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Abstract

Scarce labeled data is a common problem in
machine learning, that would usually be tackled
by using large amounts of human annotation
work. Synthetic data augmentation can help
alleviate this problem, but how exactly newly
generated points change the data distribution,
which data points contribute to increased per-
formances and what the overall effect on the
dataset is, usually is opaque. In this paper, we
propose an interpretability and text classifica-
tion dataset analysis method that first exam-
ines the output space resulting from passing
the already existing data into a model and then
identifies areas in which the model fails to pro-
vide a correct classification in said output space.
We map the model outputs to an examinable
continuous space and apply different clustering
algorithms to identify clusters of data points
that either aren’t well represented in the data
space or are too difficult to learn. We automati-
cally label these clusters using topic modeling
and pass the labels to an LLM to generate syn-
thetic data points, filling the gaps in our data
space. Our method reliably improves language
model accuracy by up to 2% on representative
multi-class text classification problems while
adding less than one percent of synthetic data
to the training pool.!

1 Introduction

To counteract data sparsity, synthetic data augmen-
tation techniques can produce new data points to
fill gaps in the data and increase model robustness
(Shorten et al., 2021). To perform augmentation
more efficiently and in a targeted way, subsampling
has been proposed to reduce the number of neces-
sary data points (Kuchnik and Smith, 2019). More
recently, works like Schick and Schiitze (2021)
have shown that LLMs can be employed for data

!Code and data available at: https: //anonymous. 4open.
science/r/TopologicalExplainer/
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Figure 1: Overview of our interpretable data augmen-
tation method. An Explorer takes the outputs of a lan-
guage model and examines their topological composi-
tion, yielding interpretable clusters in a continuous data
space. Based on cluster scoring metrics, we find suitable
candidates for data augmentation, which are then used
by an LLM-based Augmenter to synthesize new data
points filling in gaps in areas where the original model
performs poorly.

generation as well. However, both modern lan-
guage models and the process of how data augmen-
tation changes the distribution of the underlying
data are opaque. Two lines of work currently try to
tackle these problems: The field of data-centric in-
terpretability aims to diagnose the model behavior
on (training) datasets (Swayamdipta et al., 2020;
Wang et al., 2023), while subpopulation analyses
(He et al., 2023; Le Bras et al., 2020) detect which
parts of a dataset contribute the most to a model’s
performance.

In this work, we introduce an approach for gener-
ating interpretable image spaces that can be viewed
and examined to improve the understandability of
the given dataset. Secondly, we explore the possi-
bility of expanding this output space by filling out
missing data points with artificial ones. We then
apply a clustering algorithm, allowing us to sort the
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data into groups of similar data. We expect them to
be semantically or spatially related. Following the
clustering, we use a language model-based topic
modeling method to label the clusters and then re-
duce the dimensionality of the output space to 2D,
such that the resulting spatial representation of the
model’s predictions is interpretable. Lastly, we
use the calculated clusters to generate data via an
LLM to improve on the weaknesses revealed by
our examination technique. Our contributions are:

* We propose an interpretability and data anal-
ysis method that examines the predictions of
the model and treats the predictions like a
space (§2);

* We conduct experiments on the IMDb, HANS,
TREC and AG News text classification
datasets. Our method generates interpretable
clusters of problematic data points (§3);

» Using these clusters, we optimize the lan-
guage models and find up to 3% improvement
on all datasets on average when using a ran-
domly chosen minimal subset and providing
an even smaller synthetic dataset (§4).

2 Methodology

We will show that we can interpret the topological
composition of model outputs in a manner allow-
ing us to find clusters of misinterpreted or under-
represented data. We call this the Explorer. The
Explorer will use the logits of the output dimension
of the used machine learning model to find gaps in
the training data and later even present a method to
fill in the models output space with augmented text
data.

