
GeoChain: Multimodal Chain-of-Thought for Geographic Reasoning

Sahiti Yerramilli * 1 Nilay Pande * 2 Rynaa Grover * 1 Jayant Sravan Tamarapalli * 1

Abstract
This paper introduces GeoChain, a large-scale
benchmark for evaluating step-by-step geo-
graphic reasoning in multimodal large language
models (MLLMs). Leveraging 1.46 million
Mapillary street-level images, GeoChain pairs
each image with a 21-step chain-of-thought
(CoT) question sequence (over 30 million Q&A
pairs). These sequences guide models from
coarse attributes to fine-grained localization
across four reasoning categories - visual, spatial,
cultural, and precise geolocation - annotated
by difficulty. Images are also enriched with
semantic segmentation (150 classes) and a
visual locatability score. Our benchmarking
of contemporary MLLMs (GPT-4.1 variants,
Claude 3.7, Gemini 2.5 variants) on a diverse
2,088-image subset reveals consistent challenges:
models frequently exhibit weaknesses in visual
grounding, display erratic reasoning, and struggle
to achieve accurate localization, especially as
the reasoning complexity escalates. GeoChain
offers a robust diagnostic methodology, critical
for fostering significant advancements in complex
geographic reasoning within MLLMs.
Code: https://github.com/sahitiy/
geochain
Dataset: https://huggingface.co/
datasets/sahitiy51/geochain

1. Introduction
Recent advancements in large vision-language models
(VLMs) increasingly viewed as foundational components of
sophisticated world models underscore their growing profi-
ciency in general visual understanding (Google, 2025a; Ope-
nAI et al., 2024; Wang et al., 2024; Dai et al., 2023; Liu et al.,
2023). However, the extent to which these models genuinely
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understand complex domains in the real world like geogra-
phy, particularly their capacity for nuanced, structured geo-
graphic reasoning, remains significantly under-investigated.
Such reasoning, which involves inferring location by syn-
thesizing visual cues with spatial and cultural knowledge,
is not only vital for diverse applications in the real world
but also serves as a critical domain for assessing the ground-
edness and fidelity of these models’ internal world repre-
sentations. Current evaluation techniques often fall short,
with most benchmarks emphasizing end-task prediction ac-
curacy while neglecting to probe the step-by-step inferential
processes that signify deeper understanding. GeoChain
directly addresses this methodological void. This novel
multimodal benchmark leverages 1.46 million Mapillary
street-level images (Warburg et al., 2020), each paired with
a 21-step chain-of-thought (CoT) question sequence that
guides models from broad (e.g., continent) to precise (e.g.,
city, coordinates) geolocation. This methodology yields
over 30 million question-answer pairs, categorized by rea-
soning type (visual, spatial, cultural, precise geolocation)
and annotated with difficulty, facilitating granular diagnostic
insights. Figure 1 presents a visual instance of GeoChain’s
components.

For focused evaluation, we curated GeoChain Test-Mini, a
challenging 2,088-image subset. Its creation involved adapt-
ing a ’locatability score’, drawing from GeoReasoner (Li
et al., 2024) and computed using features from a pretrained
MaskFormer model (Cheng et al., 2021), enabling stratifica-
tion into Easy, Medium, and Hard tiers. Our contributions
are threefold: (1) The GeoChain benchmark framework
itself, offering extensive, diagnostically rich data for step-
by-step geographic reasoning evaluation. (2) Augmentation
of rich semantic labels to the images and the development
of GeoChain Test-Mini through a locatability score, provid-
ing a valuable community resource. (3) A comprehensive
benchmarking of leading MLLMs on GeoChain Test-Mini,
yielding detailed analyses of their geographic reasoning
capabilities and failure modes.

2. Related Work
The field of image-based geolocation has evolved from early
database matching techniques and deep learning-based co-
ordinate prediction (Hays & Efros, 2008; Weyand et al.,
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Figure 1. Components of a GeoChain instance: (Top-Left) Easy Mapillary Street-Level Sequences (MSLS) image with locatability score
of 0.45. (Top-Right) Example chain-of-thought questions with difficulty indicators. (Bottom-Left) Derived semantic segmentation
map. (Bottom-Right) Extracted key semantic labels. Together, these elements enable step-by-step diagnostic evaluation of geographic
reasoning.

