

000 CEREBRAGLOSS: INSTRUCTION-TUNING A LARGE 001 VISION-LANGUAGE MODEL FOR FINE-GRAINED 002 CLINICAL EEG INTERPRETATION 003 004

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 Interpreting clinical electroencephalography (EEG) is a laborious, subjective pro-
014 cess, and existing computational models are limited to narrow classification tasks
015 rather than holistic interpretation. A key bottleneck for applying powerful Large
016 Vision-Language Models (LVLMs) to this domain is the scarcity of datasets pairing
017 EEG visualizations with fine-grained, expert-level annotations. We address
018 this by introducing CerebraGloss, an instruction-tuned LVLM for nuanced EEG
019 interpretation. We first introduce a novel, automated data generation pipeline,
020 featuring a bespoke YOLO-based waveform detector, to programmatically cre-
021 ate a large-scale corpus of EEG-text instruction data. Using this data, we de-
022 velop CerebraGloss, the first model of its kind capable of unified, generative
023 analysis—performing tasks from detailed waveform description to multi-turn,
024 context-aware dialogue. To evaluate this new capability, we construct and re-
025 lease CerebraGloss-Bench, a comprehensive benchmark for open-ended EEG in-
026 terpretation. CerebraGloss demonstrates strong performance, surpassing leading
027 LVLMs, including proprietary models like GPT-5, on this benchmark and achiev-
028 ing a new state-of-the-art on the TUSZ seizure detection task. We will open-source
029 our model, benchmark, and tools to foster progress in developing general-purpose
030 neuro-intelligent systems.

031 1 INTRODUCTION

033 Electroencephalography (EEG) remains a fundamental diagnostic tool in neurology, yet its clinical
034 power is unlocked only through meticulous manual review of raw waveforms by trained special-
035 ists (Kiloh et al., 2013). This process suffers from critical limitations: it is (1) **laborious**, with
036 experts spending hours reviewing a single recording; (2) **subjective**, leading to significant inter-
037 observer variability; and (3) **incomplete**, as pragmatic, selective annotation leaves vast amounts of
038 signal information unanalyzed. These challenges create a major bottleneck in patient care and moti-
039 vate the need for more effective analytical tools. To facilitate a broader understanding of the clinical
040 context, we provide a primer on clinical EEG in Appendix A.

041 The research community’s response has evolved from traditional machine learning using hand-
042 crafted features to deep learning models and, most recently, to large-scale self-supervised foun-
043 dation models (Loh et al., 2020; Shoeibi et al., 2021; Babu et al., 2025). Despite their increasing
044 sophistication, these models share a common limitation: they are designed to perform specialized
045 classification on isolated tasks like seizure detection or sleep staging, lacking the ability to syn-
046 thesize findings or provide a holistic, interpretive analysis. Fundamentally, the field has produced
047 classifiers, but not yet effective interpreters.

048 The recent success of Large Vision-Language Models (LVLMs) (Anthropic, 2024; OpenAI, 2024;
049 Wu et al., 2024; Bai et al., 2025) offers a transformative new paradigm. By treating EEG waveforms
050 as a specialized visual language, we can potentially adapt these powerful models to “read” and
051 interpret neurophysiological data with human-like nuance. This approach promises a shift from
052 narrow classifiers to comprehensive interpreters. However, a critical bottleneck has prevented this
053 leap: the absence of large-scale datasets pairing EEG visualizations with the kind of **fine-grained,**
expert-level interpretations needed for effective instruction-tuning.

To this end, we introduce **CerebraGloss**, a LVLM instruction-tuned for the nuanced interpretation of clinical EEG waveforms. We overcome the data bottleneck by first developing a novel, automated pipeline that programmatically generates a massive corpus of detailed annotations directly from raw EEG signals. Using this unique data engine and Gemini 2.5 Flash (Comanici et al., 2025), we create a large-scale instruction dataset and subsequently train CerebraGloss to understand and reason about EEG images. The resulting model is the first of its kind, capable of performing not only classification but also generating detailed descriptions of waveforms, artifacts, and background rhythms, and engaging in multi-turn, context-aware dialogue—mimicking the interpretive process of a clinical expert.

Our primary contributions are:

- We pioneer a new paradigm for EEG analysis that shifts from isolated classification to unified, generative dialogue, enabling a single model to perform multi-faceted interpretation of EEG segments.
- We propose a novel data generation pipeline where a suite of custom-built analysis tools—including a pioneering YOLO-based (Redmon et al., 2016) waveform detector—is used to programmatically create a large-scale EEG-text instruction dataset.
- We successfully instruction-tune a large vision-language model, demonstrating that with specialized data, a general-purpose LVLM can be adapted to interpret complex, domain-specific visualizations like clinical EEG waveforms.
- We construct and release a novel benchmark for comprehensive EEG interpretation, comprising diverse tasks designed to evaluate a model’s nuanced understanding beyond single-metric classification.
- We will open-source our model, tools, and benchmarks to catalyze progress in the development of general-purpose neuro-intelligent systems.

2 RELATED WORK

Computational Models for Clinical EEG Interpretation. The computational analysis of EEG began with traditional machine learning classifiers (e.g., support vector machine) on hand-crafted features (Tzallas et al., 2009; Shoeb, 2009; Alickovic et al., 2018). This was followed by deep learning models, such as convolutional neural networks (CNNs) and recurrent neural networks (RNNs), which could learn representations directly from data (Supratak et al., 2017; Chen et al., 2018; Qiu et al., 2023). More recently, foundation models for EEG have emerged, pre-trained on large-scale unlabeled data using self-supervised objectives like BERT-style (Devlin et al., 2019) masked signal modeling (Zhang et al., 2023a; Jiang et al., 2024; Wang et al., 2024) or GPT-style (Radford et al., 2018) autoregressive prediction (Cui et al., 2024). While powerful, these models are predominantly evaluated as specialized classifiers for tasks spanning both clinical applications and broader BCI domains (e.g., emotion recognition and motor imagery), lacking the holistic, interpretive capability of a human expert.

Bridging EEG and Language. Initial efforts to connect EEG and language have primarily followed two paths. The first category aims to learn powerful EEG representations for classification by aligning signals with text. This includes methods such as ELM-MIL (Gijsen & Ritter, 2025) and EEG-CLIP (Camaret Ndir et al., 2025) that perform coarse-grained alignment between multi-hour recordings and summary-level clinical reports. By design, these approaches are not optimized for grounding textual descriptions to specific waveform events, which is central to our generative focus. The second path explores instruction tuning, where models like NeuroLM (Jiang et al., 2025) reframe classification tasks into a multiple-choice format. While innovative, this method is fundamentally non-generative, precluding free-form output or dialogue. It is also crucial to distinguish our task—interpreting the EEG signal for its clinical significance—from the separate field of brain-to-text decoding (Mishra et al., 2025), which aims to reconstruct a user’s internal speech. Given the limitations of prior work, a model capable of fine-grained, generative, and conversational interpretation of clinical EEG thus remains an open challenge.

Domain-Specific Post-Training for LVLMs. Domain-specific post-training adapts general-purpose LVLMs to specialized fields like food (Mohbati & Zaki, 2024; Yin et al., 2025),

108 biomedicine (Li et al., 2023; Zhang et al., 2023b; Chen et al., 2024), and remote sensing (Zhang
 109 et al., 2024). This process typically involves a two-stage training pipeline. In the first stage, the
 110 model undergoes preliminary alignment using a large corpus of domain-specific image-caption pairs
 111 to learn fundamental visual concepts and terminology. In the second stage, the model is fine-tuned on
 112 more complex visual instruction datasets to cultivate advanced reasoning and instruction-following
 113 abilities. The creation of these instruction datasets is a key step, with prominent methods including
 114 applying manual rules (Mohbat & Zaki, 2024), or leveraging powerful teacher models like GPT-
 115 4 (Achiam et al., 2023) to synthesize diverse conversational and question-answering data (Li et al.,
 116 2023; Chen et al., 2024).

117

118 3 EEG INSTRUCTION DATA GENERATION

119

120 3.1 AUTOMATED PIPELINE FOR STRUCTURED ANNOTATION

122 The foundation of CerebraGloss is a large-scale instruction dataset. As manual annotation of de-
 123 tailed EEG interpretations is prohibitively expensive and time-consuming, we designed an auto-
 124 mated pipeline which takes **raw multi-channel EEG signals** as input and programmatically gen-
 125 erates a set of structured clinical annotations. This pipeline serves as a “data engine”, comprising
 126 three core modules for identifying significant waveform events, characterizing background activity,
 127 and detecting artifacts.

128

Key Waveform Event Detection. Central to EEG interpretation is the identification of specific,
 129 transient graphoelements. To automate this process, we developed **CerebraGloss-YOLO**, a be-
 130 spee object detection model tailored for localizing and classifying salient events within multi-
 131 channel time-series data. It is designed to recognize nine clinically critical waveform types: spikes,
 132 sharp waves, spike/sharp-and-slow-wave complexes, K-complexes, sleep spindles, high-frequency
 133 noise, positive sharp transients (blinks), positive and negative square waves (lateral eye movements).
 134 Visual examples of these waveforms are provided in Figure 5. Our team of trained annotators under-
 135 took an extensive, multi-month labeling process, meticulously curating a dataset from public corpora
 136 including DREAMS (Devuyst, 2005) and select subsets of the TUH EEG Corpus (Obeid & Picone,
 137 2016), in addition to our private in-house collection. This effort produced a dense dataset of 46,258
 138 expert-labeled bounding boxes across 2,849 unique 10-second EEG segments. The architecture and
 139 implementation details of CerebraGloss-YOLO are provided in Appendix B.

140

Background Rhythm Characterization. Beyond discrete events, the pipeline assesses global
 141 background characteristics. It quantifies amplitude as half of the peak-to-peak voltage and deter-
 142 mines the dominant frequency by first identifying the canonical frequency band (i.e., delta, theta,
 143 alpha, beta, and gamma) with the highest power spectral density, and then extracting the frequency
 144 with the peak magnitude within that band.

145

Artifact Identification. To ensure robust analysis, the pipeline incorporates a module to identify
 146 common artifacts based on their statistical and morphological signatures. This module identifies
 147 physiological artifacts, such as muscle activity (EMG) via high-frequency power, eye movements
 148 (EOG) through spatial correlation patterns in frontal channels, and respiration by its rhythmic slow-
 149 wave morphology. It also flags non-physiological artifacts: electrode noise is identified by a com-
 150 posite criterion of extreme local amplitude combined with a loss of correlation with adjacent channels,
 151 while flat lines are marked by periods of near-zero signal variance, which may indicate either an
 152 artifact or a clinically significant low-voltage state.

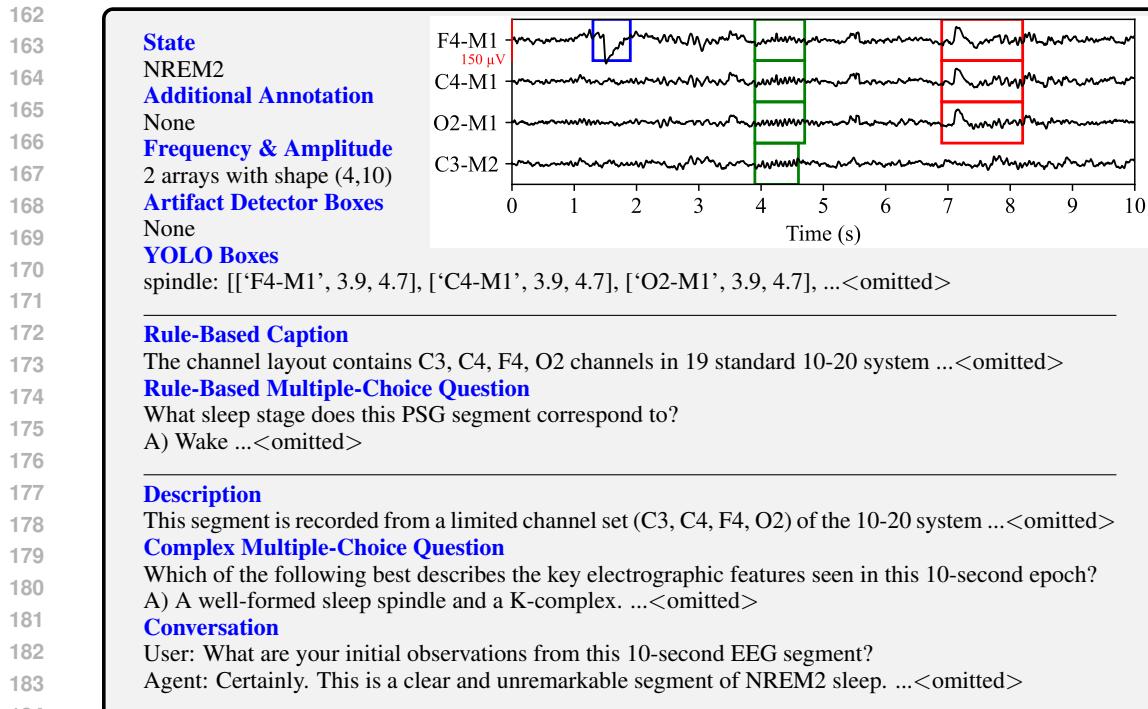
153

154

155 3.2 INSTRUCTION-FOLLOWING DATA GENERATION

156

Leveraging the structured annotations from our pipeline, we constructed a large-scale, multi-format
 157 instruction-following dataset. We sourced a total of 1.4M 10-second EEG segments (approximately
 158 3,889 hours) from a diverse collection of public datasets, including the training sets of TUAB (Lopez
 159 et al., 2015), TUEV (Harati et al., 2015), and TUSZ (Shah et al., 2018), the entirety of TUAR (Buck-
 160 walter et al., 2021), TUEP (Veloso et al., 2017), and TUSL (von Weltin et al., 2017) (which do
 161 not provide train/test splits), along with DREAMS (Devuyst, 2005) and the first 100 subjects from
 HMC (Alvarez-Estevez & Rijksman, 2021; 2022). From this extensive pool, we generated instruction



185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Figure 1: One example to illustrate the instruction-following data. “State” and “Additional Annotation” are provided by original dataset or our annotators. Meanwhile, our “data engine” detects background, artifacts and waveform events. Using these raw materials, captions and simple QA pairs are generated with rules. Finally, all materials except for the two background arrays and the simple QA are fed to the LLM, resulting in three types of instruction-following data. Note that the visual image is not used anywhere in the process; we only show it here as a reference.

data through a two-pronged strategy: a systematic rule-based approach followed by augmentation with a large language model.

Rule-Based Generation. We first employed a programmatic approach to generate a foundational set of detailed captions and simple question-answer pairs. The template-driven captions synthesize a comprehensive description covering five key aspects: (1) montage configuration, (2) artifacts (e.g., blinks, high-frequency noise), (3) sleep-related events (e.g., K-complexes, spindles), (4) epileptiform activity, including an assessment of dipole characteristics, and (5) background characteristics, detecting posterior dominant rhythm, paroxysmal delta rhythm and any spatial asymmetries or temporal variations. To mitigate the inaccuracies introduced by automated identification, strategies such as event priority masking, spatial pruning of isolated events and the inductive integration of event groups are employed. Concurrently, we generated multiple-choice and binary questions to probe for specific knowledge across key domains like artifact presence, sleep staging, and seizure detection.

LLM-Powered Data Augmentation. To elevate the complexity and conversational nature of our dataset, we utilized Gemini 2.5 Flash (Comanici et al., 2025)—chosen for its optimal balance of capability and cost—as a teacher model. We provided the model with the rule-based captions, the bounding boxes from CerebraGloss-YOLO and our artifact detectors, the sleep stage and additional annotation as input. Using meticulously engineered one-shot prompts, with distinct sets tailored for sleep and epileptic seizure data, we guided the model not only to generate a rich mixture of instruction types but also to constrain its output to the provided context, thereby mitigating the risk of factual inaccuracies. This process yielded a final dataset of 94K high-quality examples, balanced in a 1:1:1 ratio across three formats: (1) **Description**: a comprehensive, free-text interpretation; (2) **Complex Multiple-Choice Question**: multi-choice questions requiring deeper reasoning; and (3) **Conversation**: conversational exchanges mimicking a clinical consultation. Examples of each data type are shown in Figure 11, and the prompts are detailed in Appendix D.

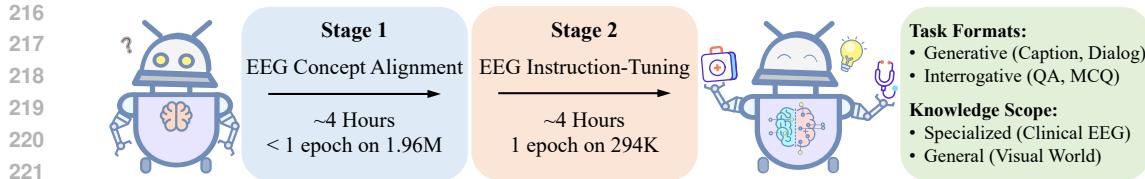


Figure 2: The two-stage training pipeline for CerebraGloss. A mix of EEG and general-domain data is used to mitigate catastrophic forgetting. Stage 1 aligns EEG visual concepts in under one epoch via early stopping, while Stage 2 fine-tunes for instruction-following. The process yields a specialized model capable of diverse generative and interrogative EEG interpretation tasks.

4 METHODOLOGY

To endow a general-purpose LVLM with the specialized ability to interpret clinical EEG waveforms, we perform continued post-training on the Qwen2.5-VL-3B model (Bai et al., 2025). Our primary goal is to instill fine-grained EEG understanding while preserving the model’s extensive pre-trained knowledge of general visual concepts. We retain the original model architecture, which consists of a visual encoder, a LLM decoder, and a projector that bridges the two modalities. Our training curriculum for CerebraGloss follows a two-stage strategy, designed to first establish a foundational understanding of EEG concepts and then cultivate advanced instruction-following and reasoning capabilities. This process is illustrated in Figure 2. The model structure is detailed in Appendix G.

