggregator function is considered to be the weighted
summation of local objectives, i.e., F ({fk(ωk)}Kk=1) =

∑K
k=1 ζkfk(ωk) with ζk = |Dk|∑K

k=1 |Dk|
.

However, such an objective function proves to miss various characterizations of the local datasets,
such as statistical heterogeneity and local model personalization.

To address the limitations of the objective function in equation 1, personalized optimization can be
framed as a bi-level optimization. Thus, for each client, the optimum model weights are derived as

min
ω1:K

fk(ωk) + rk(ωk,ωG)

s.t. ωG = argmin
ω

F (f1(ω), ..., fK(ω))
(2)

where rk(ωk,ωG) represents the regularization term applied to constrain the impact of local updates
and help with model personalization. In addition, ωG is the global model weight obtainable using
conventional FL algorithms such as FedAvg (McMahan et al., 2017). However, this optimization
approach lacks structured information about participant interconnections and only maintains the
personalized model close to the global model.

2.2.1 PERSONALIZED FL AS AN INVERSE PROBLEM

In PFL, optimization involves two crucial aspects: personalization (local updates) and knowledge
sharing (global updates). Personalization happens as models are updated on local datasets, while
knowledge sharing involves aggregating, replicating, and distributing updated local models among
participants. These aspects can be viewed from different perspectives.

Let Wk be the subspace of model weights minimizing fk(ωk) with sufficient accuracy. Local train-
ing, using methods like stochastic gradient descent, guides ωk toward Wk, behaving like a fidelity
term. Knowledge sharing, conversely, moves ωk away from Wk but ensures smoothness among col-
lective model weights; e.g., FedAvg (McMahan et al., 2017) makes all ωk in W = [ω1, ...,ωK ] iden-
tical after aggregation, ensuring sparsity. This resembles sparsity-inducing terms because smoothing
renders vector W sparse. Similar notions arise in inverse problems, with fidelity terms aligning the
reconstructed signal with the model subspace and regularization terms ensuring signal smoothness.
This shows a close connection between PFL objectives and general inverse problem formulations.

Furthermore, the graph G captures the structural relationships among participants, suggesting that
connected local models should behave similarly based on this structure. For instance, participants
structured by data similarity indicate similar data distributions, leading to similar responses from
their local models to comparable inputs. Consequently, we hypothesize that such model weights ex-
hibit smoothness on the graph (Liu et al., 2023). Utilizing this prior knowledge ensures personalized
local models while structurally updating the optimization problem.

3



Under review as a conference paper at ICLR 2024

Assume that W [i] = [ω1[i], ...ωK [i]] ∈ RK , ∀i = 1, ..., B represents the graph signal weight
vector, where ωk[i] signifies the ith model weight of the kth participant. Define s(W [i]) as the
graph-structured sparsity-promoting function, e.g., Total Variation (TV) regularization, TV(W [i]).
Under such a prior term, the objective function is determined as:

P1 : Ŵ [i] = argmin
W [i]

F (f1(ω1), ..., fK(ωK)) s.t. s(W [i]) ≤ ϵ′ i = 1, ...B, (3)

where ϵ′ ≥ 0. Upon closer examination, (P1) shares similarities with inverse problems (Bouman &
Buzzard, 2023). In essence, we aim to project (or approximate) W [i] onto the weight subspace, min-
imizing the first term, F (·), while ensuring sufficient sparsity as required by the second term. This
connection with inverse problems offers opportunities to adapt various algorithms and techniques for
learning and recovering model weights. We term this problem the Distributed Problem. Involving
the constraint into the optimization using the lagrangian multiplier β, we present the optimization
problem as

P1 : Ŵ [i] = argmin
W [i]

F (f1(ω1), ..., fK(ωK)) + βs(W [i]) i = 1, ...B, (4)

where β has the equivalence role as ϵ and imposes the degree of sparsity in the objective function. To
simplify the optimization, we choose the two terms for the prior information as s(Ω) = Lsmooth +
Llinear specified as follows:

P1 : Ω̂ = argmin
Ω

F (F(Ω)) + β̂1Ω
TLΩ+ β̂2||ΩTL||22, (5)

where Ω = [W [1], ...,W [B]] ∈ RK×B is the weight matrix with the rows corresponding to the
weights of the kth participant, and F(Ω) = {fk(ωk)}Kk=1 is the set of local loss functions. Moreover,
L is the graph Laplacian of A defined as L = D − A where D represents the diagonal degree
matrix of A. The objective term Lsmooth = ΩTLΩ is incorporated to enforce sparsity in the form
of smoothness of the graph signal. Additionally, Llinear = ||ΩTL||22 is introduced to ensure minimal
deviation of W [i] from the linear form, as referenced in (Stanković et al., 2019).

2.2.2 PLUG & PLAY FL (FEDPNP): A SOLUTION TO GRAPH-STRUCTURED PFL AS AN
INVERSE PROBLEM

The distributed problem in (P1) seeks to minimize local losses while considering graph signal
smoothness, where the aggregator F (·) is pivotal. Notably, the graph signal corresponds to the par-
ticipants’ model weights. However, solving (P1) directly proves challenging and impractical in
real-world scenarios due to two primary factors. First, the aggregator function F (F(Ω)) operates
in a one-dimensional space, while both Lsmooth and Llinear have B dimensions, causing a dimen-
sionality mismatch. Secondly, a portion of the objective of F (F(Ω)) can only be optimized locally,
while both Lsmooth and Llinear necessitate the availability of all local weights. Consequently, there
exists a disparity in the optimization requirements between these components.

To circumvent the challenges associated with directly solving the minimization problem (P1), we
propose an alternative approach that involves decoupling the problem using the Half-Quadratic-
Splitting (HQS) technique. HQS has garnered substantial attention and has been extensively em-
ployed in prominent domains, including Compressed Sensing (CS) (Rasti-Meymandi et al., 2023),
image restoration (Zhang et al., 2021), and sparse recovery (Dong et al., 2018). HQS is solving the
following minimization problem by adding an augmented variable

P2 : Ψ̂, Ω̂ = argmin
Ω,Ψ

F (F(Ω)) + β̂1Ψ
TLΨ+ β̂2||ΨTL||22 s.t Ψ = Ω, (6)

where Ψ ∈ RB denotes the auxiliary vector variable. Using the penalty method we have

P3 : Ψ̂, Ω̂ = argmin
Ω,Ψ

F (F(Ω)) + β̂1Ψ
TLΨ+ β̂2||ΨTL||22 +

µ

2
||Ψ−Ω||22. (7)

The optimization problem can further be expressed in disjoint blocks as

P4 :

{
Ω̂t = argminΩ F (F(Ω)) + µ

2 ||Ψ̂
t−1 −Ω||22

Ψ̂t = argminΨ β̂1Ψ
TLΨ+ β̂2||ΨTL||22 +

µ
2 ||Ψ− Ω̂t||22

, (8)

where the superscript t represents the current communication round. Therefore, solving the opti-
mization problem in (P3) is now achievable by iterating through the first and second terms in (P4).
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Figure 1: An illustration of the mechanics be-
hind the proposed FEDPNP. Each node is a model
weight connected via a graph.

The first expression in (P4) represents the gen-
eral objective function in equation 1, enriched
with an intriguing proximal term. The term
µ
2 ||Ψ̂

t−1−Ω||22 implies that local model weight
optimization is regularized to stay close to
structurally tuned model weights. This con-
cept aligns with the FedProx algorithm intro-
duced in (Li et al., 2020a), which uses a prox-
imal term to mitigate dataset heterogeneity and
partial information by considering the proxim-
ity of local weights to global weights. How-
ever, our proximal term differs significantly in
two ways: firstly, Ψ̂t−1 relates to the second
objective term in (P4), and secondly, Ψ̂t−1

is updated in a structural, not global, manner.
In essence, we introduce a structured proximal
term into the objective function, which partici-
pants adhere to during local updates. Thus, the kth participant minimizes their local objective using
a solver of their choice, constrained by the structurally acquired model weights as

min
ωk

lk(ω
t
k; Ψ̂

t−1[k]) = fk(ω
t
k) +

µ

2
||Ψ̂t−1[k]− ωt

k||22, (9)

where Ψ̂t−1[k] ∈ RB is the kth row of Ψ̂t−1 solved from the second subproblem in (P4), i.e., the
structural model weight (as opposed to global model weight) tailored specifically for participant k
according to the graph’s topology.