2016; Arandjelovic et al., 2016; Tian et al., 2017) primarily
targeting endpoint accuracy towards more sophisticated mul-
timodal reasoning. Within this advanced landscape, several
approaches leverage human-like inference from gameplay
(Li et al., 2024; Song et al., 2025), focus on precise coor-
dinate outputs (Pramanik et al., 2024; Yang et al., 2024),
or utilize dynamic metadata for query generation (Campos
et al., 2025). Other benchmarks address distinct domains
such as remote sensing (Lacoste et al., 2023). GeoChain
distinguishes itself by introducing a benchmark focused on
structured, step-by-step diagnostic reasoning. It employs a
fully static, image-grounded evaluation with a standardized
21-step chain-of-thought question sequence for each ground-
level image. This design facilitates controlled and fair bench-
marking of different models’ inherent geographic reasoning
capabilities spanning visual, spatial, and cultural cues with-
out reliance on model fine-tuning, gameplay dynamics, or
volatile external metadata, thereby offering unique insights
into the consistency and granularity of the reasoning process
itself.

3. GeoChain Benchmark Construction
The GeoChain benchmark is constructed by augmenting
the Mapillary Street-Level Sequences (MSLS) dataset (War-

burg et al., 2020). MSLS provides a diverse collection of
geo-tagged street-level imagery (approximately 1.4 million
images in its full extent, with a geographical distribution
across numerous cities as illustrated in Figure 2), captured
under varied conditions, crucial for developing and evaluat-
ing geographic localization models. However, to facilitate
fine-grained, step-by-step reasoning, we introduce several
layers of annotation and metadata. Our contributions en-
hance the MSLS dataset in three primary ways: seman-
tic class labeling, locatability score computation, and the
design of a structured chain-of-thought question battery.
These augmentations, followed by a careful test set curation
process, collectively enable a more nuanced evaluation of
multimodal models’ geographic reasoning capabilities.

3.1. Semantic Class Labeling

To ground visual reasoning, each image is augmented with a
semantic segmentation map detailing its composition across
150 classes spanning objects, environmental, and architec-
tural features. These maps are generated using MaskFormer
(Cheng et al., 2021) pre-trained on ADE20K (Zhou et al.,
2017). We then calculate the percentage of image area cov-
ered by each category (e.g., ’sky’ 30%, ’road’ 15%), using
these semantic coverage statistics to inform ground-truth
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generation for many of the benchmark’s visual questions.

3.2. Locatability Score Computation

To systematically evaluate model performance across vary-
ing visual ambiguity, we adopt the locatability scoring
methodology from (Li et al., 2024). This score (0–1) reflects
how visually distinctive a location is, higher scores denote
easily identifiable scenes. Briefly, we compute scores by
measuring semantic similarity between common cues used
by expert GeoGuessr players and MaskFormer segmentation
class labels. This similarity informs class weights, which are
then aggregated based on their spatial coverage in each im-
age. Using this score, we divide GeoChain images into three
difficulty tiers: Hard if score ∈ [0.12, 0.22), Medium if
score ∈ [0.22, 0.45), and Easy if score ∈ [0.45, 0.6). Refer
to Appendix A.2 for methodological details.

3.3. Chain-of-Thought Question Design

A central component of GeoChain is a carefully designed
sequence of 21 questions that guide the model through a
step-by-step reasoning process, from coarse-grained obser-
vations to fine-grained localization. This chain-of-thought
(CoT) approach aims to mimic a structured human-like de-
duction process. The questions are ordered such that earlier
questions elicit information or focus attention on attributes
that can be instrumental in answering subsequent, more
complex questions.

The full list of 21 questions, along with their rank, assigned
difficulty (Easy, Medium, Hard), question type (Binary,
Multiclass, Free-text), and question category (e.g., Cul-
ture/Infrastructure, Geo Localization, Terrain/Environment),
is provided in Appendix A.3.1. The difficulty annotation
(Easy, Medium, Hard) for each question reflects the an-
ticipated challenge of answering that specific question in
isolation, based on the type of information required.

The question set is designed to be static across all data points
in the benchmark. This uniformity ensures a consistent eval-
uation framework, allowing for direct, apples-to-apples com-
parisons of different models’ reasoning capabilities. The
questions cover diverse aspects:

• Visual Object/Attribute Presence: Some questions di-
rectly query the presence of specific objects or attributes
identifiable from the image (e.g., ”Do you see any boats
or ships?”). Ground truth for these questions is primarily
derived from the semantic class labels extracted via the
MaskFormer model (Section 3.1). For instance, if the
class ”boat” occupies a non-zero percentage of the image,
the answer would be affirmative.