Stage 1: EEG Concept Feature Alignment. The initial stage aims to align the visual features of EEG waveforms with their corresponding semantic concepts in the language model’s embedding space. To achieve this while safeguarding the model’s pre-existing abilities, we curate a blended dataset. This includes 1.4M EEG image-caption pairs generated programmatically by our data engine, combined with the 558K general-domain image-caption pairs from the LLaVA Visual Instruct Pretrain LCS-558K (Liu et al., 2024a). During this stage, we freeze the parameters of both the visual encoder and the LLM decoder, exclusively performing full-parameter fine-tuning on the projector. This targeted approach efficiently teaches the model the new visual vocabulary of EEG without risking catastrophic forgetting. We employ an early stopping strategy, concluding the training phase before the convergence point of the training loss curve, thereby preventing overfitting and optimizing training time.

Stage 2: EEG Instruction-Tuning. The second stage focuses on developing the model’s ability to follow complex instructions, generate nuanced interpretations, and engage in conversational dialogue. For this, we construct a diverse instruction-following dataset comprising both domain-specific and general-purpose examples. The EEG-specific data includes 100K rule-based multiple-choice questions (containing 39K TUSZ seizure issues and 40K HMC sleep staging issues), 94K instruction samples (covering multi-turn conversations, detailed descriptions, and complex reasoning questions) generated by Gemini 2.5 Flash, and an additional 50K rule-based captions from the HMC and TUSZ datasets. To maintain general instruction-following capabilities, we supplement this with 50K general-domain samples, consisting of 30K from the CoSyn-400K (Yang et al., 2025) and 20K from the LLaVA-Instruct-150K (Liu et al., 2023). In this stage, we freeze the visual encoder and perform full-parameter fine-tuning on both the LLM decoder and the projector. The model is trained for a single epoch on this combined dataset.

Implementation Details. We conducted all training experiments on a cluster of 8 NVIDIA A800 (80GB) GPUs. We employed the AdamW optimizer with an effective batch size of 256, achieved through gradient accumulation. The learning rate was managed by a cosine scheduler with a peak value of 1×10^{-5} and a warmup ratio of 0.1. The entire two-stage training process is highly efficient; with the early stopping strategy in the first stage, each stage was completed in approximately 4 hours. More information about instructions and data format of training are detailed in Appendix F.

270 5 CEREBRAGLOSS-BENCH: A BENCHMARK FOR NUANCED EEG 271 INTERPRETATION 272

273 Existing clinical EEG benchmarks are limited to closed-set classification tasks, such as seizure de-
274 tention in TUSZ (Shah et al., 2018) or sleep staging in HMC (Alvarez-Estevez & Rijssman, 2021;
275 2022). While valuable, this paradigm is insufficient for evaluating nuanced interpretation. Specifi-
276 cally, this single-label approach creates a label-granularity mismatch by incorrectly propagating file-
277 level labels to every segment, oversimplifies complex signals that may contain multiple co-occurring
278 events, and ignores crucial context-dependency where a waveform’s meaning changes with patient
279 state. A detailed discussion of these issues is provided in Appendix C.

280 To address these limitations and to rigorously evaluate a
281 model’s ability to “read” EEG, we introduce and will pub-
282 licly release **CerebraGloss-Bench**. To our knowledge,
283 it is the first benchmark designed for *open-ended* clin-
284 ical EEG interpretation and *multi-class waveform object*
285 *detection*. CerebraGloss-Bench comprises 90 chal-
286 lenging 10-second segments of full 19-channel 10-20 system
287 EEG. Each segment is paired with a four-part evalua-
288 tion suite: a free-text **description**, a complex **multiple-
289 choice question (MCQ)**, a conversational **question-
290 answer pair (QA)**, and dense, channel-level **bounding
291 box annotations** for nine critical waveform types (de-
292 tailed in Section 3.1). The textual data was initially gen-
293 erated using a programmatic prompting strategy and sub-
294 sequently reviewed, edited, and validated by clinical experts
295 to ensure high quality and accuracy. All data was sourced
296 from a private in-house collection, with subjects entirely disjoint from those used in our training data
297 to prevent data leakage and ensure a fair evaluation. The benchmark offers comprehensive cover-
298 age of clinically relevant phenomena, spanning four major categories and seventeen sub-categories:
299 background rhythms (alpha rhythm, temporal variation, spatial asymmetry, slowing, fast activity,
300 low voltage), artifacts (eye-related, severe artifact, high-frequency noise, chewing), sleep patterns
301 (K-complexes, drowsing slow activity, sleep spindles, delta activity in deep sleep), and epileptiform
302 patterns (sharp waves, spikes, and spike/sharp-and-slow-wave complexes). The distribution of these
303 assessment areas is shown in Figure 3, and examples are presented in Appendix N.

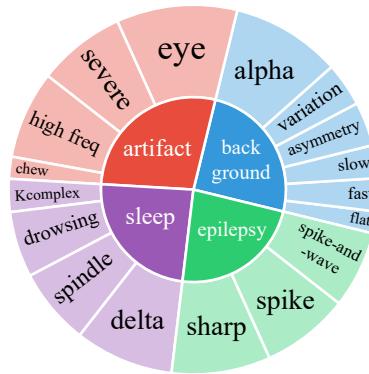
304 6 EXPERIMENTS

306 6.1 QUALITATIVE ANALYSIS

308 Table 1 shows CerebraGloss following diverse instructions to generate clinically relevant interpreta-
309 tions. It correctly identifies the primary feature (a posterior dominant alpha rhythm), localizes trans-
310 ient artifacts, and synthesizes this information coherently. Despite these promising capabilities, the
311 model is not without limitations. We must admit that CerebraGloss still has room for improvement,
312 particularly in mitigating occasional false positives where it hallucinates non-existent waveforms—a
313 challenge likely stemming from noise in our automated data generation pipeline. A detailed discus-
314 sion of noise propagation is presented in Appendix I. Additional results and expert-annotated ground
315 truth can be found in Appendix N.

316 6.2 MAIN RESULTS

318 **CerebraGloss-Bench.** We evaluated CerebraGloss against state-of-the-art multimodal large lan-
319 guage models including specialized biomedical ones on CerebraGloss-Bench. We report accuracy
320 for multiple-choice questions. For open-ended tasks, we use ROUGE-1 (Lin, 2004) to measure
321 factual recall in descriptions and, following prior work (Liu et al., 2023; Li et al., 2023), use GPT-
322 5 (OpenAI, 2025) as an impartial judge for conversational QA. GPT-5 scores the model’s response
323 on a 1-to-10 scale across helpfulness, relevance, accuracy, and detail by comparing it against the
expert-authored ground truth. As shown in Table 3, CerebraGloss achieves state-of-the-art perfor-



324 Figure 3: Distribution of test topics in
325 CerebraGloss-Bench

324 Table 1: CerebraGloss accurately follows the user’s instructions. Note that the EEG is shown in two
 325 images to conserve space in the layout. The model is fed the full, single image.

EEG input example, posterior dominant alpha rhythm		
328		
Source: CerebraGloss-Bench/img/4_av.jpg		
338	User	
339	CerebraGloss	Describe this EEG.
340		The channel layout uses the standard 10-20 system with an average reference. The overall
341		data quality is good, with only a transient eyeblink artifact noted in the frontopolar leads
342		(FP1, FP2) during the initial second. The posterior head region demonstrates a well-
343		organized alpha rhythm at approximately 10.3 Hz with medium amplitude, suggesting
344		an awake, eyes-closed state. The background activity is stable, predominantly composed
345		of low-amplitude alpha band activity at approximately 11.8 Hz. No definite epileptiform
346		discharges or physiological sleep waves are observed.
347	User	What is the primary electrographic feature seen in this 10-second segment?
348	CerebraGloss	A) Generalized background slowing consistent with encephalopathy. B) A well-organized posterior dominant alpha rhythm. C) Sleep spindles and K-complexes characteristic of NREM2 sleep. D) Low-voltage, mixed-frequency activity seen during drowsiness.
349		**B.** The segment demonstrates a prominent posterior dominant alpha rhythm at ap-
350		proximately 11.0 Hz, which is characteristic of an awake, eyes-closed state.
351	User	What are your thoughts on this segment?
352	CerebraGloss	This segment appears to be of good quality overall. The primary activity observed is
353		a well-organized posterior dominant rhythm at approximately 10 Hz, with a medium
354		amplitude of around 32 microvolts. This suggests the patient is likely in an awake, eyes-
355		closed state.

356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691

378 Table 3: Instruction-following capability comparison on CerebraGloss-Bench. Multiple-choice
 379 questions (MCQ), descriptions, and question-answering (QA) are evaluated using accuracy (%),
 380 ROUGE-1 score (%), and GPT-5 score (1-10), respectively. CerebraGloss even outperforms GPT-5.
 381 LLaVA-Med and BioMedGPT cannot follow instructions for MCQs.

	MCQ	Description	QA
LLaVA-Med (Li et al., 2023)	/	8.87	2.83
BioMedGPT (Luo et al., 2024)	/	11.82	1.29
Qwen2.5-VL-32B (Bai et al., 2025)	37.78	36.90	3.57
Gemini 2.5 Pro (Comanici et al., 2025)	52.22	37.95	3.86
GPT-5 (OpenAI, 2025)	70.00	37.07	4.58
CerebraGloss-3B	80.00	44.19	4.76

390
 391 Table 4: Balanced accuracy (%) on TUSZ and HMC. CerebraGloss significantly outperforms its
 392 base model Qwen2.5-VL-3B and achieves a new SOTA result on TUSZ. ELM-MIL cannot be tested
 393 on HMC due to its montage setting.

Model	Type	Multi-task	TUSZ	HMC
EEGNet (Lawhern et al., 2018)	DL	✗	65.53	58.51
CNN-Transformer (Peh et al., 2022)	DL	✗	75.53	68.35
ELM-MIL (Gijssen & Ritter, 2025)	DL+ML	✗	78.27	/
LaBraM (Jiang et al., 2024)	LEM	✗	77.48	68.92
Gram (Li et al., 2025)	LEM	✗	78.29	69.97
LLaVA-Med (Li et al., 2023)	LVLM	✓	50.00	25.00
BioMedGPT (Luo et al., 2024)	LVLM	✓	50.00	25.00
Qwen2.5-VL-3B (Bai et al., 2025)	LVLM	✓	55.02	25.00
CerebraGloss-3B	LVLM	✓	79.21	62.02

404
 405
 406 to the three corresponding 10-second segments. Furthermore, since the definitive criteria for REM
 407 sleep rely on electromyography (EMG) and electrooculography (EOG) signals—modalities not used
 408 by our model—we excluded the REM stage, formulating the task as a four-class classification. To
 409 ensure a rigorous evaluation with no subject overlap from the training set, we used the official
 410 evaluation split of TUSZ (46,091 samples) and the final 26 subjects from HMC (60,678 samples).
 411

412 We benchmarked CerebraGloss against classic deep learning (DL) architectures, state-of-the-art
 413 large EEG models (LEMs), LVLMs and the most recent work ELM-MIL that combines EEG
 414 and clinical report, DL and machine learning (ML). Given the significant class imbalance in both
 415 datasets, we report balanced accuracy as the primary evaluation metric. The results are summarized
 416 in Table 4. CerebraGloss achieves a new state-of-the-art on the TUSZ seizure detection task, outper-
 417 forming all specialized models. In contrast, the LVLMs demonstrate negligible performance, often
 418 defaulting to repetitive answers and thus achieving only chance-level accuracy. On the HMC sleep
 419 staging task, CerebraGloss’s performance is competitive yet falls slightly below the top-performing
 420 LEM. We posit this discrepancy is less a limitation of our model’s interpretive ability and more a
 421 reflection of the task’s specific demands. Clinical sleep staging often requires temporal context span-
 422 ning several minutes to resolve ambiguities. Specialized models, designed to excel at this singular
 423 task, may be highly tuned to subtle, short-segment patterns that help distinguish between similar
 424 sleep stages. CerebraGloss, in contrast, is trained for a broader, more descriptive interpretation,
 425 which may naturally de-emphasize optimization for a single, context-poor classification task. A
 426 more detailed analysis for HMC is presented in Appendix H.

427
 428 **General Capabilities.** In addition to specialized clinical performance, we evaluated whether
 429 our fine-tuning process compromises the model’s general vision-language abilities. We assessed
 430 CerebraGloss-3B on the comprehensive MMBench (Liu et al., 2024b) benchmark and found that
 431 it retains its core capabilities with only a marginal performance decrease compared to the origi-
 432 nal Qwen2.5-VL-3B, demonstrating that our approach successfully avoids significant catastrophic
 433 forgetting. The detailed results and analysis are provided in Appendix K.

432
 433 Table 5: Ablation studies on training configuration and model scale. It evaluates the impact of training
 434 duration, Stage 2 data composition (1 epoch but without captions or without LLM-augmented
 435 data), and model size.

436	437 Model Varients			438 Clinical Tasks		439 CerebraGloss-Bench		
	440 Params	441 Stage 1	442 Stage 2	443 TUSZ	444 HMC	445 MCQ	446 Description	447 QA
448	3B	0	1	79.68	62.24	78.89	41.11	4.57
449	3B	0.05	1	79.21	62.02	80.00	44.19	4.76
450	3B	0.10	1	79.83	61.46	76.67	41.03	4.40
451	3B	0.20	1	79.23	61.16	74.44	41.69	4.30
452	3B	0.05	0	54.36	24.09	37.78	22.08	2.67
453	3B	0.05	0.04	53.32	29.95	51.11	42.66	3.13
454	3B	0.05	0.25	80.03	56.26	76.66	40.10	4.22
455	3B	0.05	0.50	78.66	60.74	77.78	43.84	4.40
456	3B	0.05	w/o cap	78.73	61.80	78.89	51.09	4.58
457	3B	0.05	w/o aug	78.39	61.29	47.78	9.02	2.34
458	7B	0.06	1	80.21	63.34	81.11	44.23	4.64

451 6.3 ABLATION STUDIES

452 We conducted a series of ablation studies to validate our key design choices, including the training
 453 data configuration and model scale. All results are presented in Table 5.

454 **Impact of Stage 1 Feature Alignment.** We first investigated the impact of the Stage 1 feature
 455 alignment by comparing four checkpoints: skipping Stage 1 entirely (0 epochs), an early underfitting
 456 point (0.05 epochs, see Appendix J), the training loss elbow point (0.1 epochs), and a near-overfitting
 457 point (0.2 epochs). While performance on the TUSZ and HMC classification tasks remains comparable
 458 across all settings, the model trained to the underfitting point (0.05 epochs) achieves the best results
 459 on all three generative CerebraGloss-Bench tasks. We hypothesize that this early checkpoint is
 460 optimal because it allows the model to acquire the essential visual vocabulary of EEG without overwriting
 461 its powerful, pre-existing reasoning capabilities. Further training on our programmatically
 462 generated, template-heavy captions may introduce a “descriptive bias”, which hinders performance
 463 on more complex, open-ended reasoning tasks.

464 **Impact of Stage 2 Data Composition.** With the optimal Stage 1 configuration, we observed that
 465 model performance scaled positively with the amount of Stage 2 instruction data before converging,
 466 confirming the value of our dataset. We further explored the role of data components by removing the
 467 50K rule-based captions from the Stage 2 mixture. This reveals an interesting trade-off: performance
 468 on the benchmark description task improved, while scores on other tasks decreased. We hypothesize
 469 that the simpler, rule-based captions, though of lower quality than the LLM-generated data, act as
 470 a form of regularization. They anchor the model’s understanding to a broader, more fundamental
 471 feature space, preventing it from over-specializing on the stylistic nuances of the LLM-generated
 472 text. Removing them allows the model to better mimic the high-quality description style required by
 473 the benchmark, but at the cost of the general reasoning capabilities inherited from the base model.
 474 Additionally, we ablated the 94K instruction-following data generated by Gemini and found that the
 475 model loses its open-ended generative ability, defaulting to the MCQ format or producing gibberish
 476 filled with options. This occurs because the remaining Stage 2 data are almost entirely MCQ-
 477 based. However, performance on HMC and TUSZ does not decline, as their learning relies on
 478 rule-generated MCQs.

479 **Impact of Model Scale.** Finally, we investigated the scalability of our approach by applying our
 480 optimal training configuration to a larger, 7B parameter version of the model. The 7B model shows
 481 a general trend of improvement across the evaluation metrics, enhancing performance on both stan-
 482 dard clinical tasks and most aspects of CerebraGloss-Bench. While we observed a minor decrease
 483 in the QA score, the overall positive scaling confirms that our data generation and training pipeline
 484 is effective and suggests that performance can be further enhanced by leveraging larger base models.

486 7 CONCLUSION
487

488 In this work, we introduced CerebraGloss, a pioneering LVLM that reframes automated EEG analy-
489 sis from narrow classification to comprehensive, generative interpretation. We overcame the critical
490 data bottleneck by developing a novel programmatic pipeline, featuring the CerebraGloss-YOLO
491 detector, to create a large-scale instruction-following dataset. Through a specialized two-stage
492 training curriculum, CerebraGloss establishes a new paradigm for unified EEG analysis via gen-
493 erative dialogue. To evaluate this capability, we also built and released CerebraGloss-Bench, the
494 first benchmark for open-ended EEG interpretation and multi-class waveform object detection. Our
495 experiments show that CerebraGloss not only sets a new state-of-the-art on the TUSZ seizure de-
496 tection task but also significantly surpasses powerful proprietary models on our novel interpretive
497 benchmark.