The second term in (P4) is a convex problem. The closed-form solution to this problem is derived
by taking the gradient of the objective function as follows:

∇ΨΨ̂t = µ(Ψ− Ω̂t) + 2β̂1LΨ+ 2β̂2L
2Ψ = 0 =⇒ (10)

Ψ =
(
µI + 2β̂1L+ 2β̂2L

2
)−1

µΩ̂t =
(
I + 2β1L+ 2β2L

2
)−1

Ω̂t,

where for simplicity we absorbed µ inside βi, i.e., {β1, β2} = { β̂1

µ , β̂2

µ }. Defining H(L;β1, β2) =(
I + 2β1L+ 2β2L

2
)−1

to be the designed filter, the proposed graph filter is derived as

Ψ̂t = Ψ = H(L;β1, β2)Ω̂
t. (11)

H(L;β1, β2) can also be expressed as H(L;β1, β2) = V h(Λ;β1, β2)V
T where V ∈ RK×K

and Λ = diag[λ1, ..., λK ] ∈ RK×K are the eigenvector and eigenvalue matrix from the eigenvalue
decomposition of A (Stanković et al., 2019). Additionally, the filter operator h(Λ;β1, β2) on a
specific eigenvalue can be further specified as

h(λk;β1, β2) =
1

1 + β1λk + β2λ2
k

, (12)

where λk is called a graph frequency in the graph signal processing (GSP) community (Ortega et al.,
2018). In equation 12, h(·) is a GSP-inspired low-pass filter tunable by β1 and β2. An illustration
of such a filter is depicted in Section A.6.3. The second term, executed on the server, relies on
access to all device graph signals during optimization. Figure 1 illustrates FEDPNP’s mechanism,
and Algorithm 1 outlines the proposed FEDPNP algorithm.

Remark 1: The second term in (P4) functions as a versatile graph denoiser that can adapt to
various denoising settings by incorporating a noise control parameter. This aligns with the Plug
and Play (PnP) prior commonly used in inverse problems. Like PnP algorithms in inverse problems,
where denoising strength decreases during optimization (Rasti-Meymandi et al., 2023), our proposed
denoiser’s parameters can transition from high βi values (strong denoising) to lower values (weaker
denoising). To achieve this, we introduce mediator parameters νt1 and νt2 that decay exponentially
with a rate of ν(0)(1−η)t, where ν(0) is the initial denoising parameter and η is the denoising decay
rate. Consequently, the denoising strength of H(L; νt1, ν

t
2) gradually diminishes until it matches

H(L;β1, β2), where β1, β2 ≤ ν(0).
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Remark 2: We further augment the graph denoising in equation 11 to generalize our framework.
The augmented solution to the second subproblem is

Ψ̂t = Ψ = H(L;β1, β2)diag[ζ1, ..., ζK ]Ω̂t, (13)
where diag[ζ1, ..., ζK ] is the coefficient matrix, similar to the weights in the FedAvg algorithm.
Note that ζk, k = 1, ...,K, privileges each participant individually without any consideration of
their graph connectivity. Thus, when denoiser parameters β1 = β2 −→ ∞, the second subproblem
approximates a uniform weighted average of the graph signal across all nodes. As β1 = β2 −→∞,
h(λ;∞,∞) = 1 when λ = 0 and h(λ;∞,∞) = 0 for all other λ. The addition of µ

2 ||Ψ
t−1[k] −

Ω||22, with Ψt−1[k] representing the weighted average of all model weights for k = 1, ...,K (i.e.,
Ψt−1[k] = ωt−1

G ), transforms FEDPNP into FedProx through regularization, covering both FedAvg
and FedProx. More insights on graph denoising and FEDPNP generalization can be found in A.6.2.

Algorithm 1: FEDPNP with dynamic denoising parameter.

Input: R, β1, β2, ν0 η, Dk, ω0
k,

-Initialization: Local Processing Step
gather statistical information on Dk, k = 1 : K and send them to the server
-Initialization: Server Processing Step
create the adjacency matrix A based on participants’ similarity using the statistical information
stack ω0

k to create Ψ0

for communication round t = 1 : R do
/* Local Processing Step (Psuedo-projection step) */
for all k = 1 : K in parallel do

ωt
k ←− Ψt−1[k]

for each local update r = 1 : E do
Bk ←− create mini-batches from Dk

for each mini-batches bi ∈ Bk do
ω̂t

k ←− minimize fk(ω
t
k) +

1
2 ||ω

t
k −Ψt−1[k]||

end
end

end
/* Server Processing Step (Denoising step) */

collect ω̂t
k and stack to create Ω̂t

Ψ(t) ←− H(L; νt1, ν
t
2)diag[ζ1, ..., ζK ]Ω̂t equation 13, where ζk = |Dk|∑K

k=1 |Dk|
if νt1 ≥ β1 then νt1 ←− ν0(1− η)t else νt1 ←− β1

if νt2 ≥ β2 then νt2 ←− ν0(1− η)t else νt2 ←− β2

end

3 CONVERGENCE ANALYSIS

In this section, we analyze the convergence of FEDPNP in scenarios involving both convex and
non-convex problems. To establish the theoretical foundation for our assessment of FL algorithms,
we adopt fundamental assumptions commonly found in (Li et al., 2020a;b; Setayesh et al., 2022; Li
et al., 2019), forming the basis of our analytical framework.

Assumption 1 (L-Lipschitz continuous gradient) The local loss function fk(·) is L-Lipschitz con-
tinuous gradient for all clients k ∈ {1.2, · · · ,K}, meaning that ∀ω and ω̂, the inequality
∥∇fk(ω)−∇fk(ω̂)∥ ≤ L∥ω − ω̂∥ holds with some L > 0.

Assumption 2 (Strong convexity) For each client k, there exists α > 0 such that ∇2fk(·) ⪰ −αI,
with I as the identity matrix. Consequently, this implies that the function lk(ω,Ψt[k]) in equa-
tion 9 is α′-strongly convex, where α′ := −α + µ > 0, signifying that ∀ω and ω̂, the inequality
∥∇lk(ω,Ψt[k])−∇lk(ω̂,Ψt[k])∥ ≥ α′∥ω − ω̂∥ holds.

Assumption 3 (γt
k-inexact solution) Local updates result in a γt

k-inexact solution ωt+1
k for

minωlk(ω,Ψt[k]) for every k and t, where ∥∇lk(ωt+1
k ,Ψt[k])∥ ≤ γt

k∥∇lk(Ψt[k],Ψt[k])∥. We
assume γt

k ∈ [0, 1], where γt
k = 0 signifies optimality, with smaller γt

k indicating higher accuracy.
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Now, we will explore the convergence of FEDPNP in a non-convex setting, as described in the
following theorem, considering a single step of FEDPNP.

Theorem 1 (Non-convex FEDPNP convergence) Let Assumptions 1-3 hold, and ωt
k not be a sta-

tionary solution for client k at step t. Provided that µ, α, γt
k, and L are chosen such that

υt
k =

1

µ
− γt

k

µ
− L(1 + γt

k)

µα′ − L(1 + γt
k)

2

2α′2
> 0, (14)

then, at iteration t within Alg. 1, we observe the following decrease in each local loss function:

fk(ω
t+1
k ) ≤ fk(Ψ

t[k])− υt
k∥∇fk(Ψt[k])∥2. (15)

The proof of Theorem 1 is provided in the supplementary material.

We can employ the established sufficient decrease condition in Theorem 1 to elucidate the conver-
gence rate of FEDPNP when applied to non-convex functions fk(·).