2.1 Explorer

Firstly, we will make a forward pass on all sam-
ples of the dataset and keep the results in Y. We
continue by normalizing said results with a min-
max normalization, so that all data is in the interval
[—1, 1]. We will do the same thing to the label data,
if it is not normalized. This is done to ensure that
we have comparable results, as the output values
of the model can easily surpass the label data val-
ues (e.g., positive or negative labels in sentiment
analysis, see Table 3) or stay below them. If we
normalize, we ensure that the maximum value is re-
strained to being equal to the label. In other words,
the most correct value of the model becomes our
new desired value.

2.2 Visualizing clusters

After preparing the data, we can focus on explain-
ing our results. Using a clustering method like
OPTICS (Ankerst et al., 1999), we cluster Y and
keep track of all clusters that are mostly composed
of falsely classified values in C, where Cj is the
current cluster. We then use the text topic modeling
method BERTopic (Grootendorst, 2022) to assign
names to these clusters to later visualize it like in
Figure 2. The name of C; will be denoted as name;.
If we want to visualize these clusters for further
inspection, we encounter the limitation of project-
ing higher-dimensional data into 2D graphics for
human inspection. We try to tackle this problem
by using dimensionality reduction methods like
SparsePCA (Johnstone and Lu, 2009). This projec-
tion allows us to impose an interpretation of what
the classification model’s output space looks like.
Through this process, the axes of the 2D plot do
not represent specific labels, but instead a blend
of what the reduction algorithm found the output
space to represent the most. Our method also al-
lows us to view the changes resulting from using
our proposed augmentation method to optimize the
classification model. We can pinpoint the changes
to single data points between before-augmentation
(Figure 2) and after-augmentation (Figure 4). Fig-
ure 5 gives an overview of the total amount and
size of clusters for this particular experiment.

2.3 Finding candidates for data augmentation

Based on the labelled clusters containing wrongly
predicted data, we start sorting the clusters to
choose one cluster that has the greatest potential of
optimizing the model. We propose six algorithms
to score each cluster C; with the value s;:

1. Density
This is the most straight-forward approach.
We measure the largest diameter along all di-
mensions of the cluster in question and calcu-
late the ratio

|Cil
max(diam(C;))’

2. Average pairwise distance
We calculate the euclidean distance of each
point in the cluster to every point outside said
cluster and average the results:
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Figure 2: Visualization of the composition of errors of a BERT classifier on IMDDb data. The top left of the figure is a
screenshot of the entire plot with correctly classified points shown in green, while the main content is a zoomed-in
snippet of the wrongly classified points. The further a dot is to the top right corner of the plot, the greater the error
is. Top-right means that the classifier chose the complete opposite label as prediction. The most meaningful cluster,
decided by the cosine similarity filter, is the “cinderella disney the and” cluster, which is located in the bottom left
corner. It is right on the margin to being correctly classified. The points captured by the cluster are visible in blue.

where j # k and (C;); is a point in cluster
C;.

3. Average geometric median distance
We calculate the clusters geometric medians
average distance to every other point outside
the cluster. We use the algorithm proposed
in Cohen et al. (2016) to get the median of the
cluster. Let g; be the geometric median of the
cluster Cj, then

A
T T A~
HTe

4. Preservation on cluster names
We calculate the "meaningfulness” of a cluster
with the CTC-preservation (Deng et al., 2021)
score by passing the clusters name name;
and every text of the cluster into the CTC-
preservation score algorithm. We calculate s;
as follows

Zj CTCpreservation (namei s (CZ )j )
|Cil .

S; =

We chose the aspect of preservation, because
we want to know how much the label of C;
represents the texts inside of Cj.

5. Cosine similarity
We measure the clusters internal similarity by
using a count vectorization and calculating
the average cosine similarity (Mikolov et al.,
2013). This results in the following score

sZ:Z(C’Z)]‘C_Z’(CZ)k where j # k.

ak

6. Weighted score
We use any or all of our proposed methods
and linearly scale them. Let wyethoq € R be
the weight corresponding to one of the above
methods and let ($),ethoq be the score of the
desired method. Then we combine the score
to be

S = Z Wmethod * (Si)method'

We choose the cluster with the highest score to
be the one we select for optimization.