• Inferential and Contextual Knowledge: Other ques-
tions require more derivative reasoning or contextual

knowledge beyond direct object identification (e.g., ”Is
this place near a coast?”, ”What side of the road do ve-
hicles drive on here?”). The MSLS dataset encompasses
images from 24 distinct cities globally. For images origi-
nating from these locations, we manually curated ground
truth answers for city-level attributes or environmental
characteristics (e.g., typical climate indicators) that apply
broadly to the image’s geographic area.

• Progressive Localization: The sequence progresses from
general observations (e.g., hemisphere, continent) to spe-
cific details (e.g., country, city, precise latitude and longi-
tude coordinates).

The semantic segmentation labels generated in Section 3.1
were instrumental in constructing several questions that di-
rectly probe the visual understanding capabilities of the
models. Beyond their use in the current benchmark, this
rich semantic metadata, now part of GeoChain, offers a
valuable resource for the community. It can be leveraged
to design new questions aimed at further investigating spe-
cific aspects of model behavior, such as tendencies towards
visual hallucination (Li et al., 2023; Rohrbach et al., 2018)
or the fine-grained ability to identify a wider array of ob-
jects. The insights derived from such extended evaluations
can subsequently guide targeted improvements in model
development.

By analyzing model performance across this structured
chain of questions, GeoChain aims to provide deeper in-
sights into the strengths and weaknesses of multimodal geo-
graphic reasoning systems.

3.4. Test Set Curation and Sampling Strategy

To create the ”GeoChain Test-Mini” subset for focused eval-
uation, we prioritized stratification, visual quality, and di-
versity. We initially targeted 2100 images, stratified by
locatability scores into 700 Easy, 700 Medium, and 700
Hard examples. Unique image sequences were randomly
sampled first for the Hard tier, then for the Medium tier
(from remaining unique sequences), and finally for the Easy
tier, ensuring no sequence was reused across tiers. We ran-
domly sample unique image sequences across all available
cities within each locatability tier. These 2100 candidates
underwent manual visual inspection, where 12 images with
critical quality issues were removed. This rigorous curation
yielded a final Test-Mini set of 2088 high-quality, diverse,
and appropriately challenging images.

4. Analysis
In this section, we evaluate the performance of frontier
vision-language models: GPT-4.1, GPT-4.1-mini (OpenAI
et al., 2024), Claude 3.7 Sonnet (Sonnet, 2025), Gemini
2.5 Flash (Google, 2025b) and Gemini 2.5 Pro (Google,
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2025a) on the GeoChain ”Test-Mini” benchmark, focusing
on their ability to reason accurately and consistently across
a structured 21-step geographic reasoning chain.

4.1. Evaluation Metrics

The accuracy of predicted geographic coordinates (Ques-
tion 21) is evaluated using the Haversine distance, which
calculates the shortest distance over the Earth’s surface be-
tween the predicted and ground-truth locations (details in
Section A.4). Overall performance is measured by the Pass
Score, representing the average fraction of correctly an-
swered questions across the 21-step reasoning chain. For
most questions, correctness is determined by matching the
ground-truth answer based on its type (Binary, MultiClass,
Free-Text). Critically, the final coordinate prediction con-
tributes to the Pass Score as correct if its Haversine distance
from the true location is less than 50km.

4.2. Overall Model Performance

MLLM performance on GeoChain Test-Mini (Table 1) re-
veals specialized capabilities. Gemini-2.5-pro excels in
multi-step reasoning (81.84% pass score), while Gemini-2.5-
Flash demonstrates superior localization precision (445.24
km mean error), suggesting distinct optimization for these
skills. This divergence underscores that broad inferential
ability and precise geolocalization are distinct skills. Al-
though GPT-4.1 is competitive, notable localization inaccu-
racies from Claude 3.7 Sonnet (1289.04 km) and GPT-4.1
Mini (1194.77 km) highlight robust geospatial grounding as
a primary MLLM developmental hurdle.