498 While CerebraGloss establishes a new performance baseline, this work also charts a course for fu-
499 ture research. Our image-based approach intentionally mirrors current clinical practice; however, a
500 paradigm shift towards direct signal-to-text modeling represents a more ambitious and potentially
501 powerful frontier. This, along with avenues for enhancing our data pipeline, extending temporal
502 reasoning, and ensuring clinical readiness through rigorous validation, constitutes the next wave of
503 challenges. We provide a detailed discussion of these future directions in Appendix L. By open-
504 sourcing our model, benchmark, and tools, we aim to equip the research community with the foun-
505 dational tools to pursue these exciting frontiers and accelerate the development of truly assistive
506 neuro-intelligent systems.

507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540
541
ETHICS STATEMENT542
543
The authors adhere to the ICLR Code of Ethics. Our research involves clinical EEG data and aims
544
to develop tools for neurological analysis, which raises several important ethical considerations.545
Intended Use and Limitations. We state unequivocally that CerebraGloss and our data engine
546
including CerebraGloss-YOLO are research prototypes, **intended strictly for non-commercial,**
547
academic purposes. As such, it is **not intended for clinical diagnosis, patient care, or any**
548
real-world medical decision-making. The model is designed to assist researchers in analyzing
549
EEG data and to spur further investigation into general-purpose neuro-intelligent systems. As with
550
any generative model, CerebraGloss is susceptible to generating factually incorrect information or
551
“hallucinations”. This risk is compounded by the fact that it was trained on data from a fully auto-
552
mated pipeline, which, despite its effectiveness, can introduce labeling noise or errors. Therefore,
553
its outputs must be critically reviewed by qualified clinical experts and should never be used as a
554
substitute for professional medical judgment.555
Data Privacy and Governance. Our training data includes both public, de-identified datasets
556
(e.g., TUH, DREAMS, HMC) and a private, in-house data collection. All data from the private
557
collection were fully anonymized and collected under protocols approved by an institutional re-
558
view board, with informed consent obtained from all participants. Our newly created benchmark,
559
CerebraGloss-Bench, was also sourced from this ethically approved and anonymized private collec-
560
tion and contains no personally identifiable information.561
Broader Impact. Our immediate goal is to accelerate research by providing powerful, open-
562
source tools for EEG analysis and **encourage the computational community to ground their**
563
innovations in the inherent clinical and neuroscientific value of EEG signals. By releasing our
564
model, benchmark, and the data generation engine, we hope to foster a collaborative and transparent
565
research environment. While we must reiterate that the current version of CerebraGloss is strictly
566
a research prototype, the long-term vision that motivates this work is the development of reliable
567
AI assistants for neurology. We envision a future where such systems could support clinicians by
568
automating routine analysis, highlighting potential areas of concern for expert review, and reducing
569
inter-observer variability in EEG interpretation.571
572
REPRODUCIBILITY STATEMENT573
To ensure the reproducibility of our work, we are committed to releasing the core components of our
574
project. This includes the code for our programmatic **data engine**, the model weights for **Cerebra-**
575
Gloss, and the complete **CerebraGloss-Bench**. The supplementary material includes three demos,
576
covering our data engine, CerebraGloss, and CerebraGloss-Bench. Additionally, we provide a video
577
to showcase these components.578
We have chosen to release our data engine rather than the specific 1.4M generated data instances.
579
This decision is twofold. First, as our data was derived from publicly available sources (listed in
580
Section 3.2), providing the engine allows the community to replicate our process on these standard
581
corpora. Second, and more importantly, releasing the engine empowers other researchers to apply
582
our pipeline to their own private or specific EEG collections, granting them full control over the
583
data generation process and its outputs. This approach promotes greater flexibility and broader
584
applicability of our methodology.585
586
Details of our two-stage training methodology, including hyperparameters, are described in Sec-
587
tion 4. The architecture of CerebraGloss-YOLO is detailed in Appendix B. With these resources,
588
we believe the community can verify our findings and build upon our work.589
590
REFERENCES591
592
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
593
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical
report. *arXiv preprint arXiv:2303.08774*, 2023.

594 Emina Alickovic, Jasmin Kevric, and Abdulhamit Subasi. Performance evaluation of empirical
 595 mode decomposition, discrete wavelet transform, and wavelet packed decomposition for auto-
 596 mated epileptic seizure detection and prediction. *Biomedical Signal Processing and Control*, 39:
 597 94–102, 2018.

598 Diego Alvarez-Estevez and Roselyne M Rijssman. Inter-database validation of a deep learning ap-
 599 proach for automatic sleep scoring. *PloS One*, 16(8):e0256111, 2021.

601 Diego Alvarez-Estevez and Roselyne M Rijssman. Haglanden Medisch Centrum sleep stag-
 602 ing database (version 1.1), 2022. URL <https://doi.org/10.13026/t79q-fr32>.
 603 RRID:SCR_007345.

604 Anthropic. Claude 3.5 Sonnet, 2024. URL <https://www.anthropic.com/news/claude-3-5-sonnet>.

607 Naseem Babu, Jimson Mathew, and AP Vinod. Large language models for EEG: A comprehensive
 608 survey and taxonomy. *arXiv preprint arXiv:2506.06353*, 2025.

609

610 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
 611 Zhou, and Jingren Zhou. Qwen-VL: A versatile vision-language model for understanding, local-
 612 ization, text reading, and beyond. *arXiv preprint arXiv:2308.12966*, 2023.

613 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 614 Shijie Wang, Jun Tang, et al. Qwen2.5-VL technical report. *arXiv preprint arXiv:2502.13923*,
 615 2025.

616

617 G Buckwalter, S Chhin, S Rahman, I Obeid, and J Picone. Recent advances in the TUH EEG
 618 corpus: Improving the interrater agreement for artifacts and epileptiform events. In *2021 IEEE
 619 Signal Processing in Medicine and Biology Symposium*, pp. 1–3. IEEE, 2021.

620 Tidiane Camaret Ndir, Robin Tibor Schirrmeister, and Tonio Ball. EEG-CLIP: Learning EEG rep-
 621 resentations from natural language descriptions. *Frontiers in Robotics and AI*, 12:1625731, 2025.

622

623 Junying Chen, Chi Gui, Ruyi Ouyang, Anningzhe Gao, Shunian Chen, Guiming Hardy Chen, Xi-
 624 dong Wang, Ruifei Zhang, Zhenyang Cai, Ke Ji, et al. HuatuoGPT-Vision, towards injecting
 625 medical visual knowledge into multimodal LLMs at scale. *arXiv preprint arXiv:2406.19280*,
 626 2024.

627

628 Xuhui Chen, Jinlong Ji, Tianxi Ji, and Pan Li. Cost-sensitive deep active learning for epileptic
 629 seizure detection. In *Proceedings of the 2018 ACM International Conference on Bioinformat-
 630 ics, Computational Biology, and Health Informatics*, pp. 226–235. Association for Computing
 631 Machinery, 2018.

632

633 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
 634 Dhillon, Marcel Blstein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
 635 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
 636 bilities. *arXiv preprint arXiv:2507.06261*, 2025.

637

638 Wenhui Cui, Woojae Jeong, Philipp Thölke, Takfarinas Medani, Karim Jerbi, Anand A Joshi, and
 639 Richard M Leahy. Neuro-GPT: Towards a foundation model for EEG. In *2024 IEEE Interna-
 640 tional Symposium on Biomedical Imaging*, pp. 1–5. IEEE, 2024.

641

642 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
 643 bidirectional transformers for language understanding. In *Proceedings of the 2019 Conference of
 644 the North American Chapter of the Association for Computational Linguistics: Human Language
 645 Technologies*, pp. 4171–4186, 2019.

646

647 Stephanie Devuyst. The DREAMS databases and assessment algorithm, January 2005. URL
 648 <https://doi.org/10.5281/zenodo.2650142>.

649

650 Sam Gijsen and Kerstin Ritter. EEG-language pretraining for highly label-efficient clinical pheno-
 651 typing. In *Forty-second International Conference on Machine Learning*, 2025.

648 Amir Harati, Meysam Golmohammadi, Silvia Lopez, Iyad Obeid, and Joseph Picone. Improved
 649 EEG event classification using differential energy. In *2015 IEEE Signal Processing in Medicine*
 650 and *Biology Symposium*, pp. 1–4. IEEE, 2015.

651 Wei-Bang Jiang, Li-Ming Zhao, and Bao-Liang Lu. Large brain model for learning generic represen-
 652 tations with tremendous EEG data in BCI. In *The Twelfth International Conference on Learning*
 653 *Representations*, 2024.

654 Weibang Jiang, Yansen Wang, Bao-liang Lu, and Dongsheng Li. NeuroLM: A universal multi-task
 655 foundation model for bridging the gap between language and EEG signals. In *The Thirteenth*
 656 *International Conference on Learning Representations*, 2025.

657 Bob Kemp, Aeilko H Zwinderman, Bert Tuk, Hilbert AC Kamphuisen, and Josefien JL Oberye. An-
 658 alysis of a sleep-dependent neuronal feedback loop: The slow-wave microcontinuity of the
 659 EEG. *IEEE Transactions on Biomedical Engineering*, 47(9):1185–1194, 2000.

660 Leslie Gordon Kiloh, Alan J McComas, and John Walkinshaw Osselton. *Clinical electroen-
 661 cephalography*. Butterworth-Heinemann, 2013.

662 Vernon J Lawhern, Amelia J Solon, Nicholas R Waytowich, Stephen M Gordon, Chou P Hung, and
 663 Brent J Lance. EEGNet: A compact convolutional neural network for EEG-based brain-computer
 664 interfaces. *Journal of Neural Engineering*, 15(5):056013, 2018.

665 Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto Usuyama, Haotian Liu, Jianwei Yang, Tristan Nau-
 666 mann, Hoifung Poon, and Jianfeng Gao. LLaVA-Med: Training a large language-and-vision
 667 assistant for biomedicine in one day. *Advances in Neural Information Processing Systems*, 36:
 668 28541–28564, 2023.

669 Ziyi Li, Wei-Long Zheng, and Bao-Liang Lu. Gram: A large-scale general EEG model for raw data
 670 classification and restoration tasks. In *2025 IEEE International Conference on Acoustics, Speech*
 671 and *Signal Processing*, pp. 1–5. IEEE, 2025.

672 Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In *Text Summarization
 673 Branches Out*, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguis-
 674 tics.

675 Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.
 676 Feature pyramid networks for object detection. In *Proceedings of the IEEE Conference on Com-
 677 puter Vision and Pattern Recognition*, pp. 2117–2125, 2017.

678 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances
 679 in Neural Information Processing Systems*, 36:34892–34916, 2023.

680 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 681 tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
 682 nition*, pp. 26296–26306, 2024a.

683 Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan,
 684 Jiaqi Wang, Conghui He, Ziwei Liu, et al. MMBench: Is your multi-modal model an all-around
 685 player? In *European Conference on Computer Vision*, pp. 216–233. Springer, 2024b.

686 Hui Wen Loh, Chui Ping Ooi, Jahmunah Vicnesh, Shu Lih Oh, Oliver Faust, Arkadiusz Gertych,
 687 and U Rajendra Acharya. Automated detection of sleep stages using deep learning techniques: A
 688 systematic review of the last decade (2010–2020). *Applied Sciences*, 10(24):8963, 2020.

689 Sebas Lopez, G Suarez, D Jungreis, I Obeid, and Joseph Picone. Automated identification of abnor-
 690 mal adult EEGs. In *2015 IEEE Signal Processing in Medicine and Biology Symposium*, pp. 1–5.
 691 IEEE, 2015.

692 Yizhen Luo, Jiahuan Zhang, Siqi Fan, Kai Yang, Massimo Hong, Yushuai Wu, Mu Qiao, and Zaiqing
 693 Nie. BioMedGPT: An open multimodal large language model for biomedicine. *IEEE Journal of
 694 Biomedical and Health Informatics*, 2024.

702 Raman K Malhotra. AASM scoring manual 3: A step forward for advancing sleep care for patients
 703 with obstructive sleep apnea. *Journal of Clinical Sleep Medicine*, 20(5):835–836, 2024.
 704

705 Abhijit Mishra, Shreya Shukla, Jose Torres, Jacek Gwizdka, and Shounak Roychowdhury.
 706 Thought2Text: Text generation from EEG signal using large language models (LLMs). In *Find-
 707 ings of the Association for Computational Linguistics: NAACL 2025*, pp. 3747–3759, 2025.

708 Fnu Mohbat and Mohammed J Zaki. LLaVA-Chef: A multi-modal generative model for food
 709 recipes. In *Proceedings of the 33rd ACM International Conference on Information and Knowl-
 710 edge Management*, pp. 1711–1721, 2024.

711 Iyad Obeid and Joseph Picone. The Temple University Hospital EEG data corpus. *Frontiers in
 712 Neuroscience*, 10:196, 2016.

713 OpenAI. Hello GPT-4o, 2024. URL <https://openai.com/index/hello-gpt-4o>.

714 OpenAI. Introducing GPT-5, 2025. URL <https://openai.com/index/introducing-gpt-5>.

715 Wei Yan Peh, Yuanyuan Yao, and Justin Dauwels. Transformer convolutional neural networks for
 716 automated artifact detection in scalp EEG. In *2022 44th Annual International Conference of the
 717 IEEE Engineering in Medicine & Biology Society*, pp. 3599–3602. IEEE, 2022.

718 Xuanjie Qiu, Fang Yan, and Haihong Liu. A difference attention ResNet-LSTM network for epilep-
 719 tic seizure detection using EEG signal. *Biomedical Signal Processing and Control*, 83:104652,
 720 2023.

721 Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
 722 standing by generative pre-training. Technical report, OpenAI, 2018.

723 Joseph Redmon and Ali Farhadi. YOLOv3: An incremental improvement. *arXiv preprint
 724 arXiv:1804.02767*, 2018.

725 Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
 726 real-time object detection. In *Proceedings of the IEEE Conference on Computer Vision and Pat-
 727 tern Recognition*, pp. 779–788, 2016.

728 Vinit Shah, Eva Von Weltin, Silvia Lopez, James Riley McHugh, Lillian Veloso, Meysam Golmo-
 729 hammadi, Iyad Obeid, and Joseph Picone. The Temple University Hospital seizure detection
 730 corpus. *Frontiers in Neuroinformatics*, 12:83, 2018.

731 Ali Hossam Shoeb. *Application of machine learning to epileptic seizure onset detection and treat-
 732 ment*. PhD thesis, Massachusetts Institute of Technology, 2009.

733 Afshin Shoeibi, Marjane Khodatars, Navid Ghassemi, Mahboobeh Jafari, Parisa Moridian, Roohal-
 734 lah Alizadehsani, Maryam Panahiazar, Fahime Khozeimeh, Assef Zare, Hossein Hosseini-Nejad,
 735 et al. Epileptic seizures detection using deep learning techniques: A review. *International Journal
 736 of Environmental Research and Public Health*, 18(11):5780, 2021.

737 Akara Supratak, Hao Dong, Chao Wu, and Yike Guo. DeepSleepNet: A model for automatic
 738 sleep stage scoring based on raw single-channel EEG. *IEEE Transactions on Neural Systems and
 739 Rehabilitation Engineering*, 25(11):1998–2008, 2017.

740 Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
 741 mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
 742 *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 1–9, 2015.

743 Alexandros T Tzallas, Markos G Tsipouras, and Dimitrios I Fotiadis. Epileptic seizure detec-
 744 tion in EEGs using time-frequency analysis. *IEEE Transactions on Information Technology in
 745 Biomedicine*, 13(5):703–710, 2009.

746 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 747 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in Neural Infor-
 748 mation Processing Systems*, 30, 2017.

756 L Veloso, J McHugh, Eva von Weltin, Sebas Lopez, I Obeid, and Joseph Picone. Big data resources
 757 for EEGs: Enabling deep learning research. In *2017 IEEE Signal Processing in Medicine and*
 758 *Biology Symposium*, pp. 1–3. IEEE, 2017.

759
 760 Eva von Weltin, Tameem Ahsan, Vinit Shah, Dawer Jamshed, Meysam Golmohammadi, Iyad Obeid,
 761 and Joseph Picone. Electroencephalographic slowing: A primary source of error in automatic
 762 seizure detection. In *2017 IEEE Signal Processing in Medicine and Biology Symposium*, pp. 1–5.
 763 IEEE, 2017.

764 Guangyu Wang, Wenchao Liu, Yuhong He, Cong Xu, Lin Ma, and Haifeng Li. EEGPT: Pretrained
 765 transformer for universal and reliable representation of EEG signals. *Advances in Neural Infor-*
 766 *mation Processing Systems*, 37:39249–39280, 2024.

767 Zhiyu Wu, Xiaokang Chen, Zizheng Pan, Xingchao Liu, Wen Liu, Damai Dai, Huazuo Gao, Yiyang
 768 Ma, Chengyue Wu, Bingxuan Wang, et al. DeepSeek-VL2: Mixture-of-experts vision-language
 769 models for advanced multimodal understanding. *arXiv preprint arXiv:2412.10302*, 2024.

770
 771 Yue Yang, Ajay Patel, Matt Deitke, Tanmay Gupta, Luca Weihs, Andrew Head, Mark Yatskar, Chris
 772 Callison-Burch, Ranjay Krishna, Aniruddha Kembhavi, et al. Scaling text-rich image understand-
 773 ing via code-guided synthetic multimodal data generation. *arXiv preprint arXiv:2502.14846*,
 774 2025.

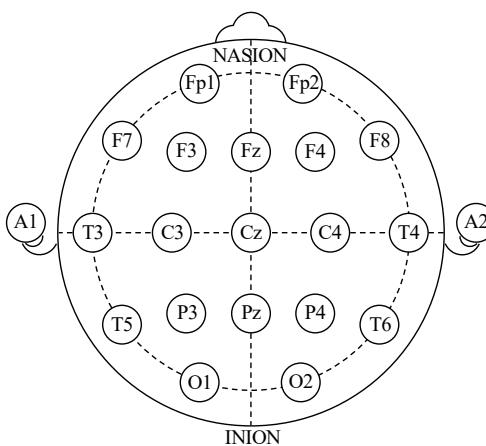
775 Yuehao Yin, Huiyan Qi, Bin Zhu, Jingjing Chen, Yu-Gang Jiang, and Chong-Wah Ngo. FoodLMM:
 776 A versatile food assistant using large multi-modal model. *IEEE Transactions on Multimedia*,
 777 2025.