2.4 Optimizing using data augmentation with
cluster names

Now that we found a cluster C; that was assigned
the highest score s; € s, i.e. C; where s; =



IMDb AGNews HANS TREC | Average

Density | 30.0% 70% 262% 100% 40.8%

Average Pairwise Distance | 100 % 100% 11.9% 48.0% 65.0%

Avg. Geometric Median Distance | 89.5% 3.6% 16.7% -26.0% 19.2%
CTC Preservation | 81.6% -3.6% 452%  35.6% 39.7%

Cosine Similarity | 98.7% 143% 100% 57.5%  67.6%

Table 1: Relative performance comparison of the five proposed cluster sorting metrics per dataset. Percentage
corresponds to the share of the maximum reported improvement, e.g. the Density result for IMDb achieves 30% of
the performance gain that Average Pairwise Distance offers.

max(s), we can use the found cluster to gener-
ate new similar data. We chose an LLLM to generate
the new synthetic data points for us.

Where the model fails to classify the data, we
can provide k£ € N samples of C; in a few shot set-
ting. This pushes the LLM in a way that produces
high quality samples (see qualitative analysis in §4)
while also keeping the context of the chosen cluster.
We define the task prompt for text classification use
cases to be composed of

1. an issue which is the multi-word label name;
that BERTopic (Grootendorst, 2022) assigned
to the cluster;

2. alabel which will determine the target class
of the new data point.

An example for IMDDb looks like this:

"Generate a label movie review, choose a title
based on the topic: "issue’"

We do this either in zero-shot or in few-shot
(App. B), meaning that we can use the LLM in sim-
ple cases where no extrinsic knowledge is needed.

3 Experiments

First, we test all scoring metric from § 2 and
found that similarity (Eq. 5), average pairwise dis-
tance (Eq. 4) and density (Eq. 1) were the best
performing under equally conducted experiments
(Table 1). We derive our weighted score (Eq. 6)
from these results:

* (w)Cosine Similarity = 0.68;
¢ (w)Avg. Pairwise Dist. = 0.69;
¢ (w)Density =0.41;

These weight values are derived from our experi-
ments in Table 1.

For our large-scale experiments, we chose
Llama-3-8B-Instruct (Meta, 2024)%, Llama-2
7B (Touvron et al., 2023)3, Gemma-2-2B (Team,
2024)* as our generative LLMs for augmentation
to compare a broad range of modern transformer-
based models.

Following the method as described in §2, we
only focus on the highest-scoring cluster and gen-
erate data points for it.

The amount of data points generated with the
LLM:s is chosen arbitrarily and constrained in our
experiments to any of {1, 3,5, 10}. We chose this
range of artificial data points to demonstrate two of
our core points. The first being that we can improve
a model’s performance while using very little new
data. The second is our expectation is that very few
data points achieving improvements over the initial
results make our experiments reproducible.

3.1 Baseline Experiments

For a comparable baseline, we augment each
dataset using A2T-augmenter (Yoo and Qi, 2021),
CLARE-augmenter (Li et al., 2021) and Easy Data
Augmenter (EDA) as provided by TextAttack (Mor-
ris et al., 2020). We optimize the clusters with a
random set of the augmented data.

3.2 Data

We evaluate our proposed method on four English-
language text classification datasets:

* IMDb (Maas et al., 2011) for sentiment analy-
sis (binary text classification of movie reviews
assigning either "positive" or "negative");

2https://huggingface.co/meta—llama/
Meta-Llama-3-8B-Instruct

*https://huggingface.co/meta-1lama/
Llama-2-7b-hf

*https://huggingface.co/google/gemma-2-2b
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* HANS (McCoy et al., 2019) for natural lan-
guage inference (binary text classification of
sentence pairs and their relationship labeled
either "entailment" or "non-entailment");

» TREC (Li and Roth, 2002) for question classi-
fication (from six possible labels: "Abbrevia-

tion", "Entity", "Description", "Human being",
"Location", "Numeric value");

» AG News (Zhang et al., 2015) for news topic
classification (assigning one of four possible
categories to short news articles: "World",
"Sports", "Business", "Sci/Tech".).