Theorem 2 (Convergence rate: FEDPNP) Let the assumption of Theorem 1 be met during each
iteration of FEDPNP, and δk :=

∑T−1
t=0 fk(Ψ

t[k])–fk(ω
t+1
k ). It follows that after T = O

(
δk
ϵυk

)
iterations of FEDPNP, we have 1

T

∑T−1
t=0 ∥∇fk(Ψt[k])∥2 ≤ ϵ, with υk = mint υ

t
k. The proof of

Theorem 2 is provided in the supplementary material.

Although the findings presented so far are applicable to non-convex functions fk(·), we also analyze
the convergence behavior for the specific scenario of convex loss functions.

Corollary 1 (FEDPNP convergence: Convex case) Let Assumption 1 hold, fk(·) be convex, and
γt
k = 0 for any k and t (indicating precise solutions to all local problems). In such a case, given µ >

1.5L, we can get that υ = 1
µ −

3L
2µ2 and fk(ω

t+1
k ) ≤ fk(Ψ

t[k])− υ∥∇fk(Ψt[k])∥2. Consequently,
it can be deduced that after conducting T = O

(
Lδk
ϵ

)
iterations of the FEDPNP method, we can

stablish that 1
T

∑T−1
t=0 ∥∇fk(Ψt[k])∥2 ≤ ϵ, with δk :=

∑T−1
t=0 fk(Ψ

t[k])–fk(ω
t+1
k ). You can find

the proof of Corollary 1 in the supplementary materials.

4 EXPERIMENTAL RESULTS

In this section, we experiment with FEDPNP across diverse datasets, analyzing parameter influence
(β and µ) on convergence in classification tasks. We highlight the versatility of denoising techniques
for the second subproblem in equation 8, avoiding explicit closed-form derivations.

4.1 EXPERIMENTAL SETTINGS

Datasets and ML Models: We utilize MNIST and CIFAR-10 datasets for image classification in
FL (LeCun et al., 1998; Krizhevsky et al., 2009). Participants receive local datasets with label dis-
tribution based on a Dirichlet distribution (Dir(κ)) (Yurochkin et al., 2019; Wang et al., 2020). We
test two κ values, 0.2 and 0.5, to highlight varying data heterogeneity. Additionally, we extend our
experiments to Human Activity Recognition (HAR), a real-world classification task. HAR datasets
are chosen for two reasons: they inherently raise privacy concerns, making them ideal for FL so-
lutions, and they naturally exhibit data heterogeneity, eliminating the need for synthetic scenario
simulations like in MNIST and CIFAR-10. Specifically, we use the HARBOX dataset (Ouyang
et al., 2022), comprising daily activities from 121 users (aged 17–55), resampled at 50 Hz with 2-
second windows, resulting in 900 feature vectors. Importantly, this dataset was collected using 77
different smartphone models, introducing feature skew and data heterogeneity—a perfect setting for
our federated experiments. Local datasets are split into 75% training and 25% test sets.

Following the models used in (T Dinh et al., 2020), we employ a 2-layer Conv2D followed by 1
and 2 Fully Connected (FC) layers for MNIST and CIFAR-10 datasets, respectively. In the case of
HARBOX, we opt for a fully connected network featuring two FC layers similar to the model used in
(Ouyang et al., 2022). All trainable layers undergo batch normalization. Our focus is on contrasting
the efficiencies of different frameworks using identical ML models, rather than emphasizing specific
architectures for state-of-the-art numerical outcomes. More details are available in Section A.4.
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Table 1: Mean accuracy comparison (± std) over K = 20 local models under data heterogeneity on
CIFAR-10, MNIST, and HARBOX datasets after R = 400, with h and s superscripts on FEDPNP
denoting the hard thresholding and soft thresholding denoisers defined in 16 and 12, respectively.

Algorithm CIFAR-10 MNIST HARBOX
Dir(0.2) Dir(0.5) Dir(0.2) Dir(0.5)

Local Training 60.07±17.5 59.03±16.8 96.87±2.2 94.07±3.8 60.57±22.1
FedAvg 50.23±20.2 53.93±17.5 97.87±1.5 96.87±2.5 67.22±20.4
FedProx 52.85±18.2 54.53±15.2 97.47±1.5 96.65±2.4 69.17±18.5
FedBN 53.43±17.8 54.76±15.1 97.76±1.5 96.85±2.4 68.47±18.7

Per-FedAvg 61.77±14.6 61.03±11.8 97.55±1.6 96.33±2.5 81.02±17.5
pFedMe 64.45±12.6 62.56±11.6 97.83±1.4 96.74±2.2 85.60±15.2

FedPnPh(µ = 0, τ = K) 60.03±17.5 59.23±16.7 96.58±2.3 94.11±3.8 60.50±22.1
FedPnPs(µ = 0, β = 0) 60.10±17.5 59.10±16.7 96.83±2.3 94.06±3.8 60.55±22.0

FedPnPh(µ = 0.2, τ = 1) 50.86±18.5 52.26±15.4 97.30±1.7 96.50±2.2 67.18±18.6
FedPnPh(µ = 0.2, τ =∗) 69.88±11.7(∗τ = 15) 62.61±12.2(∗τ = 16) 97.35±1.8(∗τ = 2) 97.23±1.4(∗τ = 2) 81.83±17.7(∗τ = 5)

FedPnPs(µ = 0.2, β = 0.005) 71.33±11.1 67.02±10.3 98.30±1.3 96.90±1.6 86.15±12.6
FedPnPs(µ = 0.2, β = 0.0005) 72.04±10.0 68.98±9.2 98.43±1.3 97.02±1.8 90.55±10.6

Implemenattion Details: In all experiments, we maintain a consistent learning rate of 0.01 with an
exponential weight decay rate of 0.96. Local updates are performed for a fixed number of E = 5
iterations. Without loss of generality, we assume β1 = β2 = β for simplicity. We configure the
number of participants as K = 20 for MNIST and CIFAR-10 and K = 40 for HARBOX. All model
weights initialize uniformly as ω0

k = ω0 for k = 1, ...,K. Unless specified otherwise, we set the
denoising decay rate to η = 0.1, the initial denoising parameter to ν(0) = 1, and µ = 0.2. Note that
better models result in higher test accuracy. All experiments are the averages of five independent
runs conducted on a single GPU, the GeForce RTX 2080 Ti, with 128 GB of RAM, utilizing the
PyTorch library (Paszke et al., 2017). Further implementation details are provided in A.4.3.

We also explore an alternative denoiser for the second subproblem in equation 8 within Algorithm
1 to assess FEDPNP’s ”Plug and Play” nature. The newly defined denoiser is as follows:

h(λ; τ) =

{
1 if the index of λ < τ
0 otherwise , (16)

where τ is an integer value specifying how many eigenvalues of the graph signal should be retained.
A smaller τ yields a smoother graph signal. For example, when τ = 1, the filter retains only the first
eigenvalue of the graph’s adjacency matrix, representing the signal mean. In another view, the filter
in equation 16 is a hard thresholding while the one in equation 12 is a soft thresholding graph filter.

4.2 NUMERICAL RESULTS

We compare FEDPNP with state-of-the-art algorithms like FedProx (Li et al., 2020a), FedBN (Li
et al., 2020b), PFedMe (T Dinh et al., 2020), and Per-FedAvg (Fallah et al., 2020) to address data
heterogeneity and PFL. Extensive hyperparameter optimization through grid search maximizes their
test accuracy. Table 1 shows results across various datasets and heterogeneity levels. Remarkably,
FEDPNP (β = 0.0005) consistently outperforms others, benefiting from the graph-structured partic-
ipant relationships embedded in our algorithm. Setting β = 0 and τ = K in FEDPNP leads to fully
local training, with the denoiser having no role in information sharing. Furthermore, FEDPNP’s test
accuracy closely matches that of FedProx and FedAvg when τ = 1, affirming the generalization of
the FEDPNP framework. Comparing hard and soft thresholding versions of FEDPNP (i.e., FEDPNPh
and FEDPNPs, resp.) underscores the denoiser’s vital role, with the latter achieving superior accu-
racy. Hence, designing the denoiser is pivotal for FEDPNP’s model performance.