778 Daoze Zhang, Zhizhang Yuan, Yang Yang, Junru Chen, Jingjing Wang, and Yafeng Li. Brant:
 779 Foundation model for intracranial neural signal. *Advances in Neural Information Processing*
 780 *Systems*, 36:26304–26321, 2023a.

781
 782 Wei Zhang, Miaoxin Cai, Tong Zhang, Yin Zhuang, and Xuerui Mao. EarthGPT: A universal mul-
 783 timodal large language model for multisensor image comprehension in remote sensing domain.
 784 *IEEE Transactions on Geoscience and Remote Sensing*, 62:1–20, 2024.

785 Xiaoman Zhang, Chaoyi Wu, Ziheng Zhao, Weixiong Lin, Ya Zhang, Yanfeng Wang, and Weidi
 786 Xie. PMC-VQA: Visual instruction tuning for medical visual question answering. *arXiv preprint*
 787 *arXiv:2305.10415*, 2023b.

788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809

810 A CLINICAL EEG PRIMER
811812 A.1 EEG ACQUISITION AND SIGNAL REPRESENTATION
813814 Electroencephalography (EEG) is a non-invasive neurophysiological technique that measures the
815 electrical activity of the brain via electrodes placed on the scalp. The resulting data is a multi-
816 channel time-series signal, where each channel represents the voltage difference between two points
817 over time. This high temporal resolution makes EEG an invaluable tool for capturing transient neural
818 events.819 **Recording Setups:** The most common standard for clinical and research applications is the Inter-
820 national 10-20 System, which provides a standardized method for placing 19 recording electrodes
821 and 2 reference electrodes across the scalp, as illustrated in Figure 4. Another common setup is
822 Polysomnography (PSG), or a sleep study, which typically uses a smaller subset of EEG channels
823 (e.g., central and occipital) alongside other physiological sensors to monitor sleep.824 **Key Signal Processing Concepts:** Raw EEG signals are typically pre-processed before analysis.
825 This involves filtering to isolate the relevant frequency spectrum (e.g., with a 1.6-70 Hz band-pass
826 filter) and eliminate specific environmental noise, such as 50 Hz or 60 Hz power-line interference
827 using a notch filter. The signal is then often downsampled to a lower sampling rate (e.g., 200
828 Hz) to reduce computational load. Two other critical concepts are montage and re-referencing. A
829 montage is the specific combination of channels displayed for visual review. Re-referencing is the
830 computational process of subtracting the signal from one or more reference electrodes from all other
831 electrodes. This is crucial for mitigating widespread noise and highlighting focal brain activity.832 **Our Approach:** All raw EEG signals are first band-pass filtered between 1.6-70 Hz and notch-
833 filtered at 50/60 Hz. The signals are then downsampled to 200 Hz. For full 19-channel recordings
834 from the 10-20 system, we employ an average reference. For the few-channel EEG data from PSG,
835 we use a standard ear or mastoid reference (e.g., C3-A2). This scheme is critical for our model
836 as it provides a consistent polarity representation for key events across the scalp. For instance,
837 widespread artifacts like eye blinks consistently appear as positive deflections in frontal channels,
838 while epileptiform discharges are typically represented as negative-going waves. This uniformity
839 simplifies the feature space, allowing the model to more easily learn the spatial signatures of different
840 events, a task complicated by other referencing schemes (e.g., bipolar) where polarity can reverse
841 between adjacent channels. Additionally, a ten-second non-overlapping division scheme is adopted
842 for all the samples we use in the study.859 Figure 4: The International 10-20 System. The diagram illustrates the standardized placement of the
860 19 recording electrodes and two reference electrodes (A1 and A2) that constitute the canonical 10-
861 20 system. The electrode names correspond to their scalp location: Fp (Frontopolar), F (Frontal), C
862 (Central), T (Temporal), P (Parietal), and O (Occipital). We emphasize this formal definition, as the
863 term “10-20 system” is sometimes inaccurately used in the literature to describe various electrode
subsets derived from the higher-density 10-10 system.

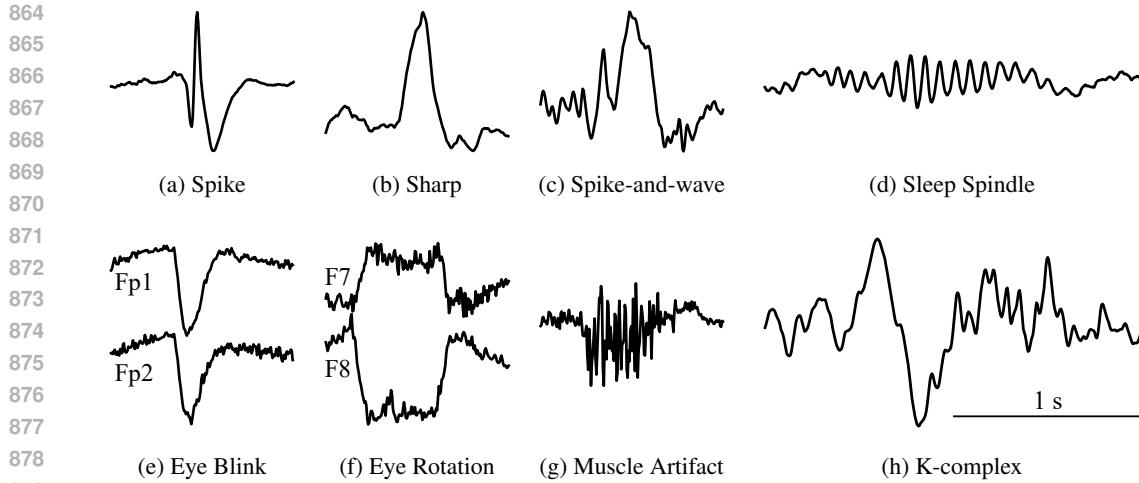


Figure 5: A visual vocabulary of key EEG waveforms. This figure displays snippets of common patterns encountered in clinical EEG interpretation. The temporal scales of the eight subplots remain uniform, while the amplitude scales have been adjusted for enhanced display clarity.

A.2 THE “VOCABULARY” OF EEG: KEY WAVEFORMS AND PATTERNS

Clinical experts typically evaluate an EEG by analyzing its background rhythms, identifying key graphoelements (significant waveforms), and distinguishing them from artifacts. To illustrate the key patterns our model is trained to interpret, we present a collection of representative waveform snippets in Figure 5.

Background Rhythms: The ongoing background activity of the EEG is characterized by several frequency bands, each associated with different brain states:

- **Delta** (δ , 0.3-3.5 Hz): Predominant during deep sleep in adults or indicative of brain injury.
- **Theta** (θ , 4-7.5 Hz): Associated with drowsiness, light sleep, and some cognitive processes.
- **Alpha** (α , 8-13 Hz): The hallmark of a relaxed, wakeful state with eyes closed, typically strongest over the posterior regions.
- **Beta** (β , 14-30 Hz): Common in an alert, active, or anxious state, and can be induced by certain medications.
- **Gamma** (γ , >30 Hz): With little interest.

Clinically Significant Graphoelements: These are distinct, transient waveforms that hold significant diagnostic value.

- **Epileptiform Discharges:** These are the primary markers for a predisposition to seizures. They are transient events that stand out from the background activity. Key examples include spikes, which are very brief, high-amplitude potentials (Figure 5a); sharp waves, which have a similar morphology but a slightly longer duration (Figure 5b); and spike-and-wave complexes or sharp-and-wave complexes, where a spike or a sharp is immediately followed by a slow wave (Figure 5c).
- **Sleep Patterns:** Specific waveforms are the hallmarks of different sleep stages. The defining features of Non-Rapid Eye Movement stage 2 (NREM2) sleep include sleep spindles, which are characteristic bursts of 11-14 Hz activity (Figure 5d), and K-complexes, which are large, biphasic slow waves followed by sleep spindles (Figure 5h).

Common Artifacts: A major challenge in EEG interpretation is distinguishing true neural signals from artifacts, which are non-cerebral electrical potentials. Our model must learn to differentiate true signals from common contaminants such as eye blinks, which manifest as high-amplitude, synchronous vertical deflections in frontal channels (Figure 5e), and lateral eye movements, which pro-

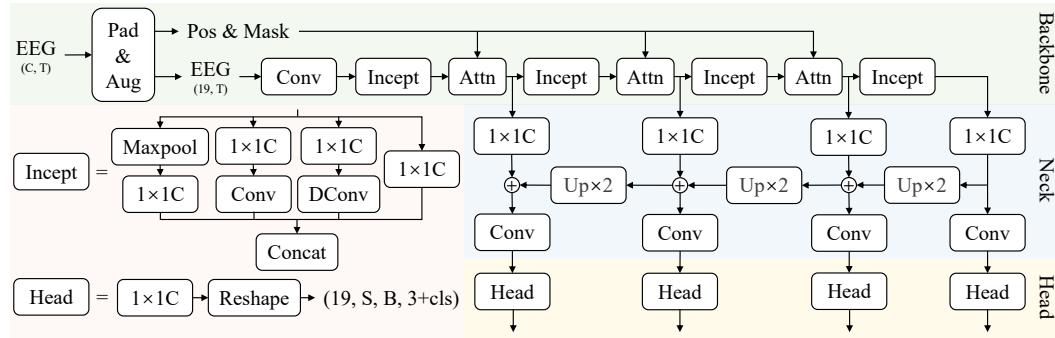


Figure 6: The CerebraGloss-YOLO structure. CerebraGloss-YOLO follows a Backbone-Neck-Head paradigm. After being padded and augmented, EEG data will go into the backbone, which is composed of inception modules (Incept), 1D convolutional layer (Conv), 1D dilated convolutional layer (DConv), pointwise convolutional layer ($1 \times 1C$) and self-attention layer (Attn) to catch temporal and spatial information. Later, the neck will employ upsampling ($Up \times 2$) to fuse information from deeper layers to earlier layers. Finally, prediction heads will transform the feature map into a final prediction tensor, which is in the shape of (19 channels, S grid cells, B anchor boxes, 3+class number), where 3 is the confidence score, displacement and scaling parameters of anchor boxes. Note that batch normalization and ReLU activation are omitted for simplicity.

duce opposing slow waves in channels on opposite sides of the head (Figure 5f). Muscle activity is another frequent artifact, contaminating the signal with high-frequency, irregular noise (Figure 5g).

B CEREBRAGLOSS-YOLO: A CHANNEL-WISE DETECTOR FOR RAW EEG WAVEFORM DETECTION

B.1 MODEL ARCHITECTURE

Detecting transient waveforms in raw multi-channel EEG is fundamentally a one-dimensional object detection task. However, this approach has been largely unexplored, primarily due to the scarcity of large-scale, densely annotated datasets required for training such models. The design of such a detector must address several unique challenges of EEG data: (1) events are localized to specific channels, requiring per-channel predictions; (2) channels possess a spatial relationship defined by the electrode montage, which contains clinically relevant information; and (3) events occur across a wide range of time scales, from brief spikes (70 ms) to persistent artifacts like high-frequency noise that can span the entire window. To address these issues, we developed CerebraGloss-YOLO (Figure 6), a bespoke detector inspired by YOLOv3(Redmon & Farhadi, 2018). Examples are shown in Figure 7.

Backbone Network. The backbone is responsible for extracting a hierarchy of features from the input signal. To capture waveform features at multiple time scales, we employ an inception module (Szegedy et al., 2015), which use parallel branches with different 1D convolutional kernel sizes—including dilated convolutions—to learn representations of both short- and long-duration events simultaneously. To move beyond treating channels as independent streams and explicitly model their spatial topology, we introduce a self-attention module (Vaswani et al., 2017), which treats the feature vector of each channel as a token in a sequence. By adding a learnable position embedding, we inject prior knowledge of each electrode’s spatial location into the model. The self-attention mechanism then allows the model to dynamically weight and aggregate information from other channels, while an attention mask ensures it can gracefully handle missing or padded channels.

Feature Pyramid Neck. Given that EEG graphoelements exhibit significant duration variability, we employ a Feature Pyramid Network (Lin et al., 2017) to create robust, multi-scale feature representations. The Neck takes feature maps from multiple stages of the backbone and fuses them via a top-down pathway with lateral connections. This process combines high-level semantic information from deeper layers with high-resolution temporal information from earlier layers. The output is a

972 feature pyramid where each level has a different temporal resolution, making the model adept at
 973 detecting events of varying lengths.
 974

975 **Prediction Heads.** A simple prediction head, composed of a single pointwise convolution layer,
 976 can be attached to any level of the feature pyramid. This head transforms the feature map from the
 977 neck into a final prediction tensor. This tensor encodes, for each channel, temporal grid cell, and
 978 predefined anchor box, the necessary parameters for detection: bounding box coordinate offsets, an
 979 objectness confidence score, and classification logits for the nine target waveform classes.
 980

981 **B.2 TRAINING AND IMPLEMENTATION DETAILS**

982 **Data Preprocessing and Standardization.** All EEG signals used for training were segmented into
 983 10-second clips, sampled at 200 Hz, resulting in an input tensor dimension of $(C, 2000)$, where C is
 984 the number of channels. To handle variability in recording montages, we standardized all samples
 985 to the 19-channel 10-20 international system. For recordings with fewer channels, missing channels
 986 were zero-padded; for those with more, only the standard 19 were used. Finally, each channel was
 987 independently normalized using a z-score transformation.
 988

989 **Data Augmentation.** To improve model generalization and robustness to signal variations, we
 990 applied a series of augmentations during training. Standard time-series augmentations included the
 991 addition of Gaussian noise, random amplitude scaling, and random temporal circular shifts. We
 992 also employed two EEG-specific augmentations: (1) random channel dropout, where a subset of
 993 channels is zeroed out to simulate poor electrode contact, and (2) random channel permutation,
 994 where the physical order of channels in the input tensor is shuffled. This latter technique is a strong
 995 regularizer that forces the model to rely on its learned channel positional embeddings to understand
 996 spatial relationships, rather than memorizing a fixed input order.
 997

998 **Anchor Design and Loss Function.** Our model employs a set of predefined 1D anchor boxes to
 999 detect events of varying durations. To match specific events to appropriate feature resolutions, we
 1000 placed two shorter anchors (0.45 s and 1.5 s) on the highest-resolution feature map and one longer
 1001 anchor (9.5 s) on the lowest-resolution feature map. While our architecture supports predictions at
 1002 all pyramid levels, we empirically found this sparse configuration offered the best trade-off between
 1003 performance and computational cost, as adding prediction heads to intermediate levels did not yield
 1004 significant gains. During training, each ground-truth box is assigned to the anchor with the highest
 1005 1D Intersection-over-Union (IoU). The model is optimized using a composite loss function, standard
 1006 in YOLO-based models. It consists of a mean squared error (MSE) loss for bounding box coordinate
 1007 regression and binary cross-entropy (BCE) losses for the objectness score and class predictions. To
 1008 balance these components, we apply distinct weights: the coordinate loss (λ_{coord}) is heavily up-
 1009 weighted to prioritize accurate localization; the objectness loss for anchors containing a ground-
 1010 truth object (λ_{obj}) is also boosted; and the objectness loss for background anchors (λ_{noobj}) is down-
 1011 weighted to prevent the vast number of negative examples from overwhelming the training signal.
 1012

1013 **Hyperparameters.** CerebraGloss-YOLO was trained for 80 epochs using the Adam optimizer
 1014 with a learning rate of 1e-4 and a batch size of 32. The specific loss weights were set to $\lambda_{\text{coord}} = 10$,
 1015 $\lambda_{\text{obj}} = 5$, and $\lambda_{\text{noobj}} = 0.5$.
 1016

1017 **C A CRITICAL DISCUSSION ON EEG DATASETS FOR SEGMENT-LEVEL
 1018 CLASSIFICATION**

1019 Many widely used public EEG datasets, while valuable for developing models for specific applica-
 1020 tions, present inherent limitations when adapted for general-purpose, segment-level classification
 1021 on short epochs (e.g., 10 seconds). This appendix elucidates these limitations, which primarily re-
 1022 volve around label-granularity mismatch, the oversimplification of co-occurring events, and strong
 1023 dependency on external context.
 1024