This selection features varying levels of difficulty
going from "simple" binary classification to multi-
label classification. On top of that, datasets like
HANS have been especially designed to challenge
fine-tuned models on not relying too much on pat-
tern matching, while IMDD’s sentiment label can
usually be inferred quite easily from occurrence of
certain words that are often associated with one or
the other label.

3.3 Classification Models

The models we use for our classification tasks are
all in the BERT (Devlin et al., 2019) family, us-
ing the same overall parameters. Specifically we
choose BERT, RoBERTa (Liu et al., 2019). However,
we focus on BERT as we did not notice major dif-
ferences in our results. We train every model using
the Transformers (Wolf et al., 2020) library, for
1 to 3 epochs, with training data containing 1000
randomly sampled data points.

4 Results

Table 1 displays our measured scores on
Gemma-2-2B. The percentages correspond to the
relative performance based on the best-performing
metric for each dataset, which we can then visu-
alize as a bar chart comparison across all datasets
with Table 1. The percentage describes the aver-
age improvement by using the corresponding filter
method for augmentation candidate selection. The
table shows that a combination of multiple filters is
needed to provide a reliable cluster selection as no
single filter excels at every task. This is the reason
we propose a linear weighted filter as Weighted
Score (Eq. 6).

Table 2 shows our findings regarding larger-scale
experiments. It is notable that our method is best
in most of the tested scenarios. We decided to

continue using Gemma-2-2B for our evaluations
as it is a relatively small model that allows for
fast testing and is available to a broad range of
researchers, even when no larger digital infrastruc-
ture is available. The comparison between our
methodology and the three data augmentation base-
lines, A2T, EDA, and CLARE, in Figure 3 shows
that we are very competitive in comparison to state-
of-the-art methods while being only limited on the
LLM’s size and its computational requirements,
even though the graphs might indicate that the other
augmenters exceed our performance, this is not the
case, when looking at Figure 6. With larger models,
we can improve even more putting our limitations
on the hardware rather than on our method. For
example, in the HANS figure, we also explored
the performance of L1ama-3-8B and L1ama2-7@B,
because our baseline model Gemma-2-2B failed to
produce data points of sufficient quality. Note that
for the IMDD setting we did not calculate CLARE
as it exceeded our maximum execution time of 72
hours runtime. Also we cut off our augmenter at
10 data points, because we use small clusters of
data as our "impulse" for the LLM. If we generated
too much data points, we would oversaturate that
semantic area.

4.1 Qualitative analysis

Next to results for our augmenter and selection al-
gorithm, another important aspect is the quality of
the data generated by the LLM. We will examine
examples for every dataset, discussing the gener-
ated data.

4.1.1 IMDb

We will firstly discuss a data point generated by
Llama-2-7B, the LLM was tasked to generate a
review for the cluster labeled as ’cinderella disney
her the’:

A semantic search over the IMDb dataset with
the cluster’s topic label as the query reveals that
the two most similar sentences are both of nega-
tive sentiment at first glance, but actually only one
of them is truly negative. The newly synthesized
example (highlighted in yellow) fills the gap of a
more overtly positive movie review.

4.1.2 HANS

HANS is a more difficult dataset than IMDb in
the sense that it requires reasoning capabilities.
The following data was generated by Gemma-2-2B,
which was tasked to use "senators senator scientist



IMDb AGNews
Base 1 3 5 10 Base 1 3 5 10
A2T 00%  -03%  -0.6%  -0.4% +02% +03% +0.5% +0.7%
CLARE - . - . +0.1%  +0.1% -0.1%  +0.1%
EDA | 4% o1e 029 029 -03% | S8% 0% -00%  01%  -0.1%
TOPEX +0.8%*% +13%* +1.4%* +1.4% 02%  +0.0% -04%* -0.0%
HANS TREC
Base 1 3 5 10 Base 1 3 5 10
A2T +0.0% 01%  -01%  -02% +0.1%  +0.0% -00%  +0.4%
CLARE | o\ 4o -02%  0.1%  -01%  -02 o1 t01%  +0.0%  0.0%  +0.2%
EDA T 100%  -01% -04%  -0.4% S 101% +02%  +0.1%  +0.2%
TOPEX +02% +02%* +0.4%* +0.3% +0.5%% +0.1%* +0.3%* +0.4%%*