4.3 EFFECT OF DIFFERENT PARAMETERS/DENOISERS ON CONVERGENCE CURVE

Effect of β: In this section, we examine the impact of the smoothing strength parameter, β,
outlined in equation equation 12. Figure 2 demonstrates FEDPNP’s convergence across diverse
datasets with varying β values. Smaller β consistently leads to higher test accuracy, facilitat-
ing more effective structured information sharing according to the graph G. FEDPNP with the
recommended β generally outperforms both FedAvg and FedProx, as seen in improved training
losses across communication rounds. The method excels by leveraging the fine-grained inter-
connection of local models, controlled by the parameter β. While FedProx shows faster loss re-
duction compared to FEDPNP with β = 1, 0.5, 0.05 in Figure 2e, its corresponding test accu-
racy (Figure 2b) remains lower. Larger β values result in smoother graph signal behavior, re-
sembling FedAvg with µ = 0 and FedProx with µ > 0. However, setting β = 0 causes
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(a) (b) (c)

(d) (e) (f)

Figure 2: Effect of β on the convergence of FEDPNP compared to FedAvg and FedProx when
K = 20, µ = 0.2, E = 5. a, d) CIFAR-10 with Dir(0.5), b, e) MNIST with Dir(0.2), and c, f)
HARBOX datasets. For β = 0, ν(0) = 0 and for the rest, it is ν(0) = 1.

a drop in test accuracy as FEDPNP converges to full local training without knowledge-sharing
due to the denoiser not performing graph smoothing. In this case, ν(0) = 0 is also set to em-
ulate such a scenario. Section A.7 presents additional experiments on the effect of β, model
generalization over an out-of-distribution test set, the impact of E, and varying batch sizes.

Figure 3: Effect of µ on the convergence of FEDPNP
when β = 1, E = 5. (Right) CIFAR-10 with Dir(0.5)
and K = 20 and (Left) HARBOX with K = 40.

Effect of µ: We investigate the impact
of µ, the regularization parameter, in the
first sub-problem of equation 8. With
β = 1 and other parameters fixed, Fig-
ure 3 shows its effect on CIFAR-10 and
HARBOX datasets. Increasing µ slows
down convergence, but it enhances test
accuracy compared to smaller µ values,
revealing a speed-accuracy trade-off.

Figure 4: The effect of the plugged-in denoiser defined
in equation 16 over defferent τ on (Right) CIFAR-10 and
(Left) MNIST with Dir(0.5) when µ = 0.2, E = 5, and
K = 20.

Effect of denoiser: Figure 4 shows
the new denoiser’s performance on the
CIFAR-10 and MNIST datasets while
varying τ . In Algorithm 1, we incremen-
tally increase ν(t) over the communica-
tion rounds until it reaches τ . Increasing
τ improves test accuracy, similar to re-
ducing β in equation 12. This alternate
denoiser effectively replaces the second
sub-problem in equation 8 without ex-
plicit solving, allowing for plugging and
playing with various denoisers, akin to
PnP algorithms in inverse problems.

5 CONCLUSION

We introduced FEDPNP, a graph-based Federated Learning (FL) algorithm inspired by inverse prob-
lem solutions. Connecting our optimization problem to established inverse problems, we utilized
HQS to split it into two parts: data fidelity (local update) with a novel proximal term and a sparsity-
inducing term (graph denoiser) adaptable to different denoisers with controlled noise. Our experi-
ments showed FEDPNP’s superior performance over other FL algorithms. Future works can explore
alternative inverse problem approaches, denoiser roles, graph construction criteria, and privacy con-
cerns. Our current work assumes similar local model architectures, left for future investigation.
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Ljubiša Stanković, Miloš Daković, and Ervin Sejdić. Introduction to graph signal processing. Vertex-
Frequency Analysis of Graph Signals, pp. 3–108, 2019.

Canh T Dinh, Nguyen Tran, and Josh Nguyen. Personalized federated learning with moreau en-
velopes. Advances in Neural Information Processing Systems, 33:21394–21405, 2020.

Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni.
Federated learning with matched averaging. In International Conference on Learning Represen-
tations, 2020.

Jie Wen, Zhixia Zhang, Yang Lan, Zhihua Cui, Jianghui Cai, and Wensheng Zhang. A survey on
federated learning: challenges and applications. International Journal of Machine Learning and
Cybernetics, 14(2):513–535, 2023.

Qiwei Wu, Ke Zhang, Ying Shen, and Jie Xu. Federated learning for financial technology: A
comprehensive review. Future Generation Computer Systems, 128:491–502, 2022.

Yuanhao Xiong, Ruochen Wang, Minhao Cheng, Felix Yu, and Cho-Jui Hsieh. Feddm: Itera-
tive distribution matching for communication-efficient federated learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16323–16332, 2023.

Lei Yang, Jiaming Huang, Wanyu Lin, and Jiannong Cao. Personalized federated learning on non-
iid data via group-based meta-learning. ACM Transactions on Knowledge Discovery from Data,
17(4):1–20, 2023.

Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Nghia Hoang, and
Yasaman Khazaeni. Bayesian nonparametric federated learning of neural networks. In Interna-
tional conference on machine learning, pp. 7252–7261. PMLR, 2019.

Kai Zhang, Yawei Li, Wangmeng Zuo, Lei Zhang, Luc Van Gool, and Radu Timofte. Plug-and-play
image restoration with deep denoiser prior. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(10):6360–6376, 2021.

Lin Zhang, Li Shen, Liang Ding, Dacheng Tao, and Ling-Yu Duan. Fine-tuning global model via
data-free knowledge distillation for non-iid federated learning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 10174–10183, 2022.

Michael Zhang, Karan Sapra, Sanja Fidler, Serena Yeung, and Jose M Alvarez. Personalized fed-
erated learning with first order model optimization. In International Conference on Learning
Representations, 2020.

Yuanhong Zhong, Chenxu Zhang, Fan Ren, Honggang Kuang, and Panliang Tang. Scalable image
compressed sensing with generator networks. IEEE Transactions on Computational Imaging, 8:
1025–1037, 2022.

12



Under review as a conference paper at ICLR 2024

A SUPPLEMENTARY MATERIALS

A.1 PROOF OF THEOREM 1

From the L-Lipschitz continuous gradient property of local loss function fk(·) (Assumption 1), we
have

fk(ω
t+1
k ) ≤ fk(Ψ

t[k]) +
〈
∇fk(Ψt[k]), (ωt+1

k −Ψt[k])
〉
+

L

2

∥∥ωt+1
k −Ψt[k]

∥∥2, (17)

where ⟨·, ·⟩ indicates the inner product operation. Then, we shall proceed to independently establish
upper bound limits for the last two expressions on the right-hand side of equation 17 in a subsequent
manner:

• Upper bound for
∥∥ωt+1

k −Ψt[k]
∥∥: Let assume ω̃t+1

k = argminω lk(ω;Ψt[k]) such that
∇lk(ω̃t+1

k ;Ψt[k]) = 0. Given the α′-convexity property of lk(ω;Ψt[k]) (Assumption 2), and con-
sidering the γt

k-inexactness exhibited by each local server for ωt+1
k (Assumption 3), we can derive

the following:∥∥ωt+1
k − ω̃t+1

k

∥∥ ≤ 1

α′

∥∥∇lk(ωt+1
k ;Ψt[k])−∇lk(ω̃t+1

k ;Ψt[k])
∥∥ =

1

α′

∥∥∇lk(ωt+1
k ;Ψt[k])

∥∥
≤ 1

α′ γ
t
k

∥∥∇lk(Ψt[k];Ψt[k])
∥∥ =

γt
k

α′

∥∥∇fk(Ψt[k])
∥∥. (18)

Likewise, we can deduce the following due to α′-convexity of lk(ω;Ψt[k]) (Assumption 2):∥∥ω̃t+1
k −Ψt[k] =

∥∥ ≤ 1

α′

∥∥∇lk(ω̃t+1
k ;Ψt[k])−∇lk(Ψt[k];Ψt[k])