Threshold-based localization metrics (City <25km, Re-
gion <200km, Country <750km) further differentiate mod-
els. Gemini-2.5-pro leads in City-level precision (59.38%),
while Gemini-2.5-Flash excels at Region (70.02%) and
Country (90.31%) granularities. GPT-4.1 also achieves
strong City-level accuracy (57.84%). In contrast, Claude
3.7 Sonnet (40.34% City) and GPT-4.1 Mini (48.61% City)
struggle significantly at these finer scales. These granular
metrics effectively highlight that achieving reliable, high-
confidence City-level precision is a key challenge across
MLLMs.

4.3. Breakdown by Image Difficulty

Analyzing model performance by image difficulty (Table
3) reveals critical operational characteristics. As expected,
’Hard’ images significantly challenge all models, leading
to substantial increases in mean localization errors often
exceeding 1000-2000 km for several models. The Gem-
ini models consistently lead: Gemini-2.5-pro achieves top
Pass Scores across all difficulties (e.g., 78.0% on Hard),
while Gemini-2.5-Flash generally provides superior local-

ization on ’Easy’ and ’Medium’ images (e.g., 188.45 km on
Medium). Notably, Gemini-2.5-pro performs the best for lo-
calization precision on ’Hard’ images (866.62 km), possibly
where its stronger inferential capacity becomes decisive. An
intriguing anomaly is the better localization by some models,
like Gemini-2.5-Flash, on ’Medium’ versus ’Easy’ images,
potentially due to bias towards certain cities in pre-training
data. Furthermore, Claude 3.7 Sonnet’s performance is par-
ticularly interesting: despite reasonable Pass Scores (e.g.,
73.2% on Hard), its poor localization (2000.14 km on Hard)
highlights a profound disconnect between understanding
cues and grounding them spatially.

4.4. Breakdown by Question Category

Analyzing Pass Scores by question category (Table 2), in-
formed by the benchmark’s diverse question structures (e.g.,
visual queries versus free-text specific knowledge), reveals
distinct performance strata. Foundational ”Visual” ques-
tions, focusing on direct object presence (e.g., ”Do you
see any boats?”), yield universally high score, suggesting
robust basic visual grounding and low immediate hallu-
cination, with Claude 3.7 Sonnet leading (92.8%). Simi-
larly, ”Terrain” identification is generally strong. In con-
trast, categories like ”Geo Localization” and ”Cultural”
show mixed results; models likely handle simpler, coarse
queries (e.g., continent identification) better than challeng-
ing free-text questions requiring specific knowledge (e.g.,
city/state names, language identification). Unsurprisingly,
”Exact Loc” demanding precise latitude/longitude output is
definitively the most challenging category across all mod-
els. Within this landscape, Gemini-2.5-pro consistently
excels, particularly in the more demanding categories like
”Terrain” (87.4%), ”Cultural” (77.9%), and ”Exact Loc.”
(63.5%). GPT-4.1 also demonstrates strong performance,
notably in ”Geo Localization” (76.9%) and ”Exact Loc.”
(61.5%). Claude 3.7 Sonnet’s profile, with its excellent
”Visual” scores but significantly weaker ”Exact Loc.” per-
formance (51.0%), starkly illustrates a common theme: a
disconnect between initial cue processing and final, precise
geospatial grounding, which remains the primary MLLM
hurdle.

5. Conclusion
We introduced GeoChain, a large-scale, 21-step chain-of-
thought benchmark using street-level imagery to diagnose
MLLM geographic reasoning. Evaluations on GeoChain
Test-Mini subset show leading MLLMs struggle with visual
grounding, reasoning consistency, and localization, espe-
cially with increased complexity. GeoChain’s step-by-step
analysis pinpoints these failures beyond end-task accuracy,
offering a key diagnostic resource to foster more robust, geo-
graphically aware AI. A more detailed exploration of further
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Table 1. Overall model-level accuracy and localization metrics.

Model Pass Score (%) Mean Dist (km) < 25 km (%) <200 km (%) < 750 km (%)

Gemini-2.5-pro 81.84 489.51 59.38 69.95 88.51
Gemini-2.5-Flash 79.77 445.24 55.71 70.02 90.31
GPT-4.1 79.25 611.89 57.84 67.36 86.24
Claude 3.7 Sonnet 76.23 1289.04 40.34 47.07 73.31
GPT-4.1 Mini 70.42 1194.77 48.61 52.87 72.77

Table 2. Pass score (%) by question category.

Model Visual Terrain Geo Localization Cultural Exact Loc.