Table 2: Absolute performance improvements (in % accuracy) using our synthetic data generation method. The
first column (Base) corresponds to the classification model’s base accuracy, while the subsequent columns in each
datasets refers to the number of synthetically generated data points. All values are based on Gemma-2-2B as the
augmenter LLM. "*" denotes this was achieved using the augmenter model in a few-shot setting.

Data point Label

I recently watched ’Cinderella’ (2015) and was
thoroughly impressed. The animation was stun-
ning and the voice acting superb. Lily James
brought the titular character to life in a way that
was both relatable and inspiring [...]

pos

Possible Spoilers, Perhaps. I must say that "Cin-
derella II: Dreams Come True" is one of the
worst movies ever [...]

neg

As a young boy, I always sort of hated "Cin-
derella," since I was outvoted by my two sisters
when my parents [...]

pos

Table 3: IMDb sentiment analysis examples (extracts
for brevity). The first one is synthetically generated by
Llama-2 7B, while the latter two are two most similar
examples from the original data.

scientists" as cluster name.

(’The scientists and the doctors mentioned the
lawyers.’, *The scientists mentioned the lawyers.”)

While the model adhered to the instructions and
generated a valid pair of sentences for the task of
natural language inference, the quality of this data
point is below our expectations. This would explain
why our improvements on HANS are rather limited.
We tackled this problem by using a larger model
to demonstrate that this can be resolved when us-
ing a more proficient model. The following was
generated by L1ama-3-8B and resolves all of the
previously mentioned issues.

(’The doctors and the lawyers mentioned the
artists.”, "The doctors mentioned the artists.”)

4.1.3 TREC

TREC is a rather difficult dataset for Gemma-2-2B
as can be derived from Figure 6d. For the cluster
"abbreviation stand for does" our LLM generates:

"How many letters does the abbreviation "FBI"
stand for?"

Which is again a valid English sentence, but
the meaning of it is off. When using L1ama-2-7B
this issue again is resolved, it was tasked with the
cluster "rotary engine engines the".

"What is the name of the famous engineer who
invented the rotary engine and how he got the
inspiration for this revolutionary technology?"

We decided against evaluating a complete series
of L1lama-2-7B results on TREC as we show in
AGNews that a larger LLM resolves most of the
issues.

4.1.4 AGNews

Our method is the weakest in the AGNews setting
with Gemma-2-2B, being only on par with CLARE
and EDA and even L1ama-3-8B is not able to sig-
nificantly improve on this. We choose an example
generated by L1ama-3-8B, with the cluster name
"intel amd chip chips".

"The world of computing is a rapidly changing
one, with new technologies emerging all the time.
One of the key areas of development is in the field
of processor chips, where companies such as Intel

and AMD are constantly pushing the boundaries
of what is possible. In recent years, the
competition between Intel and AMD has driven



IMDb
15

124

0.9

0.6

0.3 1

0.0 4

relative perfermance gain in %

— A2T
—— Easy Data
—— ours-gemmazb

—0.3

—0.6

T T T T
2 4 6 8
amount of augmented datapoints

(a) Performance of our methodology compared to two baseline
data augmentation methods for IMDb.
HANS

.—/\

P

0.6

0.3 1

0.0

relative perfermance gain in %

— A2T

Clare
—— Easy Data
—— ours-gemmaz2b

-0.6 T T T

T
2 4 6 8
amount of augmented datapoints

AG News

0.6
R
£
£
3 034
[
[}
(=
o]
E
£ 00+
[T
(=%
v
=
5
]
2 _p34d — A2T

Clare
—— Easy Data
—— ours-gemmazb
-0.6 T T T T
2 4 6 8

amount of augmented datapoints

(b) Performance of our methodology compared to three baseline
data augmentation methods for AG News.