∥∥
=

1

α′

∥∥∇lk(Ψt[k];Ψt[k])
∥∥ =

1

α′

∥∥∇fk(Ψt[k])
∥∥. (19)

Therefore, when we put together equation 18 and equation 19 using the triangle inequality, we
obtain:∥∥ωt+1

k −Ψt[k]
∥∥ ≤ ∥∥ωt+1

k − ω̃t+1
k

∥∥+
∥∥ω̃t+1

k −Ψt[k]
∥∥

≤ γt
k

α′

∥∥∇fk(Ψt[k])
∥∥+

1

α′

∥∥∇fk(Ψt[k])
∥∥ =

(γt
k + 1)

α′

∥∥∇fk(Ψt[k])
∥∥. (20)

• Upper bound for
〈
∇fk(Ψt[k]), (ωt+1

k −Ψt[k])
〉
: We can rewrite (ωt+1

k −Ψt[k]) as:

ωt+1
k −Ψt[k] = − 1

µ
∇fk(Ψt[k]) +

1

µ
(∇fk(Ψt[k])−∇fk(ωt+1

k )) +
1

µ
(∇fk(ωt+1

k ) + µ(ωt+1
k −Ψt[k]))

= − 1

µ
∇fk(Ψt[k]) +

1

µ
(∇fk(Ψt[k])−∇fk(ωt+1

k )) +
1

µ
∇lk(ωt+1

k ;Ψt[k]).

Hence, the term
〈
∇fk(Ψt[k]), (ωt+1

k −Ψt[k])
〉

will be written as〈
∇fk(Ψt[k]),− 1

µ
∇fk(Ψt[k]) +

1

µ
(∇fk(Ψt[k])−∇fk(ωt+1

k )) +
1

µ
∇lk(ωt+1

k ;Ψt[k])
〉
=

− 1

µ

∥∥∇fk(Ψt[k])
∥∥2 + 1

µ

〈
∇fk(Ψt[k]),∇fk(Ψt[k])−∇fk(ωt+1

k )
〉
+

1

µ

〈
∇fk(Ψt[k]),∇lk(ωt+1

k ;Ψt[k])
〉
,

where, by applying the Cauchy-Schwarz inequality on the last two terms, we can establish the
following upper bound as〈
∇fk(Ψt[k]), (ωt+1

k −Ψt[k])
〉
≤− 1

µ

∥∥∇fk(Ψt[k])
∥∥2 + 1

µ

∥∥∇fk(Ψt[k])
∥∥∥∥∇fk(Ψt[k])−∇fk(ωt+1

k )
∥∥

+
1

µ
∥∇fk(Ψt[k])

∥∥∥∥∇lk(ωt+1
k ;Ψt[k])

∥∥.
Based on the L-Lipschitz continuity of fk(·) and γt

k-exactness of lk(ω,Ψt[k]) for ωt+1
k , we have〈

∇fk(Ψt[k]), (ωt+1
k −Ψt[k])

〉
≤− 1

µ

∥∥∇fk(Ψt[k])
∥∥2 + L

µ

∥∥∇fk(Ψt[k])
∥∥∥∥ωt+1

k −Ψt[k]
∥∥

+
γt
k

µ

∥∥∇fk(Ψt[k])
∥∥∥∥∇fk(Ψt[k])

∥∥,
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where the second term on the right-hand side can be upper bound by equation 20, resulting in the
following 〈

∇fk(Ψt[k]), (ωt+1
k −Ψt[k])

〉
≤

(L(1 + γt
k)

µα′ +
(γt

k − 1)

µ

)∥∥∇fk(Ψt[k])
∥∥2. (21)

Finally, by combining equations 17, 20, and 21, we obtain

fk(ω
t+1
k ) ≤ fk(Ψ

t[k]) +
(L(1 + γt

k)

µα′ +
(γt

k − 1)

µ

)∥∥∇fk(Ψt[k])
∥∥2 + 1 + L(γt

k)
2

2α′2
∥∥∇fk(Ψt[k])

∥∥2,
(22)

in which we can rewrite it as

fk(ω
t+1
k ) ≤ fk(Ψ

t[k])− υt
k

∥∥∇fk(Ψt[k])
∥∥2, (23)

where υt
k =

1

µ
− γt

k

µ
− L(1 + γt

k)

µα′ − L(1 + γt
k)

2

2α′2
. Based on the above-mentioned inequality, it

can be inferred that by choosing a sufficiently large penalty parameter µ, we can achieve a reduc-
tion in the objective value of fk(ωt+1

k ) − fk(Ψ
t[k]), and this reduction is directly proportional to∥∥∇fk(Ψt[k])

∥∥2. This completes the proof of Theorem 1.

A.2 PROOF OF THEOREM 2

Suppose we meet the assumption of Theorem 1 for the client k during each iteration of FedPnP.
Then we have the following inequality at every iteration:∥∥∇fk(Ψt[k])

∥∥2 ≤ fk(Ψ
t[k])− fk(ω

t+1
k )

υt
k

, t ∈ {0, 1, · · · , T − 1} (24)

Upon aggregating the above inequality across all T iterations, we will get:

1

T

T−1∑
t=0

∥∥∇fk(Ψt[k])
∥∥2 ≤ 1

T

T−1∑
t=0

fk(Ψ
t[k])− fk(ω

t+1
k )

υt
k

(a)

≤
∑T−1

t=0 fk(Ψ
t[k])− fk(ω

t+1
k )

Tυk
=

δk
Tυk

,

(25)

where (a) follows from υk = mint υ
t
k and δk :=

∑T−1
t=0 fk(Ψ

t[k]) − fk(ω
t+1
k ). Hence, in or-

der to produce a solution that satisfies the condition of a squared gradient norm less than ϵ (i.e.,
1
T

∑T−1
t=0 ∥∇fk(Ψt[k])∥2 ≤ ϵ), it is necessary to ensure that the number of iterations T is O

(
δk
ϵυk

)
.

This completes the proof of Theorem 2.

A.3 PROOF OF COROLLARY 1

In the convex scenario, with α = 0 and α′ = µ, assuming that γt
k = 0 for all k and t (meaning that all

local subproblems are accurately solved), we can attain a reduction proportional to
∥∥∇fk(Ψt[k])

∥∥2,

provided that υt
k = υ =

1

µ
− 3L

2µ2
> 0. Hence, if µ > 1.5L, we can express this as:

fk(ω
t+1
k ) ≤ fk(Ψ

t[k])−
( 1
µ
− 3L

2µ2

)∥∥∇fk(Ψt[k])
∥∥2. (26)

Under the constraint µ > 1.5L and in conjunction with the proof presented for Theorem 2, it is
straightforward to determine that the number of iterations required to obtain at least one solution
with a squared gradient norm less than ϵ is O

(
Lδk
ϵ

)
. This completes the proof of Corollary 1.

A.4 ML MODELS AND TRAINING SPECIFICS

For reproducibility purposes, the details of the ML models are reported here. Tables 2, 3, 4, show
the model architectures used for the MNIST, CIFAR-10, and HARBOX datasets, respectively.
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A.4.1 SPECIFICS ON MNIST AND CIFAR-10 DATASETS

CIFAR-10 (Krizhevsky et al., 2009)The CIFAR-10 dataset is a widely utilized collection in the
realm of computer vision, primarily designed for tasks related to image classification. It encom-
passes a total of 60,000 color images, distributed across ten distinct categories, with each category
containing precisely 6,000 images. This dataset is further segmented into two subsets: a training
set comprising 50,000 images and a testing set containing 10,000 images. Every image within the
CIFAR-10 dataset is of dimensions 32x32 pixels and possesses three color channels corresponding
to red, green, and blue. The ten classes it encompasses encompass a variety of common objects and
animals, such as airplanes, automobiles, birds, cats, deer, dogs, frogs, horses, ships, and trucks.