Claude 3.7 Sonnet 92.8 84.7 69.4 67.4 51.0
GPT-4.1 Mini 92.3 78.7 64.1 56.8 40.7
GPT-4.1 91.8 84.8 76.9 68.3 61.5
Gemini-2.5-Flash 92.4 86.0 73.5 75.3 59.8
Gemini-2.5-pro 92.1 87.4 76.8 77.9 63.5

Table 3. Performance by image difficulty. Pass Score (%) and
Haversine distance (km) for each difficulty level.

Model Diff Pass Score M. Dist.

Claude 3.7 Easy 77.2 885.86
Sonnet Medium 78.3 989.13

Hard 73.2 2000.14

GPT-4.1 Easy 70.8 863.19
Mini Medium 73.2 827.78

Hard 67.3 1910.44

GPT-4.1 Easy 79.3 357.36
Medium 81.6 428.46
Hard 76.8 1052.13

Gemini-2.5 Easy 80.5 287.61
Flash Medium 82.5 188.45

Hard 76.3 873.78

Gemini-2.5 Easy 83.3 300.29
Pro Medium 84.2 304.32

Hard 78.0 866.62

analytical dimensions is provided in A.5. A discussion of
GeoChain’s limitations is also presented in A.6.
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A. Appendix
A.1. MSLS City-Wise Distribution

Figure 2 details the count of images per city, thereby illustrating the urban distribution within the MSLS dataset.

Figure 2. Count of images per city, illustrating the city distribution within the GeoChain dataset.

A.2. Locatability Score Computation

To systematically assess model performance across varying levels of visual ambiguity, we compute a locatability score for
every image considered for the GeoChain benchmark. This score, ranging from 0 to 1, quantifies how visually identifiable
a location is likely to be, with higher scores indicating more distinct and easily locatable scenes. Our methodology for
calculating this score is adopted from (Li et al., 2024). The distribution of these computed locatability scores across the
considered images is shown in Figure 3.

The core idea behind this score is to leverage common cues that humans, particularly proficient GeoGuessr players
(GeoGuessr, 2013), rely on for geolocalization. The process involves several steps:

1. Identification of Cues: A set of cues frequently used by GeoGuessr players (e.g., “houses in central Chile are more
likely to have terracotta tiled roofs”) is established.

2. Cue-to-Class Similarity: The semantic similarity between these cues and the 150 class labels produced by the
MaskFormer model (as described in Section 3.1) is computed. This typically involves using text embeddings to
represent both the cues and the class labels, followed by a similarity measure (e.g., cosine similarity).

3. Class Weight Derivation: The similarities are aggregated across all cues for each class and then subjected to min-max
normalization to derive a set of weights wc for each class c. These weights reflect the importance of each visual class
for geolocalization.

4. Weighted Score Aggregation: The final locatability score for an image is computed as a weighted sum of the
percentage areas of the classes present in the image.

This locatability score is then used to stratify the images within the GeoChain test set into three distinct tiers: Easy, Medium,
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Figure 3. Distribution of Locatability Scores in GeoChain

and Hard. This stratification, based purely on visual cues inherent in the imagery, allows for a more granular analysis of
model performance and helps identify specific weaknesses in reasoning about visually challenging environments.

A.3. Implementation Details

A.3.1. QUESTIONS

This section details the complete 21-question sequence (Table 4) that forms the core of the GeoChain benchmark, designed
to evaluate the step-by-step geographic reasoning capabilities of Multimodal Large Language Models (MLLMs). Each
question in the sequence is characterized by its rank, designated difficulty level (Easy, Medium, or Hard), expected response
format (Binary, Multiclass, or Free-text), and its primary Question Category (Visual Cues, Geographical localization, Cul-
ture/Infrastructure, Terrain/Environment, or Exact Location). This comprehensive listing provides a transparent foundation
for understanding the specific tasks underpinning the performance evaluations discussed throughout this paper.

A.3.2. SYSTEM PROMPT

To guide the Multimodal Large Language Models (MLLMs) and standardize their responses for the GeoChain benchmark
tasks, the following system prompt was consistently employed:

System Prompt

You are an accurate geolocation model. Given the image, answer the following questions in order. Please provide
your best guess. Each question is also provided with question type. For Binary questions, answer Yes/No only. For
Multiclass questions, answer as one of the provided options in brackets. Final question type is a free text question,
answer it as a free string text. If you are not sure about the answer, give your best guess. Answer format should be a
json dict with question indices as keys (0 indexed) and values as Answer: <answer>, Reasoning: <reasoning>.