Trec
0.6
R
= 031 /
£
o
o
[
[}
5
E 0.0
S
=
7]
(=8
v
2
K]
T 03] — 2T
Clare
—— Easy Data
—— ours-gemmazb
-0.6 T T T T
2 4 6 8

amount of augmented datapoints

(c) Performance of our methodology compared to three baseline (d) Performance of our methodology compared to three baseline

data augmentation methods for HANS.

data augmentation methods for TREC.

Figure 3: Performance of our methodology compared to three baseline data augmentation methods.

innovation and led to the development of faster,
more powerful and more efficient processors. This
has had a significant impact on the world, enabling
the creation of faster computers, more powerful
servers and more efficient data centers. As a result,
the world has become a more connected and more
productive place. [...]"

The text itself is rich enough to be considered a
data point that could improve the performance of
a classification model, but the task seems to com-
plex, in the last sentence the model drags its own
task into the data point, which drastically decreases
its quality. Additionally, the model repeats itself
multiple times.

5 Discussion

Data augmentation methods suffer from a bias
caused by the underlying core dataset. It is very
hard to generate authentic data to enhance quality

and quantity of a dataset without compromising the
balance of it (Kumar et al., 2020; Li et al., 2022).
We tried to tackle this problem by using LLMs,
which makes our work competitive but we recog-
nize the set of problems it comes with. The most
prevalent problem is the chosen LLM. It will have
to be able to comprehend the data and the problem
it is tasked to generate. If the model does not un-
derstand its task, it will generate data with poor or
inconsistent quality. We documented many situa-
tions in which a relatively small model failed to
generate meaningful data, where the larger variants
generated data that could be natural.

Another issue we encountered is the performance
of the used LLM itself. We have documented in-
stances where the augmentation model generates
nonsensical text, this can be examined in § C. This
impacted our AG News performance. We suspect
the prompt design to be at fault here.



6 Related Work

TDG (He et al., 2023) identifies challenging sub-
populations, but is more concerned with data aug-
mentation as a goal, so it estimates which clusters
benefit from additional data without hurting the
overall accuracy. In our work, we also distinguish
between in-group and overall accuracy, but our
method is less expensive and freely available, both
in terms of used models and available code.

The most prominent work in data-centric inter-
pretability, i.e. diagnosing the model behavior on
datasets, is Dataset Cartography (Swayamdipta
et al., 2020), where during training individual in-
stances are categorized by how hard they are to
learn for models. Their empirical results have
shown that ambiguous regions on their Data Map
visualizations (plotting confidence against variabil-
ity) contribute the most towards out-of-distribution
generalization. Our explainer also yields a 2D plot
of data points regarding their learnability, but we
go one step further and use model-generated cluster
labels to synthesize new data and improve the ex-
plained model. Similar to our work is Goal-driven
clustering (Wang et al., 2023), where clusters of
datasets are explained in natural language and in-
stances are then classified as to whether they belong
to a specific cluster. Similarly, SEAL (Rajani et al.,
2022) identifies subpopulations of a dataset with
high error rates and assigns human-understandable
explanations to them. The Spotlight (d’Eon et al.,
2022) searches a model’s final layer embedding
space to identify contiguous sets of data points that
maximize the loss. None of these three works, how-
ever, deal with using these clusters in any way to
improve on the model performance, which we add
towards in a final step of our methodology. Other
works have explored measuring the difficulty of
single examples (Smith et al., 2014; Ethayarajh
et al., 2022; Saha et al., 2022), quantifying the
value of single examples to a model’s performance
(Ghorbani and Zou, 2019; Rajani et al., 2020), or
proposed methods for identifying mislabeled data
from training dynamics (Pleiss et al., 2020).

7 Conclusion

In this paper, we showed that we can use topo-
logical aspects to modify a model’s output space
in such ways that we can cluster them and assign
meaningful names to the clusters. We also proved
we can use said clusters and names to instruct a
LLM to generate synthetic data to improve weak

spots of a model. Our experiments present that
our methods are model, domain and task agnostic
while maintaining a very competitive performance
in comparison to related data augmentation papers.