MNIST (LeCun et al., 1998) The MNIST dataset holds a prominent and extensively used posi-
tion in the realm of machine learning and computer vision. It consists of 28x28 pixel grayscale
images depicting handwritten digits (ranging from 0 to 9). MNIST encompasses a grand total of
70,000 images, divided into two primary sets: a training set comprising 60,000 images and a test
set containing 10,000 images. Each image within MNIST is a grayscale representation with a single
channel, where pixel values span from 0 (representing black) to 255 (representing white), thereby
encoding different shades of gray.

To create a heterogeneous dataset using MNIST and CIFAR-10, we utilized and adapted publicly
available code as employed in (Li et al., 2022). The original repository can be accessed at 1. In
the case of the CIFAR-10 dataset we constructed, the sizes of local datasets vary within the range
of (810, 3642), with corresponding label distributions based on the Dirichlet distribution. For each
participant, we employed a batch size of Bk = 128. The same configuration was used for the MNIST
dataset, with the exception that we opted for a fixed data size of |Dk| = 600 for k = 1, ..., 20.
We made this choice to investigate the impact of the denoising step in the second subproblem of
equation 13. By maintaining a balanced data size, we ensured similar coefficients in diag[ζ1, ..., ζ20].
Consequently, only the graph filter H(L) became the focal point.

A.4.2 SPECIFICS ON HARBOX DATASET

The HARBOX dataset is a comprehensive Human Activity Recognition dataset gathered from smart-
phone sensors. It comprises five common daily life activities, such as calling, hopping, talking, typ-
ing, and walking, performed by approximately 120 participants. HARBOX exhibits inherent data
heterogeneity due to two primary reasons:

• Each participant exhibits a unique way of performing these activities.

• Different smartphones capture activity samples differently, influenced by their device spec-
ifications.

For our experiments, we randomly selected a subset of K = 40 participants from the dataset. Similar
to the approach taken with the MNIST dataset, the local dataset sizes were determined based on the
original recorded sensor signals. No manipulation was performed to alter the number of data samples
in each local dataset. Consequently, we observed a variation in local dataset sizes within the range
of (170, 400) samples. Furthermore, the batch size for our experiments was consistently set at 128.

Table 2: Layer details for CNNmnist model used for the benchmark on Mnist dataset.

Layer Details
1 Conv2D(1, 16, 8, 2, 2)

BN(16), Tanh, MaxPool2D(2, 1)
2 Conv2D(16, 32, 4, 2, 0)

BN(32), Tanh, MaxPool2D(2, 1)
3 FC(512, 32)

BN(32), Tanh
4 FC(32, 10)

1https://github.com/Xtra-Computing/NIID-Bench
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Table 3: Layer details for Cifarnet model used for the benchmark on CIFAR-10 dataset.

Layer Details
1 Conv2D(3, 6, 5)

BN(6), ReLU, MaxPool2D(2, 2)
2 Conv2D(6, 16, 5)

BN(16), ReLU, MaxPool2D(2, 2)
3 FC(400, 120)

BN(120), ReLU
4 FC(120, 84)

BN(84), ReLU
5 FC(84, 10)

Table 4: Layer details for ML model used for the benchmark on HARBOX dataset.

Layer Details
1 FC(900, 400)

BN(400), ReLU
2 FC(400, 5)

Softmax

A.4.3 MODEL IMPLEMENTATION DETAILS

FedProx (Li et al., 2020a) & FedAvg: We utilized a modified implementation code publicly ac-
cessible on the official FedProx GitHub repository2. Notably, in the work by the author (Li et al.,
2020a), a specific value for µ was not provided; rather, it was indicated that µ > 0 leads to im-
proved results. Consequently, we conducted experiments with different values of µ, specifically
µ = 0.001, 0.01, 0.1, in order to identify the optimal µ parameter. Ultimately, we determined that
µ = 0.01 yielded the best results. All other hyperparameters were configured in accordance with
the details discussed in Section 4.

Per-FedAvg (Fallah et al., 2020), pFedMe (T Dinh et al., 2020): Both methods were implemented
using their respective code available on GitHub3. In the case of Per-FedAvg, we configured it with
K = 5, β = 0.01, and a personal learning rate of 0.1. For pFedMe, we selected the following
settings: K = 5, λ = 15, β = 1.0, and a personal learning rate of 0.1, as recommended in their
GitHub code. It’s important to note that these parameter values and notations align with those used in
their research paper. The remaining parameters were set in a manner consistent with the discussion
in Section 4.

FedBN (Li et al., 2020b): The implementation of FedBN is straightforward. We followed the
algorithm provided in the appendix section of the original paper. Specifically, on the server side, we
aggregate all model weights except their batch-normalization layers.

A.5 GRAPH CONSTRUCTION

Participants possess a large number of underlying similarities that can be represented via an adja-
cency matrix. This connectivity arises from low-level similarities, including dataset similarities or
participants’ proximity, to high-level interrelationships, such as social interconnection among the
participants. In order to capture the interconnections and facilitate the exchange of information
among participants, a graph must be meticulously crafted. We represent the graph as a bidirectional
structure denoted as G(V, E). Here, V encompasses all participants, serving as the vertices within
the graph, while E corresponds to the ensemble of edge connections that interlink these participants.
Importantly, the weight attributed to each edge is explicitly conveyed through the adjacency matrix
A. Within this matrix, the element (A)ij indicates the weight of the connection between partic-
ipants i and j. Given that the entirety of the graph’s configuration is delineated by the adjacency
matrix, our focus in this section lies primarily on the construction of A.

2https://github.com/litian96/FedProx
3https://github.com/CharlieDinh/pFedMe
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The process of constructing A offers several avenues, classified into two overarching approaches:
the learning-based and the fixed-based paradigms.

• In the learning-based paradigm, the graph’s structure evolves concomitantly with the Fed-
erated Learning (FL) process itself. As one example, the value of (A)ij can be adaptively
adjusted in proportion to the similarity in weight distributions between participants i and
j, either in each batch of FL rounds or in every round, i.e., (A)ij ∝ ||ωi − ωj ||22. A
parallel concept has been presented in (Chen et al., 2022), showcasing the potential of this
approach.

• Contrastingly, the fixed-based approach involves the predetermination and establishment
of the graph using prior information provided by the participants. These data-driven cues
can be grounded in a spectrum of factors, such as the proximity of participants in terms of
distance (Rasti-Meymandi et al., 2022), the physical attributes of their communication and
computation resources, or the resemblance between their respective datasets.

Both approaches can be integrated into the proposed FEDPNP algorithm. However, in this work, we
construct A based on dataset similarity. We leave the learning-based approach in our future work.

A.5.1 DATASET SIMILARITY

Measuring the similarity between datasets has become an emergent part of the ML community
(Alvarez-Melis & Fusi, 2020). Such information fosters transferring knowledge between models
and gives rise to more formidable transfer learning techniques, data distillation approaches, and
model distillation algorithms (Alvarez-Melis & Fusi, 2020). If the datasets are coming from one
domain, e.g., images of animals or numbers, Pearson Correlation Coefficient (PCC) or Kullback-
Leibler (KL) divergence can be readily exploited to capture the similarity between datasets using
the data samples. However, in the case of FL, the datasets are distributed, and the samples are not
available in one setting. Therefore, we propose a distributed dataset similarity metric specified as
follows:

Let (xi
n, y

i
n) ∈ Di, i = 1, ...,K, n = 1, ..., |Di| be the nth data sample belonging to the ith

participant, where xi
n ∈ RM is the feature vector and yin ∈ N is the class label. We assume Di

is drawn from a distribution Pi. More specifically, let xi
n be a sample of a random vector xi that

constitutes Pi.