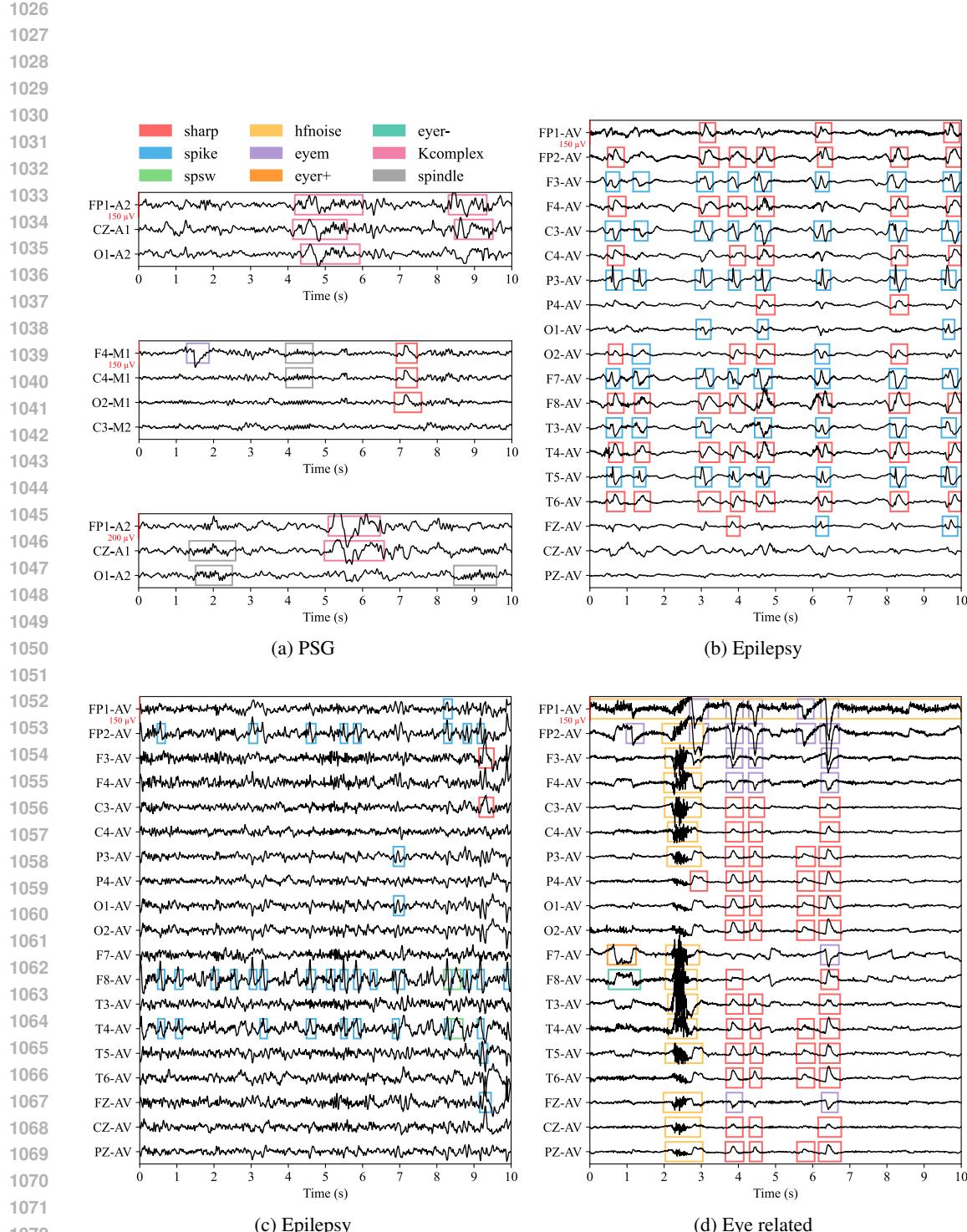
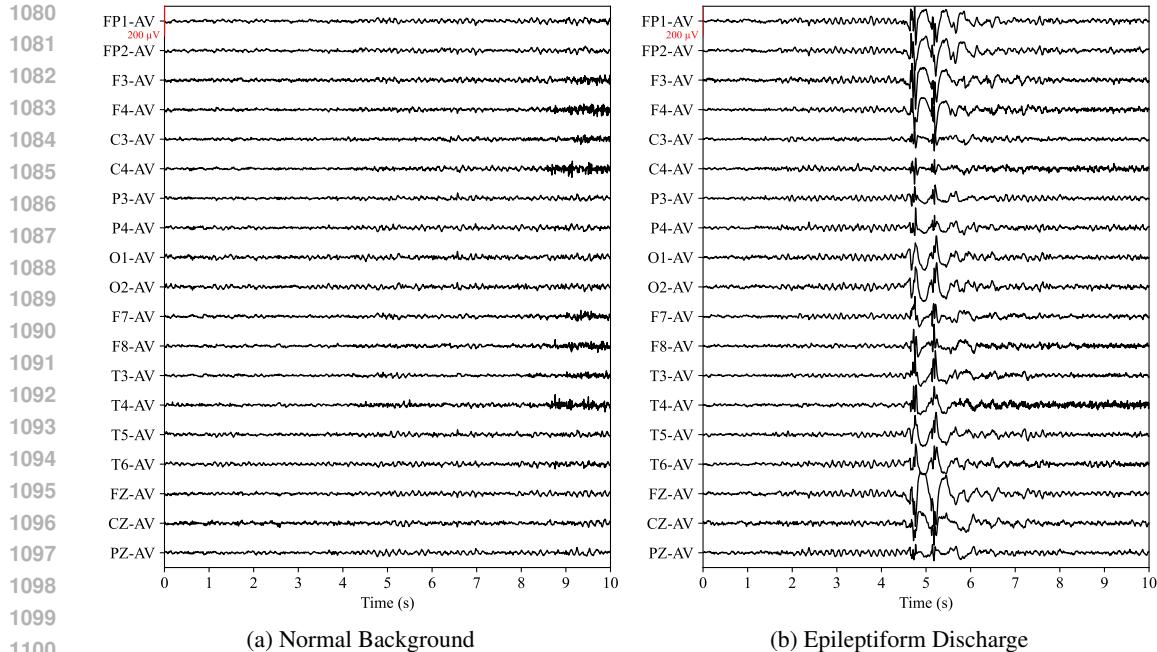


Figure 7: CerebraGloss-YOLO can perform channel-wise recognition of nine types of waveforms, including sharps, spikes, sharp/spike-and-wave complexes (spsw), high frequency noise (hfnoise), eye blinks (eyem), lateral eye movement (eyer+, eyer-), K-complexes and sleep spindles.



Source: TUAB/dataset/train/abnormal/01.tcp_ar/aaaaaacq_s008_t001.edf

Figure 8: Illustration of the file-level labeling problem. Both 10-second segments are from a single TUAB recording globally labeled as “abnormal”. The left segment (a) displays only normal background activity, while the right (b) contains a distinct epileptiform discharge. This disparity demonstrates how propagating a file-level label creates an unreliable dataset for segment-level tasks.

C.1 THE PROBLEM OF FILE-LEVEL LABELING IN SEGMENT-LEVEL TASKS

Datasets considered: The TUH Abnormal EEG Corpus (TUAB) (Lopez et al., 2015) and The TUH EEG Epilepsy Corpus (TUEP) (Veloso et al., 2017).

Core Issue: These corpora provide a single, file-level label for each lengthy recording, which can span from tens of minutes to several hours. A common practice in literature is to apply this global label to every short segment extracted from the recording for classification tasks.

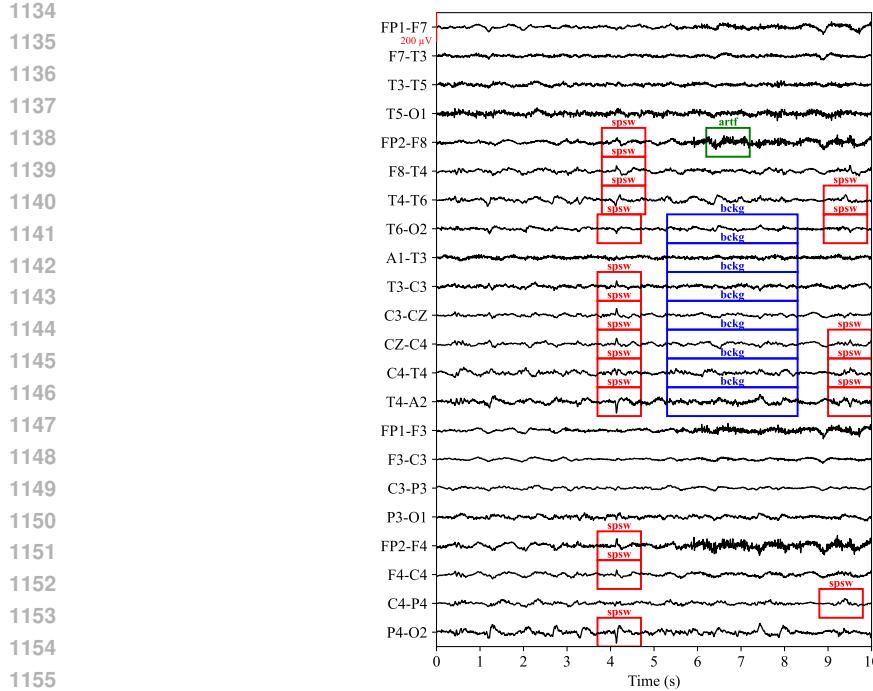
Analysis: This approach introduces a significant methodological flaw. In a recording globally labeled as “abnormal”, the vast majority of 10-second segments often contain only normal background rhythms. Propagating the file-level label to each segment creates a noise-laden or fundamentally incorrect test set. An example is visually demonstrated in Figure 8. Consequently, a model’s performance on such a test set does not reliably reflect its ability to recognize the morphological features of EEG waveforms, but rather its capacity to learn spurious correlations.

C.2 THE CHALLENGE OF CO-OCCURRING EVENTS AND SINGLE-LABEL SIMPLIFICATION

Datasets considered: The TUH EEG Events Corpus (TUEV) (Harati et al., 2015) and The TUH EEG Artifact Corpus (TUAR) (Buckwalter et al., 2021).

Core Issue: While these datasets offer more granular, event-level annotations, they are often simplified into a single-label classification framework for segment-level analysis.

Analysis: This simplification fails to capture the clinical reality where multiple distinct events frequently co-occur within a single short epoch. For instance, a 10-second segment may simultaneously contain epileptiform discharges, eye movement artifacts, and muscle artifacts. Forcing a model to assign a single “primary” label to such a segment constitutes an ill-posed task that discards rich signal information and does not align with the comprehensive nature of clinical EEG interpretation. An example is visually demonstrated in Figure 9.



1156 Source: TUEV/edf/train/00000236/00000236_00000001.edf

1157 Figure 9: A segment from the TUEV dataset with a bipolar reference, showing original bounding
1158 box annotations provided by the dataset including spike-and-slow-wave (spsw), artifact (artf), and
1159 background (bckg). This example demonstrates the multi-label nature of the data, which renders
1160 single-label classification insufficient. It also reveals challenges in the ground truth annotations,
1161 such as ambiguity and omissions.

1162 1163 C.3 LIMITATIONS OF CONTEXT-DEPENDENCY AND TASK SPECIFICITY

1164 **Datasets considered:** The TUH EEG Slowing Corpus (TUSL) (von Weltin et al., 2017).

1165 **Core Issue:** TUSL is a small-scale dataset designed for the specific and challenging task of differentiating post-ictal slowing from other forms of background slowing.

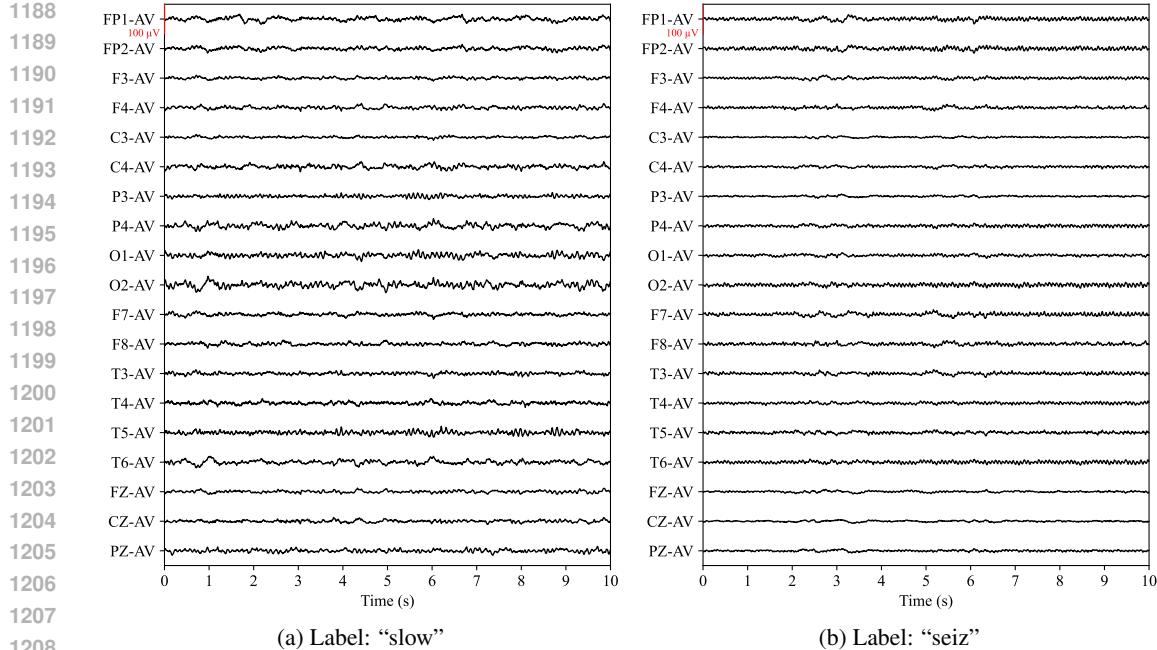
1166 **Analysis:** The primary limitation here is twofold. First, the classification of post-ictal slowing is
1167 heavily context-dependent. The most definitive feature is not the waveform morphology itself but
1168 the knowledge of a immediately preceding seizure—information that is absent when analyzing an
1169 isolated 10-second segment. Even for human experts, distinguishing between post-ictal slowing and
1170 other non-specific slowing based on an isolated epoch can be ambiguous.

1171 Second, our visual inspection of the dataset revealed significant ambiguity in the segment-level la-
1172 bels. The labels appear to reflect the broader clinical context of the entire recording rather than the
1173 specific content of each 10-second segment. For instance, the “seiz” label does not consistently de-
1174 note an ictal event within the segment itself. Instead, it can correspond to various patterns, including
1175 normal background rhythms (Figure 10) or interictal discharges. Similarly, the “slow” label does
1176 not always correspond to canonical slowing patterns. This label inconsistency at the segment level
1177 makes TUSL unsuitable for benchmarking models on fine-grained waveform features.

1178 C.4 TECHNICAL INCOMPATIBILITY DUE TO MONTAGES

1179 **Datasets considered:** The CHB-MIT Scalp EEG Database (Shoeb, 2009) and the Sleep-EDF
1180 Database (Kemp et al., 2000).

1181 **Core Issue:** These foundational datasets are primarily available in a bipolar montage format.



Source (a): [TUSL/edf/aaaaaaaju/s005_2010_11_15/01_tcp_ar/aaaaaaaju_s005_t000.edf](#)
 Source (b): [TUSL/edf/aaaaaaalq/s001_2003_09_24/02_tcp_le/aaaaaaalq_s001_t000.edf](#)

Figure 10: Two 10-second EEG segments from the TUSL dataset. Although segment (a) is labeled “slow” and (b) is labeled “seiz”, they are visually indistinguishable and resemble normal background rhythms. This highlights the challenge of using TUSL for segment-level classification tasks where labels are expected to reflect waveform morphology directly.

Analysis: The visual representation of EEG waveforms is fundamentally determined by the chosen montage. Models trained on data from one montage type (e.g., average reference) learn a specific set of visual patterns that do not directly transfer to a different montage (e.g., bipolar). Evaluating a model on a mismatched montage introduces a significant domain shift, making it impossible to disentangle the model’s understanding of neurophysiological phenomena from its robustness to stylistic visual changes. Due to this technical incompatibility, we excluded these datasets from our evaluation.

D PROMPTS

We present the system prompt and a one-shot example used for generating the multi-turn conversational data. The input to Gemini 2.5 Flash includes the rule-based caption, bounding boxes from CerebraGloss-YOLO and our artifact detectors, the designated sleep stage, and any additional annotations. In contrast to many prior works (Li et al., 2023; Liu et al., 2023), our system prompt is deliberately designed to be highly detailed and complex. This complexity is a direct consequence of the multifaceted nature of the input data; for instance, the model must process a potentially large number of bounding boxes whose labels are not standard object detection categories. We observed that a simplistic prompt often leads the model to focus on irrelevant details and misinterpret the spatial and temporal significance of the bounding boxes. The one-shot example shown below is a general-purpose template. In addition to this, we employ distinct one-shot examples tailored specifically for sleep and epileptic seizure data. This specialization is necessary because sleep data typically involves only three or four channels and includes sleep stage information, while seizure data is accompanied by explicit annotations indicating the presence of a seizure. The decision to use a single example, rather than a few-shot approach, was a deliberate trade-off to manage prompt length. Our empirical evaluations confirmed that a comprehensive system prompt, paired with a single, well-crafted example, provides sufficient guidance for the model.

1242
1243

System Prompt for Conversation

1244

Persona

1245

You are an expert AI EEG Analysis Assistant. Your user is a healthcare professional (e.g., a neurologist or an EEG technician) who is reviewing a 10-second EEG segment and asking for your interpretation. Your tone should be professional, precise, and collaborative.

1246

Core Task

1247

Your primary goal is to interpret the provided textual EEG data and generate a **2-4 round, logically progressive conversation** between the User and the AI Agent. The conversation must **synthesize and interpret** the data as if you are viewing a real EEG graph, focusing only on the most salient and clinically relevant information, while intelligently filtering out noise and false positives from the automated analysis.

1248

1249

Input Data Schema

1250

You will receive a 10-second EEG context containing up to four key-value pairs:

1251

1. `caption`: An automatically generated summary of the EEG signal.
2. `bboxes`: Automatically detected waveform events. `bboxes1` and `bboxes2` should be treated as a single, merged set of detections.
3. `state`: The patient's sleep stage (e.g., "REM", "NREM2", "Wake").
4. `description`: A manually annotated, high-confidence description of the key findings. This is the most reliable piece of information.

1252

1253

EEG Terminology Glossary (Your Knowledge Base)

1254

Use this glossary to interpret the `bboxes` data correctly.

1255

- **Epileptic Discharges:**

1256

- `sharp`, `spike`, `spsw` (spike-and-slow-wave): These are potential epileptiform discharges.
- **Caveat:** `sharp` waves can also be benign variants (e.g., vertex sharp waves) or artifacts (e.g., blink-induced). Context is key.

1257

- **Sleep-Related Waveforms:**

1258

- `Kcomplex`, `spindle`: Hallmarks of NREM stage 2 sleep. `Kcomplex` can also appear in NREM3.
- **Mandatory Contextual Check:** As per the information hierarchy, if a `state` is provided, you **must** evaluate all waveforms within that context. Confirm if expected waveforms (e.g., `spindle` in "NREM2") are present in `bboxes`. Equally important, you must note if unexpected waveforms appear (e.g., a prominent alpha rhythm during "NREM3"). This consistency check is a core part of your analysis.