Limitations

High dimensional spaces are impossible to be bro-
ken down loss free into lower dimensional spaces
without them being linearly dependent. That be-
ing said, methods like SparsePCA (Johnstone and
Lu, 2009) and t-SNE (van der Maaten and Hinton,
2008) work quite well on representing high dimen-
sional data in a manner that makes it comprehensi-
ble for humans. Though our chosen dimensionality
reduction algorithms work well, that is not enough
in many cases and we expected better visual results
for datasets like TREC.

We  restricted  ourselves on  using
BERTopic (Grootendorst, 2022) for the naming
of our clusters. While this is proved to be a well
working method, we do recognize that we could
have used another LLM to try and give names to
the clusters.
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A Anecdotal results

Figure 4 shows the results of optimizing using a
cosine similarity filter for optimization-candidate
proposal and 3 synthetic datapoints which were
generated by Llama2-7B (Touvron et al., 2023).
Additionally to correcting the prediction on one of
the three datapoints we improved the overall accu-
racy in this case by 0.13% from 89.3% to 90.6%.
We also provide a crude reasoning as to why this
exact cluster has been selected.

Cluster with name ’cinderella disney the and’ has
been chosen because the cosine similarity of the
strings is 2.17-times greater than the mean of all
found clusters. The minimum is 0.57-times the
mean.

Figure 5: Clusters and their composition that the algo-
rithm found. The first bar shows the general ratio of
falsely to correctly predicted samples, the other ones
show clusters of samples. The Y -axis shows the amount
of samples in each cluster, the X -axis shows the amount
of clusters as a whole. We will focus on the clusters
starting from X = 150, as this is the point where clus-
ters begin to be mostly composed of wrong instances.
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Figure 4: This is the distribution of the datapoints after optimizing using our methods. You can see that the
"cinderella disney the and" cluster has been dissolved. One point moved into the correctly identified values
(0.11,0.18), the two others dispersed inside the wrong predictions.

B Few shot augmentation prompt
example

The following is an example for our prompt design
on HANS using a one-shot prompt.

You have to complete the following text accord-
ing to the instructions in *Task’ where the desired
answer is followed by *Answer’.

Task:

Generate a premise and a hypothesis based on The-
play-the-the, delimited by ’/delim/’, in a Subject-
Verb-Object sentence structure. The sentence pair
of premise and hypothesis should have a entailment
relation out of ’entailment’ and "non-entailment’
Generate exactly one pair of premise and hypothe-
sis. Don’t provide any post reasoning or explana-
tion, just the hypothesis and premise. Remember to
put the delimiter between premise and hypothesis,
not at the end. The delimiter is /delim/, you should
use the delimiter exactly once in your response, to
delimit the premise you provide from the hypothe-
sis you provide.

Your answer:

The artists and the lawyers mentioned the doctors
Jdelim/

The artists mentioned the doctors .

Task: Generate a premise and a hypothesis based
on The-play-the-the, delimited by ’/delim/’, in a
Subject-Verb-Object sentence structure. The sen-
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tence pair of premise and hypothesis should have
a entailment relation out of ’entailment’ and *non-
entailment’ Generate exactly one pair of premise
and hypothesis. Don’t provide any post reasoning
or explanation, just the hypothesis and premise. Re-
member to put the delimiter between premise and
hypothesis, not at the end. The delimiter is /delim/,
you should use the delimiter exactly once in your
response, to delimit the premise you provide from
the hypothesis you provide.

Your answer:

C Faulty text-generations

Faulty generation example for IMDb using
Gemma-2-2B.

"and then write the review. The review should be
at least 250 words long.You can use the review as
an assignment for your English class. This is a great
assignment to help your students practice writing.If
you have any questions or feedback, please contact
me at: Email: Phone: Facebook: Pinterest: Twitter:
Google+:"

Faulty generation example for AG News using
Llama-2-7B.
"\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n"
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