Based on such a definition, a set of statistical features is obtained. Here, we choose to calculate
an estimate of the first to the fourth-order of the statistical information, i.e., the mean, variance,
skewness, and kurtosis of xi given by

si1 =
1

|Di|

|Di|∑
n=1

xi
n, si2 =

1

|Di|

|Di|∑
n=1

(xi
n − si1)

2, si3 =
1

|Di|

|Di|∑
n=1

(xi
n − si1)

3√
(si2)

3
, (27)

si4 =
1

|Di|

|Di|∑
n=1

(xi
n − si1)

4

(si2)2
,

where sik is the kth statistical feature of participant i. Note that, due to the assumption that each
feature in Di is a random variable, more statistical information, such as higher orders, can be ob-
tained. Also, note that this computation occurs on the local side. The statistical features are then
transmitted to the server at the initialization step of the proposed FEDPNP algorithm to construct
A. As a result, participants will only send aggregated statistical information about their datasets,
reducing communication overhead and preserving privacy. Additionally, the amount of statistical
information can be variable, which sets up a trade-off between data privacy and the accuracy of the
similarity metric. Finally, on the server side, the statistical features are compared, and the weights
in A as

(A)ij =
1

4

4∑
k=1

||sik − sjk||. (28)

Remark 3: It is worthwhile to note that the transmission of such information occurs once (as op-
posed to every communication round) and only in the initialization of the training procedure, which
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(a) PCC approach (K = 20) (b) Proposed approach (K = 20)

(c) PCC approach (K = 10) (d) Proposed approach (K = 10)

Figure 5: The adjacency matrices constructed by the proposed dataset similarity (b,d) and the PCC
approach (a,c) on CIFAR-10 with Dir(0.5) dataset.

will further reduce the likelihood of recurrent data exchanges, thereby ameliorating the potential for
prolonged exposure of sensitive information over the course of subsequent communication rounds.

For illustrative purposes, we conduct an experimental demonstration by constructing matrix A using
both PCC and the proposed approach on the CIFAR-10 dataset with Dir(0.5). In the context of
PCC, we operate under the assumption that all local dataset samples are readily available on the
server. These local datasets are generated randomly based on the settings described in Section
4. As shown in Figure 5, the matrices A resulting from the two methods are compared for both
K = 10 and K = 20. Evidently, the proposed distributed similarity metric exhibits a similar
correlation with the PCC approach. One advantage of our approach is that it incorporates higher-
order statistical attributes within the similarity measurement, thereby enhancing its capability to
capture more nuanced dataset similarities. Moreover, the proposed similarity metric also obviates
the necessity for complete dataset presence, which is in line with FL algorithms.

A.6 GRAPH FILTERING AS A DENOISER

To gain insight into the functioning of graph denoisers defined in equations 12 and 16, we provide
a brief overview of Graph Signal Processing (GSP). Readers may refer to (Ortega et al., 2018) for
a comprehensive detail on GSP. Since both denoisers operate in the Fourier domain, we begin by
introducing the concepts of Graph Fourier Transform (GFT) and Inverse GFT (IGFT). Subsequently,
we explain how graph filtering is executed using GFT. Lastly, we illustrate how incorporating these
denoisers into FEDPNP extends to encompass popular algorithms like FedAvg (McMahan et al.,
2017) and FedProx (Li et al., 2020a) through a motivating example.
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A.6.1 GRAPH SIGNAL PROCESSING BACKGROUND

Once the adjacency matrix A is created (e.g., from Section A.5) the whole structure and properties
of the graph G can be defined. Recall that we construct a bidirectional graph. A significant concept
in bidirectional graphs is the combinatorial graph Laplacian, which is defined as L = D −A. In
this equation, D represents the diagonal degree matrix of the graph G, with (D)ii calculated as the
sum of entries in the i-th row of A. It’s important to note that for bidirectional graphs like G, L is
always positive semidefinite, and all its eigenvalues are non-negative real values, as demonstrated
in (Ortega et al., 2018). As discussed in (Stanković et al., 2019; Ortega et al., 2018), the natural
choice is to employ the eigenvectors of the graph Laplacian L as eigenfunctions, forming the basis
for the Fourier transform. This leads to the extraction of Fourier bases through the eigenvalue
decomposition of the graph Laplacian, expressed as:

L = V ΛV T . (29)

In this equation, V is a matrix containing the K eigenvectors of L, and Λ is a diagonal matrix
with eigenvalues λ0 through λK−1. Consequently, if we order the eigenvalues based on the Total
Variation (TV) of their corresponding eigenvectors, the eigenvector associated with λ0 represents
the DC basis, while higher λi values (for i = 1, ...,K − 1) correspond to higher frequency bases in
the graph.

With this framework in place, we can calculate the GFT and the IGFT of the weight matrix, repre-
sented as GF (Ω(t)) and IGF (GF (Ω(t))):

Ω
(t)
GF = GF (Ω(t)) = V TΩ(t), (30)

Ω(t) = IGF (Ω
(t)
GF ) = V Ω

(t)
GF . (31)

These coefficients, Ω(t)
GF , represent the frequency components of the weight matrix. To perform

filtering on specific graph frequencies, we follow three steps: (i) GFT, (ii) multiplication of the coef-
ficients by the filter frequency response, and (iii) IGFT of the result. To facilitate this, a graph filter
is defined in matrix form, denoted as H(L), which can be expressed as H(L) = V h(Λ)V T , where
h(Λ) is the filter operator defined in equations 12 and 16, with h(Λ) = diag[h(λ0), ..., h(λk−1)].

In a more concise form, the filtered weight matrix, which was presented in equation 11 is computed
as follows:

Ψ̂(t) = Ψ = H(L; ·)Ω̂(t) = V h(Λ)V T Ω̂(t)︸ ︷︷ ︸
GFT

(32)

= V h(Λ)Ω̂
(t)
GF︸ ︷︷ ︸

frequency response

(33)

= V Ω̂
(t)
GF︸ ︷︷ ︸

IGFT

. (34)

A.6.2 GENERALIZATION OF FEDPNP: A MOTIVATING EXAMPLE

To gain a deeper insight into the proposed denoising mechanism called FEDPNP in the frequency
domain, we present a simplified example as follows:

Let’s consider an undirected light graph with K = 3 and an adjacency matrix A3×3. Each node or
participant i possesses a model with a two-variable vector ωi = [ωi1, ωi2]. The Laplacian matrix of
A is calculated as

L = D −A =

[
d1 − a11 −a12 −a13
−a21 d2 − a22 −a23
−a31 −a32 d3 − a33

]
, (35)
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where di =
∑3

j=1 aij is the degree of each node. We then decompose L3×3 as L = V ΛV T and
assume ordered eigenvalues as λ0 < λ1 < λ2. Consequently, we can express the eigenvalues and
eigenvectors as

V =

[
1 v12 v13
1 v22 v23
1 v32 v33

]
, Λ =

[
λ0 0 0
0 λ1 0
0 0 λ2

]
, (36)

with λ0 = 0. Note that the corresponding eigenvector of λ0 = 0 is always a vector of identical val-
ues, here normalized as 1s. To construct the weight matrix of the models, we arrange ωi horizontally
as

Ω =

[
ω11 ω12

ω21 ω22

ω31 ω32

]
. (37)

The reason for this horizontal stacking rather than column-wise is due to the graph’s specification.
For instance, as V T is a 3×3 matrix, the multiplication of ΩGF = V TΩ requires the row of ΩGF to
be 3. This row-wise stacking results in aggregating each column of ΩGF , which is precisely what is
needed: aggregating each model weight of a participant concerning the corresponding model weight
of another participant. Furthermore, we introduce diag[ζ1, ζ2, ζ3] and augment it to the filtering such
that Ψ = H(L; ·)diag[ζ1, ζ2, ζ3]Ω(t). By defining the filter operator as h(λ) as in equation 12, we
can derive the matrix frequency coefficients of Ω as

ΩGF = h(Λ)V T diag[ζ1, . . . , ζK ]Ω = (38) h(λ0)
∑3

j=1 ζjωj1 h(λ0)
∑3

j=1 ζjωj2

h(λ1)
∑3

j=1 vj2ζjωj1 h(λ1)
∑3

j=1 vj2ζjωj2

h(λ2)
∑3

j=1 vj3ζjωj1 h(λ2)
∑3

j=1 vj3ζjωj2

 .