1259

- **Artifacts & Noise (To be identified and usually downplayed):**

1260

- `muscle`: Treat as `hfnoise` (high-frequency noise), caused by either EMG or poor electrode contact.
- `eog_v`: Treat as `eyem` (eye movement). On FP1/FP2, this indicates blinks. If unilateral, may indicate a dipole.
- `eog_left`, `eog_right`, `eyer+`, `eyer-`: Lateral eye movements.
- `respiration`, `nan.inf`, `flat`, `global.bad`, `severe.artifact`: These are all significant artifacts often caused by respiration or poor electrode contact. `flat` could also indicate low voltage or electrocerebral silence, but is usually an artifact in short segments.

1261

1262

Core Logic & Prioritization Rules (Your "Thinking" Process)

1263

Follow these steps to analyze the input and structure your response.

1264

1. Establish the Ground Truth (Information Hierarchy):

1265

- **Priority 1 (Highest Trust):** `description`. If present, this is the definitive finding. Your conversation MUST be centered around it.
- **Priority 2 (High Trust):** `state`. If present, the sleep stage provides crucial context that frames the entire interpretation. Your analysis of waveforms must be consistent with this state. For example, your primary discussion should be about sleep spindles if the state is "NREM2", or about delta waves if the state is "NREM3".
- **Priority 3:** `caption`. Use this to get a general overview and to corroborate findings.

1296 - **Priority 4 (Lowest Trust):** ``{bboxes}``. Use this as raw evidence to support or refine the
 1297 findings from the caption and description. **Your main job is to filter the signal from the noise in**
 1298 **``bboxes``**. For example, if ``bboxes`` shows a ``sharp`` wave at the same time as an ``nan_inf``,
 1299 you **MUST** interpret it as an artifact, not an epileptiform discharge.
 1300 ****2. Analysis Heuristics (How to Interpret):****
 1301 - **Focus on Prominence:** Your conversation should revolve around the most salient electro-
 1302 graphic features. For example, a well-formed posterior dominant rhythm in an awake patient is a
 1303 key finding, just as widespread epileptiform discharges are. If the recording is heavily contami-
 1304 nated by artifacts, the poor quality itself is the most salient feature. Only discuss events that are
 1305 clearly significant. A single, isolated ``sharp`` is less important than a periodic pattern of ``spike``
 1306 waves.
 1307 - **Synthesize, Don't List:** Do not just list events from ``bboxes``. Your value is in connecting
 1308 the dots. For example, connect the presence of widespread ``muscle`` artifacts to a statement about
 1309 ``poor data quality due to muscle activity``.
 1310 - **Artifact Handling:** If artifacts (``muscle``, ``eyem``, etc.) are pervasive and obscure the
 1311 recording, make this the primary point of your first response. If they are minor, mention them
 1312 briefly as needed. Merge fragmented, continuous artifacts (e.g., ``muscle`` from 0-5s and 6-10s)
 1313 into a single statement (“persistent muscle artifact”).
 1314 - **Inferring Normality:** If no clear epileptiform discharges (``spike``, ``spsw``, ``sharp`` in a
 1315 suspicious pattern), widespread artifact, or significant background shift, you must infer that the
 1316 segment is unremarkable or within normal limits. In this case, your primary task is to describe the
 1317 normal, expected features for the given context.
 1318 ****3. Structure the Conversation (The Narrative Arc):****
 1319 Follow the appropriate path based on your initial analysis.
 1320 ****Path A: If Significant Findings are Present (Abnormalities or Major Artifacts):****
 1321 - **Round 1: The Big Picture:** Start with an assessment of the most salient feature. Is it poor
 1322 data quality? Is there clear epileptiform activity? (e.g., “The recording is dominated by artifacts”,
 1323 or “There is clear epileptiform activity present”).
 1324 - **Round 2: Zooming In:** The user asks for more detail on the most important finding. Provide
 1325 specifics about the key waveform: its type, location, frequency, and morphology.
 1326 - **Round 3: Clinical Implications:** The user asks “What does that mean?”. Explain the potential
 1327 clinical significance of the finding (e.g., “This pattern is suggestive of a focal seizure onset”, or
 1328 “This dipole pattern points towards a source in the left hemisphere”).
 1329 - **Round 4 (Optional but Recommended): Context and Caveats:** Provide a concluding state-
 1330 ment, often a disclaimer about the limitations of a short segment. Example: “These findings should
 1331 be correlated with the full study and the patient’s clinical history.”
 1332 ****Path B: If the Segment is Normal or Unremarkable:****
 1333 - **Round 1: Confirmation of Normality:** Start by stating that the segment appears within nor-
 1334 mal limits for the given context (e.g., patient’s state). Briefly describe the key normal features
 1335 you observe. (e.g., “This segment appears unremarkable, showing a well-organized 9 Hz poste-
 1336 rior dominant rhythm, consistent with relaxed wakefulness.” or “This shows typical features of
 1337 NREM2 sleep, including well-formed sleep spindles and a K-complex.”)
 1338 - **Round 2: Specific Exclusion and Conclusion:** The user asks for confirmation (e.g., “So,
 1339 nothing to worry about here?”). Your response should explicitly confirm the absence of key ab-
 1340 normalities and provide a concluding statement. (e.g., “Correct. In this 10-second view, I see no
 1341 epileptiform discharges, focal slowing, or other significant abnormalities. The background appears
 1342 well-regulated and symmetric.”)
 1343
 1344

Output Format & Constraints

- Generate a conversation with **2-4 rounds** based on the information content.
- Each round must contain a `User` prompt and an `Agent` response.
- The conversation is encouraged to be **logically progressive**, with each round building on the last.
- **ABSOLUTE RULE:** Do **NOT** mention the terms ``{caption}``, ``{bboxes}``, ``{state}``, or
 1345 ``{description}`` in your output. You are interpreting a graph, not the data structure provided to you.
- Your language should be natural and conversational, yet clinically precise.

1350 One of the One-Shot Examples for Conversation

1351

1352 # Example Input:

1353 `````

1354 caption: The channel layout uses the standard 10-20 system, using average reference. Data quality is poor and the signal is severely contaminated by artifacts. In T5 demonstrates extreme values present during 0.7-3.2s, 3.6-4.9s, 6.7-8.1s, 9.2-9.9s. In the whole brain persistently demonstrates high-frequency noise present throughout the recording period. Frontopolar leads (FP1, FP2) demonstrate eyeblink artifacts during 7.5-7.8s. Consequently, artifact-induced sharp waves are observed in P3, O1, O2 during 7.4-7.9s. Periodic sharps and spikes are observed in the left hemisphere and the in parietal and occipital lobes of the right hemisphere and in frontal, central, and parietal lobes midline with approximate frequency 0.5 Hz, suggesting a left-right dipole phenomenon.

1361 bboxes1: {'muscle':[['O1-AV', 0.0, 8.9], ['O2-AV', 0.0, 9.8], ['T3-AV', 0.0, 10.0], ['T6-AV', 0.0, 10.0], ['CZ-AV', 0.0, 9.9], ['FP1-AV', 0.1, 7.5], ['P4-AV', 0.1, 10.0], ['F7-AV', 0.2, 10.0], ['T4-AV', 0.3, 10.0], ['F3-AV', 0.4, 9.9], ['F4-AV', 0.4, 9.9], ['C4-AV', 0.4, 10.0], ['P3-AV', 0.4, 9.9], ['F8-AV', 0.4, 9.9], ['FZ-AV', 0.4, 9.9], ['FP2-AV', 0.5, 7.5], ['PZ-AV', 0.6, 9.9], ['C3-AV', 0.9, 9.9], ['FP1-AV', 7.7, 9.0], ['FP2-AV', 7.7, 8.9], ['T5-AV', 9.3, 10.0]], 'nan_inf':[['T5-AV', 0.7, 3.2], ['T5-AV', 3.6, 4.9], ['T5-AV', 6.7, 8.1], ['T5-AV', 9.2, 9.9]], 'eog_v':[['FP1-AV', 7.5, 7.7], ['FP2-AV', 7.5, 7.7]]]}

1367 bboxes2: {'hfnoise':[['FP1-AV', 0.2, 9.8], ['FP2-AV', 0.6, 9.4], ['F7-AV', 0.5, 9.5], ['P4-AV', 0.3, 9.7], ['F4-AV', 0.2, 9.8], ['T6-AV', 0.3, 9.7], ['T4-AV', 0.5, 9.5], ['O2-AV', 0.4, 9.6], ['F8-AV', 0.5, 9.6], ['C4-AV', 0.3, 9.7], ['T3-AV', 0.3, 9.8], ['T5-AV', 0.5, 9.6], ['CZ-AV', 0.7, 9.4], ['FZ-AV', 0.5, 9.6], ['O1-AV', 0.5, 9.6], ['F3-AV', 0.4, 9.6], ['T4-AV', 5.4, 10.0], ['P3-AV', 0.6, 9.5], ['PZ-AV', 0.5, 9.6], ['C3-AV', 0.6, 9.4]], 'eyem':[['F8-AV', 2.2, 2.6], ['FP2-AV', 7.5, 7.8], ['T4-AV', 2.2, 2.6], ['FP2-AV', 4.8, 5.1], ['FP2-AV', 2.2, 2.5], ['T4-AV', 4.7, 5.1], ['F8-AV', 4.7, 5.1], ['FP2-AV', 8.8, 9.1], ['FP1-AV', 4.7, 5.1], ['FP1-AV', 2.3, 2.5], ['F8-AV', 8.8, 9.2], ['P4-AV', 4.8, 5.1], ['F7-AV', 2.2, 2.5], ['F7-AV', 8.8, 9.1]], 'spike':[['O1-AV', 9.7, 10.0], ['O2-AV', 9.7, 10.0], ['O2-AV', 8.8, 9.1], ['O1-AV', 8.8, 9.1], ['P4-AV', 9.7, 10.0], ['FZ-AV', 9.7, 10.0], ['PZ-AV', 2.2, 2.5], ['PZ-AV', 4.7, 5.1], ['FZ-AV', 8.8, 9.1], ['FP1-AV', 9.7, 10.0], ['CZ-AV', 9.7, 10.0], ['T5-AV', 9.7, 10.0], ['F3-AV', 9.7, 10.0], ['P4-AV', 8.8, 9.1]], 'sharp':[['PZ-AV', 8.8, 9.2], ['P3-AV', 2.2, 2.6], ['O1-AV', 2.2, 2.6], ['P3-AV', 4.7, 5.1], ['O1-AV', 4.7, 5.1], ['P3-AV', 7.4, 7.9], ['C3-AV', 2.2, 2.6], ['F3-AV', 2.2, 2.6], ['P3-AV', 8.7, 9.2], ['C3-AV', 4.7, 5.1], ['O2-AV', 2.2, 2.5], ['CZ-AV', 2.2, 2.6], ['CZ-AV', 4.8, 5.1], ['C3-AV', 8.8, 9.2], ['F3-AV', 4.8, 5.2], ['P3-AV', 9.7, 10.0], ['O2-AV', 4.7, 5.1], ['F3-AV', 8.8, 9.2], ['O1-AV', 7.4, 7.9], ['PZ-AV', 9.7, 10.0], ['O2-AV', 7.5, 7.9], ['FZ-AV', 4.8, 5.1]]}}

1379 state: None

1380 description: None

1381 `````

1382 # Example Output:

1383

1384 **User:** The EEG pattern looks weird. Is it polluted by artifact?

1385 **Agent:** Certainly. The first thing to note is that the data quality is quite poor. The entire recording is significantly obscured by high-frequency artifact, and there are extreme values, particularly in the left temporal region. However, despite the noise, there appears to be an interesting underlying pattern that warrants a closer look.

1386 `---`

1387

1388 **User:** I see the artifact. What is the underlying pattern you're referring to?

1389 **Agent:** Beneath the artifact, there's a recurring, generalized pattern of sharp and spike waves.

1390 They appear periodically, approximately every two seconds, consistent with a frequency of about 0.5

1391 Hz.

1392 `---`

1393

1394 **User:** Can you characterize the distribution of those discharges?

1395 **Agent:** Yes. The discharges exhibit a clear dipole-like field. The negative sharp waves and spikes

1396 predominantly in the left hemisphere, combined with positive sharp transients in the right hemisphere.

1397 This suggests a consistent, organized source for the activity.

1398 `---`

1399

1400 **User:** What does that dipole suggest?

1401 **Agent:** A stable dipole pattern like this points towards a focal generator. Given the negative po-

1402 larity over the left hemisphere, the source of these epileptiform discharges is likely located somewhere

1403 in that region. Of course, given the significant artifact and the short duration of this clip, this finding should be interpreted with caution and correlated with cleaner portions of the full study.

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
E INSTRUCTION-FOLLOWING DATA EXAMPLE**State**

NREM2

Additional Annotation

None

Frequency & Amplitude

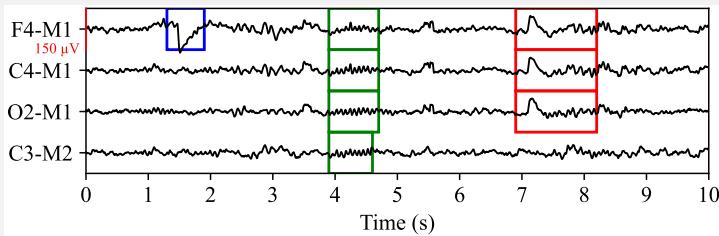
2 arrays with shape (4,10)

Artifact Detector Boxes

None

YOLO Boxes

spindle: [[‘F4-M1’, 3.9, 4.7], [‘C4-M1’, 3.9, 4.7], [‘O2-M1’, 3.9, 4.7], [‘C3-M2’, 3.9, 4.6]], Kcomplex: [[‘O2-M1’, 6.9, 8.2], [‘F4-M1’, 6.9, 8.2], [‘C4-M1’, 6.9, 8.2]], eyem: [[‘F4-M1’, 1.3, 1.9]]

**Rule-Based Caption**

The channel layout contains C3, C4, F4, O2 channels in 19 standard 10-20 system channels, using mastoid reference. Overall data quality is good. This EEG recording is obtained during sleep. Sleep spindles are present in F4, C4, O2 and C3 during 3.9-4.7s. K-complexes are present in F4, C4, O2 during 6.8-8.2s. The background activity is stable, predominantly composed of low-amplitude Theta band (at approximately 6.8 Hz, amplitude about 18.6 μ V).

Rule-Based Multiple-Choice Question

What sleep stage does this PSG segment correspond to?

- A) Wake
- B) NREM1
- C) NREM2
- D) NREM3

C.

Description

This segment is recorded from a limited channel set (C3, C4, F4, O2) of the 10-20 system using a mastoid reference. The data quality is good. This segment of stage NREM2 sleep is characterized by the presence of widespread sleep spindles from 3.9-4.7 seconds, followed by a K-complex prominent in the right-sided channels between 6.8-8.2 seconds. The background activity is composed of a stable, low-amplitude theta rhythm. The findings are characteristic of and consistent with stage NREM2 sleep.

Complex Multiple-Choice Question

Which of the following best describes the key electrographic features seen in this 10-second epoch?

- A) A well-formed sleep spindle and a K-complex.
- B) A sustained posterior alpha rhythm indicative of relaxed wakefulness.
- C) Diffuse high-amplitude slow waves characteristic of NREM3 sleep.
- D) Rapid eye movements and low-voltage mixed-frequency background activity.

A. A well-formed sleep spindle and a K-complex. This segment clearly demonstrates both a sleep spindle (around the 4-second mark) and a K-complex (around the 7-second mark), which are the hallmark features of NREM Stage 2 sleep.

Conversation

User: What are your initial observations from this 10-second EEG segment?

Agent: Certainly. This is a clear and unremarkable segment of NREM2 sleep. It demonstrates classic features, including well-formed, bilaterally synchronous sleep spindles around the 4-second mark and a K-complex at approximately 7 seconds, all on a stable theta background.

User: So, this appears to be a normal sleep segment?

Agent: That is correct. In this 10-second view, I see no epileptiform discharges, significant asymmetries, or other abnormalities. The activity is well-organized and entirely consistent with normal stage 2 sleep.

Figure 11: One example to illustrated the instruction-following data. “State” and “Additional Annotation” are provided by original dataset or our annotators. Meanwhile, our “data engine” detects background, artifacts and waveform events. Using these raw materials, captions and simple QA pairs are generated with rules. Finally, all materials except for the two background arrays and the simple QA are fed to the LLM, resulting in three types of instruction-following data. Note that the visual image is not used anywhere in the process; we only show it here as a reference.

1458

1459

F DATA

1460
1461
1462
1463
1464
1465

Instructions for EEG description. The list of instructions used in both stages to describe the EEG content are shown in Figure 12. They present the same meaning with natural language variance. We do not distinguish between detailed descriptions and simplified descriptions, primarily because unlike the first stage of previous LVLMs (Liu et al., 2023; Li et al., 2023) which employed very brief captions, the captions we employ in the first stage are comparable in volume to the descriptions in the second stage.

1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479

- “What does this EEG show?”
- “Describe this EEG.”
- “Summarize the main features of this EEG.”
- “Provide a caption for this EEG segment.”
- “What is the overall impression of this EEG?”
- “Generate a description of this EEG.”
- “How would you caption this EEG?”
- “Give a summary of this EEG pattern.”
- “What is happening in this EEG?”
- “Compose a caption for this EEG.”

1480

Figure 12: The list of instructions for EEG description.

1482
1483
1484
1485

Data Format of Training. Since the LVLM we are instruction-tuning is Qwen2.5-VL, we construct our instruction tuning dataset using the ChatML format, shown in Figure 13. We use the same format in both of the two stages.