A.3.3. TOOLS AND INFRASTRUCTURE

The execution of model inference was managed by Promptfoo1, a platform that ensures reproducibility in benchmarking by
offering versatile prompt configuration and effective API linkage. We used the transformers library in Hugging Face2; to run
the MaskFormer model for computing segmentation masks. These calculations were performed on an NVIDIA GeForce
RTX 3060 graphics processing unit.

1https://www.promptfoo.dev
2https://huggingface.co/docs/transformers/en/index

9

https://www.promptfoo.dev
https://huggingface.co/docs/transformers/en/index


GeoChain: Multimodal Chain-of-Thought for Geographic Reasoning

Table 4. The GeoChain 21-Step Benchmark Question Set.
Rank Difficulty Question Question Type Question Category

1 Easy Do you see any boats or ships? Binary Visual Cues
2 Easy Do you see one or more of the following

vehicles: Bus, Truck, Car, Van, Motorbike,
Minibike, Bicycle?

Binary Visual Cues

3 Easy Can you see any traffic lights? Binary Visual Cues
4 Easy Can you see any flag? Binary Visual Cues
5 Easy Would you say this location is near the Equa-

tor?
Binary Geographical localiza-

tion
6 Easy Does this location seem to be close to the

Poles?
Binary Geographical localiza-

tion
7 Easy Is this place located in the Northern Hemi-

sphere?
Binary Geographical localiza-

tion
8 Easy Which continent best describes

where this location is? (7 conti-
nents: North America/South Amer-
ica/Europe/Africa/Asia/Oceania/Antarctica)

Multiclass Geographical localiza-
tion

9 Medium What side of the road do vehicles drive on
here? (Left/Right)

Multiclass Culture/Infrastructure

10 Medium What country is this place located in? Free-text Geographical localiza-
tion

11 Medium Is this place near coast? Binary Terrain/Environment
12 Medium Does this location appear to be an island? Binary Terrain/Environment
13 Easy Is this place located in a desert region? Binary Terrain/Environment
14 Easy Does this location seem to be in a mountain-

ous or hilly region?
Binary Terrain/Environment

15 Medium What is the most likely climate type for
this location? (5 main climate types: Tropi-
cal/Dry/Temperate/Continental/Polar)

Multiclass Terrain/Environment

16 Easy Does this place look like a big city? Binary Culture/Infrastructure
17 Medium Would you classify this place as a small

town?
Binary Culture/Infrastructure

18 Hard What language(s) are most likely spoken at
this place?

Free-text Culture/Infrastructure

19 Hard Can you name the state or province this
place belongs to?

Free-text Geographical localiza-
tion

20 Hard What is the name of the city, town, or village
seen here?

Free-text Geographical localiza-
tion

21 Hard Based on everything observed, what are the
latitude and longitude coordinates of this
place? Please give a tuple of float coordi-
nates (lat, lon)

Free-text Exact Location
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Figure 4. Pass score (%) by city, highlighting the influence of geographical location on model accuracy.

A.4. Haversine Distance

Haversine Distance the shortest distance over the Earth’s surface between the predicted and ground-truth coordinates,
assuming a spherical Earth.

The Haversine formula is given by:
∆ϕ = ϕ2 − ϕ1

∆λ = λ2 − λ1

a = sin2
(
∆ϕ

2

)
+ cos(ϕ1) cos(ϕ2) sin

2

(
∆λ

2

)
d = 2R · arcsin

(√
a
)

Here, d is the Haversine distance between two points (ϕ1, λ1) and (ϕ2, λ2). This metric provides an interpretable and robust
way to measure geographic prediction error.

A.5. Additional Analysis

A.5.1. BREAKDOWN BY CITY

A city-level view (Fig. 4) shows that performance is far from uniform:

Gemini-2.5-pro is the most stable, topping the leaderboard in 20 / 24 cities and exceeding 85% accuracy in visually
distinctive urban centres such as Tokyo, Zurich and Toronto. Gemini-2.5-Flash and GPT-4.1 follow closely, maintaining
more than 75% accuracy in most regions. Performance on Claude 3.7 Sonnet and GPT 4.1 Mini fluctuate sharply: they
perform competitively in cue-rich European cities (Paris, Berlin) but collapse in visually ambiguous locales (Nairobi, São
Paulo, Amman). Mean Haversine error (Fig. 6) confirms the pattern: Gemini-2.5-pro keeps errors below 300 km in nearly
every city, whereas Claude and GPT 4.1 Mini exceed 1000 km in several cases (Helsinki, Melbourne, São Paulo).