Each element of the columns in ΩGF represents a frequency coefficient. Now, suppose we intend
to construct the FedAvg algorithm using FEDPNP. To achieve this, we set β1 = β2 to a large value,
e.g., β1 = β2 = 500. This results in h(λ0 = 0) = 1 and h(λ1) ≈ h(λ2) ≈ 0. In this scenario, only
the first row of ΩGF in equation 38 becomes non-zero, i.e., only DC coefficients remain. Applying
the IGFT to ΩGF yields the aggregated weight matrix as

Ψ = V ΩGF =


∑3

j=1 ζjωj1

∑3
j=1 ζjωj2∑3

j=1 ζjωj1

∑3
j=1 ζjωj2∑3

j=1 ζjωj1

∑3
j=1 ζjωj2

 . (39)

It can be observed that each row of Ψ, denoted as Ψ[k], represents a weighted average of the model
weights, akin to the behavior of the FedAvg algorithm. Consequently, we have demonstrated that
the proposed FEDPNP algorithm fully encompasses FedAvg. It is now straightforward to show
that FedProx is also a special case of FEDPNP. Since Ψ[1] = Ψ[2] = Ψ[3] = ωG, the structural
proximal term becomes the same proximal term used in FedProx, i.e., µ

2 ||ωG − ωi||22.

A.6.3 ILLUSTRATION OF GRAPH FILTERS USED IN THE EXPERIMENTS

Figures 6 and 7 illustrate the graph filters defined for FEDPNP in this paper for various datasets.
Note that each vertical dashed line indicates an eigenvalue of the adjacency matrix derived from
Section A.5. As seen, the graph frequencies for the HARBOX dataset (i.e., the first row of Figure 6)
are more dense than for those of MNIST and CIFAR-10. Furthermore, it is observed that the filter
h(λ;β1, β2) is a soft version of h(λ; τ). In addition, both filters are low-pass graph filters and are
considered graph denoisers in the Fourier domain.

A.7 FURTHER EXPERIMENTS

A.7.1 OUT-OF-DISTRIBUTION EVALUATION

To assess FEDPNP’s performance on out-of-distribution datasets, we created a new evaluation set
known as the ”Global Test Set.” This test set comprises all local test sets from the K participants,
emphasizing model generalization over personalization. Ideally, a robust model should perform well
on both local test sets (defined in Section 4) and the global test set.
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(a) β = 1 (b) β = 0.5 (c) β = 0.05 (d) β = 0.005 (e) β = 0.0005

(f) β = 1 (g) β = 0.5 (h) β = 0.05 (i) β = 0.005 (j) β = 0.0005

(k) β = 1 (l) β = 0.5 (m) β = 0.05 (n) β = 0.005 (o) β = 0.0005

Figure 6: The graph frequency response of the designed filter h(λ;β1, β2) in 12 applied on different
datasets where we assume β = β1 = β2. The vertical lines indicate the eigenvalues of the adjacency
matrix created for each dataset. The first row (a,b,c,d,e) is applied to the adjacency matrix created
from HARBOX, the second row (f, g, h, i, j) from CIFAR-10, and the third row (k,l,m,n,o) from
MNIST.

(a) τ = 1 (b) τ = 2 (c) τ = 4 (d) τ = 8

(e) τ = 1 (f) τ = 2 (g) τ = 4 (h) τ = 8

(i) τ = 1 (j) τ = 2 (k) τ = 4 (l) τ = 8

Figure 7: The graph frequency response of the designed filter h(λ; τ) in 16 applied to different
datasets. The vertical lines indicate the eigenvalues of the adjacency matrix created for each dataset.
The first row (a,b,c,d,e) is applied to the adjacency matrix created from HARBOX, the second row
(f,g,h,i,j) from CIFAR-10, and the third row (k,l,m,n,o) from MNIST.
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Figure 8 illustrates the convergence behavior of the FEDPNP algorithm for various β = β1 = β2

parameters when evaluated on the global test set. It demonstrates that as the model becomes more
personalized with different β values, test accuracy tends to decrease. However, Figure 2 reveals
that personalization improves as β is adjusted. This indicates that FEDPNP can strike a balance
between model personalization and generalization using different β values. The choice of how
much personalization or generalization is required can be left to the participants.

Furthermore, fully local training (FEDPNP with β = 0) yields significantly lower performance when
assessed on the global test set, as shown in Figure 8. It is also inferior to most other settings shown
for the local test set in Figure 2. Therefore, performing PFL over local training is much preferable,
and this preference is further underscored by the utilization of our proposed FEDPNP algorithm.

(a) (b) (c)

Figure 8: Effect of β on the convergence of FEDPNP for the global test set compared to FedAvg
and FedProx when K = 20, µ = 0.2, E = 5. a, d) CIFAR-10 with Dir(0.5), b, e) MNIST with
Dir(0.2), and c, f) HARBOX datasets. For β = 0, ν(0) = 0 and for the rest, it is ν(0) = 1

A.7.2 THE EFFECT OF BATCH SIZE:

We investigate the impact of varying the local training batch size on FEDPNP to observe its behavior
under these changes. Additionally, we determine the optimal hyperparameters for our algorithm, as
analyzed in Section 4. Table 5 presents the mean accuracy of FEDPNP alongside FedAvg and
FedProx for both local and global test sets.

Recall that the local test set, as discussed in Section 4, is generated using the same distribution as the
local training set for each participant. In contrast, the global test set comprises the combined local
test sets explained in Subsection A.7.1.

As observed, a small batch size (e.g., batch size = 16) leads to a roughly 1% decrease in performance
for all algorithms. Furthermore, although FEDPNP’s performance on the local test set with larger
batch sizes is comparable to that of smaller ones, the global test accuracy decreases by approximately
9%.

A.7.3 THE EFFECT OF THE NUMBER OF LOCAL UPDATES, E:

We also explore the influence of varying the number of local updates conducted by each participant.
As shown in Table 6, optimal performance is achieved for all methods when the value of E falls
within the range of 4 to 8.
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Table 5: Performance comparison of the proposed \textsc{FedPnP} over varying the batch-size on
CIFAR-10 with Dir(0.5) dataset. The results are the mean accuracy over K = 20 the local models
and R = 200, E = 5

batch-size FedAvg FedProx FedPnP (µ = 0.2, β = 0.0005)

Local test Accuracy according to Section 4

batch-size= 16 49.33± 21.2 49.12± 21.3 66.17± 9.0
batch-size= 32 51.13± 19.1 52.59± 18.6 67.24± 8.8
batch-size= 64 53.05± 18.1 53.29± 17.8 67.93± 9.0

batch-size= 256 55.81± 16.5 55.61± 16.6 67.51± 9.5

Global test Accuracy according to Subsection A.7.1

batch-size= 16 49.00± 2.7 49.55± 2.5 49.87± 2.5
batch-size= 32 51.22± 1.3 52.68± 1.1 49.29± 1.8
batch-size= 64 51.97± 1.3 53.52± 1.1 47.82± 1.4

batch-size= 256 54.49± 0.7 55.33± 0.5 36.20± 4.6

Table 6: Performance comparison of the proposed FEDPNP over varying the number of local up-
dates, E, on CIFAR-10 with Dir(0.5) dataset. The results are the mean accuracy ± std over
K = 20, the local models with a batch size of 128 and R = 200.

# of local epochs E FedAvg FedProx FedPnP (µ = 0.2, β = 0.0005)

Local test Accuracy according to Section 4

E = 2 54.05± 18.1 53.99± 18.2 66.67± 9.4
E = 4 54.01± 18.2 54.07± 18.1 68.87± 8.2
E = 8 53.88± 20.5 53.90± 19.4 67.20± 8.8
E = 16 53.77± 21.6 54.09± 18.8 65.04± 8.8

Global test Accuracy according to Subsection A.7.1

E = 2 54.00± 1.0 54.20± 0.9 34.67± 5.1
E = 4 53.91± 1.2 54.32± 0.9 41.30± 3.8
E = 8 54.05± 0.9 54.24± 0.7 47.78± 1.3
E = 16 53.96± 1.1 54.44± 0.7 46.10± 1.6
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