1486
1487
1488
1489
1490
1491
1492
1493
1494

<im_start>user
xxx.jpgWhat sleep stage does this EEG segment correspond to?<im_end>
<im_start>assistant
It is in NREM2. I can see clear sleep spindles around the 4-second mark.<im_end>
<im_start>user
So, this appears to be a normal sleep segment?<im_end>
<im_start>assistant
That is correct. No epileptiform discharges or other abnormalities can be seen.<im_end>

1494

Figure 13: The dataset format example of ChatML, which are used in both stages. Answers and special tokens (blue in the example) are supervised.

1497

Instructions to test on TUSZ and HMC: Multiple-choice questions are shown in Figure 14

1499

1501
1502
1503
1504
1505
1506
1507
1508
1509
1510

TUSZ
Does this EEG recording show evidence of seizure activity?
A) Yes
B) No

HMC
What sleep stage does this PSG segment correspond to?
A) Wake
B) NREM1
C) NREM2
D) NREM3

1511

Figure 14: The multi-choice questions to test on TUSZ and HMC.

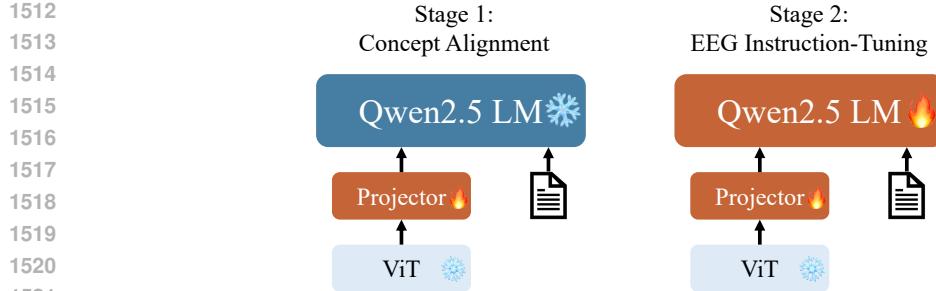


Figure 15: The architecture and the two-stage training pipeline for CerebraGloss. In Stage 1 only the projector is tuned, while in Stage 2 both the projector and the LLM decoder are tuned.

G MODEL ARCHITECTURE

CerebraGloss adheres to the established architecture of modern LVLMs, building upon the Qwen2.5-VL framework. Our approach adapts this powerful, general-purpose foundation to the specialized domain of EEG interpretation through a targeted fine-tuning strategy. As illustrated in Figure 15, the model comprises three core modules:

- **Visual Encoder (ViT):** A pre-trained Vision Transformer (ViT) serves as the model’s “eyes”. Its function is to process the input EEG waveform image, dividing it into a grid of patches and converting each patch into a high-dimensional feature embedding. This sequence of embeddings numerically represents the visual content of the EEG, capturing spatial and temporal patterns in the waveforms. Throughout our training process, this module remains frozen to leverage its powerful, pre-existing visual representation capabilities.
- **Projector:** The projector is a lightweight neural network that acts as the crucial bridge between the visual and language modalities. It takes the sequence of visual embeddings produced by the ViT and transforms them into the same embedding space used by the language model. This alignment makes the visual information “intelligible” to the text-based decoder, allowing it to reason about the content of the EEG image.
- **Large Language Model (Qwen2.5 LM):** A pre-trained LLM (in our case, Qwen2.5) functions as the model’s “brain” and “voice”. It is an autoregressive decoder that receives the projected visual features, concatenated with the user’s text prompt, and generates the final textual output word by word. This module is responsible for all high-level reasoning, instruction-following, and language generation.

This modular design is central to our two-stage training strategy detailed in Section 4. In Stage 1, we exclusively fine-tune the Projector to efficiently teach the model the new visual vocabulary of EEG. In Stage 2, we fine-tune both the Projector and the Qwen2.5 LM to cultivate advanced, domain-specific reasoning and conversational abilities.

H RETHINKING THE TASK OF AUTOMATED SLEEP STAGING ON HMC

CerebraGloss’s performance on the HMC sleep staging task is slightly below the state-of-the-art (SOTA). We investigate whether this stems from insufficient training data or from fundamental limitations of the task itself.

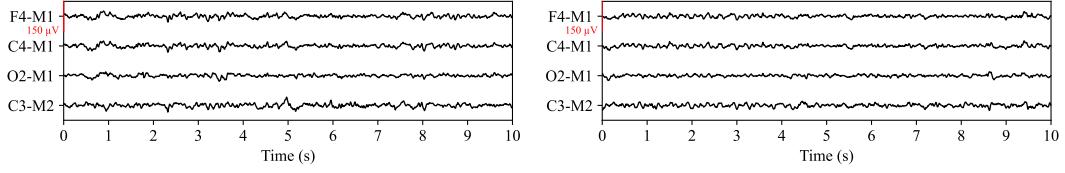
The Limited Impact of Increased Training Data. SOTA methods train on the full HMC dataset of over 230K samples, whereas our instruction-tuning stage included only 40K HMC sleep staging questions and 24K related caption samples. To test if this data disparity was the cause, we continued training CerebraGloss-3B on an additional 90K HMC sleep staging questions. This supplemental training yielded only a marginal 1% performance increase, with the training loss decreasing very slowly. This result strongly suggests that simply increasing the volume of task-specific data is not the key to substantial improvement and points towards a more inherent issue.

	Wake	NREM1	NREM2	NREM3		Wake	NREM1	NREM2	NREM3	
Wake	8533	1534	1266	80		Wake	9057	1627	700	31
NREM1	2105	2050	4058	391		NREM1	1235	3734	3543	92
NREM2	714	1614	19787	4414		NREM2	246	2172	21239	2872
NREM3	28	43	3475	10584		NREM3	18	147	3072	10893

(a) CerebraGloss-3B

(b) SOTA

Figure 16: Confusion matrices for CerebraGloss (a) and the SOTA model (b) on the HMC sleep staging task. Both models show significant confusion between NREM1 and NREM2, highlighting a shared difficulty likely rooted in the task’s inherent ambiguity.



(a) label: “NREM1”

(b) label: “NREM2”

Source: `HMC/recording/SN134.edf`

Figure 17: An example of two visually similar 10-second EEG segments from the HMC dataset. Despite their resemblance, Segment (a) is labeled as NREM1, while Segment (b) is labeled as NREM2. This illustrates the inherent ambiguity faced by models when staging isolated, short epochs without broader temporal context.

Inherent Ambiguity in Short-Epoch Sleep Staging. We argue the performance ceiling is rooted in the ambiguity of classifying isolated, short EEG epochs. According to AASM standards (Malhotra, 2024), sleep stages are identified by key graphoelements. For instance, the onset of NREM2 is defined by the appearance of sleep spindles or K-complexes, while NREM1 is characterized by features such as the replacement of alpha rhythm with low-amplitude mixed-frequency activity and the presence of vertex sharp waves. However, these markers are stochastic and often absent within a single 10-second or 30-second window. This challenge is reflected in the confusion matrices (Figure 16), where both CerebraGloss and the SOTA model show the most significant confusion between NREM1 and NREM2 which have similar background. This is an expected outcome, as human experts rely on contextual information from surrounding minutes to stage ambiguous epochs confidently. Models operating on context-stripped segments are deprived of this crucial information, forcing them to classify based on incomplete evidence (see Figure 17 for an example of ambiguous, visually similar segments with different labels).

Implications for Future Research. This analysis suggests that pushing for marginal gains on the HMC benchmark may involve overfitting to subtle statistical cues within isolated epochs rather than developing a robust, clinical understanding of sleep architecture. We posit that CerebraGloss’s slight performance deficit is not a weakness but a reflection of its training for broader, descriptive tasks, which discourages overfitting to a single, context-poor classification problem. The more meaningful path forward is not to optimize for single-epoch classification, but to develop models capable of reasoning over **longer temporal contexts**. Such an approach would better mimic expert clinical practice, and CerebraGloss’s generative architecture provides a strong foundation for this more ambitious and clinically relevant goal.

1620 Table 6: Average Precision (AP) of CerebraGloss-YOLO at an Intersection-over-Union (IoU) of 0.5
 1621 on the CerebraGloss-Bench waveform detection task.

Waveform	AP@0.5	Waveform	AP@0.5	Waveform	AP@0.5
spindle	0.71	Kcomplex	0.47	hfnoise	0.75
eyem	0.76	eyer+	0.04	eyer-	0.15
sharp	0.63	spike	0.19	spsw	0.00

1628 Table 7: Error rates of CerebraGloss on CerebraGloss-Bench MCQs. Note: Major categories (Total)
 1629 are mutually exclusive. Sub-labels represent subsets and may overlap; thus, their counts do not sum
 1630 to the category total.

Category	Error Rate	Category	Error Rate
Sleep (Total)	1 / 23	Background (Total)	6 / 20
spindle	1 / 7	Epilepsy (Total)	6 / 18
Kcomplex	0 / 3	spsw	4 / 7
Artifact (Total)	5 / 29	spike	2 / 7
eyem, eyer+/-	0 / 11	sharp	2 / 10
hfnoise	1 / 8		

I ERROR ANALYSIS AND NOISE PROPAGATION

In this section, we analyze how errors and noise from our automated data generation pipeline propagate to the final CerebraGloss model. We focus on the correlation between the quality of the generated instruction data and the model’s performance on the CerebraGloss-Bench Multiple-Choice Questions (MCQs).

Propagation of Detection Quality. We first examine the relationship between the upstream detection quality (from CerebraGloss-YOLO) and the downstream interpretation accuracy. Table 6 presents the Average Precision (AP), while Table 7 summarizes the error rates on corresponding MCQs. The detector performs well on common waveforms but struggles with rare or subtle ones.

A strong positive correlation is observed across both physiological waveforms and detected artifacts. High-performing detection classes, such as *sleep spindles* (AP 0.71) and *eye movements* (AP 0.76) consistently correspond to minimal MCQ error rates (14.3% and 0%, respectively). Conversely, classes where the detector struggles, such as the *spike-and-wave complex* (spsw, AP 0.00), result in significantly higher error rates (57.1%). This evidence suggests that the reasoning capability of CerebraGloss is heavily bounded by the precision of the upstream object detection pipeline.

Impact of Pipeline Coverage and OOD Data. The analysis of artifact errors further highlights the critical role of training data coverage. Artifact identification in our pipeline generally employs a hybrid approach combining YOLO detection with statistical rules. The model demonstrates robust performance on *eye movements* and *high-frequency noise* (0% and 12.5% error rates), aligning with their strong YOLO performance (AP 0.76 and 0.75) and inclusion in the training set. In stark contrast, the model exhibits a 100% error rate (2/2) for *chewing artifacts*. This failure is attributable to the fact that chewing artifacts are neither detected by our YOLO model nor included in our instruction generation rules, representing an out-of-distribution (OOD) scenario. This indicates that CerebraGloss cannot effectively zero-shot complex, specialized artifacts without explicit supervision from the data engine.

Background Rhythm Characterization. We omit a correlation analysis for the *Background* category due to a task misalignment between the pipeline’s output and the benchmark’s evaluation. Our pipeline utilizes Fast Fourier Transform (FFT) to deterministically calculate dominant frequency and amplitude. However, the benchmark MCQs assess qualitative features such as *spatial symmetry* and *temporal variability*. Since the pipeline does not explicitly parameterize these qualitative attributes, the errors in this category stem from the model’s lack of explicit supervision on these features rather than noise in the frequency calculations.

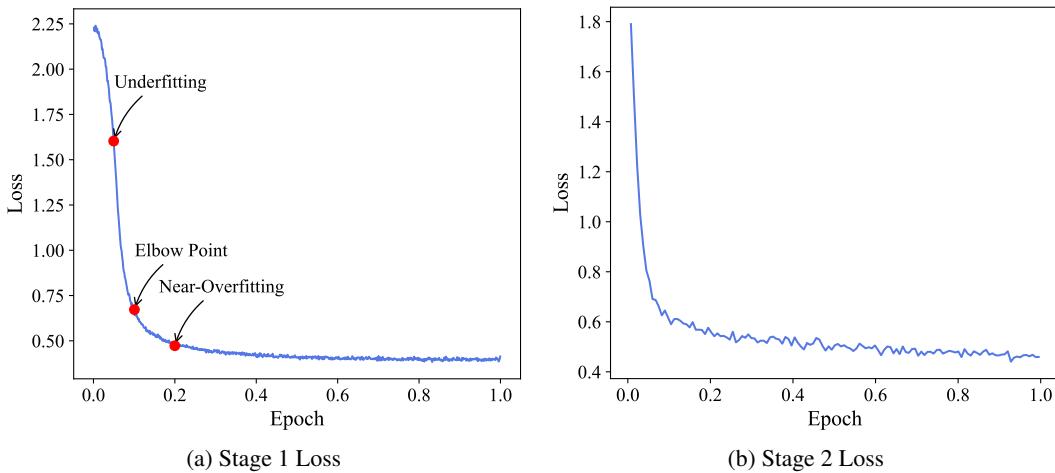


Figure 18: Training loss curves for Stage 1 and Stage 2 of CerebraGloss-3B. Stage 2 (b) is trained on the underfit point of Stage 1 (a), which learns the visual vocabulary for EEG without compromising its original strong reasoning skills.

J TRAINING LOSS

Figure 18 shows the training loss curves for Stage 1 and 2 of CerebraGloss-3B. Our ablation experiments indicate that training Stage 2 at the underfitting point of Stage 1 yields the best performance. We believe that at this point, the model has not only acquired the visual vocabulary of the new EEG domain but has also preserved its original strong reasoning capabilities. Since our caption data is highly structured, further training would cause the model to more easily learn this “stereotyped pattern” rather than general “EEG-language” associations. Additionally, it is interesting to note that the loss value at the underfitting point of Stage 1 is around 1.6, which is consistent with the convergence values of LLaVA’s (Liu et al., 2023) and Qwen-VL’s (Bai et al., 2023) pretraining.

K GENERAL TASKS

To ensure that our domain-specific fine-tuning did not result in catastrophic forgetting of the model’s general vision-language capabilities, we evaluated CerebraGloss-3B on the comprehensive MM-Bench benchmark (Liu et al., 2024b). MMBench assesses a wide range of abilities, from object recognition and localization to complex reasoning over 20 distinct sub-tasks. We compared the performance of CerebraGloss-3B against its base model, Qwen2.5-VL-3B. As shown in Table 8, CerebraGloss-3B achieves an overall score of 84.80%, only a marginal 0.55% decrease from the base model’s 85.35%. The performance across individual sub-tasks remains highly comparable. These results strongly indicate that our training strategy successfully imparts specialized EEG interpretation skills while preserving the model’s robust, pre-existing general-purpose abilities.

L FUTURE WORK

Despite its strong performance, CerebraGloss has limitations that open avenues for future work. Its reliance on a fully automated data pipeline can introduce noise and lead to factual inaccuracies. Future work should focus on enhancing the precision of this data engine. More fundamentally, our approach treats EEG as a specialized image, framing the task as a vision-language problem, which does not result in the loss of critical information, as doctors also interpret EEGs visually. However, a more native and powerful paradigm would be a true EEG-language multimodal model, which requires developing a dedicated EEG encoder capable of directly aligning raw time-series signals with fine-grained textual descriptions, bypassing the intermediate visual representation entirely. Furthermore, our current model processes fixed 10-second segments, while clinical interpretation often requires reasoning over longer temporal contexts. Finally, blinded performance studies with expert

1728
1729 Table 8: Comparison of MMBench evaluation set results for Qwen2.5-VL-3B and CerebraGloss-
1730 3B. All scores are reported in percentage (%).
1731

Category	Qwen2.5-VL-3B	CerebraGloss-3B
Action Recognition	91.16	90.70
Attribute Comparison	78.72	78.01
Attribute Recognition	93.56	93.94
Celebrity Recognition	95.45	94.95
Function Reasoning	90.79	89.47
Future Prediction	61.54	59.23
Identity Reasoning	100.00	100.00
Image Emotion	85.50	82.50
Image Quality	63.33	61.33
Image Scene	98.03	98.28
Image Style	93.40	93.40
Image Topic	97.14	97.14
Nature Relation	84.92	87.71
Object Localization	64.76	65.08
OCR	92.31	93.59
Physical Property Reasoning	73.52	73.52
Physical Relation	65.96	59.57
Social Relation	96.51	95.93
Spatial Relationship	57.63	55.93
Structuralized Image-Text Understanding	85.46	84.04
Overall	85.35	84.80

1752
1753 neurologists and uncertainty quantification are essential for building trust and ensuring patient safety
1754 in any clinical decision-support application.
17551756

M THE USE OF LARGE LANGUAGE MODELS

1759 We utilized Large Language Models (LLMs) as assistive tools in this work and take full responsibility
1760 for all content. The final manuscript and all codebase underwent meticulous review and
1761 validation by the authors. The roles of LLMs are detailed below.1762 **Data Generation and Evaluation.** We employed Gemini 2.5 Flash to transform our programmati-
1763 cally generated, structured annotations into diverse instruction-following data. Quality was ensured
1764 by carefully engineering and pilot-testing our prompts to confirm that the LLM’s output consistently
1765 and accurately reflected the factual input from our pipeline. The LLM was not used to generate
1766 novel clinical insights. Additionally, for evaluating the conversational task, we used GPT-5 as an
1767 impartial judge to score responses against predefined criteria.1768 **Writing and Coding Assistance.** LLMs were used to improve the clarity and grammar of the
1769 manuscript and to assist with routine coding tasks. We directed these processes and thoroughly
1770 reviewed, edited, and validated all outputs to ensure they align with our research goals and standards.
17711773

N MORE RESULTS

1775 This section presents the responses of CerebraGloss-3B to three categories of instruction-following
1776 questions in the CerebraGloss-Bench, along with the human-revised answer keys from the bench-
1777 mark. A total of five examples are shown, covering four major categories of questions: artifacts,
1778 sleep, epilepsy, and background. CerebraGloss demonstrates its strong ability to understand vari-
1779 ous clinical waveform events, as well as the channels and time of their occurrence. However, false
1780 positives (model hallucinations) are frequently present, which we believe are primarily due to the un-
1781 avoidable inclusion of many false positives in the automatically generated fine-grained EEG quality
instruction-following data. We use ~~strikethrough~~ to mark the false positive parts.