These results highlight how regional factors such as vegetation, signage language, traffic orientation and architectural style
strongly modulate geolocation accuracy.
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Table 5. Pass score (%) across question difficulty and image difficulty. Each row shows performance on a given question difficulty across
images of increasing ambiguity.

Model Question Difficulty Easy Images Medium Images Hard Images

Claude 3.7 Sonnet Easy 89.3 89.1 87.7
Medium 76.0 75.7 72.0
Hard 45.8 52.7 34.8

GPT 4.1 Mini Easy 86.7 86.7 84.2
Medium 66.1 67.3 62.1
Hard 37.4 44.6 27.9

GPT-4.1 Easy 87.9 87.5 84.3
Medium 75.5 76.5 71.8
Hard 51.8 60.0 43.3

Gemini-2.5-Flash Easy 90.7 91.0 89.4
Medium 76.7 77.8 74.2
Hard 47.3 54.9 38.4

Gemini-2.5-pro Easy 91.6 91.3 89.8
Medium 78.2 79.9 75.7
Hard 52.4 61.6 45.9

A.5.2. IMAGE DIFFICULTY VS QUESTION DIFFICULTY INTERACTION

To analyze how visual and reasoning difficulty interact, we compute a two-dimensional pass rate matrix over question
difficulty (Easy, Medium, Hard) and image difficulty (Easy, Medium, Hard). Table 5 presents this breakdown for each
model.

We observe a consistent trend across all models: accuracy declines with both increasing image difficulty and question
difficulty. Importantly, hard questions on hard images represent the most challenging setting, with pass rates often below
40% even for state-of-the-art models.

Gemini-2.5-pro shows the strongest resilience across the board, maintaining high scores even on hard questions in ambiguous
scenes. In contrast, Claude 3.7 Sonnet and GPT 4.1 Mini exhibit large drops in performance under compounding difficulty,
confirming their brittleness in multi-factor reasoning.

This matrix allows us to quantify model sensitivity to visual ambiguity and pinpoint failure modes. For example, a model that
performs well on hard questions from easy images but poorly on the same questions from hard images may lack robustness
in interpreting noisy visual cues. Conversely, a model that fails uniformly on hard questions indicates weaknesses in
logical chaining or symbolic inference. Together, this analysis emphasizes the need for benchmarks that probe cross-modal
interactions, rather than evaluating visual or linguistic difficulty in isolation.

A.5.3. BREAKDOWN BY QUESTION DIFFICULTY

To better understand how models handle increasing reasoning complexity, we group questions by their annotated difficulty
levels: Easy, Medium, and Hard. These difficulty tags were assigned manually based on the subtlety, required external
knowledge, and ambiguity of each question.

Across all models, accuracy decreases consistently with question difficulty. Gemini-2.5-pro achieves the highest pass rates
at all levels, followed closely by Gemini-2.5-Flash and GPT-4.1. Interestingly, Claude 3.7 Sonnet and GPT 4.1 Mini both
exhibit sharp drops on hard questions, with performance falling below 45% and 35%, respectively.

These findings suggest that while many models can answer surface-level geographic questions accurately, their reasoning
falters as complexity increases especially when fine-grained localization or symbolic inference is required. The relatively
better performance of Gemini-2.5-pro on hard questions indicates more stable multi-hop reasoning or greater robustness to
subtle visual signals.
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Table 6. Pass score (%) by question difficulty.

Model Easy Medium Hard

Claude 3.7 Sonnet 88.7 74.6 44.5
GPT 4.1 Mini 85.9 65.2 33.4
GPT-4.1 87.3 75.8 54.7
Gemini-2.5-Flash 90.8 76.2 51.3
Gemini-2.5-pro 91.1 78.4 55.1

A.5.4. ACCURACY VS. REASONING DEPTH

Figure 5. Average pass score across the 21-step Geochain reasoning chain. Accuracy decreases as questions progress from coarse global
inference to fine-grained localization.

Figure 5 reveals a typical degradation pattern: All models perform well in the initial questions (1–9), which ask about visual
or global cues such as vehicles, hemisphere, or continent. These are relatively easy to infer on the basis of surface-level
features.