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

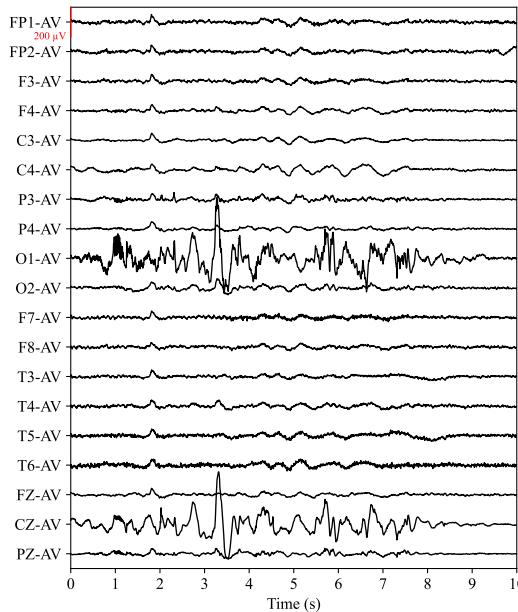
1800

1801

1802

1803

1804

Severe artifact

Source: CerebraGloss-Bench/img/19_av.jpg

User Summarize the main features of this EEG.

CerebraGloss The channel layout uses the standard 10-20 system with an average reference. The data quality is fair, with significant artifact interference. Extreme values are observed in O1 throughout the recording, and in FZ and CZ during 2.9-4.2 seconds, indicating severe artifact. High-frequency noise is persistently present in bilateral frontal, temporal, and occipital lobes, and in the parietal lobe midline. Frontopolar leads demonstrate eyeblink artifacts during 5.0-5.4 seconds. Sporadic sharp waves are present in the right hemisphere and frontal and central lobes midline during 0.8-1.4 seconds, and in the right hemisphere and frontal and central lobes midline during 1.7-2.2 seconds, with additional sharp waves in F4 and FZ during 2.3-2.8 seconds. The background activity is stable, predominantly composed of medium-amplitude delta band activity at approximately 2.1 Hz with an amplitude of about 27.8 μ V.

Answer Key The channel layout uses the standard 10-20 system with an average reference. The data quality is fair, with significant artifact interference. Persistent high-frequency noise affects the bilateral frontal and temporal regions, and prominent electrode artifact is noted in the O1 and CZ channels. A generalized burst of sporadic sharp waves is observed from approximately 1.6 to 2.1 seconds. This is followed by medium-amplitude delta activity at approximately 1.4 Hz, maximal from 4.0 to 8.0 seconds.

User What best describes O1 and CZ?

- A) A sustained run of delta activity.
- B) Generalized, synchronous sharp waves.
- C) Severe electrode artifact.
- D) A well-organized posterior dominant rhythm.

CerebraGloss **C.** O1 shows extreme values and CZ has sharp waves and spikes, which are characteristic of severe artifact or technical issues, making them unreliable for interpretation.

C.

Answer Key

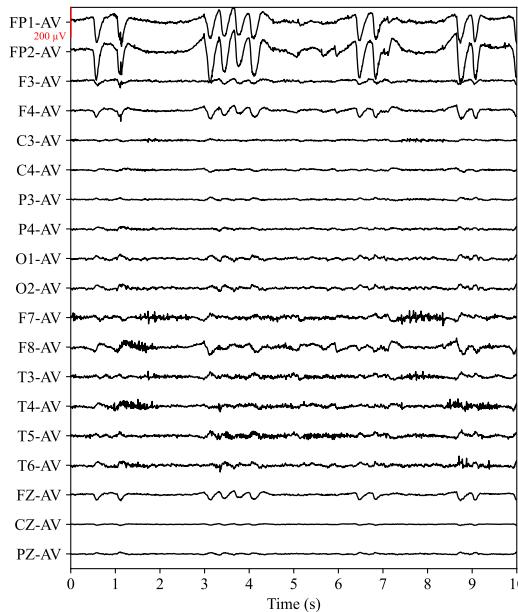
User I note O1 and CZ differ from others. Are they epileptiform discharges?

CerebraGloss While sharp waves and spikes are detected in O1 and CZ, the data quality in these channels is compromised. There's a period of extreme values in O1, and CZ shows significant artifact. Given this, these isolated sharp waves and spikes are highly suspicious for artifact, especially the "spikes" in CZ, which are likely part of the artifact given the extreme values.

Answer Key Certainly not. They represent severe electrode artifacts, likely caused by poor contact.

1834

1835

1836
1837**Eye-related artifact and high frequency noise**1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856

1857

Source: CerebraGloss-Bench/img/36.av.jpg

1858

User
CerebraGloss

What does this EEG show?

1859
1860
1861
1862
1863
1864
1865
1866

The channel layout uses the standard 10-20 system, using average reference. Data quality is fair with some artifact interference. Low-voltage channels are observed in CZ during 0.1-3.4s. Low-voltage channels are observed in CZ, PZ during 3.4-8.4s. High-frequency noise is persistently observed in bilateral frontal, temporal, central, and occipital lobes throughout the recording period. High-frequency noise is observed in FP2 during 0.0-0.7s, 2.4-3.4s. Frontopolar leads (FP1, FP2) demonstrate eyeblink artifacts during 0.6-1.1s, 2.8-3.3s, 3.6-4.1s, 6.3-6.8s, 8.3-8.9s, 9.2-9.7s. Consequently, artifact-induced sharp waves are observed in bilateral temporal, central, parietal, and occipital lobes and central and parietal lobes midline during 0.5-1.2s, 3.5-4.1s, 8.3-8.9s, 9.2-9.7s. Right-gaze artifacts detected in temporal leads (F7, F8) during 8.2-8.4s. Sporadic sharps are present in FZ during 2.9-3.4s.

1867
1868
1869
1870
1871
1872**Answer Key**

The channel layout uses the standard 10-20 system with an average reference. The data quality is fair, though the recording is significantly affected by various artifacts. Frequent eye blink artifacts are present, which are temporally correlated with the delta activity in the bilateral frontal and occipital regions. Persistent high-frequency muscle artifact is noted, predominantly over the temporal areas. These findings are consistent with a relaxed wakefulness, with the recording significantly contaminated by myogenic and ocular artifacts.

1873

User

Regarding the waveforms resembling delta activity observed in F4, FZ, O1, and O2, which of the following descriptions is correct?

1874
1875
1876
1877

- A) They are continuous sharp wave discharges.
- B) They are artifacts generated by eye blinks.
- C) They are benign vertex sharp waves characteristic of NREM sleep.
- D) They are generated by structural brain damage.

1878
1879
1880**CerebraGloss**

B. The description explicitly states that the delta activity in F4, FZ, O1, and O2 is artifact-induced and co-occurs with eyeblink artifacts in the frontopolar leads.

1881

Answer Key

B. The delta activity occurs simultaneously with eye movements seen in the frontopolar leads.

1882

User

I am noting the presence of delta activity in the frontal and occipital regions. Could these be associated with epilepsy, or are they concerning?

1883
1884
1885
1886**CerebraGloss**

The delta activity noted in FP1, FP2, and FZ is primarily due to eye blink artifacts, particularly the ones around 6.5-7.1 seconds and 8.4-9.0 seconds. These eye movements can sometimes induce artifactual slow waves in adjacent channels, which could be misinterpreted as true cerebral activity. There are no clear epileptiform discharges or other significant abnormalities in this segment.

1887
1888
1889**Answer Key**

That's an important point to clarify. The delta activity appears to be artifactual. They occur simultaneously with the prominent eye blinks seen in the frontal channels. This is a common finding where blink artifacts can be misinterpreted as sharp waves or delta activity, especially in an average reference montage.

1890

1891

1892

1893

1894 **Sleep spindle**

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

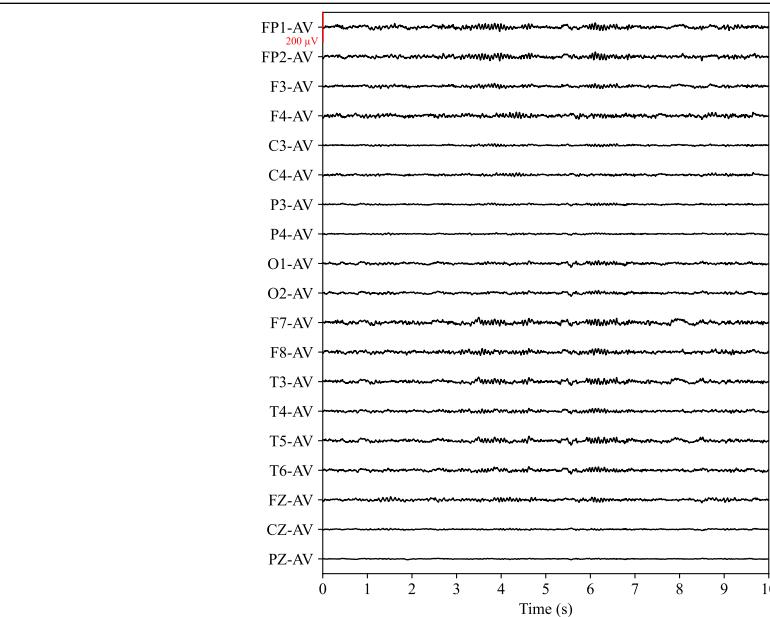
1910

1911

1912

1913

1914



Source: CerebraGloss-Bench/img/43_av.jpg

User Generate a description of this EEG.

CerebraGloss The channel layout uses the standard 10-20 system with an average reference. The data quality is generally good, though high-frequency noise is persistently observed in F7 and intermittently in FP1. No definite epileptiform discharges or physiological sleep waves are observed. The background activity is stable, predominantly composed of a low-amplitude Beta rhythm at approximately 15.4 Hz with an amplitude of about 13.5 μ V. This pattern is consistent with a normal awake state.

Answer Key The channel layout uses the standard 10-20 system with an average reference. The overall data quality is good, though the PZ channel shows persistently low voltage, likely due to a technical issue. Widespread sleep spindles are present from approximately 3.1-4.8 seconds and again from 5.4-7.1 seconds. The background activity is stable and composed predominantly of low-amplitude beta and delta activity. These findings are consistent with stage NREM2 sleep.

User What is the most prominent electrographic feature visible in this segment?

- A) Well-formed sleep spindles
- B) A generalized K-complex
- C) Rhythmic epileptiform discharges
- D) Well-organized alpha rhythm

CerebraGloss **A.** The segment prominently displays sleep spindles, which are characteristic waveforms seen during non-REM sleep stages.

Answer Key **A.** The segment shows clear, generalized bursts of activity in the 12-14 Hz range, which are characteristic of sleep spindles, a hallmark of NREM stage 2 sleep.

User What are your initial thoughts on this segment?

CerebraGloss This segment appears to be largely unremarkable, showing a stable background rhythm. While there's some high-frequency noise, particularly in the frontal and temporal regions, it doesn't obscure the overall tracing significantly.

Answer Key This appears to be a good quality recording of a patient in sleep. The most prominent features are two well-formed, generalized bursts of sleep spindles, which are characteristic of NREM Stage 2 sleep.

1941

1942

1943

1944

1945

1946

Epileptiform discharge

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

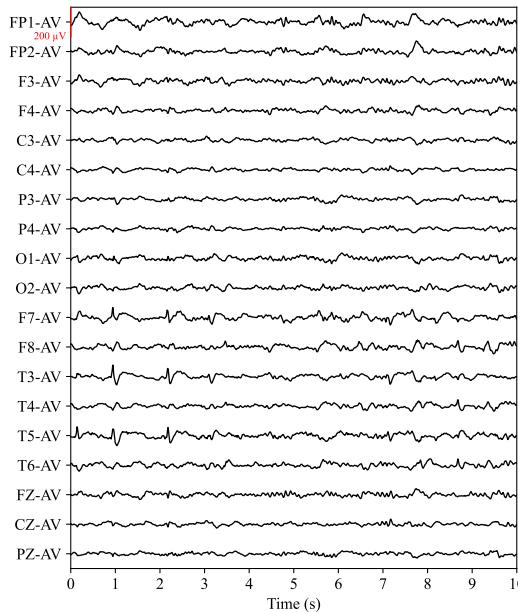
1962

1963

1964

1965

1966



Source: CerebraGloss-Bench/img/122_av.jpg

1967

User What is happening in this EEG?

1968

CerebraGloss The channel layout uses the standard 10-20 system, using average reference. Overall data quality is good. Sporadic sharps and spikes are present in bilateral frontal, temporal, and central lobes during 0.1-0.5s, 0.7-1.1s, 2.0-2.4s. Sporadic sharps are present in FP1, FP2, F8 during 7.3-7.9s. Sporadic sharps are present in T5 during 8.6-9.0s. Delta activity is observed in F7, T3, T4 throughout the recording period, with frequency approximately 1.6 Hz and medium amplitude (37.2 μV). The background activity is stable, predominantly composed of medium-amplitude Delta band (at approximately 2.1 Hz, amplitude about 25.8 μV). Interhemispheric asymmetry is observed in the background activity, manifested as: on F7/F8, T3/T4 leads, the amplitude on the left side is consistently higher than that on the right side.

1969

Answer Key The channel layout uses the standard 10-20 system with an average reference. The overall data quality is good. Sporadic independent spikes occur over the left anterior temporal region (F7, T3, T5) at 0, 1, and 2s; and the right temporal region (F8, T4, T6) at 8.7s.

1970

User What is the most accurate description of the epileptiform activity seen in this segment?

1971

A) A single, well-defined left temporal seizure focus.

1972

B) Generalized spike-and-wave discharges.

1973

C) Focal, independent epileptiform discharges.

1974

D) Benign Rolandic spikes.

1975

CerebraGloss **C.** The segment shows sporadic spikes and sharps, some localized to the left temporal region (T3, T5), and others more widespread, indicating focal, independent epileptiform activity rather than a single generalized or focal seizure.

1976

Answer Key **C.** The EEG shows distinct sharp waves and spikes occurring independently in both the left (F7/T3/T5) and right (F8/T4) temporal regions, which is the key finding.

1977

User Can you elaborate on the epileptiform discharges in this segment?

1978

CerebraGloss Certainly. There are periodic sharp waves and spikes observed bilaterally in the frontal, temporal, central, and parietal regions, occurring at approximately 0.6 Hz. Additionally, sporadic sharp waves are noted in the right frontal and temporal lobes, specifically around 7.4-7.9 seconds and 8.3-8.7 seconds.

1979

Answer Key Certainly. Early in the recording, there are clusters of spikes localized to the left temporal region at around 0s, 1s and 2s. Then, much later in the segment, a separate and distinct group of spikes appears over the right temporal area at around 8.7s. Their separation in time and distinct locations suggest two independent foci of irritability.

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

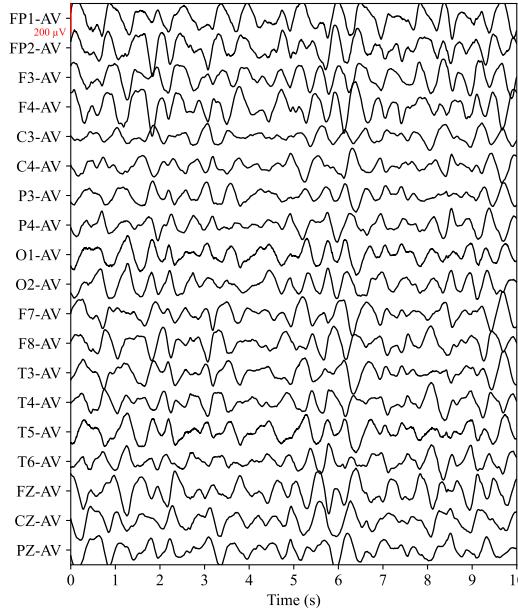
1996

1997

1998
1999
2000
2001
2002
2003
2004

Delta activity

2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023



Source: CerebraGloss-Bench/img/182_av.jpg

2024
2025
2026
2027
2028
2029
2030
2031
2032
2033

User Provide a caption for this EEG segment.

CerebraGloss The channel layout uses the standard 10-20 system with an average reference. The overall data quality is good. The recording is characterized by continuous, high-amplitude delta activity, approximately 1.3 Hz, observed diffusely across all brain regions. No definite epileptiform discharges or physiological sleep waves are observed. This pattern is consistent with a diffuse slowing of background activity.

Answer Key The channel layout uses the standard 10-20 system with an average reference. The overall data quality is good. The background activity is stable and predominantly composed of high-amplitude, diffuse delta activity at approximately 1.8 Hz. If this is during sleep, it could be the EEG pattern of Stage N3 sleep.

2034
2035
2036
2037
2038
2039
2040

User The most prominent feature of this EEG segment is:
A) High-amplitude, generalized delta activity.
B) A focal epileptiform discharge in the right central region.
C) A normal, well-organized posterior dominant alpha rhythm.
D) Intermittent, rhythmic theta bursts.

CerebraGloss **A.** The segment shows widespread, high-amplitude delta activity across all channels, indicating a generalized slowing of background activity.

Answer Key **A.**

2041
2042
2043
2044
2045
2046

User Can you give me an initial impression of this 10-second segment?
CerebraGloss This segment appears to be within normal limits, showing a stable background dominated by delta activity. There are no clear epileptiform discharges or significant artifacts that would suggest pathology.
Answer Key Certainly. The most striking feature of this segment is the background activity. It is quite slow, dominated by continuous, high-amplitude delta waves at approximately 1.8 Hz. The overall data quality appears good, which allows for a clear analysis.

2047
2048
2049
2050
2051