As the questions become more complex and semantically demanding, the accuracy drops sharply, especially at questions 10
and 17. These questions requiring nuanced interpretation of environmental and infrastructure signals.

In particular, we observe a performance bump around questions 12–14. Despite appearing later in the sequence, these
questions ask about relatively easy visual features (e.g., desert, hills, or city size). This reinforces the value of structuring
questions not just by logical sequence but also by measured difficulty, allowing finer-grained diagnostics of model capability.

The final steps of the chain (questions 18–21) see the steepest drop in performance, as models are asked to predict language,
administrative region, city name, and exact coordinates - tasks that require multi-modal reasoning, robust world knowledge,
and low-level visual grounding.
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Figure 6. Mean Haversine distance (km) by city and model. Larger values indicate poor localization precision.

This progressive breakdown highlights GeoChain’s utility as a diagnostic benchmark. By tracking model accuracy at each
reasoning step, researchers can isolate failure modes (e.g. visual hallucination vs. failure to capture cultural cues) and
understand how performance degrades under deeper spatial inference chains.

A.5.5. BREAKDOWN BY QUESTION TYPE

To assess how models handle varying degrees of response constraint, we analyzed Pass Scores across three fundamental
question types: Binary, Multiclass, and Free-text, with results presented in Table 7 and Figure 7. This breakdown reveals a
distinct performance hierarchy directly correlated with the open-endedness of the required answer.

Across all evaluated MLLMs, a clear difficulty gradient was observed: Binary questions yielded the highest success
rates, followed by Multiclass questions, with Free-text questions proving to be the most challenging by a substantial
margin. For instance, Gemini-2.5-pro achieved 88.9% on Binary and an exceptional 92.9% on Multiclass questions, but
its score dropped to 56.7% for Free-text tasks. This pattern of significantly lower performance on Free-text questions was
universal, underscoring the inherent difficulty in precise, open-ended generation and factual recall compared to selecting
from constrained options.

In the structured formats, Gemini-2.5-pro consistently led, achieving the top scores for both Binary (88.9%) and Multiclass
(92.9%) questions, with Gemini-2.5-Flash also performing strongly. Notably, for the more demanding Free-text questions,
GPT-4.1 emerged as the top performer with a Pass Score of 57.8%, slightly ahead of Gemini-2.5-pro (56.7%). This suggests
a particular strength in GPT-4.1’s generative capabilities for unconstrained answers. Claude 3.7 Sonnet demonstrated
robust performance on Binary (86.2%) and Multiclass (84.5%) questions, often comparable to GPT-4.1, but its accuracy
significantly declined on Free-text questions (45.5%), reaffirming its challenges with precise, unprompted generation. As
anticipated, GPT-4.1 Mini generally recorded the lowest scores across all types. This analysis by question type effectively
highlights that while current MLLMs are largely proficient with constrained-choice tasks, open-ended free-text responses
remain a key area for improvement.

A.6. Limitations

While GeoChain offers a novel diagnostic approach, we acknowledge several limitations. GeoChain is built upon the
Mapillary Street-Level Sequences training split; consequently, while our chain-of-thought reasoning framework and the
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Table 7. Pass score (%) by question type.

Model Binary Multiclass Free-text

Claude 3.7 Sonnet 86.2 84.5 45.5
GPT-4.1 Mini 82.3 73.8 37.5
GPT-4.1 85.9 85.8 57.8
Gemini-2.5-Flash 88.5 90.9 50.5
Gemini-2.5-pro 88.9 92.9 56.7

Figure 7. Model vs Question Type

overall task are novel, there is a potential that MLLMs have encountered these specific visual scenes or highly similar ones
during their extensive pre-training. Evaluating performance on truly ”unseen” street-level imagery is an inherent challenge
for the field, given the ubiquity of data from sources like Google Street View (Anguelov et al., 2010) and OpenStreetMap
(Haklay & Weber, 2008), meaning that performance assessments may partly reflect familiarity with certain visual data rather
than solely generalization to entirely new scenes. Additonally, the underlying geographical distribution of the images, though
diverse, retains some skew, potentially affecting the generalizability of the findings in all urban contexts. Furthermore, our
locatability score’s precision is contingent upon the accuracy of an upstream semantic segmentation model, which could
introduce noise into the difficulty stratification.
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